
Database Systems

P. Bartholdi†∗

† Observatory of Geneva
CH-1290 Sauverny – Switzerland

Lecture given at the:
Second Workshop on

Distributed Laboratory Instrumentation Systems
Trieste, 20 October — 14 November 2003

LNS

∗Paul.Bartholdi@obs.unige.ch

Abstract

In this chapter we look at Data bases as used in laboratories to organize
data, keep them up-to-date and retrieve them in easy ways.

Only the relational model is considered, but two rather different imple-
mentations are described in some details.

A strong emphasis is put on public domain database systems that are
readily available, powerful enough for most laboratory works, yet can be
used under limited hardware facilities. Public software also assume more
involvement from the user in testing, developping new facilities, catching and
repairing errors etc.

The chapter end with JDBC , the Java connection to relational databases.
Many short examples illustrate the text, without to much theoretical con-

siderations.

Keywords: SQL, JDBC, relational database, Unix file system, flat files.
PACS numbers:

Contents

1 Introduction 1
1.1 Why Data Base Systems? . 1
1.2 What is a Data Base System? 1
1.3 What is a Data Base ? . 2
1.4 Database Models . 2

2 The Relational Model 2
2.1 Historical background . 2
2.2 The relational model . 3

2.2.1 Vocabulary . 3
2.3 The relational system . 3
2.4 Data entities and relations 4
2.5 The Data model . 5
2.6 Entity-Relationship diagrams 5
2.7 Normal forms . 6

2.7.1 First normal form 7
2.7.2 Second normal form 7
2.7.3 Third normal form 7
2.7.4 Fourth normal form 7
2.7.5 Remarks . 7

3 Unix flat tables 8
3.1 Using pipes and redirections 8
3.2 Flat file format . 8
3.3 Building Databases . 9
3.4 Unix commands . 11
3.5 Advantages and limitations 12

3.5.1 Advantages . 12
3.5.2 Limitations . 13

3.6 SQL equivalence . 13

4 Using SQL Data Bases 13
4.1 Introduction to SQL . 13

4.1.1 Client/server and distributed systems 14
4.1.2 Aliases . 14

4.2 CREATEcommand . 15
4.2.1 Data types . 15
4.2.2 Modifiers . 16
4.2.3 Indices . 16
4.2.4 Other CREATEcommands 16

4.3 WHEREclause . 17
4.4 DELETEcommand . 17
4.5 INSERT command . 17
4.6 SELECTcommand . 18

4 Database Systems

4.7 FROMmodifier . 18
4.8 ORDER BYmodifier . 19
4.9 Combining SELECTcommands 19
4.10 UPDATEcommand . 20
4.11 Report command . 20
4.12 Data dictionary . 20

5 Transactions and triggers 20
5.1 Transactions . 20
5.2 Triggers . 22

6 Data Bases and the Web 22
6.1 The Client Server model . 22
6.2 The Three Tier model . 23
6.3 Access through the web, CGI programming 23

7 The Java JDBC API 26
7.1 Java + RDB : a strange marriage 26
7.2 Embedded SQL statements 27
7.3 Database independence . 27
7.4 Distributed computing . 27
7.5 JDBC Driver . 28
7.6 Three steps to access the data base 28

7.6.1 Connecting to the database 28
7.6.2 Database access . 28
7.6.3 Cleaning up . 29

7.7 Exception handling . 29
7.8 Connecting to a database . 29
7.9 Inserting/updating data . 29
7.10 Retrieving data . 30
7.11 Retrieving individual data . 30
7.12 Moving forward and backward through the ResultSet . . 31
7.13 Where are we ? . 31
7.14 Scrollable ResultSet . 31

7.14.1 Scrolling mode . 31
7.14.2 Concurrency mode 31

7.15 Helping the driver with Scrollable ResultSet 32
7.16 Retrieval example (reading backward) 32
7.17 SQL and Java Datatypes . 33
7.18 SQL and Java ”null” . 33
7.19 SQL Exception (2) . 33
7.20 Warnings . 34
7.21 Time representation . 34

5

8 SQL Database Systems in the PD 34
8.1 mSQL . 35
8.2 MySQL . 35
8.3 PostgreSQL . 35
8.4 Comparison . 35
8.5 Where to look for informations 36

9 Other Data Base models 37
9.1 Object Oriented Data Base Systems 37
9.2 Round Robin Data Base Systems 37

9.2.1 Monitoring temperatures 38

References 40

10 Bibliography 40
10.1 Relational Database . 40
10.2 Unix Flat Tables . 40
10.3 SQL . 40
10.4 CGI programming . 40
10.5 JDBC . 41
10.6 Public Domain . 41
10.7 Other . 41

Index 42

1

1 Introduction

In general, we can consider a computer as a box with some input channels, some
output channels, probably local storage devices and links to other computers.

Nowadays, operations are going very fast, even on small computers, and data
storages (disk, CD, DVD) have huge capacities in the order of 1010 to 1011 Bytes.
If we assume 104 characters on an A4 piece of paper (a rather full page), then a
small 100 GB disk corresponds to 107 pages, or twenty metric tons of paper, all
for about 60 US$.

The organisation of data in such a way that they can be classified and re-
trieved rapidly is not new. For centuries, librarians have been very good for this
job. More recently, the punched cards were invented at the turn of last century
to deal with the American census data. Pencil and paper were not sufficient
anymore.

But this simple system of book catalogs or punched card sets is not sufficient,
neither well adapted as data storage devices in computers.

From the early fifties until now, a lot of work on this has been done, many
clever data organization systems developed and made available, even for small
computers.

It is interesting to remember that in the mid fifties IBM thought they would
eventually sell 10 copies of their first electronic computer. This number would
be sufficient for decades. . . It had a few KB of memory, no disk, but tapes with
a capacity of a few MB.

1.1 Why Data Base Systems?

A fundamental aspect of computers is their neutrality. Without changing any-
thing in the hardware, they can be used for many different types of work, some-
times even at the same time. Data can be flags, numbers, words, phrases, codes,
images, sounds etc. These data are not independent. Relations exist between
many of them.

Think of music sound files. They are related to the composer, the CD editor,
the interpreter, the place on your hard disk and in you book shelves, the date
of purchase etc. What about finding the address of the interpreter, or a list of
composers born in the same year as the one in your file?

What we want is a system that is sufficiently general to deal with all kinds
of data, that is easy, fast and secure to use for storing new data, keeping them
uptodate and retrieving them with their relations.

1.2 What is a Data Base System?

A Data Base System is a set of programs that can be used according to what
is described in the previous paragraph. In many cases, they interact with the
users through a single interface hiding their complexity effectively. Some even
go as far as to replace entirely the operating system (the PIC relational computer

2 Database Systems

system or the R38 computer of IBM for example). At the other extreme, the system
appears effectively as a large set of programs/commands that can be combined
in the normal operating system (/rdb for example). We will see later (Section 3.5,
page 12) the relative advantages of both approaches.

Data Base Systems can be local on a single machine, or distributed on many
different ones, either in a hierarchical or egalitarian way. They can interact in
real time or in pseudo batch mode (night update for example).

The fundamental aspects of the Database system are that it hides completely
from the users the way the data are organized physically in the computers, and
its ability to furnish a single and uniform way to interact with the data.

1.3 What is a Data Base ?

A Data Base is the set of all data that are somehow related.
A single Data Base system can contain many Databases that are not related.

For example, my collection of books, with their authors, title, editors, date of
publishing etc, has probably nothing to do with the meteorological data I keep
for many years. They are two distinct Data Bases in my single Data Base System.

1.4 Database Models

As we have seen, a Database is not just data, but also the relations that exist
between them.

In the world, we can recognize three or four types of relations:

hierarchical A company is made of divisions, divisions of workshop etc.

network A company has contractors and sales agents who are themselves. . .

relational A book is defined by its title, author, editor etc, and the author by its
names, age, location etc.

object A melody is defined as a sheet of paper, its composer, author etc, and by
all what can be done with it: singing, recording, printing. . .

They are all part of the reality, and Data Base Systems have been built in
the past modeling more or less all four types. But today most work is done with
relational model, Object (Relational) Databases being still in their infancy.

2 The Relational Model

2.1 Historical background

Historically, the Relational Model came up relatively late, mainly with the two
marking papers of Codd (see section 10.1, page 40). Codd was working as a
mathematician in IBM research laboratories. His goal was to setup a system

3

based on simple and mathematically coherent rules. It should avoid all the pit-
falls of the hierarchical and network data bases. In particular, the system would
be very easy to interrogate and resilient to all kinds of software and hardware
problems.

The implementation of the concepts proposed by Codd was rather slow. They
were too far advanced for the hardware available at that time. They were also
given in a mathematically oriented vocabulary that discouraged many potential
users or developers.

Among the cornerstones in the development of usable relational data bases,
we should notice the definition of a single “structured query language” (SQL) by
IBM, the hardware implementation of the concepts in the system R38 of IBM,
the PIC operating system based entirely on the relational model and the work
of Stonebraker (see section 10.1, page 40) in developing a full blown relational
system on a mini computer. The last one became the Ingres system, soon joined
by Oracle on the same ground.

Around 1985, a few people (see section 10.2, page 40) recognised that the re-
lational model and the Unix pipes and redirections fitted very well together, per-
mitting the elaboration of a completely open relational data base system. Sadly,
this was never very popular outside a small circle of users, enthusiastic by its
simplicity of usage.

Many, commercial or not, Relational Data Base Systems are now available, for
example IBM DB2, Informix, Ingres, Oracle, Postgres, Sybase, /rdb, mSQL, MySQL,
PostgreSQL . . .

2.2 The relational model

2.2.1 Vocabulary

The work of Codd is fundamental, but it uses a vocabulary more oriented to-
ward mathematician than database users. So let us start with a small table of
equivalent words :

Formal relational term Informal equivalent
relation table

tuple record, row
attribute field, column

primary key unique identifier

2.3 The relational system

C. J. Date (see section 10.1, page 40) characterises a relational system by :

1. The data are perceived by the user as tables, and nothing but tables. The
user should not necessarily be aware of the physical representation of the
data.

4 Database Systems

2. The operators at the user’s disposal are operations that generate new tables
from old ones. The three main operators are selection, projection and
join.

Codd himself goes into more details :

• represent all information as tables;

• keep the logical representation of data independent from its physical storage
characteristics;

• use a high-level language for structuring, querying and changing the infor-
mation in the data base;

• support the main relational operations (selection, projection and join), and
set operations as union, intersection, difference and division;

• support views, which allow the user to specify alternative ways of looking at
data in tables;

• differentiate between unknown (NULL) and zero or blank data;

• support mechanisms for security and authorization;

• protect data integrity through (atomic) transactions and recovery proce-
dures.

2.4 Data entities and relations

Relations are contained in a homogeneous table, and each line conveys the in-
formation for one entity. As an example, take a table with all participants. It
contains a set of columns like PIN, Name, FirstName, Address etc. For each par-
ticipant, each entity, there is a line with his PIN, his name, first name, address
etc. A data element, or value, is at the intersection of a row and a column. It can
be “valid data”, or “Unknown” or “Empty” (NULL value).

Each row must be identified by a unique identifier, called the primary key.
In our case most probably the PIN, though on many occasions the Name or a
combination of Name-FirstName could be easier to work with.

A database is made of a set of related tables. Most will contain data prepared
by the user, but the system will also keep its information concerning the data-
base in its own tables that can be accessed in the same way by the user; all
information are treated as tables, as Codd says.

We will see later in this section how to organize the data into tables.
One more thing: Codd and Date insist rightfully on the independence of the

physical implementation of the tables. We said that they can be considered as
files, but in most relational systems the user will never be able to see them as
such. The only exception is the Unix flat tables described in the next section. The
logical design of tables should also be independent of the user’s view of them.

5

2.5 The Data model

Here we will elaborate a little further on the organization of data into tables.

1. make a general overview of all the data you want to put into the database.
Look for what is related though not originally intended to be part of the
database.

2. make a list of entities with their properties or attributes; mark those prop-
erties that belong to more than one entity, those that are effectively trans-
formations of another property.

3. make sure that each entity has an attribute (or a group of attributes) that
you can use to uniquely identify any row in the future table. If the logical
primary key (Name above for example) is possibly not unique, then look
for a different attribute (PIN, ISBN number etc.) or create an artificial one
(record number for example) if necessary.

4. consider the relationships between the entities. They can be of three forms:

one-to-one: for each entry in a table there is a corresponding one in an-
other table, and the converse is true;

one-to-many: for each entry in a table there is a corresponding one in
another table, but there are possibly many entries in the first table
corresponding to one entry in the second one;

many-to-many: for each entry in a table there are many entries in another
table and the converse is also true.

5. apply the normalisation rules to eliminate all one-to-one and many-to-many
relationships.

6. verify the coherence of the system and its adequacy to the available data
and foreseen queries.

2.6 Entity-Relationship diagrams

A convenient way to look at table organization is the entity-relationship (E-R)
diagrams. The usual convention is to display each table as a box with columns
listed inside. This could be done with paper and pencil during the early develop-
ment phase, then automatically produced by the system.

6 Database Systems

Participants
Name
FirstName
Country
Year
Phone
Email

Countries
Country Name
Capital
Male
Female
Ratio
Growth
Population

Cities
City Name
Country
Altitude
Longitude
Latitude
Population

The second step is to mark (underline, using bold) the primary key for each
table. On many occasions, it will consist of effectively adding a new column that
is unique (the “Name” above is surely not a unique identifier, so we need to add
a PIN column).

The third step is to mark with arrows the relationships between entities in
different tables, without arrow head in the case of one-to-one, single arrow head
for one-to-many and double arrow heads for the many-to-many case.

The fourth step consists of resolving the one-to-one and many-to-many rela-
tionships (see also the normalisation rules below). Both are unacceptable, and
are an indication that something is wrong in the design, at least in the view of
the relational model.

The one-to-one is easy to resolve. It is probably sufficient to merge the two
tables into one as they relate to the same entities.

The many-to-many is a little more complex. Usually, it is necessary to create
an extra table with only the two related columns. This new table is usually called
connecting or association table.

In the case of the previous tables, since there are no one-to-one relations,
there is no need to apply the merging steps above. If we assume that every par-
ticipant can come only from one country, then we have a one-to-many relation
(one country per participant, but many participants from each country). But
if multiple nationalities are permitted, then we need to take out “Country” from
the Participants table and crate a new table “Nationalities”, with the two columns
“Name” and “Country” only. Then, every multi-nationality will have only one en-
try in in the Participant table, but as many entries as nationalities in the third
table. All in all, only one-to-many relations are left.

2.7 Normal forms

Codd himself suggested a set of rules or forms that must be verified by the table
design. Four or five are usually recognised as mandatory, while the others are
more often ignored. Each form imply that the requirements of the previous ones
have been met. Following these normalisation guidelines, we will often decrease
the number of columns and add new tables as we did just before.

7

2.7.1 First normal form

It requires that at each row-column intersection there must be one and only one
atomic value. There must be no repeating group in a table. If participants were
allowed to come back for many colleges, then the “Participant” table above would
not be acceptable. It could be solved by creating a fourth table with “Name” (or
“PIN”) and “Year”, dropping “Year” from “Participants”.

2.7.2 Second normal form

This form concerns only tables where the primary key consists of many columns.
Then every non-key column must depend on the entire primary key. A table
must not contain a non-key column that pertains to only part of the composite
primary key. In other words, no non-key column shall be a fact about a subset
of the primary key.

2.7.3 Third normal form

This is a generalisation of the second form. It requires that no non-key column
depends on another non-key column. Each non-key column must be a fact about
the primary key only. In the “Countries” table above, the column “Ratio” depends
numerically on the “Male” and “Female” columns, both non-key columns. In our
case, this column (Ratio) should be dropped, as it can be recomputed easily at
any time.

2.7.4 Fourth normal form

This form forbids independent one-to-many relationship between primary key
columns and non-key columns. This situation is relatively rare. It is an indica-
tion that we are mixing together in the same relation things that are effectively
independent and should appear in different tables.

2.7.5 Remarks

These rules or forms are rather abstract and the user may not see immediately
why he should apply them.

If you are a stranger to their formal beauty, then there are very good reasons
to apply them nevertheless. The keywords here are coherence and (no) redun-
dancy. If the data base is to survive system crashes as well as operator errors,
and stay coherent at the end, then the application of the four normalisation steps
is necessary. First, there will be no redundancy; all information will appear only
once. Then, because of this, all data will stay coherent, they cannot appear with
different values at different places. The “Ratio” column discussed in the third
normal form description, is a good example. If any value in the “Male” or “Fe-
male” column is changed, but the “Ratio” is left unchanged, then the table is
incoherent, and there is no way to force them to be updated at the same time.

8 Database Systems

This was the main problem encountered with hierarchical and network data
bases. They used either multiple copies of the same information, or had point-
ers all over the place to the same information. Any incident during an update
was catastrophic, as different values for the same information were left behind,
or pointers were pointing to data non existing anymore. Relational database
systems can be built without using a single pointer.

Formal rules are very useful, but not always sufficient.

3 Unix flat tables

3.1 Using pipes and redirections

Among others, Unix is based on two things : 1) all files are unstructured strings of
characters; 2) a large number of small programs, dedicated to a well defined task,
that can be linked together in chains, each one getting data from its predecessor
and giving results to its successor. Real files appear at both end of the chain,
while pipes, virtual files (memory buffers ?), link the various modules (programs).

As a reminder, prog < file1 > file2 means that file1 is redirected to
the standard input of prog , and the standard output is redirected to file2 .
Similarly, prog1 | prog2 means that the standard output of prog1 is redirected
as standard input for prog2 . These redirections and pipes can be combined as
desired : prog1 < file1 | prog2 | prog3 ... progN > file2

This model is implicitly present in most, if not all, data base manipulation or
interrogation if it is assumed that relations are represented by individual files
(see the seminal work of Manis et al. 10.2, page 40).

As an example, we have a file containing the Name, FirstName, Country,
Telephone, Email, No, Flag and Year for all participants of ICTP Colleges. Let us
call this file Participants . We want to extract the Name and Email addresses
of all participants of the colleges between 1997 and 1999. The result should be
ordered alphabetically by Name. Here is a solution :

cat Participants | \
select ’ Year > 1996 && Year < 2000 ’ | \
column Name Email | \
sorttable Name > P1997-1999

3.2 Flat file format

A table represented as a Unix flat file is very simple: It is made of a two lines
header and the body with the data rows.

The rows (lines) are ended with ”EOL” characters.
The fields (columns) are separated with <TAB> characters.
All lines, including in the header, must have the same number of fields, but

there are no limitation on the size of each fields. They can be empty (two consec-
utive <TAB>).

9

Similarly, the number of rows is limited only by the disk space available.
Here is the very first part of a typical Unix flat file table (though the real one

contains more fields):

Name<TAB>FirstName<TAB>Country
----<TAB>---------<TAB>-------
Raich<TAB>Uli<TAB>Germany
Santamarina<TAB>Pablo<Chile
Verkerk<Tab>Rinus<TAB>France

...

3.3 Building Databases

Tables can be created with any editor (vi, crisp, emacs etc.), or from within any
program in C, Fortran or Java, or from a shell script.

Here is a small example of a script that runs forever and records every 60
seconds the local time, the number of users and the three “loads” as measured
with the uptime command.

The output from uptime is (interesting values are underlined):

3:15pm up 1 day, 5:38, 12 users, load average: 0.06, 0.02, 0.01
------ -- ---- ---- ----

#!/usr/local/bin/ksh
Create and load a table with time, nb of users and loads from uptime
echo "time\tusers\tload1\tload2\tload3" > Load.rdb
echo "----\t-----\t-----\t-----\t-----" >> Load.rdb
while true ; do

uptime | tr -s " ,\t" " " > /tmp/uptime
exec 0< /tmp/uptime
read Time dum dum Users dum dum dum Load1 Load2 Load3
echo "$Time\t$Users\t$Load1\t$Load2\t$Load3" >> Load.rdb
sleep 60

done
rm /tmp/uptime
exit 0

The following is the beginning of the resulting file (the <TAB>s have been ex-
panded as spaces) :

time users load1 load2 load3
---- ----- ----- ----- -----
10:22pm 0 0.17 0.15 0.10
10:23pm 0 0.12 0.14 0.09
10:24pm 0 0.09 0.12 0.09

10 Database Systems

Finally, here is a larger script that builds up a dictionary of all fields from the
files in the current directory.

Notice that the /rdb jointable is undistinguishable from the other Unix com-
mands

#!/usr/local/bin/ksh
Build a dictionary of all fields from the /rdb files
in the current directory
#
First create a small dictionary for every table (*.rdb file)
for f in *rdb ; do

dict=${f}_dict
echo "field\t$f" > $dict
echo "-----\t----" >> $dict
head -1q $f | \

tr "\t" "\n" | \
sort | \
awk ’{ print $1 "\tX" }’ >> $dict

done
Then join together all individual dictionary
First=1
for f in *_dict ; do

if [[$First -eq 1]] ; then
First=0
cp $f Dictionary

else
jointable -c < Dictionary field $f > /tmp/Dico
mv /tmp/Dico ./Dictionary

fi
done
Add a comment field
awk ’ NR==1 { print $0 "\tDescription" }

NR==2 { print $0 "\t-----------" }
NR>2 { print $0 "\t" } ’ < ./Dictionary \

> /tmp/Dico
mv /tmp/Dico ./Dictionary
Do some cleanup and exit
for f in *rdb ; do

rm ${f}_dict
done
exit 0

and the resulting Dictionary :

field College.rdb Countries.rdb Load.rdb Description
---------- ----------- ------------- -------- --------------------
Capital X

11

Country X X
Email X
Female X
FirstName X
Flag X
Groth X
Male X
Name X
Nb X
Population X
Ratio X
Telephone X
Year X
load1 X
load2 X
load3 X
time X
users X

The Description field can now be edited by hand.

3.4 Unix commands

There are at least three or four different systems based on the previous ideas.
The simplest (RDB) is entirely written in Perl. Because of this, the user can read
the code and get an unusual feeling of what is done. The entire code is 8100
lines, for 20 commands. At the other end, starbase and /rdb, are written in C
with access to awk and sed. /rdb contains about 130 different programs, includ-
ing for commercial applications. starbase is almost as rich, but was developed
with astronomical users in mind. Both are much faster than RDB.

Here is a commented list of the main programs of RDB.

indextbl builds an index for one or more columns from a table for fast searching
(see search bellow);

jointbl joins two tables on a common column;

mergetbl adds the contents of a table to the end of another table (they must
have exactly the same columns);

ptbl pretty prints the contents of a table;

rdbedit a window data entry/editing facility for tables;

reporttbl formats and prints an arbitrary style report, as specified in another
file;

row extracts lines from a table according to some given criteria;

12 Database Systems

search fast searching using index file built with indextbl ;

sorttbl sorts a table according to one or more columns in numerical or lexico-
graphical order;

subtotal calculates subtotals for one or more numerical columns;

summ summarizes information from a table, as number of rows, number of
unique values in some given columns as well as minimum, average, maxi-
mum and total.

uniqtbl removes adjacent rows that are identical in some columns;

valid check that a table is in “good” format, meaning all the rows correspond to
the header of the table.

These programs have many options, including -h that will give a good de-
scription for each of them.

As said before, these Unix tables have nothing special and can be used or
manipulated by any other program which is not part of the original Database
System.

3.5 Advantages and limitations

The advantages of this approach are numerous, but its limitations are also im-
portant.

3.5.1 Advantages

• it is extremely simple and fast to create new tables, often on the fly, work
with them, and destroy them when the job is finished;

• it is an open system, and so very easy to interface to other programs for
data acquisition, backup, text processing, graphics, statistics etc.

• the files are very compact; no extra space is reserved in advance;

• the user has full control of what is happening; he can optimize complex
operations using his knowledge of the data and query.

• considering the last rules of Codd (see section 2.3, page 4), the Unix system
itself provides comfortable access security, though at the file level more than
at the record level, and many solutions for recovery procedures. rcs , or
better, cvs , can be used to keep track of all table modifications, including
facilities for back and forward rolling. Atomic transactions can be done
using lock files or semaphores.

13

3.5.2 Limitations

• its simplicity encourages going to fast development, bypassing the careful
analysis needed for a good Data Base design;

• it is not standardised, neither in the exact format for the tables, nor in the
command names;

• it is much better at data query than update due to the simple table format.

• there is no global view or description of the Data Base as such. All tables
rest independent, only under the control of the user who has to keep them
coherent.

• it is usually slower during execution, though the factor is smaller than could
be expected for an interpreted system.

3.6 SQL equivalence

SQL is a de facto standard, in particular outside the Unix environment. It is thus
useful to look at the equivalent commands on both side.

SQL /rdb
SELECT col1 col2 FROM table column col1 col2 < table
WHERE column = expression row ’column == expression’
COMPUTE column = expression compute ’column = expression’
GROUP BY subtotal
HAVING row
ORDER BY column sorttable col
UNIQUE uniq
COUNT wc -l
NESTING “pipes” |
INSERT, UPDATE, DELETE “editors, form softwares” etc.

4 Using SQL Data Bases

4.1 Introduction to SQL

SQL is a language designed to resemble natural human expressions. It is not
clear whether it succeeds in this respect. It contains verbs (like CREATE), objects
(such as TABLE or INDEX), adjective phrase (eg. participant name CHAR(22)).
SQL contains a very small number of commands (verbs): CREATE, DELETE, INSERT,
SELECTand UPDATE. But then there are a lot of qualifiers and modifiers that give
SQL its power, and also difficulties, to its users.

SQL is insensitive to capitals/small letters, but it is a common usage to capi-
talize entirely all commands and use small letters for table and column names.
Such code will be easier to read and understand.

14 Database Systems

All table and column names should start will a letter, though the underscore
(’_’) is permitted as a first character in some implementation. After the first
character, it may contain any combination of letters, digits and ’_’, up to a length
fixed at system installation, generally 31.

When combining columns from different tables, using the so called join op-
eration, the name of the table is put in front of the column name, with a ’. ’ in
between, as in participant.country , where participant is the table name,
and country is the name of the column.

In a similar manner, when more than one database can be used simultane-
ously, it is possible to put the database name in front of the table name, again
with a ’. ’ between the database and the table name, as in
’college.participant.country ’. This is called the fully qualified name of a
table.

4.1.1 Client/server and distributed systems

Modern RDBMSs are closed systems, where the only interactions permitted are
through SQL commands. It has the advantage that it is independent of the native
operating system, but it also means that none of the usual Unix goodies are
available. As for the PIC operating system, everything is a table, including the
user login names, passwords, access rights etc. When starting a new database,
the first necessary action will be to setup the user environment. Many things
missing in Unix like: file and record locking, restricted access to subpart of a file
(row or column), concurrent update of files etc, are provided.

While NFS or AFS provide a truly distributed file system without a master/slave
relation, SQL servers are all of the client/server form, with or without a third tier.
This has strong implication on the hardware. The main load is on the single or
a small number of servers which need to be powerful, while the client can be
very thin. The load is better distributed on many machines with NFS or AFS.
The central servers are single points of failure, but the system is essentially
insensitive to the client states, while for the distributed model, every system is
important to the others. When one NFS machine is down, the part of the data
on this machine becomes unavailable, and the whole system may be stopped
though most of the machines are still running. This is particularly important
during system updates which must be carefully synchronised.

4.1.2 Aliases

Long table or column names can be aliased, mostly in the SELECT command
where the same name can appear repetitively, to short “local” nicknames.

This is done in following the long name by AS nickname (or in some systems
by =nickname).

For example:

SELECT participant_name AS name, participant_first_name AS first_name, country
FROM ictp_college_on_realtime AS college, geography

15

WHERE college.year = 2001

4.2 CREATEcommand

The general form of this command is:

CREATE TABLE table_name (col_name1 type [modifiers]
[, col_name2 type [modifiers]]

)

As we will see, the CREATEcommand is also used to create new database,
indices and functions. Though everything is a table, special forms of CREATEare
then used.

4.2.1 Data types

SQL support the following data types:
INT Integer, usually between 2−31 and 231 − 1
UNSIGNED INT Unsigned integer, from 0 to 232 − 1
TINYINT Very small integer, between −128 and 127
BIGINT Very large integers, up to ±264 − 1
FLOAT Floating point value, single precision ±10±38

REAL Floating point value, usually double preci-
sion ±10±308

CHAR(length) Fixed length character string, the length of
which is specified in the function parameter.
Unused positions are filled with spaces

VARCHAR(length) Variable length, up to 255 characters.
length is an indication for packing.

TEXT(length) Variable length character string, up to 64 K
characters, length is an indication for pack-
ing.

DATE Standard date value, good for past, current
and any future date

TIME Standard time value, independent of the
date, in Unix should be independent of the
longitude

DATETIME Pack of DATEand TIME, not available every-
where.

ENUM(’...’, ’...) A (short) list of possible values, given as
strings. May not be available everywhere.

Many other variants exist for different “word” lengths, from 1 to 16 bytes, but
the specific documentation should be queried.

16 Database Systems

4.2.2 Modifiers

It is possible to specify further the qualification of a column:
NULL the column will be filled with NULL entries

when no data are available
NOT NULL the column must be filled for all entries. This

is certainly the case for the primary key.
PRIMARY KEY unique column on which all others depend
AUTOINCREMENT only possible for a single column. During in-

sertion of a new record, this column will be set
to the highest previous value+1.

In SQL, it is very important to distinguish the absence of a value from the NULL
which means No Valid Value or Unknown value. It is more or less equivalent to
the NaN for floating point values. An empty string is different from NULL, as is a
zero in a numerical field.

It is easy to query for NULL values, but in general not for empty values.

4.2.3 Indices

For very fast access on a given column, it is worth associating with it an index,
that will be used for fetching. It should be noted that indexing slows down the
insertion of new records, but makes retrieving many orders of magnitude faster.
With some systems, it is possible to specify the type of index (hash, binary, b-tree
etc.).

Indices are extra tables that contain information for a single key and the
position of the corresponding records. They cannot be accessed directly. The
index table is usually much shorter that the main table and can be searched
very rapidely.

During a WHEREclause, the index is searched for matching, and the cursor
placed directly at the right place in the main table.

CREATE INDEX name ON table_name (col1, col2, ...)

will create indices for each column col1, . . .
The user who adds an index must have INDEX privilege on the table.

4.2.4 Other CREATEcommands

The commands:

CREATE DATABASE name
CREATE FUNCTION name RETURNS values SONAME library

create an entirely new and empty database, or add a function into the current
database. Usually, the creation of a new database is done with special adminis-
trative commands outside SQL. Similarly, the FUNCTIONis used to give access to
precompiled executable functions, not to SQL macros or procedures.

17

4.3 WHEREclause

The WHEREclause is used by many commands as INSERT, SELECTor UPDATE. It
defines rows by specifying a value that must be matched by the given column.
The WHEREclause comes usually at the end of these commands.

The form of the WHEREclause is very general. It may contain column names,
literal values (number, strings etc.), with logical or arithmetic operators, func-
tions etc. () can be used to group sub-expressions as in usual mathematics.

The arithmetic operators are: ’ + - * / % << >> ’.
The logical operators are: ’ || && ! OR AND NOT ’ .
The comparison operators are: ’ = <> != < <= >= > ’.
The interval/set operators are :

WHEREvalue BETWEENvalue1 ANDvalue2
WHEREvalue IN (value1,value2,. . .)
WHEREvalue NOT IN (value1,value2,. . .)
WHEREvalue LIKE value1 (value1 can include wild cards etc)
WHEREvalue LIKE value1 (value1 is any extended regular expression (Unix style).

4.4 DELETEcommand

This is the simplest command:
DELETE FROM table [WHERE clause] .
If the WHEREclause is missing, the table is emptied, but not destroyed. This

can be useful to erase the contents of a table that has been corrupted, without
changing the structure of the database.

The WHEREclause can be simple or very complex.
For example:

DELETE FROM participants WHERE country IN (’Switzerland’, ’France’)

4.5 INSERT command

This command allows to fill data into tables, one row at a time at most.

INSERT INTO table (col1, col2, ...)
VALUES (val1, val2, ...)

The values can be any number or strings between single quotes (’...’). The
backslash ’\ ’ can be used as an escape character in front of the single quote
inside a string if necessary.

For example:

INSERT INTO participants (name, country)
VALUES (’Aguir’, ’Brazil’)

18 Database Systems

If data are available for all columns, then it is some times possible to drop
entirely the column list.

For some RDBMSs, it is possible to enter at once bulk data set instead of
using a new INSERT command for each row.

4.6 SELECTcommand

This now allows us to retrieve data from the database. SELECTlooks at first very
simple, and it can be so, as in the examples below. But it can also be extremely
complex, as the FROMand WHEREclauses may contain operations on many tables
(join) and even SELECTrecursively.

SELECT col1, col2, col3, ...
[INTO OUTFILE ’filename’ delimiters]
FROM table1, table2, table3, ...
[WHERE clause]

If all columns should be retrieved, then their names can be replaced by ’* ’.
The INTO OUTFILE option can be used to keep the results in a file for further

processing. This will be particularly useful when debugging complex queries.
The FROMmodifier can be just a simple list of files, or to the contrary a very

complex expression used to join many tables together (see section 4.7, page 18).
In the simple case, the WHEREclause can be used to join tables together as in

the following example:

SELECT name, first_name, country, population
FROM participant, geography
WHERE participant.country = geography.country

This is called inner join. Only rows that match in both tables are selected.
The other joins permit to select all the rows from one or the other table, or both,
even when there is no counterpart in the other table (see section 4.7, page 18).

4.7 FROMmodifier

In the simplest form, the FROMis just followed by a list of tables we want to query,
separated by ’, ’ as for all lists.

The link between the columns is established by the conditions given in the
WHEREclause. This is the inner join.

But more complex, not necessarily inner joins, can be done using the FROM
clause.

The general form is: FROM table1 JOIN table2 [ON col1 op col2]
where JOIN itself can be prefixed by CROSS, INNER, NATURAL, OUTER, LEFT

OUTER, RIGHT OUTERand FULL OUTERqualifier.

19

The op can be any comparison operator (see section 4.3, page 17). The col
expression will probably contain the table and column names, though the table
name is not mandatory if there is no ambiguity.

The CROSS JOINproduces a Cartesian product, with every entry present in
any table also present in the resulting file, even if it is not in the other tables.

The NATURAL JOINworks only if the two tables have a single identical column.
The WHEREand ONare unnecessary.

The ONqualifier works in the same way as WHERE, but it cannot be used with
the CROSSor NATURALqualifiers.

The OUTER JOINgives the join rows against the background of rows that did
not meet the join conditions. In mathematical terms, it would be the complement
in set theory.

The table LEFT OUTER JOINwill give all the rows of the left table, while the
RIGHT OUTER JOINwill give all the rows of the second one.

Finally, the FULL OUTER JOINreturns all qualifying rows from both tables.
For all OUTER JOIN, missing values from one of the tables are replaced by

NULL (see section 4.2.2, page 16).

4.8 ORDER BYmodifier

One other modifier can be added to a SELECT command, to reorder the rows
according to one or more columns, in a given direction (ascending or descending).

The syntax is: ORDER BY col1 [DESC], col2...
The col can be either column names, aliases, or arithmetic functions of columns.

In principle, the list of columns or aliases should appear in the SELECTcolumn
definitions.

The DESCmodifier indicates, as expected, that the ordering should be in re-
verse order (descending).

The first column indicates the primary sort key. The next ones are used only
if two or more values are identical in the previous columns.

4.9 Combining SELECTcommands

It is possible to combine the results of two SELECTcommands with the UNION,
INTERSECTand MINUS link commands.

It is used in the form:

select_command1
UNION
select_command2

The UNION returns a single copy of all the rows returned by both SELECT
statements; duplicates are removed. In Unix, this is given by the uniq command.

20 Database Systems

The INTERSECT (in place of UNION) keeps only the rows common to both
queries, and MINUS only the rows from the first query not present in the sec-
ond.

4.10 UPDATEcommand

This command is used whenever some values have to be changed in the data-
base.

The general syntax is:

UPDATE table
SET col1 = expression, col2 = expressions2, ...
[WHERE search_conditions]

Data can be changed in only one table at a time.
If the WHEREcommand is missing, all the rows of the table are changed. See

section 4.3, page 17 for a description of the WHEREqualifier.
The changes will occur only if the new values do not violate the integrity

constraints (data type etc).
The expressions can be literals or combinations of column values, as in:

UPDATE quotation
SET price = price * inflation
WHERE country = ’Switzerland’

4.11 Report command

While the report is a very powerful tool in /rdb, no equivalent exists in the stan-
dard SQL. Each RDBMS provides some sort of reporting facilities, and connection
facilities to web clients.

4.12 Data dictionary

It is a good practice to keep in a table the names of all tables and columns with
common information about them. The system itself maintains a table with the
tables, columns, constraints, data types, maximum size, access rights etc.

The dictionary is less formal, but more verbose. It should help maintain a
common “dialect” among developers and users as well.

5 Transactions and triggers

5.1 Transactions

When more than one user have access simultaneously to a database, the con-
currence and protection problems need to be solved. From a logical point of

21

view, it is not possible for two persons to update the same information at the
same time. In fact, the user update may be based on the content of some values
which should not be changed until the update is committed.

One solution to this problem is for the user to lock the information at some
level, until all the transaction is finished.

The lock mechanism can work at the database level, at the table, row or even
single information in a row.

The lock can also be complete, no read, no write access for a while, or only
the read or write access is denied until the user releases the lock.

In many SQL systems, some automatic locks are implemented for DELETE,
INSERT and UPDATE. PostgreSQL offers a variety of locks, from prohibiting access
share for the previous commands to granting exclusive access in any mode.

Another mechanism is the transaction. A transaction is a set of commands
that are executed at once as an atomic operation. In practice, all the changes
are accumulated during the transaction into a temporary buffer, which is visible
only to the user. Then when everything is ready, the transaction is committed
and made visible at once to the rest of the world. Transaction will use lock if
necessary during the preparation phase.

Among the PD RDBMSs that I know, only PostgreSQL has the possibilities to
start transactions and commit them.

Here are the main PostgreSQL commands for this:

SET TRANSACTION ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE }

LOCK [TABLE] name
LOCK [TABLE] name IN [ROW | ACCESS] { SHARE | EXCLUSIVE } MODE
LOCK [TABLE] name IN SHARE ROW EXCLUSIVE MODE

COMMIT

The SET TRANSACTIONstarts the transaction and gives the general visibility
of changing records. All changes will be visible only after the COMMITcommand
has been executed.

With READ COMMITTED, a statement can only see rows committed before it
began. It is the default.

With SERIALIZABLE , the current transaction can only see rows committed
before the first statement in this transaction that changes some information.
Two concurrent transactions will leave the database in the same state as if the
two had been executed strictly one after the other, the order being irrelevant.

The LOCKcommand fixes more precisely the mode of locking.
The ACCESSensures that the table structure cannot be modified or erased all

together during queries.
The SHARElock prevents the change of data during a query, while the EXCLUSIVE

lock is used when the transaction itself is doing changes to the data. The SHARE
ROW EXCLUSIVE MODEis the same as EXCLUSIVE, but permits SHARE ROWlocks
by others.

22 Database Systems

5.2 Triggers

Triggers are functions associated with certain conditions in the database. If,
after a DELETE, INSERT or UPDATEcommand the conditions would have changed,
then the function is activated automatically (either before or after the change
itself).

In PostgreSQL, the triggering condition is simply any operation performed on
the table. In other systems, it is possible to trigger the function on the new
values for given columns etc.

The PostgreSQL syntax is the following:

CREATE TRIGGER name { BEFORE | AFTER } { event [OR ...] }
ON table FOR EACH { ROW | STATEMENT }
EXECUTE PROCEDURE func (arguments)

A trigger can also be removed from a database:

DROP TRIGGER name ON table

6 Data Bases and the Web

6.1 The Client Server model

This model has already been presented (see section 4.1.1, page 14) while talking
about SQL. One (or a few) central machine(s), called the server, contains the data-
base(s) and all the procedures to access them. Client machines send requests
in parallel to the server using a common protocol. Though it is not part of SQL
itself, most if not all, SQL RDBMSs use this schema. The intermediate protocol,
that encapsulates the SQL requests, is proprietary.

The servers are designed around two ideas: either with a multiple daemon
receiving the requests, passing them to a central “processor” and sending the
results back, or a unique but multi-threaded central “processor” which starts a
new thread for every request.

Most ftp and http servers are of the first type. mSQL also works with multi-
daemon. MySQL and PostgreSQL are both built on the multi-thread concept.
which seems more appropriate when many short requests need to be processed
in parallel. The time necessary to start a new thread is much shorter than the
time to start a new program.

Usually, the clients do nothing but interacting with the users, choosing the
databases, doing possibly simple verifications, but most of the burden is taken by
the server. On some systems, the client can also try to pre-optimize the requests
before sending them to the server.

23

6.2 The Three Tier model

The Three Tier model tends to split the work in three parts. The local user
application, the centralised application services and the databases. The user
has no more direct access to the databases.

The advantages are:

• the databases can be changed easily, without changes at the user level;

• the applications are centralised, independent of the user and databases
implementations.

6.3 Access through the web, CGI programming

This is an example of the three tier model, if not of four tiers. The web browser
is a (very) thin client with the user interface. All the requests are sent (see
Figure1) to the web server which does all the page formatting preparation in
one direction, and passes the requests to the cgi applications, which in turn,
passes the requests to the database engines. SQL disappears at the user level
and in the web server as well. The work is done in cgi applications, which can be
programmed in many different ways. The one presented here is the simplest, but
also the slowest. It has the advantage that the protocol is ultra simple and will
work on any Unix environment. Better application interfaces can be built using
Fast CGI, HPP, C++ and now Java, Java beans etc.

browser server
web

server
dbhtml cgi sql

server
cgi appl

Figure 1: Communications between the user’s browser and the database server

A few remarks are necessary concerning cgi programming.

1. The http protocol is stateless, when a transaction is finished, nothing is
retained from the “conversation”, all variables etc. are lost, with one small
exception on the browser side.

2. The only data permanently available are the cookies which may, under
user control, be stored on the user disk. The content of the cookies are very
limited, mostly only the user ID and http addresses.

3. because of that, the cookies are accessible only from the user environment.
With NFS, this may be all the machines inside the NFS domain, but if the
user moves somewhere else, the cookies will definitely be inaccessible.

24 Database Systems

4. The cgi protocol itself is reasonably secure, but the programmer is respon-
sible to check that the information provided are those intended. Consider
the following trivial example: the returned parameter is the name of a file
the user wants to print. After some transformations, the script will exe-
cute a command like ’cat $file_name ’, where $file name is the parame-
ter passed.

Now, if the user gives some thing like ’MyFile;rm * ’ as file name and the cgi
script executes blindly the ’cat ’ command above, all the files could be erased. . .

For further information, consult the books on SQL (see section 10.3, page 40).
There is also an interesting web server:

http://www.kmarshall.com/easy/cgi/
Here is a commented cgi script using the normal sh of Unix. It will present

all the information concerning one person, including his face, on the web page.
Also, it does not access a database server as it uses the distributed model instead
of the client/server one. Database access is done using the /rdb Unix commands.

#!/bin/sh
IdCard.cgi , 20011203 , DM+Bdi
Show on screen all information concerning one person,
including his face.
#
The $QUERY_STRING variable is given to this script,
with the mon_id value for the person.
#
This script should be called from an html document, as:
#
HREF="http:// (the place of this file) /cgi-bin/carte.cgi?"
#
The file must be executable (chmod 755)
#
REP= # (where the database is)
RDBBIN= # (directory for /rdb commands)

1. analyse the QUERY STRING.
drop the double quotes, translate the accents,
and pipe into awk to create variables of the form QS_Key="Value"
$QUERY_STRING contains all pairs Key1=Valu2,Key2=Value2,...
This part can be copied unchanged for all simple cgi files.
eval ‘echo "$QUERY_STRING" |\

sed -e ’s/’"’"’/_/g’ |\
sed -e ’s/%C0//g’ | sed -e ’s/%E0//g’ |\
sed -e ’s/%C2//g’ | sed -e ’s/%E2//g’ |\
sed -e ’s/%C4//g’ | sed -e ’s/%E4//g’ |\
sed -e ’s/%C7//g’ | sed -e ’s/%E7//g’ |\
sed -e ’s/%C8//g’ | sed -e ’s/%E8//g’ |\
sed -e ’s/%C9//g’ | sed -e ’s/%E9//g’ |\
sed -e ’s/%CA//g’ | sed -e ’s/%EA//g’ |\
sed -e ’s/%CB//g’ | sed -e ’s/%EB//g’ |\
sed -e ’s/%CE//g’ | sed -e ’s/%EE//g’ |\
sed -e ’s/%CF//g’ | sed -e ’s/%EF//g’ |\
sed -e ’s/%D4//g’ | sed -e ’s/%F4//g’ |\
sed -e ’s/%D6//g’ | sed -e ’s/%F6//g’ |\
sed -e ’s/%D9//g’ | sed -e ’s/%F9//g’ |\
sed -e ’s/%DB//g’ | sed -e ’s/%FB//g’ |\
sed -e ’s/%DC//g’ | sed -e ’s/%FC//g’ |\
sed -e ’s/+/ /g’ |\
awk ’BEGIN{RS="&";FS="="}

25

$1˜/ˆ[a-zA-Z][a-zA-Z0-9_]*$/ {
printf "QS_%s=%c%s%c\n",$1,39,$2,39}’‘

create an alias
moni=$QS_id

2. start the real stuff, extracting the information for "moni"
into /tmp/carte.tmp (this is still a /rdb file)
${RDBBIN}/jointable ${REP}/addresse.r ${REP}/age.r | \
${RDBBIN}/jointable ${REP}/brev.r | \
${RDBBIN}/addcol affdate | \
${RDBBIN}/compute \

’affdate=substr(naissance,4,2)"."substr(naissance,1,2)"."substr(naissance,7,2)’ | \
${RDBBIN}/row "mon_id==\"$moni\"" > /tmp/carte.tmp

3. the next type declaration is MANDATORI, including the NewLine (\n)
echo ’Content-type: text/html\n’

4. send the header, fix colors etc
cat << EOT
<HTML>
<HEAD>

<BASE HREF="http:// (where the pages are) ">
</HEAD>

<BODY BGCOLOR=#F0f8ff
TEXT=#000000
LINK=#D700
ALINK=#E4B5
VLINK=#0000>
EOT

5. Use report to format the information on screen
${RDBBIN}/report ${REP}/carte.html < /tmp/carte.tmp

6. send the footer for the page. And that’s all !
cat << EOT
<HR WIDTH=95%>
<ADDRESS>
 (your name in clear)

</ADDRESS>
</BODY>
</HTML>
EOT

Here is the carte.html file, used above to format the result of the query into
html format. Names between < > which are not html commands, are replaced
by the values of the corresponding columns, that is <mon_id> , <affdate> ,
<number> , <street> , <town> , <telpriv> , <gsm> and <email> . Notice that the
<affdate> was just calculated in the previous .cgi file.

<! IdCard.report , 20011201 Bdi !>
<nom>
<prenom><P>
<TABLE cellspacing=0 cellpadding=5>

<TR VALIGN=TOP>
<TD VALIGN=TOP><img height=200

src="/ (where the images are) /<mon_id>.jpg"></TD>
<TD>

<TABLE cellspacing=0 cellpadding=1>
<TR VALIGN=TOP>

<TD ALIGN=RIGHT><I>Born :</I></TD>
<TD><affdate></TD>

</TR>

26 Database Systems

<TR>
<TD ALIGN=RIGHT><I>Address :</I></TD>
<TD><number>, <street></TD>

</TR>
<TR>

<TD></TD>
<TD><npa> <town></TD>

</TR>
<TR>

<TD ALIGN=RIGHT><I>Tel. privat :</I></TD>
<TD><telpriv></TD>

</TR>
<TR>

<TD ALIGN=RIGHT><I>Tl. cell. :</I></TD>
<TD><gsm></TD>

</TR>
<TR>

<TD ALIGN=RIGHT><I>E-Mail :</I></TD>
<TD><a href="mailto:<email>"><email></TD>

</TR>
</TABLE>

</TD>
</TR>

</TABLE>

Finally, the /rdb file /tmp/carte/tmp with the result of the extraction looks
like:

mon_id affdate number street town telpriv gsm email
------ -------- ------ ------- ------ --------- --- --------------------------
mda54 19.01.54 117 5th Av. Geneva 776.17.09 Daniel.Megard@obs.unige.ch

Here, we have only one person extracted, and only one table was produced. If
the carte.tmp had been larger, more tables would have been produced.

7 The Java JDBC API

7.1 Java + RDB : a strange marriage

Java talks about objects : data + methods;
RDB talks about relations + mathematical operations on them;
Two incompatible approaches !
JDBC provides:

• Embedding SQL statements as arguments to methods in JDBC interfaces

• Easy objects to relational mapping

• Database independence

• Distributed computing

27

7.2 Embedded SQL statements

Here is a small part of a SQL query from a Java application:

Statement stmt;
ResultSet rs;

stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);

rs = stmt.executeQuery("SELECT * FROM test ORDER BY test_id");

rs.afterLast();
while(rs.previous()) {

Int a;
String str;
a = rs.getInt("test_id);
str = rs.getString("test_val");

}

The first part sets the type of operation with the server and sends the SQL
command string. The second part fetch the individual data from the returned
ResulSet.

7.3 Database independence

JDBC is fully independent from any database system, but the SQL commands are
not fully standardised.

The database system must furnish a runtime implementation of the inter-
faces, that route the SQL call to the database engine in its proprietary fashion.

These are available for all main SQL database systems, including the PD ones.
Nevertheless, most SQL database systems are not fully compliant with SQL

2. They differ in small details, as case sensitivity for column names, missing or
extra options etc.

Full Database independence can be achieved only by carefully avoiding using
the non-standard facilities.

7.4 Distributed computing

The clear distinction between the Java and the database parts allows to have
them running on different computers.

JDBC is built with RMI from the Java Enterprise platform.
RMI allows applications to call methods in objects on remote machines as if

these objects were located on the local machine.
The same Java method call syntax are used, whether on the same machine

or across the network. They take care of of the TCP/IP connections etc.
This solves the problem of many users accessing the same data simultane-

ously.

28 Database Systems

Other solutions for remote computing include the ”Common Object Request
Broker Architecture” (CORBA) and the ”Distributed Computing Environment”
(DCE).

They are much more complex and not related specifically to Java. JDBC pro-
vides the full set of methods for the client and the connectivity to the server in
one package.

7.5 JDBC Driver

This is the part on the client and server computers that receive the calls and
translate them into specific commands for the database engine.

Sun defines 4 types of drivers:

• Type 1 is a gateway from JDBC to an ODBC driver (Windows) on the server

• Type 2 calls directly native C or C++ methods provided by the db system

• Type 3 is a client driver with generic API that is then translated into specific
access on the server

• Type 4 talk directly to the database using Java sockets

Type 1 and 2 need usually a local driver on the client
Type 4 is a pure direct Java solution, but it uses a specific protocol rarely

documented. They are provided by the database vendor.

7.6 Three steps to access the data base

7.6.1 Connecting to the database

java.sql.DriverManager match a driver implementation with the requested
URL

java.sql.Connection control all the connection from the application to the
database engine.

A series of SQL statements can be send through a single connection.

7.6.2 Database access

java.sql.Statement send a single SQL command to the database
java.sql.ResultSet fetch back the results from the previous statement.
Individual data have to be retrieved separately.

29

7.6.3 Cleaning up

Connection , Statement and ResultSet have close() method.
They may not be necessary, but are always useful to get rid of resources.
Statement.close() will close all pending ResultSet
Connection.close() will close all pending Statement
Any uncommitted transaction will be lost.

7.7 Exception handling

SQLException is a catch-all exception for database errors.
In addition to the common error informations, SQLException provides data-

base specific informations, such as SQLState and database engine specific er-
rors.

Use something as follows after most JDBC calls :

catch(SQLException e) { e.printStackTrace(); }

A more detailed SQLException handling will be shown later (see 7.19, page 33).

7.8 Connecting to a database

For a connection, we need a driver and the URL for the specific database. We
assume that the driver for MySQL has been installed.

First, we instantiate the corresponding driver, then we open the connection
”rinus ” is the the MySQL user name, and ”NotMe” his password. They are

independent from Unix users and passwords.

Connection con = null;
try {

String driver = "it.ictp.sql.mysql.MysqlDriver";
String url = "jdbc:mysql://infolab03.ictp.it/";

Class.forName(driver).newInstance();
con = DriverManager.getConnection(url, "rinus", "NotMe");

/* some SQL statements */
con.close();

}
catch(SQLException e) { e.printStackTrace(); }

7.9 Inserting/updating data

When the connection is open, we can send as many SQL statements as desired.
To insert or update rows, we use the Statement.executeUpdate() method:

30 Database Systems

Statement s = con.createStatement();

String composer = "Vivaldi";
String title = "La Folia";
int update_count =

s.executeUpdate("INSERT INTO music (composer, title) " +
"VALUES(" + composer + ", ’" + title + "’)");

String composer = "Mozart";
String title = "Requiem";
int update_count +=

s.executeUpdate("INSERT INTO music (composer, title) " +
"VALUES(" + composer + ", ’" + title + "’)");

...

System.out.println(update_count + " rows inserted.");

7.10 Retrieving data

To retrieve rows from the database, we use the executeQuery() and ResultSet
objects:

The ResultSet is one or more rows returned by the database query.
The class provides a set of methods for retrieving columns from the successive

rows.

Statement select = con.createStatement();
ResultSet result = select.executeQuery

("SELECT composer, title FROM music");

System.out.println("Got results:");

7.11 Retrieving individual data

The methods for retrieving a column are all of the same form:

ResultSet.get<type>(<Int>|<string>)

where <type> is any Java data type (Int, String, ...) corresponding to
a SQL type. The parameter itself can be either an Int representing the column
number, or a String with the column name.

For Example:

int key = result.getInt(1);
String val = result.getString(2);

Notice that using column number instead of column name is a rather bad
idea, that goes against the physical independence required by Codd. The user
should not be aware of the the order of the columns in the tables. In particular,
if a column is deleted in the middle of a table, then all other columns on the
right will change their positions, and all statements using position for them will
return wrong results.

31

7.12 Moving forward and backward through the ResultSet

Only one row is available at once with get<Type>() methods. It is possible to
move forward to the next one, or backward to the previous. Just after the query
statement, the cursor is positioned before the first row.

next() move to the next row, and return ”true” if one is available for process-
ing.

previous() move to the previous row, and return ”true” if one is available for
processing.

afterLast() move the cursor after the last row.
beforeFirst(), first(), last() move the cursor according to the method’s

name.
absolute(), relative() move the cursor in the same way as above, but

with an Int parameter specifying the place of the next row.
A negative param for absolute() indicates a row relative to the last one.

7.13 Where are we ?

Finally, we have methods to retrieve the current position of the cursor:
isFirst() , isLast() , isBeforeFirst() , isAfterLast() , getRow()
Except getRow() , they return a boolean.
getRow() returns the current row number as an integer.

7.14 Scrollable ResultSet

createStamenent() can have two parameters: scrolling and concurrency modes.

7.14.1 Scrolling mode

ResultSet.TYPE_FORWARD_ONLY,
.TYPE_SCROLL_SENSITIVE,
.TYPE_SCROLL_INSENSITIVE

With TYPE_FORWARD_ONLY, next() is the only method available.
With TYPE_SCROLL_SENSITIVE, any change made locally to the ResultSet

becomes visible while scrolling back to the modified rows.

7.14.2 Concurrency mode

ResultSet.CONCUR_READ_ONLY, .CONCUR_UPDATABLE
With .CONCUR_UPDATABLE, rows from the ResultSet can be modified in place.
The default is (ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY)

32 Database Systems

7.15 Helping the driver with Scrollable ResultSet

A few methods are available to help the driver, in particular when the ResulSet
is expected to be large:

setFetchDirection()

with the possible parameters:

ResultSet.FETCH_FORWARD
ResultSet.FETCH_REVERSE
ResultSet.FETCH_UNKNOWN

An other method fixes the maximum size of the returned ResulSet :

setFetchSize()

The default parameter is ”0” and is ignored, and the driver is expected to make
its best.

If you expect to use only the very first or last rows from a large returned Set,
then this method can speed up considerably the process.

7.16 Retrieval example (reading backward)

Statement stmt;
ResultSet rs;

stmt =
con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
rs = stmt.executeQuery("SELECT * from music ORDER BY composer");

rs.afterLast();
while(rs.previous()) {

int a= rs.getInt("test_id");
String strc = rs.getString("composer");
String strt = rs.getString("title");

System.out.print("test_id= " + a);
System.out.println("Composer = " + strc + "Title = " + strt);

}

33

7.17 SQL and Java Datatypes

SQL Type Java Type SQL Type Java Type

BIT boolean TINYINT byte
SMALLINT short INTEGER int
BIGINT long REAL float
FLOAT double DOUBLE double

DECIMAL math.BigDecimal NUMERIC math.BigDecimal
CHAR lang.String VARCHAR lang.String
LONGVARCHAR lang.String DATE sql.Date
TIME sql.Time TIMESTAMP sql.Timestamp
BINARY byte[] VARBINARY byte[]
LONGVARBINARY byte[]

The following definitions are available only with SQL 3

BLOB sql.Blob CLOB sql.Clob
ARRAY sql.Array REF sql.Ref
STRUCT sql.Struct

7.18 SQL and Java ”null”

In the relational model, the ”NULL” concept is important. It represents the ab-
sence of value, an indication that the value is unknown. It is different from a
count of ”0”, or from an on purpose empty field.

Java has no way to represent directly this concept.
The method wasNull() after any retrieval will return ”true” if it was a SQL

”NULL”
Usually, getInt() itself will return ”0” and getString() an empty string,

which cannot be distinguished from ”NULL”.
wasNull() should be used after each getXXX() on column that can return a

”NULL”.

7.19 SQL Exception (2)

SQLException class extends the general lang.Exception class with informations
about database errors. This includes:

• the SQL State string describing the error according to the XOPEN SQL State
conventions

• the database specific error code, usually a number. The Exception class
getMessage() can turn it into more readable form.

• a chain of exceptions leading to the last one.

34 Database Systems

Here is a small code to handle these exceptions:

catch(SQLException e) {
while(e != null) {

System.err.println(" SQLState: " + e.getSQLState());
System.err.println(" Code: " + e.getErrorCode());
System.err.println(" Message: ");
System.err.println(e.getMessage());
e = e.getNextException() ;

}
}

7.20 Warnings

The class SQLWarning is an extension to the SQLException class.
A warning is an indication that something could be wrong, but is not fatal at

this point.
The method getWarnings() call be called repeatedly until it returns a null.

7.21 Time representation

Time representation is an other very loosely defined concept in SQL .
java.sql.Date. sql.Time , sql.Timestamp extend the functionality of other

Java objects and provide a common representation of their SQL counterparts in-
dependently of the idiosyncrasies of the database system.

The granularity is the day for Date , the second for Time , and the nanosecond
for Timestamp .

Various methods are available to retrieve them, compare them and put them
into more readable form.

The internal value of all three time representation is ”long”.

8 SQL Database Systems in the PD

Many relational database systems exist for Linux, some sold for various prices,
but some freely available. IBM offers a Linux version of their flagship DB2 rdbms,
essentially the same as for the large computers. Borland has also brought out
recently a rdbms for Linux. Oracle has both 32 and 64 bits versions for Linux sin-
gle and clustered computers. This is also true for Ingres. But we will concentrate
more on three products typical of the free software, where users are also sup-
posed to be part of the debugging and development. I will describe them shortly,
and end with a rapid comparison.

35

8.1 mSQL

mSQLwas the first of its kind of cheap, lightweight and fast rdbms designed from
scratch with modern tools. It has a good interface with C, Java (with JDBC API),
Perl and Python, but it lacks some rare features of the standard SQL definitions.
While the client/server model is well supported, as are the connections with the
web, it is not intended for very large databases, or for too many simultaneous
users. It is not multi-threaded, but built on multi daemons for fast access by
many users.

8.2 MySQL

MySQLcame out about a year after mSQL, for similar reasons. Commercial rdbms
were too complex, too heavy, and above all too expensive for a small company.
While simplicity was a main moto for mSQL, speed was important for the devel-
opment of MySQL. It does not support yet the full SQL standard, but is nearer
than mSQL. It is multi-threaded, and intended for large databases and supports
a large number of simultaneous users.

MySQL has been ported to many other operating systems, not just Linux, but
its interface to other languages is not as wide.

8.3 PostgreSQL

PostgreSQL had a very different development. When Stonebraker left the univer-
sity development of Ingres to a more commercial team, he started looking for new
ideas, in particular to integrate objects into rdbms.

Out of this project came the first Postgres and its query language PostQuel.
Stonebraker was never convinced about SQL as it was defined and always pre-
ferred his own language (contradicting Codd rules). Postgres almost disappeared
a few years ago, mostly because every one wanted to use SQL . Then two gradu-
ate students of Professor Stonebraker designed an SQL frontend for Postgres, and
many more users became interested. PostgreSQL is an object-relational database
system, that supports transactions, triggers and subselect, all missing in the
previous rdbms. This comes at some price; it is heavier and more complex than
the other ones.

8.4 Comparison

Any comparison is difficult in this field because the new developments are done
by many users worldwide in a not too much structured way (the “bazaar”); it is
difficult to follow all the novelties and improvements of each of them. For a while,
the order set above corresponded to their increasing complexity and intended size
of use. PostgreSQL was also the slowest. But all three are improving full speed,

36 Database Systems

and show no intention to get out of the way. More recently, tests indicated that
PostgreSQL was now the fastest.

Although benchmarks tend to mimic as well as possible the normal expected
work load of a rdbms, they are probably not equivalent to your intended use (if
you are able to define it). It should also be noted that the differences in speed are
usually small compared to differences between two computers bought 6 months
apart.

Finally, the comparisons with commercial rdbms indicate that, if the three
rdbms cited above are not so rich in subtle commands and less ambitious toward
very large applications, they are usually faster, sometimes much faster than the
commercial ones. They are also easier to install and administer.

8.5 Where to look for informations

Here is a set of Internet links of interest with minimal comments.
For more information, look at meta-servers like google or altavista.

http://www.hughes.com.au/ for mSQL. Sources only.

http://www.mysql.com/ for MySQL, though many other sites have uptodate
.tar files.

http://www.postgresql.org for PostgreSQL. They prefer to send a CD than
provide .tar files.

http://www.ispras.ru/˜kml/gss/index.html for the GNU SQL project. This
work is currently done at the Institute for System Programming of the Rus-
sian Academy of Science. Supposed to cover the full SQL standard.

http://www.beaglesql.org another project to cover the full SQL , with options
from the work done on objects by the PostgreSQL group.

http://www.mysql.com/crash-me-choose.html A set of tests to verify the sta-
bility of a rdbms.

http:/people.ee.ethz.ch/˜oetiker/webtools/rrdtool/ Round Robin
multi-resolution databases.

http:/www.rsw.com/ This is the original /rdbpackage to manipulate flat ASCII
databases from shell scripts. It is a commercial product, but very fast and
efficient. C interface available as well. See the book by Manis et al (10.2,
page 40).

http://cfa-www.harvard.edu/˜john/starbase/starbase.html another
implementation of the same concept, optimised for astronomical applica-
tions, also very fast, but some versions were not very robust. C interface
available as well.

37

http://www.isi.edu/˜johnh/SOFTWARE/JDB/ Another rdb package with the
same concept.

http://www.linux.it/˜carlos/nosql/ Still another rdb package with the
same concept, all written in perl.

http://www.cs.uu.nl/pub/PERL/ still another one, also in perl.

http://www.kmarshall.com/easy/cgi/ gives useful information concerning
cgi and database access.

9 Other Data Base models

9.1 Object Oriented Data Base Systems

There is a clear tendency to move rapidly towards object programming in all
aspects of program developments, and databases being at the heart of most of
them, many projects on bringing together the two concepts have emerged. In
most cases, it consists of putting an object layer over the relational model, but
some developments exist for very large databases (in the Peta Bytes region) where
the original relational model seems to reach its limits and only new, pure object
databases would be realistic.

9.2 Round Robin Data Base Systems

On many occasions, we are interested to keep historical data with various time
resolutions, very high for the last minutes or hours, intermediate over days or
weeks and lower over month or years. Round Robin databases have been cre-
ated to solve automatically just this problem. To my knowledge, they were first
introduced for controlling network activity, but they can be used for other tasks
where the time enter as a sort of primary key.

During the database creation phase, different sub-databases are defined, all
with the same elements, but with various time resolutions and validity. Fields
have also two characteristics: type gauge or counter and attribute Min, Average
or Max. This fixes from the beginning the total size of the database.

Then data can be entered at any time and rate, hopefully frequently enough
to fill all the slots at the highest time resolution with at least one value.

If more than one value is entered in one time slot then the Minimum, Average
or Maximum during this time slot are recorded. The same mechanism works for
all other resolutions. When old data expire the validity at a given resolution, they
are automatically replaced by the new ones. When no value is entered during a
time slot, then either a NaN is recorded, or the value is interpolated between the
previous and next slot. The maximum size of the gap for interpolation can be
fixed during the definition phase.

38 Database Systems

For further information, downloading etc. (see section 8.5, page 36), look at:
http:/people.ee.ethz.ch/˜oetiker/webtools/rrdtool/

9.2.1 Monitoring temperatures

Here is a practical example of using a round robin database (rrd): We want to
record the chip temperature in our computer over long term (the life of the com-
puter) but a weekly indication is then sufficient. On the other hand, it would be
useful to keep track of the temperatures over the last 48 hours with a resolution
of 5 minutes and over a month with a resolution of 6 hours.

rrdtool create lab01.rrd \
--start 1002190000 \ beginning time
--step 600 \ time slot width
DS:Die:GAUGE:1200:0:100 \ chip temp, max interpolation over 10 min
DS:Amb:GAUGE:1200:0:100 \ same for ambient temp
RRA:AVERAGE:0.5:1:576 \ average over 1 time slot (5 min) for 48 h
RRA:AVERAGE:0.5:72:124 \ 72 6 h 31 d
RRA:AVERAGE:0.5:2016:1460 \ 2016 1 w 4 y
RRA:MAX:0.5:1:576 \ same for Max temp
RRA:MAX:0.5:72:124 \
RRA:MAX:0.5:2016:1460

A cron command was recording the temperature every minute. The com-
mand looks like (time is given in Unix seconds):

time=‘date +%s‘
rrdtool update lab01.rrd $time:$die:$amb

Here is the results of fetching the data back with different resolutions. The
command is given only once, and the results have been reformatted.

rrdtool fetch --start now-10h lab01.rrd AVERAGE

date time Die Amb
-------- -------- ----- -----
20011120 13:00:00 53.17 37.00
20011120 13:05:00 53.50 37.00
20011120 13:10:00 53.64 37.00
20011120 13:15:00 53.67 37.00

date time Die Amb
-------- -------- ----- -----
20011112 21:00:00 54.17 37.50
20011113 03:00:00 53.49 37.00
20011113 09:00:00 53.46 37.00
20011113 15:00:00 53.50 37.00

date time Die Amb
-------- -------- ----- -----
20011006 02:00:00 55.12 39.00
20011013 02:00:00 54.67 39.00
20011020 02:00:00 54.67 39.00
20011027 02:00:00 54.98 39.00

The rrdtool package contains options for creating, updating, fetching, graph-
ing databases, as well as moving data from/to ascii external and binary internal

39

formats. It is very easy to transform the results into /rdb format or simpler
tables for SuperMongo or Octave.

rrdtool is also at the heart of mrtg , a package widely used to monitor with
various time resolutions the traffic going through nodes in a network. It is avail-
able from the same place as the rrdtool .

40 Database Systems

10 Bibliography

The following list is not an up-to-date bibliography on the subject. New books
and articles are appearing every day on database, SQL or JDBC.

They are a personal choice, based on my experience. Most are much shorter
that current publications. They all bring and emphasize some important aspects
on the subject. A few are here also for historical reasons.

10.1 Relational Database

- Codd E. F. A Relational Model of Data for large Shared Data Banks. CACM,
13, No 6, 377-387, June 1970

- Codd E. F. Relational Database: A Practical Foundation for Productivity.
CACM, 25, No 2, 109-117, February 1982

- Date C. J. Relational Data Bases: Selected Writing. Addison-Wesley 1986

- Date C. J. A Guide to Ingres. Addison-Wesley 1987

- Parsaye K., Chignell, M., Khoshafian, S., Wong, H. Intelligent Databases.
Wiley 1989

- Stonebraker M The Ingres Papers: Anatomy of a Relational Database Sys-
tem. Addison-Wesley 1985

10.2 Unix Flat Tables

- Manis R., Schaffer E., Jørgensen Unix Relational Database Management,
Application Development in the Unix Environment. Prentice-Hall 1988

10.3 SQL

- Bowman J. S., Emerson S. L. and Darnovsky M. The Practical SQL .
Addison-Wesley 2001

10.4 CGI programming

- Scott, G., Gundavaram, S. and Birznieks, G. CGI Programming with Perl.
O’Reilly 200

41

10.5 JDBC

- White S., Fisher M, Cattell R., Hamilton G. and Hapner M. JDBC API
Tutorial and Reference, Second Edition. Universal Data Access for the Java
2 Platform, The Java Series (SUN microsystems), Addison Wesley (1999),
ISBN 0-201-43328-1

- Reese G. Database programming with JDBC and Java , Second Edition.
O’Reilly (2000), ISBN 1-56592-616-1

10.6 Public Domain

- Yarger R. J., Reese G. and King T. MySQL& mSQL. O’Reilly 1999

- Reese, G., Yarger, R. J. and King T. Managing and Using MySQL. O’Reilly
2002, ISBN 0-596-00211-4

- Reese, G. MySQL Pocket Reference. O’Reilly 2003, ISBN 0-596-00446-X

10.7 Other

- Bentley Jon Programming Pearls. Addison-Wesley 1989

- Bentley Jon More Programming Pearls, Confessions of a Coder. Addison-
Wesley 1988

- Wall L., Christiansen, T, Schwartz, R. L. Programming Perl O’Reilly &
Associates 1996

- Burke E. M. and Coyner B. M. Java Extreme Programming Cookbook.
O’Reilly 2003, ISBN 0-596-00387-0

Index
AFS, 14
attribute, 3
AUTOINCREMENTmodifier, 16

cgi programming, 23
references, 40

client/server model, 14, 22
Codd, 40

rules, 4
cookie, 23
CORBA, 28
cron , 38

data entities, 4
DB2, 3, 34
DCE, 28
descending order, 19
dictionary, 10
distributed system, 14, 26, 27

entity-relationship, 5
Exception handling, 29
exclusive lock, 21

flat tables, 40

hierarchical model, 8
html form, 23

IBM
DB2, 3, 34
704, 1
R38, 2, 3

indextbl , 12
Informix, 3
Ingres, 3, 34, 35

references, 40
inner join, 18
intersect, 19

Java
SQL driver instantiation, 29
absolute() , 31

afterLast() , 27, 31
close() , 29
con.createStatement() , 27
Connection , 28
createStatement() , 30
createStatement , 29
data type, 33
Date() , 34
DriverManager , 28
executeQuery() , 27, 30
executeUpdate() , 29
getConnection() , 29
getInt() , 27, 30
getRow() , 31
getString() , 27, 30
getWarnings() , 34
isAfterLast() , 31
isBeforeFirst() , 31
isFirst() , 31
isLast() , 31
MySQL, 35
next() , 31
previous() , 27, 31
relative() , 31
ResultSet , 27, 28, 31
SQLException , 29, 33
SQL State , 33
Statement , 27, 28
Time() , 34
time representation, 34
Timestamp() , 34
wasNull() , 33

JDBC, 35
bibliography, 41
driver, 28
introduction, 26
referrences, 41

join, 19
jointbl , 12

lock mechanism, 21

42

43

many-to-many, 5
mergetbl , 12
mSQL, 35

references, 41
multithread, 35
MySQL, 35

references, 41

NaN, 16
natural join, 18
network model, 8
NFS, 14
normal form, 6
normalisation, 6
NOT NULLmodifier, 16
NULL modifier, 4, 16, 33
NULL representation in Java , 33

objects to relational mapping, 26
octave, 39
ODBC, 28
one-to-many, 5
one-to-one, 5
Oracle, 34
Oracle, 3
outer join, 18

perl, 40
references, 41

PIC operating system, 2, 3, 14
PostgreSQL, 3, 22

references, 41
PostgreSQL , 35
PostQUEL, 35
PRIMARY KEYmodifier, 16
ptbl , 12
punched card, 1
python, 35

R38, 2
RDB, 11
/rdb, 2, 3, 11, 39

cgi programming, 24
references, 40

rdbedit , 12
relation, 3, 4

relational database
references, 40

relational model, 3
report , 23
reporttbl , 12
ResultSet

concurrency, 31
scrolling mode, 31

round robin database, 37
row , 12
rrd, 37
rrdtool , 38

search , 12
shared lock, 21
shell script, 9
sort, 19
sorttbl , 12
SQL, 3, 13

aliases, 14
AUTOINCREMENT, 16
COMMIT, 21
CREATE, 15
data type, 15, 33
DATE, 34
DELETE, 17
descending order, 19
driver instantiation, 29
embedded statements, 26
Exception, 33
Exception handling, 29
FROM, 18
function, 16
index, 16
INSERT, 17, 29
INTERSECT, 19
JOIN , 19
LOCK, 21
MINUS, 19
NULL, 16, 33
ORDER BY, 19
PRIMARY KEY, 16
QUERY, 27
READ COMMITTED, 21

44 Database Systems

references, 40
SELECT, 18
SERIALIZABLE , 21
SET TRANSACTION, 21
sort, 19
SQL State , 33
TIME, 34
time representation, 34
transaction, 29
trigger, 22
UNION, 19
UPDATE, 20, 29
warning, 34
WHERE, 17

starbase, 11
Stonebraker, 35, 40
Sybase, 3

tbl, 11
three tiers model, 23
time resolved database, 37
transaction, 20, 29
trigger, 22
tuple, 3

union, 19
Unix

flat tables, 3, 8, 40
pipe, 8
redirection, 8
regular expression, 17
shell script, 9
uniq , 19

web access, 23

	Introduction
	Why Data Base Systems?
	What is a Data Base System?
	What is a Data Base ?
	Database Models

	The Relational Model
	Historical background
	The relational model
	Vocabulary

	The relational system
	Data entities and relations
	The Data model
	Entity-Relationship diagrams
	Normal forms
	First normal form
	Second normal form
	Third normal form
	Fourth normal form
	Remarks

	Unix flat tables
	Using pipes and redirections
	Flat file format
	Building Databases
	Unix commands
	Advantages and limitations
	Advantages
	Limitations

	SQL equivalence

	Using SQL Data Bases
	Introduction to SQL
	Client/server and distributed systems
	Aliases

	CREATE command
	Data types
	Modifiers
	Indices
	Other CREATE commands

	WHERE clause
	DELETE command
	INSERT command
	SELECT command
	FROM modifier
	ORDER BY modifier
	Combining SELECT commands
	UPDATE command
	Report command
	Data dictionary

	Transactions and triggers
	Transactions
	Triggers

	Data Bases and the Web
	The Client Server model
	The Three Tier model
	Access through the web, CGI programming

	The Java JDBC API
	Java + RDB : a strange marriage
	Embedded SQL statements
	Database independence
	Distributed computing
	JDBC Driver
	Three steps to access the data base
	Connecting to the database
	Database access
	Cleaning up

	Exception handling
	Connecting to a database
	Inserting/updating data
	Retrieving data
	Retrieving individual data
	Moving forward and backward through the ResultSet
	Where are we ?
	Scrollable ResultSet
	Scrolling mode
	Concurrency mode

	Helping the driver with Scrollable ResultSet
	Retrieval example (reading backward)
	SQL and Java Datatypes
	SQL and Java "null"
	SQL Exception (2)
	Warnings
	Time representation

	SQL Database Systems in the PD
	mSQL
	MySQL
	PostgreSQL
	Comparison
	Where to look for informations

	Other Data Base models
	Object Oriented Data Base Systems
	Round Robin Data Base Systems
	Monitoring temperatures

	References
	Bibliography
	Relational Database
	Unix Flat Tables
	SQL
	CGI programming
	JDBC
	Public Domain
	Other

	Index

