
Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 1
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Embedded Systems in Distributed

Environment

Second Workshop on Distributed Labora-
tory Instrumentation Systems

Abdus Salam ICTP, Trieste, 20 October – 14 November 2003

Chu Suan ANG
Kuala Lumpur

Malaysia

Email: csang@pc.jaring.my

Abstract

Several embedded system core components, ranging from small
single chip microcontrollers to large CPU modules, are described
in the first part of these lectures. Embedded systems networking
in a distributed environment is covered in the second part with a
bias towards techniques used in the laboratory environment, tak-
ing into account both legacy and new systems.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 2
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

1 Embedded System Processors and Modules

1.1 Introduction
The overall objectives of these lectures are (1) to introduce the current embedded
system hardware components or subsystems that are both available and afford-
able, and (2) to introduce the rudiments of networking various small embedded
systems including both new and old (legacy) components.

The scene of embedded processors has changed significantly. Motorola, Intel
and Zilog are no longer the obvious choices for most small research or teaching
laboratories. Instead, Dallas Semiconductor, Atmel, Microchip, Rabbit Semi-
conductor and others are getting more and more competitive and have been
widely adopted in laboratories. Several types of embedded processors suitable
for embedded systems, spanning a wide range of capabilities and thus costs, are
introduced here.

It is of course impossible to deal exhaustively with the available processors or
subsystems in the market in a few lectures. One may tend to group them and do
a generalized treatment. But a general idea of hardware is not sufficient for
building an embedded system. At the end of the Workshop, it is hoped that
participants will acquire sufficient knowledge to design and build their own
systems. General treatment will not achieve that. The devil is in the detail.

Hardware or hardware subsystems for five different processors, ranging from the
very small and simple to the complex but affordable, are chosen as examples of
processors in the different embedded system classes.

1. PIC
2. TINI
3. Rabbit Core
4. Etrax MCM
5. ICOP PC/104 Embedded CPU Module

The PIC family of microcontrollers by Microchip has been extremely successful
for small embedded system applications. The smaller members of PIC are under
one dollar which is truly low cost. Of course a tiny eight-legged MCU is not
quite a full embedded system but you will be surprised how little more is re-
quired to make it so. With an additional few dollars one can have a small PCB,
connectors and a small line driver to make it a fully-fledged embedded system,
which can be networked together via a serial bus such as the RS485. It will
count events, it will control LEDs, it will also sense switches, and it will even

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 3
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

read analogue voltages. Many of them can be distributed over a large area and
connected to a PC or bigger system using a serial bus which is just a twisted pair
of wires. This makes distributed systems in laboratories really feasible at low
cost. A PIC system as small as a match box costing under 5 dollars has really
more or less the capabilities of the Motorola board used in the early microproc-
essor colleges that preceded this Workshop in the 1980s.

TINI is the workhorse in this Workshop. It is one of the rising stars in the not-
so-small embedded microcontrollers and it falls in the category of 50-100 dollar
systems. The processor together with its many virtues is dealt with separately in
another series of lectures and shall not be covered here.

The Rabbit Cores by Rabbit Semiconductor fall in the same category as the
TINI. With an early successful entry in the market, there are now many different
configurations and accessories available to suit different requirements. With an
on-board Ethernet connector on the core module, the extension board can usually
be quite simple, and therefore possible for participants to produce in their home.
It is also a good candidate to use for interfacing to legacy serial equipment. It is
of course a rather powerful embedded system in its own right and can be used in
many localized tasks that require hard real-time control, using a real-time kernel
such as uCOS. A software development environment under the Linux platform
is being carried out by two members of the Workshop.

It was realized several years ago that a complete system, including memories and
peripherals on a single chip with processing power equivalent to a low end PC,
was feasible. Well, one such processor is now available. It is the ETRRAX
100LX Multi Chip Module (MCM) by Axis Communications. At 70 dollars, the
chip has the processing power and hardware resources to run Linux and other OS
of similar complexity. It is a good candidate for complex real-time systems in a
distributed environment in view of its high level OS capabilities and low cost.

It is not true that one has to go for the cheapest possible hardware all the time.
Many a time it is wiser to acquire appropriate hardware to do the job irrespective
of the cost. Off-the-shelf subsystems are often more cost effective in the end
because of the time saved in using them. In embedded systems, one such group
is the commercially available high end embedded CPU modules. They are, in
general, entire PCs in cards called single board computers (SBC). Many stan-
dards and form factors have appeared over the years, including the STB Bus,
PC/104, EBX, half-size SBC, and 3.5” embedded module. The large number of
manufacturers each producing a myriad of boards makes the choice of such
boards difficult. PC/104 is a small form-factor (3.6 x 3.8 inches, 90 x 96 mm)
worldwide standard now gaining popularity. It supports both ISA and PCI ex-

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 4
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

pansion in self-stacking modules, at 0.6 inch spacing. One such card is the
Vortex86-6070 by ICOP Technology.

If you compare the above board with that of Axis 82 using Etrax 100LX MCM,
you will see that it is definitely more suitable for bigger jobs. While the raw
processing power of the two is comparable, the Vortex86 has significantly larger
on-board memory. Expansion is straightforward with PC/104 modules. A dis-
play controller is also embedded, which may be required in some embedded
applications (e.g. mimic diagram or synoptic panel of the railway network on a
high resolution colour LCD panel?).

Basically such an embedded processor is more or less like a desktop PC in terms
of computing power and peripherals such as mass storage and display. The pro-
gramming environment is practically identical to that of a desktop PC and cross
development becomes straightforward or perhaps unnecessary for the system
itself can be a development environment. The differences lie in its compactness
and economy – the whole embedded system can be held in a palm and probably
costs half that of the desktop PC doing the same job.

1.2 PICmicro® MCUs
PICmicro® MCUs are RISC-based devices produced by Microchip Technology
Inc. that have had tremendous success in replacing older microcontrollers in
small embedded system applications in recent years. The family of MCUs has
more than 140 products featuring a variety of memory configurations, low volt-
age and power, small footprints and ease-of-use. These products can be grouped
into five families of 8-bit MCUs:

PIC12CXXX/PIC12FXXX Family: 8-pin 12-bit/14-bit program word
These are the smallest MCUs using RISC-based PICmicro® architecture housed
in 8-pin DIP and SOIC packages. They are available with either a 12-bit or 14-
bit wide instruction set, a low operating voltage of 2.5V, small package foot-
prints, interrupt handling, a deeper hardware stack, multiple A/D channels,
FLASH, OTP or ROM program memory, and EEPROM data memory.

PIC16C5X Family: 12-bit program word
These are very popular MCUs because they offer cost-effective solutions in
many embedded system applications. They have a 12-bit wide instruction sets
and are currently offered in 14-, 18-, 20- and 28-pin packages, in the SOIC and
SSOP packaging options. Low-voltage operation, down to 2.0V for OTP MCUs,
makes this family ideal for battery-operated applications. The PIC16HV5XX can
operate up to 15 volts for use directly with a 12-volt battery.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 5
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

PIC16CXXX/PIC16FXXX Family: 14-bit program word
A new family that provides high performance Analog-to-Digital Converter capa-
bility at 12-bits for an MCU. The family offers a wide-range of options, from 18-
to 68-pin packages as well as low to high levels of peripheral integration. This
family has a 14-bit wide instruction set, interrupt handling capability and a deep,
8-level hardware stack.

PIC17CXXX Family: 16-bit program word
This family has a 16-bit instruction word, enhanced instruction set and powerful
vectored interrupt-handling capabilities. A powerful array of precise on-chip
peripheral features provides the performance for more demanding applications.

PIC18CXXX/PIC18FXXX Family: enhanced 16-bit program word
Top of the line of the PIC devices. The family has enhanced core features, ADC,
32 level-deep stacks, and multiple internal and external interrupts sources. Other
nice features include programmable Low Voltage Detect (LVD) and program-
mable Brown-Out Detect (BOD). The separate instruction and data busses of the
Harvard architecture allow a 16-bit wide instruction word with the separate 8-bit
wide data. The two-stage instruction pipeline allows all instructions to execute in
a single cycle, except for program branches, which require two cycles. A total of
77 instructions (reduced instruction set) are available. The MCU operates up to
10 MIPS.

1.3 An Example of PICmicro® MCUs PIC12F675
This is a CMOS Flash-based 8-bit microcontroller using the Microchip PIC
architecture housed in an 8-pin package and featuring 4 channels of 10-bit Ana-
log-to-Digital (A/D) converter, 1 channel Comparator, and 128 bytes of
EEPROM data memory. It is used for small applications, especially when field
re-programming is necessary.

The RISC CPU has only 35 instructions and they execute in one cycle except
branches which require two. The clock or oscillator operates from DC to 20
MHz while the instruction cycle is DC to 200 ns. An 8-level deep hardware
stack is available. Addressing modes are Direct, Indirect, and Relative.

Other secondary hardware related features are:

• Internal and external oscillator options
• External Oscillator support for crystals and resonators
• 5 µs wake-up from SLEEP
• Power saving SLEEP mode
• Wide operating voltage range: 2.0V to 5.5V

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 6
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

• Industrial and Extended temperature range
• Low power Power-on Reset (POR)
• Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
• Brown-out Detect (BOD)

• Watchdog Timer (WDT) with independent oscillator
• Multiplexed MCLR/Input-pin
• Interrupt-on-pin change
• Individual programmable weak pull-ups
• Programmable code protection
• FLASH/EEPROM Cell

- 100,000 write FLASH endurance
- 1,000,000 write EEPROM endurance
- FLASH/Data EEPROM Retention: > 40 years

• Standby Current:
- 1 nA @ 2.0V, typical

• Operating Current:
- 8.5µA @ 32 kHz, 2.0V, typical
- 100µA @ 1 MHz, 2.0V, typical

• Watchdog Timer Current
- 300 nA @ 2.0V, typical

• Timer1 oscillator current:
- 4 µA @ 32 kHz, 2.0V, typical

• Peripheral Features:
- 6 I/O pins with individual direction control
- High current sink/source for direct LED drive

• Analog comparator module with:
- One analog comparator
- Programmable on-chip comparator voltage reference (CVREF)
- Programmable input multiplexing from device inputs
- Comparator output is externally accessible

• Analog-to-Digital Converter module:
- 10-bit resolution
- Programmable 4-channel input
- Voltage reference input

• Timer0: 8-bit timer/counter with 8-bit programmable prescalar
• Enhanced Timer1:

- 16-bit timer/counter with prescaler
- External Gate Input mode

• In-Circuit Serial ProgrammingTM (ICSPTM) via two pins

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 7
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

1.4 PIC12F675 Memories and Registers
In PIC, memories are divided into program and data sections. PIC12F675 has a
13-bit program counter capable of addressing an 8K x 14 program memory
space. Only the first 1K x 14 (0000h - 03FFh) is physically implemented. Ac-
cessing a location above these boundaries will cause a wrap around within the
first 1K x 14 space. The RESET vector is at 0000h and the interrupt vector is at
0004h.

The data memory is partitioned into two banks, which contain the General Pur-
pose registers and the Special Function registers. The Special Function registers
are located in the first 32 locations of each bank. Register locations 20h-5Fh are
General Purpose registers, implemented as static RAM and mapped across both
banks. All other RAM is unimplemented and returns ‘0’ when read. RP0 is the
bank select bit. RP0 = 0 selects Bank 0; RP0 = 1 selects Bank 1.

The register file is organized as 64 x 8 in the PIC12F629/675 devices. Each
register is accessed, either directly or indirectly, through the File Select Register
FSR.

The Special Function registers are static RAM used by the CPU and peripheral
functions for controlling the desired operation of the device. Details of the core
and peripheral assignment of these registers can be found in the data sheet.

The STATUS register contains the arithmetic status of the ALU, the RESET
status, and the bank select bits for data memory. The STATUS register can be
the destination for any instruction, like any other register. However, if the
STATUS register is the destination for an instruction that affects the Z, DC or C
bits, then the write to these three bits is disabled. These bits are set or cleared
according to the device logic.

The OPTION register is a read/write register that contains various control bits to
configure TMR0/WDT prescaler, external GP2/INT interrupt, TMR0, and weak
pull-ups on GPIO.

The INTCON register is a read/write register that contains the various enable and
flag bits for TMR0 register overflow, GPIO port change and external GP2/INT
pin interrupts.

The PIE1 register contains the peripheral interrupt enable bits. The PIR1 register
contains the interrupt flag bits. The Power Control (PCON) register contains
flag bits to differentiate between a:

• Power-on Reset (POR)

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 8
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

• Brown-out Detect (BOD)
• Watchdog Timer Reset (WDT)
• External MCLR Reset

The program counter (PC) is 13-bits wide. The low byte comes from the PCL
register, which is a read/write register. The high bits (PC<12:8>) are not directly
accessible and they come from PCLATH. On any RESET, the PC is cleared.

The stack is 8 levels deep and 13 bits wide. It is not part of either program or
data space and the stack pointer is not directly accessible. The PC is PUSHed
onto the stack when a CALL instruction is executed, or an interrupt causes a
branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE
instruction execution. PCLATH is not affected by a PUSH or POP operation.
The stack operates as a circular buffer. This means that after the stack has been
PUSHed eight times, the ninth push overwrites the value that was stored from
the first push. There are no status bits to indicate stack overflow or underflow.
There are no instructions/mnemonics called PUSH or POP. These are actions
that occur from the execution of the CALL, RETURN, RETLW and RETFI E
instructions, or the vectoring to an interrupt address.

Indirect Addressing is achieved by addressing the INDF register which is not a
physical register. Any instruction using the INDF register will access data
pointed to by the File Select register (FSR). Reading INDF itself indirectly will
produce 00h. Writing to the INDF register indirectly results in a no operation
(although STATUS bits may be affected). An effective 9-bit address is obtained
by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>).

1.5 PIC12F675 I/O Port
There are six general purpose I/O pins available. Depending on which peripher-
als are enabled, some or all of the pins may not be available as general purpose
I/O. In general, when a peripheral is enabled, the associated pin may not be used
as a general purpose I/O pin.

GPIO is a 6-bit wide, bi-directional port. The corresponding data direction regis-
ter is TRISIO. Setting a TRISIO bit (= 1) will make the corresponding GPIO pin
an input (i.e., put the corresponding output driver in a Hi-impedance mode).
Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output
(i.e., put the contents of the output latch on the selected pin). The exception is
GP3, which is input only and its TRISIO bit will always read as ‘1’ .

Reading the GPIO register reads the status of the pins, whereas writing to it will
write to the port latch. All write operations are read-modify-write operations.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 9
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Therefore, a write to a port implies that the port pins are read, this value is modi-
fied, and then written to the port data latch. GP3 reads ‘0’ when MCLREN = 1.
The TRISIO register controls the direction of the GP pins, even when they are
being used as analog inputs. The user must ensure the bits in the TRISIO register
are set when using them as analog inputs. I/O pins configured as analog inputs
always read ‘0’ .

Every GPIO pin has an interrupt-on-change option and every GPIO pin, except
GP3, has a weak pull-up option. Control bits WPUx enable or disable each pull-
up. Each weak pull-up is automatically turned off when the port pin is config-
ured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU
bit (OPTION<7>).

For enabled interrupt-on-change pins, the values are compared with the old value
latched on the last read of GPIO. The ‘mismatch’ outputs of the last read are
OR'd together to set the GP Port Change Interrupt flag bit (GPIF) in the INT-
CON register. This interrupt can wake the device from SLEEP. The user, in the
Interrupt Service Routine, can clear the interrupt by reading or writing of GPIO,
or by clearing the flag bit GPIF. A mismatch condition will continue to set flag
bit GPIF. Reading GPIO will end the mismatch condition and allow the flag bit
GPIF to be cleared.

Each GPIO pin is multiplexed with several other functions. The pins and their
combined functions are briefly described below.

• GP0/AN0/CIN+
- a general purpose I/O
- an analog input for the A/D
- an analog input to the comparator

• GP1/AN1/CIN-/VREF
- as a general purpose I/O
- an analog input for the A/D
- an analog input to the comparator
- a voltage reference input

• GP2/AN2/T0CKI/INT/COUT
- a general purpose I/O
- an analog input for the A/D
- the clock input for TMR0
- an external edge triggered interrupt
- a digital output from the comparator

• GP3/MCLR/Vpp
- a general purpose input
- as Master Clear Reset

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 10
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

• GP4/AN3/T1G/OSC2/CLKOUT

- a general purpose I/O
- an analog input for the A/D (PIC12F675 only)
- a TMR1 gate input
- a crystal/resonator connection
- a clock output

• GP5/T1CKI/OSC1/CLKIN
- a general purpose I/O
- a TMR1 clock input
- a crystal/resonator connection
- a clock input

1.6 PIC12F675 Timers
The timer/counter module Timer0 has the following features:

• 8-bit timer/counter
• Read/Write
• 8-bit software programmable prescaler
• Internal or external clock select
• Interrupt on overflow from FFh to 00h
• Edge select for external clock

Timer mode is selected by clearing the T0CS bit (OPTION_REG<5>). In Timer
mode, the Timer0 module will increment every instruction cycle (without
prescaler). If TMR0 is written, the increment is inhibited for the following two
instruction cycles. The user can work around this by writing an adjusted value to
the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION_REG<5>). In this
mode, the Timer0 module will increment either on every rising or falling edge of
Pin GP2/T0CKI. The incrementing edge is determined by the source edge
(T0SE) control bit (OPTION_REG<4>). Clearing the T0SE bit selects the rising
edge.

A Timer0 interrupt is generated when the TMR0 register timer/counter over-
flows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be
masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>)
must be cleared in software by the Timer0 module Interrupt Service Routine
before re-enabling this interrupt. The Timer0 interrupt does not wake the proces-
sor from SLEEP since the timer itself is shut-off during SLEEP.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 11
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

An 8-bit counter is available as a prescaler for the Timer0 module, or as a post-
scaler for the Watchdog Timer. The prescaler assignment is controlled in soft-
ware by the control bit PSA (OPTION_REG<3>). Clearing the PSA bit will
assign the prescaler to Timer0. Prescale values are selectable via the PS2:PS0
bits (OPTION_REG<2:0>). The prescaler is not accessible directly. When as-
signed to the Timer0 module, all instructions writing to the TMR0 register (e.g.,
CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to
WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog
Timer. The prescaler assignment is under software control and it can be changed
on the fly during program execution.

The PIC12F675 has a second timer module Timer1 with the following features:

• 16-bit timer/counter (TMR1H:TMR1L)
• Readable and writable
• Internal or external clock selection
• Synchronous or asynchronous operation
• Interrupt on overflow from FFFFh to 0000h
• Wake-up upon overflow (Asynchronous mode)
• Optional external enable input (T1G)
• Optional LP oscillator

The Timer1 Control register (T1CON) is used to enable/disable Timer1 and
select the various features of the Timer1 module. There are three modes of
operation for Timer1:

• 16-bit timer with prescaler
• 16-bit synchronous counter
• 16-bit asynchronous counter

In Timer mode, Timer1 is incremented on every instruction cycle. In Counter
mode, Timer1 is incremented on the rising edge of the external clock input
T1CKI. In addition, the Counter mode clock can be synchronized to the micro-
controller system clock or run asynchronously. In Counter and Timer modules,
the counter/timer clock can be gated by the T1G input. If an external clock oscil-
lator is needed (and the microcontroller is using the INTOSC w/o CLKOUT),
Timer1 can use the LP oscillator as a clock source.

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over
to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit (PIR1<0>) is set.
To enable the interrupt on rollover, these bits must be set:

• Timer1 interrupt Enable bit (PIE1<0>)
• PEIE bit (INTCON<6>)
• GIE bit (INTCON<7>)

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 12
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The interrupt is cleared by clearing the TMR1IF in the Interrupt Service Routine.

Timer1 has four prescaler options allowing 1, 2, 4, or 8 divisions of the clock
input. The T1CKPS bits (T1CON<5:4>) control the prescale counter. The pre-
scale counter is not directly read or written; and it is cleared upon a write to
TMR1H or TMR1L.

Time1 is in asynchronous counter mode if control bit T1SYNC (T1CON<2>) is
set. In this mode the timer increments without synchronizing to the internal
clock. And it will continue to run during SLEEP mode and generate an interrupt
on overflow.

A crystal oscillator circuit is built-in between pins OSC1 (input) and OSC2
(amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>).
The oscillator is a low power oscillator rated up to 37 kHz. It will continue to
run during SLEEP. It is primarily intended for a 32 kHz crystal.

1.7 PIC12F675 Analog Comparator
The PIC12F675 has an analog comparator which compares the inputs at GP0 and
GP1 by multiplexing. There is an on-chip Comparator Voltage Reference that
can also be applied to an input of the comparator. The comparator output is read
through the CMCON register which is read only. In addition, GP2 can be con-
figured as the comparator output (digital). The Comparator Control Register
(CMCON) contains the bits to control the comparator. The analog input must be
between Vss and Vdd and the source impedance not larger than 10K ohms.

Both the comparator and voltage reference, if enabled before entering SLEEP
mode, remain active during SLEEP. This results in higher SLEEP currents.

The comparator interrupt flag is set whenever there is a change in the output
value of the comparator. Software will need to maintain information about the
status of the output bits, as read from CMCON<6>, to determine the actual
change that has occurred. The CMIF bit, PIR1<3>, is the comparator interrupt
flag. This bit must be reset in software by clearing it to ‘0’ . Since it is also possi-
ble to write a '1' to this register, a simulated interrupt may be initiated.

1.8 PIC12F675 Analog-to-Digital Converter
The PIC12F675 has a 10-bit analog-to-digital converter (A/D). Four analog
inputs are multiplexed into one sample and hold circuit. The output of the sample
and hold is connected to the input of the converter. The converter generates a

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 13
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

binary result via successive approximation and stores the result in a 10-bit regis-
ter. The voltage reference used in the conversion is software selectable to either
Vdd or a voltage applied by the Vref pin.

The ANS3:ANS0 bits (ANSEL<3:0>) and the TRISIO bits control the operation
of the A/D port pins.

The A/D conversion cycle requires 11 Tad. The source of the conversion clock is
software selectable via the ADCS bits (ANSEL<6:4>). There are seven possible
clock options:

• Fosc/2
• Fosc/4
• Fosc/8
• Fosc/16
• Fosc/32
• Fosc/64
• FRC (dedicated internal RC oscillator)

For correct conversion, the A/D conversion clock (1/Tad) must be selected to
ensure a minimum Tad of 1.6 µs. The minimum acquisition time is approxi-
mately 20 µs. The A/D converter module can operate during SLEEP.

1.9 PIC12F675 EEPROM Memory
The PIC12F675 has 128 bytes of EEPROM data memory. This memory is not
directly mapped in the register file space. Instead, it is indirectly addressed
through the Special Function Registers. There are four SFRs used to read and
write this memory:

• EECON1
• EECON2 (not a physically implemented register)
• EEDATA
• EEADR

EEDATA holds the 8-bit data for read/write, and EEADR holds the address of
the EEPROM location being accessed. A byte write automatically erases the
location and writes the new data (erase before write). The write time is con-
trolled by an on-chip timer. When the data memory is code protected, the CPU
may continue to read and write the data EEPROM memory while the device

EECON1 is the control register with four low order bits physically implemented.
The upper four bits are not implemented and read as '0's. Control bits RD and
WR initiate read and write, respectively. These bits cannot be cleared, only set,
in software. They are cleared in hardware at completion of the read or write
operation. The WREN bit, when set, will allow a write operation. On power-up,

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 14
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

the WREN bit is clear. EECON2 is not a physical register. Reading EECON2
will read all '0's. The EECON2 register is used exclusively in the Data EEPROM
write sequence.

Data memory can be code protected by programming the CPD bit to ‘0’ . When
the data memory is code protected, the CPU is still able to read and write data to
the Data EEPROM. It is recommended to code protect the program memory
when code protecting data memory. This prevents anyone from programming
zeroes over the existing code (which will execute as NOPs) to reach an added
routine, programmed in unused program memory, which outputs the contents of
data memory. Programming unused locations to ‘0’ will also help to prevent data
memory code protection from being breached.

1.10 PIC12F675 Special Features
A number of features that make the PIC12F675 useful in real-time applications
are also included:

• Oscillator selection
• RESET
- Power-on Reset (POR)

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- Brown-out Detect (BOD)
• Interrupts
• Watchdog Timer (WDT)
• SLEEP
• Code protection
• ID Locations
• In-Circuit Serial Programming

The PIC12F629/675 has a Watchdog Timer that is controlled by configuration
bits. It runs off its own RC oscillator for added reliability. There are two timers
that offer necessary delays on power-up. One is the Oscillator Start-up Timer
(OST), intended to keep the chip in RESET until the crystal oscillator is stable.
The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms
(nominal) on power-up only, designed to keep the part in RESET while the
power supply stabilizes. There is also circuitry to reset the device if a brown-out
occurs, which can provide an at least 72 ms RESET. With these three functions
on-chip, most applications need no external RESET circuitry. The SLEEP mode
is designed to offer a very low current Power-down mode. The user can wake-up
from SLEEP through:

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 15
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

• External RESET
• Watchdog Timer wake-up
• An interrupt

Several oscillator options are also made available to allow the part to fit the
application. The INTOSC option saves system cost while the LP crystal option
saves power.

If the code protection bit(s) have not been programmed, the on-chip program
memory can be read out for verification purposes.

Four memory locations (2000h-2003h) are designated as ID locations where the
user can store checksum or other code identification numbers. These locations
are not accessible during normal execution but are read and written during Pro-
gram/Verify phase. Only the Least Significant 7 bits of the ID locations are used.

In-Circuit Serial Programming is done with two lines for clock and data, and
three other lines for:

• power
• ground
• programming voltage

This allows one to produce boards with unprogrammed devices, and then pro-
gram the microcontroller just before use. It thus allows the most recent firmware
or a custom firmware to be programmed. The device is placed into a Pro-
gram/Verify mode by holding the GP0 and GP1 pins low, while raising the
MCLR (Vpp) pin from VIL to VIHH. GP0 becomes the programming data and
GP1 becomes the programming clock. Both GP0 and GP1 are Schmitt Trigger
inputs in this mode. After RESET, to place the device into Programming/Verify
mode, the program counter (PC) is at location 00h. A 6-bit command is then
supplied to the device. Depending on the command, 14-bits of program data are
then supplied to or from the device, depending on whether the command was a
load or a read.

1.11 PIC12F675 Instruction Set
The PIC12F629/675 instruction set is highly orthogonal and is comprised of
three basic categories:

• Byte-oriented operations
• Bit-oriented operations
• Literal and control operations

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 16
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Each PIC12F629/675 instruction is a 14-bit word divided into an opcode, which
specifies the instruction type, and one or more operands, which further specify
the operation of the instruction.

One instruction cycle consists of four oscillator periods; for an oscillator fre-
quency of 4 MHz, this gives a normal instruction execution time of 1 µs. All
instructions are executed within a single instruction cycle, unless a conditional
test is true, or the program counter is changed as a result of an instruction. When
this occurs, the execution takes two instruction cycles, with the second cycle
executed as a NOP.

Any instruction that specifies a file register as part of the instruction performs a
Read-Modify-Write (R-M-W) operation. The register is read, the data is modi-
fied, and the result is stored according to either the instruction, or the destination
designator ‘d’ . A read operation is performed on a register even if the instruction
writes to that register.

The following table is a summary of the instruction set:

Mnemonic Description

BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF
ANDWF
CLRF
CLRW
COMF
DECF
DECFSZ
INCF
INCFSZ
IORWF
MOVF
MOVWF
NOP
RLF
RRF
SUBWF
SWAPF
XORWF

f, d
f, d
f
-
f, d
f, d
f, d
f, d
f, d
f, d
f, d
f
-
f, d
f, d
f, d
f, d
f, d

Add W and f
AND W with f
Clear f
Clear W
Complement f
Decrement f
Decrement f, Skip if 0
Increment f
Increment f, Skip if 0
Inclusive OR W with f
Move f
Move W to f
No Operation
Rotate Left f through Carry
Rotate Right f through Carry
Subtract W from f
Swap nibbles in f
Exclusive OR W with f

BIT-ORIENTED FILE REGISTER OPERATIONS
BCF
BSF
BTFSC

f, b
f, b
f, b

Bit Clear f
Bit Set f
Bit Test f, Skip if Clear

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 17
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

BTFSS f, b Bit Test f, Skip if Set
LITERAL AND CONTROL OPERATIONS

ADDLW
ANDLW
CALL
CLRWDT
GOTO
IORLW
MOVLW
RETFIE
RETLW
RETURN
SLEEP
SUBLW
XORLW

k
k
k
-
k
k
k
-
k
-
-
k
K

Add literal and W
AND literal with W
Call subroutine
Clear Watchdog Timer
Go to address
Inclusive OR literal with W
Move literal to W
Return from interrupt
Return with literal in W
Return from Subroutine
Go into Standby mode
Subtract W from literal
Exclusive OR literal with W

The different fields are shown below:

Field Description
f
W
b
k
d

Register file address (0x00 to 0x7F)
Working register (accumulator)
Bit address within an 8-bit file register
Literal field, constant data or label
Destination select; d = 0: store result in W, d = 1:
store result in file register f. Default 1

1.12 PIC12F675 Development Environment
Program development support from the manufacturer of PICmicro®, Microchip
Technology Inc. is good. They consist of a number of hardware and software
development tools:

• Integrated Development Environment
• Assemblers/Compilers/Linkers
• Simulators
• Emulators
• In-Circuit Debugger
• Device Programmers
• Low Cost Demonstration Boards
• Evaluation Kits

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 18
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The manufacturer’s web site (http://www.microchip.com) has very comprehen-
sive information including product datasheets, product guides, application notes,
prices and information on related products or systems.

Because of the popularity of these devices, there are now a host of third party
suppliers for hardware and software products based on these MCUs. Amongst
them is Basic Stamps produced by Parallax, Inc. (http://www.parallax.com).

The company released a stamp sized microcomputer using PIC chip that was
programmed in BASIC. These BASIC Stamps have been very popular because
of their ease of use, and relative low cost. It allows many beginners to program a
microcontroller for the first time. Parallax’s customers include everyone from
scientists and hobbyists to engineers and entrepreneurs. By 2002 there were over
three million BASIC Stamps in use.

There are also books aiming at introducing these devices and their use. John
Iovine’s “PIC Microcontroller Project Book” (McGraw-Hill, 2000, ISBN 0-07-
135479-4) is an introductory book on the subject. It does not assume any prior
knowledge on microcontrollers. The author simplifies the programming of these
devices by using a BASIC compiler produced by microEngineering Lab, Inc.
(http://www.melabs.com). A dozen simple projects are described in the book,
including simple I/O control, speech synthesizer, LCD display, sensor monitor-
ing and motor control.

While the majority of compilers and development environment for PIC are MS
Windows or DOS based, there are now versions available under Linux environ-
ment. Information can be found at:
http://www.eg3.com/WebID/embedded/pic/blank/perspage/1-a-p.htm

Finally, the cost of the PIC12F675 varies from about $1.25 to $1.65, depending
on the type of packaging. A PDIP 300mil package type (PIC12F675-I/P) is
available at $1.25 per piece.

1.13 PIC Application – Motion Detector
Small microcontrollers such as the PICs are well suited for a large range of
applications in laboratories. They are particular useful in implementing small
real-time applications. Real-time requirements mean tasks must be executed at
precise times or over specific durations. Such requirements are difficult to fulfil
if there are a large number of concurrent tasks in the system. However, if one
can partition the system into small modules or sub-systems, the problem is much

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 19
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

simple to handle. This is similar to the principle of encapsulation used in object
oriented programming.

Many tasks that requires very stringent timing, e.g. monitoring the output of a
sensor accurately every second and doing so for exactly 10 ms each time, are
very easy to implement using small microcontrollers which have crystal oscilla-
tors, timers and perhaps real-time clock.

A one dollar microcontroller can easily resolve time to within microseconds and
typically has long term time stability of one part in 105 using crystal oscillator.
In the event that this produces unacceptable drift in a distributed environment,
one simple solution is to synchronous with a master clock in the system, or
implement isochronous clock for the entire distributed system.

This section describes a small project using a PIC12LC672 microcontroller to
illustrative the simplicity in using this type of device. The timing requirement in
the project makes it a small real-time system in a way. The objective is to con-
struct a simple, lightweight and low cost motion detector. There are many situa-
tions when movements of personnel, animals or other objects in rooms under
normal lighting conditions may be of interest. And there are many ways of
detecting such motions, ranging from applying video pattern recognition to using
mechanical sensors or accelerometers.

A conceptually very simple method is to monitor the change of light intensity
with a sensor affixed to the object of interest, and hence reduce the status of
whether the object is stationary or moving. This method is attractive because
cadmium sulphide (CdS) light dependent resistors (LDRs) can be used as light
sensor and they are small, low cost, readily available and easy to handle. Several
LDRs are shown in the picture below; the smallest one has a diameter of about 4
mm and costs less than $1 each. Unfortunately, a practical motion detector using
a LDR requires a fair bit of signal processing. Before the arrival of low cost
microcontrollers such as PICs, analogue and digital circuits were used for this
signal processing. The situation has changed dramatically with the use of small
microcontroller as embedded processor. Most of the signal conditioning can be
done in software now.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 20
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The common LDR has a nonlinear resistance range of just under 1kΩ (at 10 lux)
to 20 MΩ (dark). These are five orders of magnitude change, which is good.
However, in normal use, one cannot expect changes from 10 lux to complete
darkness when moving about in a room! The resultant resistance change while
one is moving about is considerably smaller. By having a tunnel or telescopic
view from the LDR, the light and hence resistance change can be enhanced to a
certain extent. However, there is a limit to the improvement possible. An over-
all change of 0.1 to 10 times in resistance is more likely the case. This magni-
tude of change is sufficiently large for an 8-bit ADC to be used, since a resolu-
tion of 256 levels can be achieved with 8 bits.

The difficulty lies in the dynamic range of the ambient light intensity. Even in
offices, the brightness of areas under lamps, when sunlight shines through win-
dows and at dark corners varies considerably, resulting in orders of magnitude
change in resistance. Thus when an 8-bit ADC is used in a straightforward
manner, it will not function properly. If a large dynamic range is set, it is insen-
sitive to changes due to normal movement. On the other hand, if the dynamic
range is small, it will not work in bright or dark areas which produce extreme
resistance values.

One possible solution to the dynamic range problem is to use potential divider
arrangement with a fixed resistor connected in series with the LDR. The poten-
tial across one of the resistors is measured with the ADC of the microcontroller.
By switching in different fixed resistors, one can cover practically any range of
resistance value of the LDR. There are however a couple of shortcomings with
this arrangement. First, the fixed resistor will typically have resistance value of
the same order of magnitude as the LDR. This may mean unnecessary drain on
power, which has to be kept as small as possible for such battery operated de-
vices. Second, most modern lighting in offices uses fluorescent lamps which
produce fluctuating light intensity at twice the mains frequency (f) due to the
mercury discharge characteristic. Thus when the mains is 50-Hz, the light in a
room actually various between zero and maximum every 10 ms or half the period
(t= 1/f), even though not discernable to us due to persistence of vision of our

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 21
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

eyes. This, however, is detected by the LDR. Spot measurement of the resis-
tance of LDR thus reflects both flickering of the fluorescent lamp (when meas-
urement is taken) and motion of the sensor (where the sensor points to).

An average or integration over multiple t (half period) is needed to overcome this
problem. This can be done by accurate sampling many times within the period
mentioned and take the average.

There is however a better solution to the problem. An integration can be done
with ease by using an RC charging technique. Instead of using a DC potential
arrangement, a capacitor is connected to the LDR in series. By charging the
capacitor via the LDR over a period of t or multiple t, the voltage on the capaci-
tor is an indication of the integration over the period. This will eliminate the
fluctuating light output problem of fluorescent lamps.

If different capacitances can be switched in, the dynamic range of five orders of
magnitude can be achieved quick easily. This arrangement has the added advan-
tage that even when the LDR resistance is low, the current through the circuit is
kept low, limited by the charging characteristic of the RC circuit.

A practical arrangement using the above technique for motion detection is shown
below. The circuit consists of a PIC12LC672, an LDR, an LED, two MOSFETs,
4 capacitors and a resistor. The whole circuit is powered by a 3 V lithium ion
coin battery such as the CR2032. One output pin GP2 is used to control the
indicator LED; the series resistor R2 limits the current through the LED to sev-
eral mA. The Vref output provides the charging current through the LDR while
the voltage across the capacitor(s) is measured by analog input pin AN1. GP0 is
configured as an input to discharge the capacitors. GP4 and GP5 act as output,
controlling the MOSFET switches for capacitors C3 and C4.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 22
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

It can be seen that the LDR is always connected in series with C2 to ground.
Two other capacitors C3 and C4 may be switched in (in parallel to C2) via MOS-
FET Q1 and Q2 respectively. The voltage across the capacitors and ground is
measured by the ADC of the microcontroller. Vref controls the charging of the
capacitor(s). Normally it is kept at 0 V. When a measurement is needed, it is
turned to high for t second thus charging the capacitor(s) for exactly half the
period of the mains. The ADC reading is taken and the resistance of the LDR
can be deduced.

Adaptive measurement to cover a wide dynamic range by selectively switching
in C3 or C4 when necessary. When it is bright and LDR resistance low, C2 will
charged up to saturation rapidly, well within t second. If this condition is de-
tected, C3 is switched in before the next sampling. The same procedure is re-
peated for C4 if necessary. Similarly, C3 and C4 may be switch out when the
ADC reading is too low, indicating too high a LDR resistance.

After each measurement, the capacitors are discharged to 0V by turning GP0 to
low.

The LED acts as an indicator in this simple example. It is turned on momentar-
ily when motion is detected.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 23
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Since light intensity is sensed in this circuit, we can use it to monitor changing
lighting condition. Interesting enough, this may pose a problem when the circuit
is used as a motion detector. Changing ambient light intensity due of switching
on or off of lamps, gradual brightening or dimming of rooms due to external
light variation (e.g. sun rising) may be misconstrued as resulting from motion.
This can be avoided by appropriate algorithms. Gradual changing of room
brightness may be software filtered. The rate of change of the light input can be
used as a criterion. The sudden switching on and off of lamps will produce
strictly step changes in light intensity which again can be identified by software.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 24
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

2 Microprocessors by Rabbit Semiconductor
A Z-80 based high performance 8-bit microcontroller Rabbit 2000® was first
introduced in 1999 by Rabbit Semiconductor, a fabless semiconductor company
in Davis, California. The subsequent RabbitCore line of products introduced in
2001 has been very well received and it is one of the most popular MCU mod-
ules for embedded systems. Now a relatively wide range of cores are available
that are very cost effective while offering a wide variety of form factors, memory
capacities and functionalities.

Amongst the major attractions of this family of processors are the relatively large
memory size of 1 Mbytes, Ethernet and TCP/IP support, and an integrated soft-
ware development environment using Dynamic C.

Like other semiconductor manufacturers, Rabbit Semiconductor offers a range of
products from simple components to full development systems. They are Rabbit
Microprocessors, Microprocessor Core Modules, Development Kits, Peripherals
and Accessories, and Software. Due to the complexity of the range of Rabbit
Microprocessors, they are no longer simple to implement. These processors, by
virtue of their processing power and resources, are generally large chips with 100
or 128 leads using quad flat package (QFP) or ball grid array (BGA) housings.
These surface mount packages are generally beyond the means of ordinary labo-
ratories that are not working in microelectronics.

Microprocessor core modules that contain the processor and necessary peripheral
components including connectors on a small PCB are therefore more suitable for
laboratory use. It turns out that the core modules produced by manufacturers
such are Rabbit Semiconductor are generally very cost effective. We shall there-
fore introduce the core modules instead of the basic processors.

2.1 RabbitCores
Two series of core modules based on the Rabbit 2000 and 3000 processors re-
spectively are produced to cater for a wide range of applications and require-
ments. The RCM2000 cores have the following main features:

• Rabbit 2000 processor
• 256K Flash memory
• 128-512K SRAM
• 40 general purpose I/O
• 18 – 25 MHz clock
• 1.9” x 2.3” x 0.5”

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 25
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

• 5V operation

The smallest member, RCM2020 with 128K SRAM, operates at 18.432 MHz
and is retailing at $39 per unit while the RCM2000 with 256K SRAM and
25.8MHz clock is at $69. These are extremely powerful modules requiring very
few external components for many laboratory or other applications.

One of the major attractions of the RabbitCores is the incorporation of 10Base-T
Ethernet capability including an RJ45 socket, as in the case of RCM2200 series.
Based on the same processor, the other features are similar, other than a smaller
number (26) of I/O pins are available to the users.

The high end series by Rabbit Semiconductor is the RCM3000. This series has
10Base-T Ethernet, up to 512K each of Flash and SRAM, encoder inputs, PWM
outputs, and pulse capture and measurement capabilities. Two 34-pin connection
headers provide 52 digital I/O shared with 6 serial ports and alternate I/O fea-
tures. It also features a battery-backed real-time clock, glueless memory and I/O
interfacing, and low power "sleepy" modes (<2mA). A fully enabled slave port
permits easy master-slave interfacing with another processor-based system, and
an alternate I/O bus can be configured for 8 data lines and 6 address lines sharing
with parallel I/O.

2.2 RCM3700 Hardware
We shall now look at the hardware of one of the RabbitCores, RCM3700, in
more detail. A picture and the dimensions are shown below. The main hardware
and physical specifications are given in the manufacturer’s datasheet and are
tabulated below for reference.

Parameter RCM3700 RCM3710

Microprocessor Low-EMI Rabbit 3000 at 22.1 MHz

Ethernet Port 10Base-T, RJ-45, 2 LEDs

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 26
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Flash Memory 512K 256K

SRAM 512K 256K

Serial Flash Memory 1Mbyte

Backup Battery
Connection for user-supplied backup battery

(to support RTC and SRAM)

General-Purpose I/O
33 parallel digital I/0 lines:

• 31 configurable I/O
• 2 fixed outputs

Additional I/O Reset

Auxiliary I/O Bus
Can be configured for 8 data lines and

5 address lines (shared with parallel I/O lines),
plus I/O read/write

Serial Ports

Four 3.3 V CMOS-compatible ports configurable
as:

• 4 asynchronous serial ports (with IrDA)
or

• 3 clocked serial ports (SPI) plus 1 HDLC
(with IrDA) or

• 1 clocked serial port (SPI) plus 2 HDLC
serial ports (with IrDA)

Serial Rate Maximum asynchronous baud rate = CLK/8

Slave Interface

A slave port allows the RCM3700 to be used as
an intelligent peripheral device slaved to a master
processor, which may either be another Rabbit
3000 or any other type of processor

Real-Time Clock Yes

Timers
Ten 8-bit timers (6 cascadable), one 10-bit timer
with 2 match registers

Watchdog/Supervisor Yes

Pulse-Width Modula-
tors

4 PWM output channels with 10-bit free-running
counter and priority interrupts

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 27
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Input Capture/
Quadrature Decoder

2-channel input capture can be used to time input
signals from various port pins

• 1 quadrature decoder unit accepts inputs
from external incremental encoder mod-
ules or

• 1 quadrature decoder unit shared with 2
PWM channels

Power
4.75-5.25 V DC

100 mA @ 22.1 MHz, 5 V; 78 mA @ 11.05
MHz, 5 V

Operating Tempera-
ture

-40°C to +70°C

Humidity 5% to 95%, noncondensing

Connectors One 2 x 20, 0.1" pitch

Board Size
1.20" x 2.95"" x 0.88"

(30 mm x 75 mm x 22 mm)

Price $59 $49

A simplified block diagram of the RCM3700 is show below:

The various ports and I/O lines are shown in the following diagram.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 28
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Most of the I/O lines on the Rabbit 3000 microprocessor are dual function. The
factory defaults and the alternate configurations are shown in the following table:

Pin Pin
Name Default Use Alternate Use Notes

1-8 PA[7:0] Parallel I/O

External data
bus
(ID0-ID7)
Slave port data
bus
(SD0-SD7)

External
Data Bus

9 PF1 Input/Output
QD1A
CLKC

10 PF0 Input/Output
QD1B
CLKD

11 PB0 Input/Output CLKB

12 PB2 Input/Output
IA0
/SWR

External
Address 0
Slave port
write

Header
J1

13 PB3 Input/Output
IA1
/SRD

External
Address 1
Slave port
read

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 29
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

14 PB4 Input/Output
IA2
SA0

External
Address 2
Slave Port
Address 0

15 PB5 Input/Output
IA3
SA1

External
Address 3
Slave Port
Address 1

16 PB7 Input/Output
IA5
/SLAVEATTN

External
Address 5
Slave Port
Attention

17 PF4 Input/Output
AQD1B
PWM0

18 PF5 Input/Output
AQD1A
PWM1

19 PF6 Input/Output
AQD2B
PWM2

20 PF7 Input/Output
AQD2A
PWM3

21 PC0 Output TXD
Serial Port
D

22 PC1/PG2 Input/Output RXD/TXF

Serial Port
D
Serial Port
F

23 PC2 Output TXC
Serial Port
C

24 PC3/PG3 Input/Output RXC/RXF

Serial Port
C
Serial Port
F

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 30
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

25 PE7 Input/Output
I7
/SCS

External
Address 7
Slave Port
Chip Select

26 PE5 Input/Output
I5
INT1B

27 PE4 Input/Output
I4
INT0B

28 PE1 Input/Output
I1
INT1A

I/O Strobe
1
Interrupt
1A

29 PE0 Input/Output
I0
INT0A

I/O Strobe
0
Interrupt
0A

30 PG7 Input/Output RXE

31 PG6 Input/Output TXE

Serial Port
E

32 /IOWR Output
External
write strobe

33 /IORD Input
External
read strobe

34 PD4 Input/Output ATXB

35 PD5 Input/Output ARXB

Alternate
Serial Port
B

36 /RES Reset output Reset input

Reset out-
put from
Reset
Generator

37 VBAT

38 GND

39 +5 V

Header
J1

40 GND

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 31
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

2.3 RCM3700 Memory & I/O Bus
The core module typically comes with onboard memories large enough for your
application. In this case they are 512 KB of flash memory and 512 KB of
SRAM (RCM3700) or 256 KB each (RCM3710). A Flash Memory Bank Select
jumper configuration option based on 0 Ω surface-mounted resistors exists at
header JP1 on the RCM3700 modules. This option, used in conjunction with
some configuration macros, allows Dynamic C to compile two different co-
resident programs for the upper and lower halves of the 512K flash in such a way
that both programs start at logical address 0000. This is useful for applications
that require a resident download manager and a separate downloaded program.

An additional 1 MB of serial flash memory is available for mass storage pur-
poses such as data and web pages.

Thus the address lines (A0-A18) and all the data lines (D0-D7) are routed inter-
nally to the onboard flash memory and SRAM chips. However, I/0 write
(/IOWR) and I/0 read (/IORD) are available for interfacing to external devices.

Parallel Port A can be used as an external I/O data bus to isolate external I/O
from the main data bus. Parallel Port B pins PB2-PB5 and PB7 can also be used
as an auxiliary address bus.

It is noted that /RES is an output from the reset circuitry that can be used to reset
other peripheral devices. This pin can also be used to reset the microprocessor.

2.4 RCM3700 Serial, Ethernet & Programming Ports
The core module provides five serial ports designated as Serial Ports A, C, D, E,
and F. All five serial ports can operate in an asynchronous mode up to the baud
rate of the system clock divided by 8. An asynchronous port can handle 7 or 8
data bits. A 9th bit address scheme, where an additional bit is sent to mark the
first byte of a message, is also supported.

Serial Port A is normally used as a programming port, but may be used either as
an asynchronous or as a clocked serial port once the RCM3700 has been pro-
grammed and is operating in the Run Mode.

Serial Ports C and D can also be operated in the clocked serial mode. In this
mode, a clock line synchronously clocks the data in or out. Either of the two
communicating devices can supply the clock. Serial Ports E and F can also be
configured as HDLC serial ports. The IrDA protocol is also supported in SDLC
format by these two ports.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 32
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

It is noted that Serial Ports C and D, and Serial Port F share some common pins
on header J1 and hence only one of the two can be used at any one time. The
choice of port(s) depends on the application. Serial Ports C and D are for clock
serial links while Serial Port F is for an HDLC serial link.

The core module has an Ethernet port (J3) complete with an RJ45 socket. Two
LEDs are placed next to the RJ-45 Ethernet socket, one to indicate an Ethernet
link (LINK) and one to indicate Ethernet activity (ACT). The RJ-45 connector is
shielded to minimize EMI effects to/from the Ethernet signals.

Serial Port A has special features that allow it to cold-boot the system after reset.
Serial Port A is also the port that is used for software development under Dy-
namic C. The RCM3700 is accessed using a 10-pin program header labeled J2.
The programming port uses the Rabbit 3000's Serial Port A for communication,
and is used for the following operations:

• Programming/debugging
• Cloning
• Remote program download/debug over an Ethernet connec-

tion

The Rabbit 3000 startup-mode pins (SMODE0, SMODE1) are available at the
programming port so that an externally connected device can force the
RCM3700 to start up in an external bootstrap mode. The RCM3700 can be reset
by Dynamic C via the /RESET line on the programming port.

The clock line for Serial Port A is presented to the programming port, which
makes synchronous serial communication possible.

The programming port is used to start the RCM3700 in a mode where the
RCM3700 will download a program from the port and then execute the program.
It is also used during debugging. The programming port may also be used as an
application port when necessary.

All three clocked Serial Port A signals are available as

• a synchronous serial port
• an asynchronous serial port, with the clock line usable as a

general CMOS input
• two general-purpose CMOS inputs and one general-purpose

CMOS output.

The two startup-mode pins, SMODE0 and SMODE1, are available as general
CMOS inputs after they are read during the initial boot-up. The logic state of

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 33
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

these two pins determines the startup procedure after a reset. The status pin may
also be used as a general-purpose CMOS output.

For convenience, the RCM3700 is automatically set into program mode when
the PROG connector on the programming cable is attached, and automatically
into run mode when no programming cable is attached. The DIAG connector of
the programming cable may be used on header J2 of the RCM3700 Prototyping
Board with the RCM3700 operating in the run mode. This allows the program-
ming port to be used as a regular serial port.

It is noted that the RCM3700 board does not have any serial transceivers directly
on the board. These transceivers may be incorporated on the motherboard the
RCM3700 is mounted on. The manufacturer has Prototyping Boards with
RS232, RS-485 and IrDA transceiver chips mounted. However, it is quite
straightforward to build your own.

2.5 RCM3700 Special Features
The RCM3700 uses the Rabbit 3000 microprocessor's internal clock doubler that
allows half-frequency crystals to be used to reduce radiated emissions. The 22.1
MHz frequency specified for the RCM3700 is generated using an 11.06 MHz
resonator. The clock doubler may be disabled if 22.1 MHz clock speed is not
required. This will reduce power consumption and reduce radiated emissions.

Another special feature is spectrum spreading. The Rabbit 3000 uses a spectrum
spreader unit that modifies the clock by shortening and lengthening clock cycles.
The effect of this is to spread the spectral energy of the clock harmonics over a
fairly wide range of frequencies. This limits the peak energy of the harmonics
and reduces EMI that may interfere with other devices as well as reducing the
readings in government mandated EMI tests. The spectrum spreader has two
operating modes, normal spreading and strong spreading. The spreader can also
be turned off.

2.6 A RabbitCore Application – Mass Storage using
MultiMediaCard (MMC)

In a later section of this series of lectures, a demonstration system is set up using
a Rabbit Core as a web server accessible in the Internet. The Rabbit Core acts as
an embedded Ethernet Module talking to two separate legacy boards (HC11) via
an RS485 network. Each legacy board is a thermometer using a thermistor with
a 555 timer circuit to measure resistance. It demonstrates quite a few elements in

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 34
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

a distributed laboratory instrumentation system. In this section an memory
extension to the RabbitCore is described. It is hoped that it provides some useful
information for those who require mass data storage in small embedded systems.

Embedded processors such as RabbitCores and TINIs are really powerful work-
horses in embedded systems around laboratories. Many laboratory experiments
and projects do not require any more processing power than what is available in
these processors. However, being 8-bit processors, these systems usually lacks
mass storage capabilities. RabbitCore is typically limited to 1MB of Flash and
SRAM. The inclusion of an additional 1 MB of serial Flash memory in the
newer core such as RCM3700 is a much welcomed feature.

There are many situations when more mass storage capacity is required. A field
data logging system is a classic example. While the process of data logging is
straightforward and can be handled by a RabbitCore easily, the amount of data to
be collected often prove too much for such a core module. If the embedded
system can be networked to other computers, data collected by the former can be
transferred to the mass storage of a PC. A better solution is to implement local
mass storage on the embedded system itself.

In PCs, hard disks have been standard mass storage all along. Unfortunately,
connecting standard hard disks to a RabbitCore system, while tempting in terms
of costs, is rather complicated in both software and hardware. One is thus forced
to use the PC itself as a secondary storage. This is acceptable in many applica-
tions. However, it leaves an umbilical cord between the embedded system and
the PC.

The recent crop of miniature USB Flash memories, emulating disk drives (called
by different names including Pen Drive) in PC systems, is another tempting
solution. Unfortunately, yet again, the implementation of USB host in systems
like RabbitCore or TINI is difficult if not practically impossible.

There is another solution though. It turns out that commercially available Flash
memories designed typically for consumer products such as digital cameras are
readily available and are affordable. For a few tens of dollars one can get a 128
Mbytes of Flash card. There are several types of such cards in the market. One
candidate best suited for interfacing to a small embedded system is the MultiMe-
diaCard (MMC) because it requires only a few lines for interfacing. A high
speed serial interface using Serial Peripheral Interface (SPI) allows data to be
transferred.

This section describes a small project to incorporate an MMC mass storage
device on a RabbitCore thereby enhancing the power of this 8-bit embedded

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 35
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

processor significantly. With the possible of having 512 MB of removable
storage on the RabbitCore the scope of application instantly widens enormously.

The MMC, introduced by SanDisk and Siemens/Infineon in 1997, is a highly
integrated flash memory that is accessed via a dedicated serial interface, opti-
mized for fast (up to 20Mbps) and reliable data transmission. It is a low-power
device with a very small form factor (32mm x 24mm x 1.4mm) weighing ap-
proximately 1.5g. It has been chosen as the storage medium of choice because it
provides an inexpensive, mechanically robust storage medium in card form, yet
having a simple interface with minimal hardware requirements.

The MMC includes an on-card microcontroller, which manages the interface
protocols, data storage and retrieval, error correction code, defect handling,
diagnostics, power management and clock control. All device and interface
configuration data are stored on the MMC itself. It has a seven pin serial inter-
face, which allows for easy integration into any design regardless of the micro-
processor/microcontroller used.

The standard MMC interface with external processor implements the MultiMe-
diaCard protocol, which offers a high performance serial link designed for
maximum scalability and configurability. In addition to the MMC interface, the
MMC also supports an alternate communication protocol based on the Serial
Peripheral Interface (SPI) standard. The SPI standard defines the physical link
only, and not the complete data transfer protocol. The MMC SPI implementation
uses a subset of the MultiMediaCard protocol and command set. It is intended to
be used by systems that require a small number of cards (typically one) and have
lower data transfer rates compared to MultiMediaCard protocol based systems. A
comparison of these two modes of communication and their different pin as-
signments are given in the two tables below.

MultiMediaCard/SPI Comparison
MultiMediaCard SPI
Three-wire serial data bus (Clock, Command,
Data)

Three-wire serial data bus (Clock,
Data In, Data Out) + card specific
chip-select signal

Up to 64k cards addressable by the bus protocol Card selection via a hardware chip-

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 36
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

MultiMediaCard SPI
select signal

Easy card identification Not available
Error protected data transfer Optional
Sequential and single/multiple block oriented data
transfer

Single/multiple block read/write

MultiMediaCard Pad Definition

MultiMediaCard Mode SPI Mode Pin #

Name Description Name Description
1 RSV Reserved for future use CS Chip Select
2 CMD Command/Response DI Data In
3 VSS1 Ground VSS1 Ground
4 VDD Supply voltage VDD Supply voltage
5 CLK Clock SCLK Clock
6 VSS2 Ground VSS2 Ground
7 DAT Data DO Data Out

Although the SPI mode has a lesser set of features, the design effort is less. We
use this mode in the RabbitCore implementation. The interface between the
MMC and the RabbitCore is shown below.

As can be seen above, the hardware interface between the MMC and the host
processor is rather straightforward. The program required to implement the basic
communication with the MMC in SPI mode is relatively simple. In SPI mode,
the communication always starts by driving the /SS line low and keeping it in
that state until a complete MMC-host processor two-way transaction is done. All

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 37
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

commands to the card are six bytes long. The first byte is always the “command”
byte. After the command byte is sent, it must always be followed by four argu-
ment or address bytes, with the most significant byte sent first. Even if the com-
mand has no arguments, four “null” or “don't care” bytes must be sent. The last
byte to be sent is the CRC byte. In SPI mode, the default mode of operation is
“non-protected”. This means that CRC calculation is disabled and the command
protocol can be satisfied by sending an $FF in the CRC byte. As in the case of
the argument bytes, the CRC byte must be sent even if CRC checking is disabled
to ensure that the command sequence is six bytes long.

CMD ARG1

(MSB)
ARG2 ARG3 ARG4

(LSB)
CRC

The challenge in incorporating the MMC in a RabbitCore system is not in the
device level program, but rather in the implementation of a file system to be used
with it. Custom file systems may be implemented for simple storage require-
ments in a closed system. However, in many applications, it is often desirable to
be able to directly access the data written to the MMC from a PC. Thus a stan-
dard file system should be implemented if possible.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 38
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

3 ETRAX System-on-Chip by Axis Semicon-
ductor
While RabbitCores and TINIs are very powerful and low cost microcomputers
that are very useful in a lot of embedded system application, there are neverthe-
less limitations in terms of memory and processing power when compared to
standard desktop PCs. Thus the last few years saw several manufacturers an-
nounced or attempted to bring up truly small and highly integrated modules that
will run operating systems such as Linux and have memory and peripheral de-
vices similar to those of PCs. System on a chip in other words. One such chips
is available now – the ETRAX 100LX MCM 2+8 by Axis Semiconductor.

The history of the this chip dates back to 1990s when Axis Semiconductor de-
signed a series of ASIC chips for their business in the IBM mainframe and
printer protocol converter market. ETRAX which is an acronym of Ethernet,
Token Ring, Axis, is a 32-bit RISC chip first appeared in 1993, the first system-
on-a-chip for networking applications. Subsequent development led to the inclu-
sion of SCSI and memories.

The companies now market two chips. The ETRAX 100LX has a 100 Mbps
Ethernet and runs at 100 MIPS, besides having MMU, USB, synchronous serial
ports and SDRAM support. The most sophisticated member is the ETRAX
100LX MCM 2+8. In this chip there are 2 MB flash and 8 MB SDRAM which
will run embedded Linux. With a built in MMU, ETRAX 100LX runs Linux 2.4
kernel as is, without resorting to uClinux patches. More memories are being
planned and shall be available soon.

3.1 ETRAX 100LX

This 100-MIPS 32-bit 0.25µm RISC chip has very impressive specifications:

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 39
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

• 32 bit RISC CPU core
• 10/100 Mbps Ethernet controller
• 4 asynchronous serial ports
• 2 synchronous serial ports
• 2 USB ports
• 2 Parallel ports
• 4 ATA (IDE) ports
• 2 Narrow SCSI ports (or 1 Wide)
• Support for SDRAM, Flash, EEPROM, SRAM
• $40

The CPU has 32-bit data and address format and has 15 general purpose 32-bit
registers. The instruction set is optimised for 16/32 bit operation. The clock
speed is 100 MHz. There are User and Supervisor mode for restricted access and
selection of appropriate address mapping by the MMU.

The Memory Management Unit (MMU) is really a feature that distinguishes this
type of CPU from smaller ones. The MMU allows 4 GB of virtual address space
for each user process with space protection. There is also an 8-KB cache mem-
ory.

Network access capability is of course another key feature in the new crop of
embedded chips. In ETRAX, the Ethernet controller supports both 100 Mbps
and 10 Mbps, compatible with IEEE 802.3 and Fast Ethernet standards.

A high speed CPU is not sufficient if the system has to do any data handling
jobs. Direct memory access is a must. There are 10 DMA channels each with
64 bytes FIFO for low latency and high throughput data transfer from internal
and external units. A total of 200 MBytes per second bandwidth is available.
DMA and cache feature helps to allow bursty access to and from memory to take
full advantage of SDRAM and EDO DRAM performance.

The four built in asynchronous serial ports operate over a wide range of speed.
The internal baud rate is programmable from 48 Hz to 1.5625 MHz and the
external baud rate can be double that. Fixed baud rates are available from 300
Hz to 1.8432 MHz and at 6.25 MHz which is non-standard. Synchronous serial
transfer is possible with clock rates from 32 kHz to 4.096 MHz. There are two
such ports.

As serial connection is rapidly dominated by Universal Serial Bus (USB), the
EXTRAX offers two such ports. It supports USB 1.1 Host and Device mode
operation for control and bulk traffic only. The hardware supports dynamic
connect/disconnect, suspend/resume and remote wakeup.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 40
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Two parallel I/O ports are available and can be used through register access or
internal DMA. Many protocols are supported:

• IBM XT/AT compatible Centronics
• IBM PS/2 compatible Centronics
• HP Fast Mode
• IBM Fastbyte
• IEEE 1284 – byte, nibble, ECP and EPP
• Parallel port wide – 16 bit, 12 MBytes per second

ETRAX supports either two 8-bit or one 16-bit SCSI interface in both synchro-
nous and asynchronous modes, including SCSI-3 and FAST-20. However,
external bus drivers are needed. This bus is multiplexed on the same pins as the
EIDE/ATA-2 ports, the parallel ports and two of the serial ports.

To support disk drives and other devices using the EIDE/ATA-2 interface, the
ETRAX supports 4 such ports or up to 8 disk drives. This bus is on the same
pins as the SCSI, the parallel ports and two of the serial ports.

The built-in bus interface and memory controllers work with SDRAM, EDO
DRAM, SRAM, EPROM, parallel EEPROM and FlahsPROM. Thu bus can be
configured to 16 or 32 bits. It also supports 64-bit SDRAM DIMM and SO-
DIMM modules, Double Data Rate SDRAM, and power save mode.

Bootstrapping is a necessary feature. The ETRAX supports loading to internal
cache memory from parallel port, serial port, and network interface. Code,
loaded to cache, can subsequently be used to enable the downloading of program
to Flash PROM or other external memory.

In most embedded system applications, timers and watchdog are essential for
numerous real-time operation and to ensure that the system can reset itself in
exceptional circumstances. There are two 8-bit timer with programmable clock
from 381 Hz to 12.5 MHz. Or fixed timer clocks from 300 Hz to 1.842 MHz,
and a nonstandard clock at 6.25 MHz. There is also a watchdog timer.

Other features of the EXTRAX includes two general purpose port each having 8
programmable I/O pins. The internal clock of 100 MHz is derived from a 30-
MHz external clock using PLL technique. Interrupt controls include internal
interrupts due to I/O ports, network interface, DMA and timer, and external
interrupts from IRQ and NMI.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 41
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Power dissipation of the chip with outputs open is from 350 mW to 610 mW.
The operating voltage is from 3 to 3.6 V. The ambient temperature range is 0 to
70°C.

The chip is 27x27x2.15 mm in size. However, it has 256 pins housed in a Plastic
Ball Grid Array (PBGA) package. The special requirements in handling BGA
devices make it difficult to use such chips at CPU level. In view of this, Axis
Communications produces development boards or systems which come complete
with all the necessary peripheral devices and connectors.

3.2 ETRAX 100LX MCM 2+8

This is the true system-on-chip version produced by Axis Communications. It
boasts a full Linux computer on a single chip. This is made possible by the in-
corporation of 2 MB Flash memory and 8 MB SRAM. The Multi-Chip Module
(MCM) uses High Density Packaging (HDP) technology that integrate naked
dies (i.e. chips without their capsules, e.g. ETRAX, RAM, Flash) and other
components (like resistors and capacitors) to provide very compact overall mod-
ule. It is built around the ETRAX 100LX system-on-chip processor. All neces-
sary components for building a networked embedded system are included. In a
256-pin PBGA package measuring only 27x27 mm there are these components:

• ETRAX 100LX System-On-Chip
• 2Mbyte of Flash memory
• 8Mbyte of SDRAM memory
• Ethernet transceiver
• Reset circuitry
• ~50 passive components (resistors and capacitors)

The only mandatory external components are a 3.3 V power supply and a 20
MHz crystal oscillator. Additional flash memory and SRAM are not mandatory
but may be added externally to the module.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 42
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Due to the additional components, power consumption increases to 900 mW
(typical) or 1100 mW (maximum). This module is priced at $75.

3.3 Axis 82 - Development Board
As mentioned earlier, the ETRAX 100LX or the MCM, while having practical
all that’s required to form a complete system, the PBGA package make it impos-
sible for most people to access the I/O! Axis 82 is the solution to this problem.
It is a development board that has all the hardware including indicators, connec-
tors and even a casing as in case of Axis 83. However, an equally important
additional feature is the inclusion of more Flash memory and SRAM. This is
needed because the on-chip 2MB + 8MB memories are really bare bone mini-
mum for the Linux environment. There is hardly any memory left for user appli-
cations. The main features of this 140x118 mm board are as follows:

ETRAX 100LX MCM 2+8
FLASH: 6 MByte (2MB inside the MCM chip)
RAM: 16 MByte SDRAM, 32-bit interface (8MB inside the MCM chip)
DUAL Ethernet 10/100 MBit Twisted Pair
One using the internal full-speed 100MBit controller in the ETRAX
One using a Ethernet-to-USB controller, thus limiting the theoretical maximum
speed to 12MBit (i.e. the max speed of USB 1.1)
RS-232 serial ports, 9 pin male D-SUB
(with RX, TX, RTS, CTS, DTR, DSR, CD and RI signals)
1 RS-485/RS-422 serial port on a screw terminal block
(1 combined RX/TX pair and 1 TX pair)
Power LED, Eth0 LED, Eth1 LED
TEST button
RESET button
BOOT button - to enable network boot
Power: 9-24 V AC (or DC) on a standard connector and on screw terminal block
1 parallel port on pin headers (3.3 V, with buffers)
Full access to system bus and other important pins on ETRAX
Shipped with Axis embedded Linux port
�

This Axis 82 development board is priced at $299 while the Axis 83 which has a
casing is at $309.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 43
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

3.4 ETRAX 100LX Software and Development Tools
There is comprehensive software development support offered by the manufac-
ture at the following website http://developer.axis.com/doc/index.html. The
Linux kernel 2.4 for ETRAX 100LX including device drivers for all ETRAX
ports and the GNU CC including compiler, debugger and other tools, are avail-
able for download.

The SDK includes a number useful applications. Many are standard applications
compiled for the ETRAX platform, but some are specifically developed for the
ETRAX platform. They are tabulated below:

Init Implements a mini init daemon.
Telnetd Simple Telnet server - allows you to log on to the devel-

oper board.
Inetd This program invokes all internet services as needed.
in.telnetd Telnet server. This is the default telnet server.
Sftpd Lightweight FTP server.
Sftpclient Lightweight FTP client.
shells/ash Ash is a fairly small Bourne compatible shell which

offers the power and flexibility of shell scripting for an

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 44
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

embedded system.
Boa High performance web server with support for CGI.
Smtpclient This program is a minimal SMTP client that takes an

email message body and passes it on to a SMTP server
(default is the MTA on the local host).

Bootblocktool Sets/gets bootblock parameters using a specified device.
hwtest/IO Input / Output test utility.
hwtest/serial Program to test serial port functionality.
hwtest/hwtest Program for setting or getting status from parallel port

serial port, button, and some other useful devices.
sysklogd Sysklogd provides two system utilities which provide

support for system logging and kernel message trapping.
Support of both internet and Unix domain sockets en-
ables this utility package to support both local and re-
mote logging.

editors/easyedit An easy to use text editor.
editors/editcgi This is a simple CGI based editor and file browser.
login Login is used when signing onto a system. It can also be

used to switch from one user to another at any time (most
modern shells have support for this feature built into
them, however).

dhcp Complete DHCP client.
busybox Busybox combines tiny versions of many common

UNIX utilities into a single small executable.
ipsetd Daemon for setting IP address with ARP+Ping in user-

space.
iptables Implements a NAT (Network Address Translation)

firewall.
tools/gdbserver The gdbserver will help you debug user applications

running on the Developer Board for Bluetooth
utils/eraseflash Flash erasing utility.
utils/readbits Utility for reading bits on ETRAX general purpose I/O

(GPIO) ports.
ppp-2.4 PPP daemon, which negotiates with the peer to establish

the link and sets up the PPP network interface.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 45
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

4 PC/104 & PC/104-Plus
Hardware used in embedded systems is by no means limited to the very small
microcontrollers and highly integrated system-on-chip modules introduced in the
previous lectures. In many embedded systems, PCs are used as embedded proc-
essors. It is the application rather than the hardware that defines embedded
system processors.

PCs – whether the desktop, notebook, tablet or even the pocket version – are
indeed widely used in embedded systems, especially in laboratories. It is often
simpler or even cheaper to use the standard PC as an embedded processor be-
cause of the accessibility, software support and availability of a host of periph-
eral devices. However, there are shortcomings too. Amongst them are size,
reliability and possibly cost.

In view of these disadvantages of standard PCs as embedded processors, many
manufacturers have come out with a myriad of compatibles, mostly in the form
of single board computers (SBCs). They are typically PCs shrunk into small
packages, offering more or less the power of the PC together with standard pe-
ripherals, and capable of running most PC software. There are hundreds if not
thousands of different SBCs in the market catering for a very wide range of
embedded system applications. Some are specifically designed to operate in
very harsh industrial environments; others offer a cheaper solution than the
standard PCs. Yet others have small form factors and are lightweight.

One family of small form PC compatible embedded processors that is gaining
market share is the PC/104 and PC/104 Plus. In 1992, an industry wide effort
led to the setting up of a PC/104 Consortium consisting of 12 companies, which
then produced the standard. Now over 100 companies are members of the Con-
sortium. The initial standard was to offer an open design that had the power and
flexibility of the PC but small in size and suitable for embedded system applica-
tions.

PC/104 technology is based on the ISA bus that was used in PCs. In fact, the
104 in the name is derived from the number of conductors used in the ISA bus.
This 16-bit bus system is really very powerful, and is more than sufficient for
most embedded system applications. Thus despite the fact that the IEEE P996
ISA Bus Specification has been withdrawn and major PC manufacturers have
stopped manufacturing ISA bus systems, the PC/104 continues to flourish in the
embedded system world.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 46
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

In order to tap the power of the higher speed, 32-bit PCI bus, the Consortium
added the PC/104-Plus standard in 1997. However, this does not replace but
merely complements the PC/104.

4.1 PC/104 and PC/104-Plus Standards
In essence, the PC/104 standards are self stacking modules with 104-pin ISA or
120-pin PCI bus connectors that allow multiple modules to be added without
using backplanes or motherboard. Each module is only 3.6 x 3.8 in size and
power consumption is typically 1 to 2 watts per module. PC/104 modules can
also be arranged on a big custom carrier board instead of being stacked. In such
cases application specific interfaces can be connected to various modules easily.

PC/104-Plus is compatible with PC/104 and supports 32-bit PCI interconnection.
An additional 120-pin small pitch 2-mm connector is included on the other side
of the ISA connector. Data throughput can now reach 132 MBytes/second which
is 26 times that of PC/104. Bus drive current is 3 mA minimum while loading is
700 uA maximum. Five modules including the base CPU module can be stacked.
The following diagrams show the physical dimensions and the stacking ar-
rangement.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 47
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Technical specifications of PC/104 and PC104-Plus can be downloaded from the
PC/104 Consortium website:
http://www.pc104.org/technology/pc104_tech.html

Since the functional specifications are really based on ISA and PCI standards,
these two open standards should also be referred to.

4.2 PC/104 & PC/104-Plus Products
Almost every SBC manufacturer is producing PC/104 and PC/104-Plus products,
including CPU and most peripheral modules. In the case of PC/104-Plus, high
performance SBC, full motion video modules, high speed LANs, interfaces
including 100BaseT, USB, IEEE-1394, high speed data acquisition, etc. are
either available or being developed.

As a reference, one PC/104 SBC, Vortex86-6071, from ICOP Technology Inc.,
Taiwan is outlined below:

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 48
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

This is an embedded Vortex86 166 MHz system-on-chip CPU module with a lot
peripherals included as can be seen from the manufacturer’s specifications:

Chipset Embedded Vortex86, 166MHz System-on-Chip CPU
Real Time Clock with lithium battery backup

BIOS AMI BIOS
RAM 128MB SDRAM on board
I/O Enhanced IDE interface x 1

RS232 port x 3
RS232/RS485 port x 1
Parallel Port x 1
FDD interface x 1
USB ports x 2

Bus Interface ISA and PC/104 standard compliant
Connector 2.0mm 44-pin box header for IDE

2.0mm 10-pin box header x 4
2-pin header for RS-485
2.0mm 26-pin box header
2.0mm 34-pin box header
2.54mm USB ports x 2
Audio connectors:
4-pin header for Mic-in,4-pin header for line-in,4-pin
header for line-out
10-pin box header for VGA connection
44-pin box header for LCD connection
5-pin box header for AT-keyboard
5-pin box header for PS-2 Mouse
RJ-45 connector for 10/100Base-T

Display SiS550 embedded SOC, AGP Rev 2.0 Compliant
Shared system memory area up to 128MB
CRT/LCD display

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 49
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Resolution up to 1920 x1440 true colors
LAN Realtek 8100B single chip

Full-duplex transfer mode, doubles effective band-
width
NE2000 compatible with built-in 16KB RAM buffer
Throughput: 10/100 Mbps

Audio Full compliant with AC97 CODEC V2.1
Internal MIC-in, Line-in and Line-out Interface

Power Require-
ments

Single Voltage +5V @1.4A

Dimensions 90(L) x 96(W) mm (3.54" x 3.78")
Watch Dog
Timer

Software Watchdog Timer
Three 8254 Compatible Programmable 16-bit Count-
ers

Operating Tem-
perature

-20~+60°C

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 50
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

5 Embedded Systems Networking in
Distributed Environment

5.1 Introduction
There are two broad methods of connecting embedded systems in a distributed
environment:

(1) Non-Internet connection
(2) Internet connection

Before the proliferation of the Ethernet and Internet, connecting embedded sys-
tems in a distributed environment such as a laboratory or a factory was usually
achieved by conventional parallel or serial connections. Parallel connections
were suitable for short-range use, typically within a few meters, limited by diffi-
culties in driving synchronous multiple signals and the cost of cabling. The
advantage of parallel connection was obviously higher data rates on a parallel
bus. Parallel bus standards at Mbps rates were implemented when the standard
serial link was still at Kbps.

While there are dedicated parallel bus standards designed for specific industries
or environments such as the General Purpose Interface Bus (GPIB), the Com-
puter Automated Measurement And Control (CAMAC) and the Small Computer
System Interface (SCSI), the most common method is the parallel port, used
typically for printer connection. This is simple to use and is readily available,
being a standard I/O port in all PCs. The newer version (IEEE 1284) available in
most new PCs is being used for many purposes other than connecting to a
printer.

However, by far the most important networking technique in a distributed envi-
ronment beyond the size of a test bench is, of course, the serial bus, exemplified
by the RS-232-C (Recommended Standard number 232, revision C from the
Electronic Industry Association) and its related standards. Like the parallel port,
the use of this serial technique is extremely handy. There are two serial ports
available in most standard desktop PCs – COM1 and COM2. Users and manu-
facturers alike are taking advantage of these two serial ports for almost every
type of equipment.

The limitations of the standard PC serial ports are data rate and distance, being
20 Kbps and <50 feet. Related standards such as RS-485 eliminate such limita-
tions to a great extent while still maintaining the simplicity of the standard. For

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 51
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

example, RS-485 is capable of 4000 feet and 10 Mbps performance. It has an
added advantage of a bus configuration which allows it to connect to 32 trans-
mitters and 32 receivers. (For comparison, the RS-232 is a point-to-point con-
nection which can only connect two machines together.) Although existing OS
in PCs would not be able to handle continuous 10 Mbps data rate, the 4000-foot
transmission distance is a welcome feature in a distributed laboratory environ-
ment.

As newer equipment and gadgets (especially video devices) demand higher and
higher data rates, there are a couple of high-speed serial communication stan-
dards that have been introduced to the PC world in recent years. Universal Serial
Bus (USB) provides for peripheral speeds of up to 1.5 Mbps for low-speed de-
vices and up to 12 Mbps for full-speed devices. The latest USB 2 specification
increases the data rate to 480 Mbps. The cable length is limited to 5 metres,
extendable to 25 metres using 4 hubs or with active cables. A total of 127 de-
vices may be connected.

A competing standard to USB is the IEEE 1394 (FireWire or iLink) which has a
maximum data rate of 400 Mbps and is cable of connecting up to 63 devices. At
this dazzling speed, full frame rate video can be transmitted from cameras to PCs
directly through a thin cable. The cable length is 4.5 metres, again extendable
with hubs and repeaters.

Some applications call for wireless connection. This is provided by IrDA, a
standard defined by the Infrared Data Association. It specifies wireless transfer
via infrared radiation at 875 nm. IrDA 1.1 has a maximum data rate of 1.152
Mbps. At this rate, the range is small, typically less than 20 cm.

The recent ubiquitous deployment of the Ethernet and Internet, together with the
availability of low cost embedded systems capable of functioning as web servers,
has changed everything in networking equipments in a distributed environment.
It is now the age of the Internet! In this respect there are two approaches. One is
to forget your old equipment and design new web-based ones and network them.
The other is to add a web-enabled front-end or intermediary to your existing
equipment and thus make it accessible via the Internet. Prudence and reality tell
us that there are many situations where existing equipment cannot be abandoned
or redesigned. Thus the second approach is an important one. Indeed, many
companies dedicated to providing such hardware and software have appeared in
the last couple of years. Their solutions are typically very attractive and cost
effective, and we shall look at a couple of them.

If you embark on an entirely new project then you have two options in hardware
for your embedded systems. If you are lucky enough to have a large budget, use

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 52
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

a PC or one of its derivatives (SBC and embedded PC) as your embedded proc-
essor. The interface hardware can also be purchased as standard plug-in boards
on the PCI (Peripheral Component Interconnect) bus. This eliminates hardware
design completely. There are numerous suppliers producing a plethora of I/O
boards. You can almost always find what you want provided you can afford it.
We shall not look into this area in these lectures.

Sometimes a PC is an overkill for your applications or your budget simply can-
not afford using PCs. Until recently, building web-based applications under such
situations has been difficult. One often settled for the non-Internet option.
Rather affordable hardware is currently available in the market either as compo-
nents or ready built modules that are web-enabled. We shall look into this area.

5.2 Non-Internet Connection
The hardware or physical layer specifications of a few common methods of
connecting embedded systems are described in this section. They are

(1) The parallel port
(2) The serial port
(3) Selected high-speed ports

5.3 The Parallel Port
Originally intended for printer connection, this port has undergone several revi-
sions and it now provides bi-directional connection to a host of equipment. The
initial printer port in the IBM PC in 1981 was really designed for unidirectional
connection to the relatively slow dot-matrix printers at the time. It transferred
data at 150 kilobytes/second and was software intensive. Lack of design stan-
dards forced a cable limitation of 6 feet. In 1987, IBM PS/2 was introduced and
this PC enhanced the parallel port by adding bi-directional data flow.

Printer and computer manufacturers started to enhance the parallel port standard
in 1991 and this resulted in two improved standards: EPP (Enhanced Parallel
Port) and ECP (Extended Capability Port). EPP was introduced by Intel, Xircom
and Zenith Data Systems and was used primarily by non-printer peripherals such
as CD-ROMs, tape drives, hard disks etc. ECP was introduced by Hewlett Pack-
ard and Microsoft and was used primarily by new printers and scanners.

In 1994 the current IEEE 1284 standard, “Standard Signalling Method for a Bi-
directional Parallel Peripheral Interface for Personal Computers” , was released.
This standard encompasses all the other modes of parallel port, viz.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 53
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

(1) Compatibility mode – Centronics or standard mode
(2) Nibble mode – 4 bits at a time using status line for data
(3) Byte mode – 8 bits at a time using data line
(4) EPP – bi-directional, up to 2 Mbytes/second
(5) ECP – bi-directional, DMA transfer, up to 2 Mbytes/second

The standard specifies a cable length of 10 metres.

The original parallel port consists of 17 signal lines falling into three groups –
Data (8 lines), Status (5 lines) and Control (4 lines). The remaining 8 lines in the
DB25 connector port are grounded. For compatibility, the 17 signal lines are
maintained even in the advanced EPP and ECP mode. However, the function
and designation of the lines are modified according to the new requirements of
the modes.

In the original PC, the data lines are output-only lines and thus they cannot be
used to read data from peripheral devices. (The nOC output control pins of the
74LS374 D-type flip-flops are permanently grounded to enable all output lines.)
To get round this problem, the Nibble mode uses 4 of the 5 status (input) lines to
read 4 bits at a time from the peripheral devices. While this is more complicated
and slow, it has the advantage of compatibility with the oldest PCs.

Most PCs produced after 1987 have the ability to control the direction of the data
port thus making bi-directional transfer of 8-bit data using the same port possi-
ble. This is the Byte mode.

For the first three modes of communication – Compatibility, Nibble and Byte –
handshaking of data between the PC and peripheral is carried out by the CPU
and it takes several clock cycles to transfer a single byte or nibble. This limits
the data rate to 150K bytes per second for byte-wide transfer and to 50K bytes
per second for nibble-wide transfer. These data rates are however quite respect-
able for many laboratory applications. Because of their simplicity, they are used
in many embedded system applications. Hence, we shall look into the actual
transfer cycles in these modes.

The EPP mode enhances the performance of the parallel port by increasing the
data rate to 2M bytes per second while still maintaining compatibility with the
standard port. A read or write cycle is done within one ISA I/O cycle. This is
achieved with a local protocol between the host and peripheral using a state
machine and the necessary hardware to carry out interlocking handshakes. To
enhance the performance, the EPP protocol defines four types of data transfer
cycles: (1) data write, (2) data read, (3) address write and (4) address read.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 54
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

While data cycles and address cycles are intended for transferring data and ad-
dress/command respectively, they are really just two transfer channels and can
be used flexibly by device manufacturers.

The EPP data rates are sufficient for use with network adapters, hard disks, other
tape storage devices and CD ROMs. Thus many device manufacturers adopted
the EPP mode swiftly as an optional data transfer method.

The ECP came even later as another high performance parallel port mode. It is
specifically designed with printers or similar devices in mind. The protocol
allows for (1) data and (2) command cycles in both forward (write) and reverse
(read) directions. In this respect it is similar to the EPP. However, it includes
several features that are very specific to implementations but powerful. They are
(1) Run Length Encoding (RLE) data compression, (2) FIFOs on both forward
and reverse channels and (3) DMA and programmed I/O for the host register
interface.

The RLE, with a compression ration up to 64:1, is useful for printers and scan-
ners that handle raster images with large amounts of identical data (blank or
black). The channel addressing concept is intended for addressing multiple
logical devices using a single physical port. A good example of such a require-
ment is the combined Fax/Scanner/Printer machine.

The following tables show the pin designations and other relevant information
for the first three modes of operation. These are modes that are widely used by
embedded systems implementers in the laboratory. The remaining two modes,
EPP and ECP, while more advanced, are not as commonly used in simple labora-
tory applications. When high data rates are required, it is now advisable to
implement high-speed serial link interfaces such as USB or FireWire.

Compatibility Mode (or Standard Parallel Port Mode)

Pin Signal I/O Reg Description
1 nSTROBE Out CR-0 Falling edge strobes data byte into printer

2 D0 Out DR-0 Bit 0 of data

3 D1 Out DR-1 Bit 1 of data

4 D2 Out DR-2 Bit 2 of data

5 D3 Out DR-3 Bit 3 of data

6 D4 Out DR-4 Bit 4 of data

7 D5 Out DR-5 Bit 5 of data

8 D6 Out DR-6 Bit 6 of data

9 D7 Out DR-7 Bit 7 of data

10 nACK In SR-6 Low pulse indicates byte received

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 55
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

11 BUSY In SR-7 High indicates printer busy

12 PE In SR-5 High indicates out of paper

13 SELECTED In SR-4 High indicates printer online

14 nAUTOFEED Out CR-1
Low to insert line-feed on each carriage
return

15 nERROR In SR-3 Low to indicate printer error

16 nINIT Out CR-2 Low to reset printer

17 nSELECT Out CR-3 Low to select printer
18-
25

Ground Ground

CR - Control Register
DR - Data Register
SR - Status Register

Compatibility Mode Data Transfer Cycle

Nibble Mode (Reverse Transfer)

Pin SPP Signal Nibble Mode I/O Description
1 nSTROBE Not used Out Not used

2 D0 Out

3 D1 Out

4 D2 Out

5 D3 Out

6 D4 Out

7 D5 Out

8 D6 Out

9 D7

Not used

Out

Not used

10 nACK PtrClk
In

Low indicates valid nibble
High in response to HostBusy going high

11 BUSY PtrBusy In Data bit 3 then bit 7

12 PE AckDataReq In Data bit 2 then bit 6

13 SELECTED Xflag In Data bit 1 then bit 5

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 56
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

14 nAUTOFEED HostBusy
Out

Low indicates host ready for nibble
High indicates nibble received

15 nERROR nDataAvail In Data bit 0 then bit 4

16 nINIT NINIT Out Not used

17 nSELECT 1284Active Out High indicates 1284 mode
18-25 Ground Ground Ground

Nibble Mode Data Transfer Cycle

On the peripheral side, the reverse transfer in the Nibble mode can be imple-
mented with a quad 2-line-to-1 multiplexer such as the 74LS157 as shown in the
following diagram.

Byte Mode

Pin SPP Signal Byte Mode I/O Description
1 nSTROBE HostClk Out Pulse low to indicate byte received

2 D0 D0 I/O Bit 0 from peripheral to host

3 D1 D1 I/O Bit 1 from peripheral to host

4 D2 D2 I/O Bit 2 from peripheral to host

5 D3 D3 I/O Bit 3 from peripheral to host

6 D4 D4 I/O Bit 4 from peripheral to host

7 D5 D5 I/O Bit 5 from peripheral to host

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 57
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

8 D6 D6 I/O Bit 6 from peripheral to host

9 D7 D7 I/O Bit 7 from peripheral to host

10 nACK PtrClk
In

Low indicates valid data
High in response to HostBusy going high

11 BUSY PtrBusy In Printer busy

12 PE AckDataReq In Follows nDataAvail

13 SELECTED Xflag In Extensibility flag, not used

14 nAUTOFEED HostBusy
Out

Low indicates host ready for nibble
High indicates nibble received

15 nERROR nDataAvail In Low indicates data available

16 nINIT NINIT Out Not used

17 nSELECT 1284Active Out High indicates 1284 mode
18-25 Ground Ground Ground

Byte Mode Data Transfer Cycle

5.4 The Serial Ports
The two serial communication ports in the PC follow the RS-232 standard of the
Electronics Industry Association. It was introduced in early 1960s and has since
been the most widely used serial communication technique in the laboratory.
The title of the standard, "Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data Interchange" indi-
cates the original intention. That is, to connect Data Terminal Equipment (DTE)
to Data Communications Equipment (DCE). DTE and DCE are the two pieces
of equipment at the two endpoints of a telecommunication channel. The DTEs
used to be dumb terminals with which the users interact. The DCEs were mo-
dems that connected to telephone lines. In most laboratory and office environ-
ments now, the DTEs are more likely to be PCs. The DCEs may still be mo-
dems, but they may also be non-existent because the other endpoint is nearby
and it is easier to use straight-through cables instead of the telephone network.
In this case, the DCEs are called Null Modems.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 58
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The RS-232 uses an asynchronous mode. Typically, data is transferred in sym-
bols or words of 5 to 8 bits, one bit at a time, least significant bit first, at a prede-
termined speed called the baud rate. However, from one word to the next, the
time interval is not fixed and thus asynchronous. A long string of words may be
transferred in a contiguous manner, one immediately trailing the previous one, or
they may be sent intermittently, with varying pauses between words.

No clock or other timing signal is sent. It thus requires a start bit to indicate the
beginning of a byte and a stop bit to signify the end. It is the receiver’s job to
sample the bits based on these marking bits. For the purpose of error checking, a
parity bit (either even or odd parity) may be added at the end of each word or
symbol. The transmitter computes the parity bit based on all the data bits. The
receiver checks if the actual parity bit value corresponds to the calculated value.

The actual signals sent on the line are positive and negative voltages with respect
to ground potential. A bit 0 or logical 0 is sent as SPACE or +5 to +15 volts; a
bit 1 or logical 1 is sent as MARK or –5 to –15 volts. The receiver recognises
–3 to –25 volts as MARK and +3 to +25 as SPACE. The region between –3
volts to +3 volts is a transition region where the state is undefined. The wide
range of voltages for the two valid states are very useful in actual implementa-
tion, taking care of line drop, supply fluctuation, ground potential difference etc.
A number of restrictions imposed by the standard further enhance the robustness.
For example, the output of the transmitter may be shorted to other lines without
causing any damage to itself and the receiver must be able to withstand voltages
in the range of –25 volts to 25 volts.

When a line is idle, it is in the MARK state. The start bit is SPACE, stop bit(s)
is MARK. The timing diagram of sending numeral “1” or 0x31 with even parity
is shown below.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 59
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The standard specifies a total of 21 control signals or ‘circuits’ on top of the two
data lines (Transmit Data and Receive Data). The original specification thus
requires a DB-25 connector with 25 circuits. The control lines are used to con-
nect to a DCE or modem for control or test functions. It turns out that many of
the control lines are not needed for standard modem connections. In fact they
may not be used at all if an RS-232 port is connected to another RS-232 port on
two pieces of equipment. In this case, the only requirement is of course to con-
nect the Transmit Data of one DTE (the PC) to the Receive Data of the other.
This crossing of two wires, from pin 2 to pin 3, constitutes a Null modem.

In most PCs, a subset of the lines is used for the serial port. Six control signals
are chosen, making it possible to house the port in a DB-9 connector with 9
circuits. The connector on the PC or DTE is a male (or plug) while the corre-
sponding one on the modem or DCE is a female (or socket). If two PCs are
connected using the serial COM ports, the cable (or the Null modem) obviously
has two female DB-9 connectors.

Three types of connectors are used for RS-232: DB-9 (9-pin D-shell connector),
DB-25 (25-pin D-shell connector) and RJ45 (modular telephone connector). The
various signal assignments on the DTE (or PC) side are as follows:

Name Direction Description DB-9 DB-25 RJ45
CD � Carrier Detect 1 8 2
RxD � Receive Data 2 3 5
TxD � Transmit Data 3 2 6
DTR � Data Terminal Ready 4 20 3
Gnd Signal Ground 5 7 4
DSR � Data Set Ready 6 6 (1)
RTS � Request To Send 7 4 8
CTS � Clear To Send 8 5 7

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 60
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

RI � Ring Indicator 9 22 1
Direction is DTE (PC) relative to DCE (modem)

The common bit rates of RS-232 are at 1200, 2400, 4800, 9600, 19200 bps.
With modern drivers, higher bit rates, while non-standard, are possible.

The standard specifies a cable length of 50 feet or 2500 pF in cable capacitance,
at 20K bps. If cables with lower capacitance are used, it is possible to transmit at
distances greater than 50 feet. For example the UTP Cat-5 cable has a capaci-
tance of 17 pF/ft. Thus about 150 feet of cable may be used. Likewise, reducing
the transmission speed increases the maximum cable length. Laboratory tests
showed that a cable length of 500 feet is possible at 9600 bps.

Flow control in RS-232 if needed is carried out either in hardware or software to
prevent buffer overflow on the receiver. In the hardware or the RTS/CTS flow
control method, the transmitter asserts a Request To Send signal when it has data
to transmit. The receiver asserts a Clear To Send signal only when it is ready to
receive data. In the software or XON/XOFF control mode, the receiver tells the
transmitter to send more data by sending an XON control character (0x11).
When the receiver buffer is nearly full, it stops the transmitter by sending an
XOFF control character (0x13). Both the XON and XOFF are sent as data and
no hardware control signals are involved.

Very small embedded systems connected to the serial port may get their power
from the serial port itself although this is not part of the standard. A serial port
mouse is such an example. Since DTR and RTS are often not used as intended,
they may act as a source of small power supply. These pins are typically de-
signed to drive a load of 3~7 kOhm at 7 to 11 volts and they can be used to drive
a regulator to produce regulated 5-volt output, provided that the load current is
small (typically less than 10 mA, depending on the type of driver used in the
port). An output pin from a standard 1488 RS-232 driver chip can supply up to
6.5 mA at 5 volts and that for the MAX232 is 5 mA. Devices operated in this
manner are called pin powered devices.

5.5 Differential Drive Serial Communication Standards
 (RS422, RS485)
While RS-232 is simple and readily available, there are some shortcomings that
reduce its speed and transmission distance. First, it assumes common ground
potential between the two endpoints, the result of the single-ended (or unbal-
anced) drive. This may not be so when the separation of the devices increases.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 61
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

A receiver at a different ground potential will sense the signal voltages with an
undesired offset.

A single signal cable makes screening or shielding of electromagnetic noise
difficult if not impossible. While a separate screen sheath may be used on the
cable, internal noise generated by other signal lines is a problem. This crosstalk
effect becomes more and more severe as transmission speed goes up.

A different EIA standard, the RS-423 attempts to eliminate the shortcomings of
RS-232 to a certain extent. By using different electrical parameters including a
controlled slew rate on the signal (rise and fall times at 30% of unit interval at >=
1K baud), a speed of 100K bps at 4000 feet can be achieved.

However, a more significant enhancement of the serial communication technique
is achieved by using differential or balanced drive. Two famous EIA standards
that operate in this mode are the RS-422 and RS-485. A pair of wires is used for
transmitting each signal. The voltage difference between the two wires is unaf-
fected by difference in ground potentials and the receiver should function prop-
erly provided that the common mode voltage limit is not exceeded. If these two
balanced wires are twisted together the difference voltage is unaffected by exter-
nal electromagnetic noise, including crosstalk. Noises picked up by the two
wires are likely to be identical and hence they are cancelled at the receiver input
which is a differential voltage sensor.

Using this differential drive technique, transmission speeds up to 10Mbps can be
achieved. The cable length is specified at 4000 feet. The RS-422 standard also
specifies a multi-drop (party-line) arrangement where one driver (master) is
connected to 10 receivers (slaves) that listen simultaneously. The master trans-

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 62
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

mit lines are connected to all the receivers of the slaves. The slave transmit
signal is carried on another pair. They are all connected to the receiver of the
master. At any one time, only one of the slave transmitters is turned on to avoid
garbling of data.

The RS-485 is a true multipoint arrangement whereby all the transmitters and
receivers are connected to a single pair of wires, the bus. This is possible be-
cause the transmitter can be put into a high impedance or tri-state mode. Up to
32 pairs of transmitters and receivers may be connected together. The standard
does not specify the method for orderly transmission in this bus system. One
simple implementation method is for the master to initiate a communications
request to a slave station by addressing it. It turns off its transmitter immediately
and the slave can then transmit on the bus.

A 9-bit protocol is often used in the multidrop network shown above. An extra
9th bit is added to the typical 8-bit data in the serial transmission to indicate it is
an address frame. When the master wants to transmit a block of data to a par-
ticular slave, it first sends an address byte as data and turns on the 9th bit. The
particular slave, whose address matches that sent by the master, knows that it is
being addressed. It thus receives the subsequent block of data based on whatever
protocol was agreed upon earlier. Other slaves ignore the block of data not
intended for them.

As standard transceivers (or UART) for RS-232 do not support 9th bit address-
ing, the parity bit is often used as the 9th bit. This is the case if the PC is used.
In this case, the parity checking capability is lost of course. However, this is
often not a problem as many existing applications ignore the parity checking in
the first place. Other block checking techniques including the CRC are used.

A summary of the RS-232 and RS-485 electrical specifications is shown below.

RS-232

Parameter Conditions Min Max Units
Output (Open Circuit) 25 V

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 63
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Output (Loaded) 3 K <=RL<= 7 K 5 15 V
Output Resistance -2V<=Vo<=2V 300 Ohm
Output Current (Short-
Circuit)

 500 mA

Output Slew Rate 30 V/µs
Maximum Load Ca-
pacitance

 2500 pF

Receiver Input Resis-
tance

3V <= V IN<=25V 3000 7000 Ohm

RS-485

Parameter Conditions Min Max Units

Output (Open Circuit)

 1.5
-1.5

 6
-6

V
V

Output (Loaded)
RLOAD = 54 Ohms

 1.5
-1.5

 5
-5

V
V

Output Current (Short-
Circuit)

Output to +12V or -
7V

 ±250 mA

Output Rise Time
RLOAD = 54 Ohms
CLOAD = 50 pF

 30
% (bit
width)

Output (Common
Mode)

RLOAD = 54 Ohms -1 3 V

Receiver Sensitivity -7 <= Vcm <= +12 ±200 mV
Receiver (Common-
Mode)

 -7 +12 V

Receiver Input Resis-
tance

 12K Ohm

5.6 Universal Serial Bus (USB)
The Universal Serial Bus (USB) was standardised in 1995 by a group of compa-
nies to introduce an advanced serial bus to the PC. In the short period since its
appearance, it has been widely accepted and all new PCs now incorporate USB
ports. There are myriads of USB peripheral devices produced (over 1000 prod-
ucts have passed the compliance test), including mice, scanners, printers, digital
cameras, hard disks, multimedia equipment, etc.

For embedded system developers, USB provides an alternative and more power-
ful way of interfacing to the PCs. It is a serial bus with hot-swap capability,

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 64
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

meaning a device may be connected or disconnected without turning off the
power.

USB 1.1 offers two data rates, full speed at 12 Mbps and low speed at 1.5 Mbps.
USB 2.0 offers high speed at 480 Mbps. Devices of different speeds may be
mixed and the bandwidth may be divided into asynchronous and isochronous
streams. The latter offers guaranteed or reserved bandwidth and is useful for
streaming devices, such as audio and video equipment.

A total of 127 devices may be connected to a single host. This is done by con-
necting multiple USB hubs in a daisy chain. Devices are connected to the down-
stream port of a hub while the upstream port is connected to the host or another
hub (in the upstream of the bus topology). Devices are either self powered or
powered from the bus. A typical USB hub may provide 100 mA on each down-
stream port in the Bus Powered mode, and 500 mA on the Self Powered mode.

USB devices are connected using a simple cable consisting of a twisted pair of
wires for signals and an untwisted pair for power (Vbus at 5 V and ground).
Cable segments can be up to several metres long depending on the wire gauge
used.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 65
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The clock speeds for high-, full- and low-speed operations are 480, 12, and 1.5
Mbps respectively. The voltage level for logical 1 at the final target connector is
defined by (D+) - (D-) > 200 mV and that for logical 0 is (D-) - (D+) > 200 mV.

The USB uses a polled bus protocol whereby the host (or PC) initiates all data
transfers. A transaction begins by the host sending a token packet. The packet
contains information on the type and direction of transaction, device address,
and endpoint number. Data transfer than occurs between the source and the
destination by the source sending either a data packet or a packet indicating no
data. The destination closes the transaction by returning a packet indicating
whether the previous packet had been received successfully.

The pipe concept is used to refer to the channel between an endpoint in a device
and that in a host. Two types of pipes are defined: stream and message. Streams
have no defined data structure while messages have. A message pipe called
Default Control Pipe is set up when a device is powered. It provides access to
the device configuration, status and control information. Pipes have associations
of data bandwidth, transfer service type, and endpoint characteristics like direc-
tions and buffer sizes. A flow control mechanism allows the construction of
flexible schedules. This allows concurrent servicing of a heterogeneous mix of
streams, i.e. multiple streams can be served at different intervals with packets of
different sizes.

There are four types of data transfers: (1) Control Transfer, (2) Bulk Data Trans-
fer, (3) Interrupt Data Transfer and (4) Isochronous Data Transfer.

Control transfer, a lossless data transfer method, is used to configure a device at
attach time. Bulk data transfer is used for asynchronously transferring large
volumes of data. Data integrity is ensured at hardware level by error detection
and retries if necessary. An example is a transfer from the host to a printer.

Interrupt data transfer is used for transferring small amounts of data with small
latency or rate specified by the device. Data are typically event notifications,
characters or coordinates in one or more bytes. An example is the pointing
device.

Isochronous data transfer is designed for real-time streams such as voice and
video. A dedicated bandwidth is allocated for this transfer. Timeliness is en-
sured at the expense of occasional transient data losses. In other words, hardware
retries are not used in case of data loss. This is known to be better for real-time
voice and video transmission.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 66
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The USB standard implements a data flow model that can be divided intro three
layers: (1) Function Layer, (2) USB Device Layer, and (3) Physical Layer as
shown below.

The physical layer provides physical, signalling and packet connectivity func-
tions between the host and a device. The device layer carries out general USB
operations between the host and a device through a logical link. In the host, this
is typically carried out in the operating system, as API for example. The func-
tion layer is used for high level function communication between the host and a
device, again through a logical link as viewed by the software.

There are a number of manufacturers producing components specially designed
for implementing embedded systems using USB. The functions of the physical
and device layers are taken care of by USB chips. An example is the
CY7C630/1XXA series produced by Cypress Semiconductor Corporation. This
particular series of chips conforms to the USB 1.1 specifications operating at 1.5
Mbps. Members of the family have an 8-bit RISC microcontroller with a built-in
1.5-Mbps USB Serial Interface Engine (SIE). Memories are in the range of 128
bytes RAM and 2 to 4 Kbytes EPROM. Besides the USB interface, two 8-bit
parallel ports are available. Such USB chips are suitable for small to medium
scale applications including serial port conversion, keyboard, mouse, joystick
and many others. A block diagram of a CY7C63000 chip is shown below.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 67
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

5.7 IEEE 1394 Bus
This is an emerging high speed serial bus originally developed by Apple (called
FireWire) and used by Sony in digital video equipment (called iLink). It was
accepted as an industrial standard in 1995 (called IEEE 1394). Before the intro-
duction of USB 2.0 specifications, the IEEE 1394 was the highest speed serial
bus at 400 Mbps. 1.6 Gbps and 3.2 Gbps versions are being defined and devel-
oped. The following is a partial list of peripherals available with IEEE 1394
interface: digital video camcorders, digital cameras, printers, mass storage de-
vices, ADCs.

The IEEE 1394 bus is similar to USB in principle. It has both asynchronous and
isochronous modes of transmission suitable for both bursty data and real-time
video streams. At 400 Mbps, full frame rate digital video streams can be trans-
mitted. It has hot swapping capability. It allows up to 63 devices to be con-
nected. Devices can also be bus powered or self powered.

One significant difference between IEEE 1394 and USB is the bus topology.
The IEEE 1394 uses a peer-to-peer configuration, instead of the master-slave
configuration. This means a PC is not needed to act as a host or master for
communication. An IEEE 1394 digital video camera can be connected to a
video player directly. Similarly, more than one PC can be connected to a digital
camera to use the same video stream.

This, together with speed and other requirements, makes the specifications rather
complex. The specifications document is a few hundred pages divided into
many areas of applications, including instrumentation, industrial and automotive,
on top of the more familiar video related specifications of digital video, MPEG,

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 68
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

digital TV, etc. In the instrumentation area, one application is to replace the now
rather slow IEEE 488 GPIB with an IEEE 1394 bus. There is an ongoing effort
to define how the IEEE 488.2 command structure can be transmitted over IEEE
1394.

As in USB, IEEE 1394 uses a three layer model for communication: Physical,
Link and Transaction. The physical layer handles the signals required by the
bus; the link layer formats data into packets. Packets are passed on to the trans-
action layer which then presents them to the application above it. Semiconductor
chips are available for handling the functions of the physical and link layers.
Some of the transaction layer functions are also handled by the dedicated IEEE
1394 chip. The rest are in software, in the OS and the user programs.

In the Linux environment, version 2.2 onwards supports IEEE 1394. The sub-
system has been included with the standard kernel sources since version 2.3.40.
It is distributed as a patch to version 2.2. IEEE 1394 is also supported on the
Windows and Macintosh platforms.

The IEEE 1394 cable consists of two differential signal pairs, a power and a
ground line. Two types of connectors are defined: a six-wire version (measures
10 mm by 5 mm) and a four-wire version (measures 5 mm by 3 mm) without the
power pair. The maximum cable length for speeds greater than 200 Mbps is 4.5
m. At lower speeds, cables up to 14 m long can be used. Multiple devices can
be daisy-chained using repeaters to extend communication distance. It is inter-
esting to note that the future IEEE 1394b specifications also support cable
lengths of 100 m using plastic optical fibre and multiple kilometres using glass
optical fibre. CAT-5 cables can be used at 100 Mbps at distances up to 100 m.

5.8 Controller Area Network (CAN)
The Control Area Network (CAN), originally developed for the automotive
industry by Robert Bosch in 1980s, is a real-time serial data communications bus
now being deployed in many distributed environment. It is now accepted as an
international standard (ISO 11898 and ISO 11519 for high and low speed appli-
cations respectively). Many semiconductor manufacturers (e.g. Atmel, Fujitsu,
Intel, Microchip, Motorola, Philips, Siemens, etc.) produce a wide range of
controller and interface chips for CAN.

CAN controllers are physically small and relatively cheap devices used for real-
time data acquisition and control applications. Data are transmitted on a two-
wire bus using 5-V differential mode using a multicast protocol. A large number
of devices may be connected to the bus. The limit is imposed by the drive capa-
bilities of the control chips and up to 64 nodes is common. Unlike most other

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 69
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

bus arrangements, devices are not identified by their device address. Data mes-
sages transmitted on the bus do not carry source or destination addresses.
Unique message identifiers are used instead. A node sends out a message with
an identifier and all the nodes on the bus receive it. It is up to the receiving node
to decide whether to process the incoming message. The message identifier also
serves as a priority indicator. The lower identifier has a higher priority.

Contention is solved by Carrier Sense, Multiple Access with Collision Detect
(CSMA/CD) as in the Ethernet. However, an enhanced feature for non-
destructive bitwise arbitration is used to resolve collision. This is achieved by a
wired-AND mechanism. A logical 0 in the identifier bit pattern is considered
dominant and it overwrites a logical 1 which is recessive as shown below. Thus
a node sending out a message with an identifier 123h will overwrite a node with
message identifier 223h and then with identifier 124h. Once a node transmitter
with a lower priority loses, it turns into a receiver and listens to the message at a
higher priority (or lower identifier value).

A useful feature in the message-based protocol of the CAN is the Remote
Transmit Request (RTR). This allows a node to request information from other
nodes. The protocol also permits additional nodes to be added without having to
reprogram the existing nodes in the network.

Four different types of messages or frames are defined: (1) Data Frame, (2)
Remote Frame, (3) Error Frame and (4) Overload Frame.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 70
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

A data frame consists of the data field and several other fields to provide addi-
tional information. The whole frame can be divided into an Arbitration Field, a
Control Field, a Data Field, a CRC Field, an Acknowledge Field and an End of
Frame Field. The Arbitration Field is the message ID mentioned above and is
used for prioritising messages on the bus. The prioritising field has 11 (standard
frame) or 29 (extended frame) identifier bits and one RFR bit. If the RFR is set,
the frame becomes a remote frame. The Control Field consists of a bit that
signifies an extended frame and a four-bit Data Length Code (DLC). The value
of the DLC is between 0 and 8 representing 0 to 64 bits. The remote frame has
no data field, irrespective of the value of the DLC.

The CRC Field is a 15-bit CRC field with a delimiter. The Acknowledge Field
is used to indicate if the message was received correctly, irrespective of whether
it was processed or ignored. This is done by asserting a dominant bit on the bus
at the ACK slot bit time.

When a node detects an error, it sends an error frame. When a node is not ready
to receive additional messages, it sends an overload frame on to the bus. CAN
was designed with error tolerance and robustness in mind. Thus, there are many
types of errors being used: (1) CRC Error, (2) Acknowledge Error, (3) Form
Error, (4) Bit Error, and (5) Stuff Error.

Although CAN is not a standard bus in PCs, CAN interface cards are readily
available. As mentioned earlier, a wide range of CAN-based controller chips are
available as standard semiconductor parts. There are two hardware implementa-
tions: (1) Basic and (2) Full. The former uses a standalone CAN controller
connected to an existing microcontroller. The latter integrate a CAN controller,
a CPU and a RAM in a single package.

Data rates of CAN bus depend on the length of the bus. For ISO11898 compli-
ant devices, 1 Mbps is guaranteed for lengths up to 40 m. Up to 500 m lengths
of cable may be used if the data rate is reduced to 125 Kbps.

An example of a small CAN controller chip is the MCP2510 by Microchip. It is
an 18-pin standalone CAN controller featuring an industry standard SPI serial
interface. On-board features include interrupt capability, message masking and
filtering, message prioritisation, and multi-purpose I/O pins. Multiple trans-
mit/receive buffers significantly offload the microcontroller overhead required to
handle CAN message traffic. Applications for the MCP2510 include device
control, sensor monitoring, meter interfacing, automotive electronics, and in-
strument control.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 71
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

5.9 Inter-IC Serial Buses
Working with embedded systems, one often comes across several serial buses
used between ICs or modules within a system. These are typically de facto
standards originally developed by IC manufacturers for specific functions and
subsequently expanded to more general use. Even though they are only used for
short interconnections, they are increasingly important to embedded systems
designers as miniaturisation and simplicity in designs are emphasised. For exam-
ple, using a serial bus between a flash memory device and the microcontroller
not only reduces the complexity in circuit design, but also brings down the over-
all cost as serial devices are typically cheaper because of the smaller package and
the PCB would be significantly smaller. The only drawback in using a serial bus
is of course transmission speed reduction. However, in many laboratory scale
embedded systems, the data rates of ~100 Kbps to ~10 Mbps available in serial
buses are more than sufficient.

5.10 I2C (Inter Integrated Circuit Bus)
This is a bidirectional two-wire serial bus introduced by Philips Semiconductor
in the 1980s for their television and other audiovisual products. Today it is
widely used in the industry for embedded systems.

The two active lines are the SDA (serial data) and SCL (serial clock). A device
has a unique address (7 or 10 bits) and may be receiver-only, or transmit-
ter/receiver. Each device may be either a master or slave depending on whether
it initiates a data transfer. Multiple masters are allowed in a bus. Over the years,
data transfer speed has increased from 100 Kbps (standard) to 400 Kbps (fast)
and 3.4 Mbps (high speed).

A bus master places the address of the destination (slave) on the bus. All devices
on the bus listen and the one being addressed communicates with the master. If
more than one master transmits, an arbitration scheme is used to decide the
priority.

5.11 SPI (Serial Peripheral Interface)
This is a bidirectional full-duplex four-wire serial bus used originally by Mo-
torola in their microcontrollers. The four wires are a clock, a data in, a data out
and a select signal. The generic names of the SPI input/output (I/O) pins are:

• SS (slave select)
• SPSCK (SPI serial clock)
• MOSI (master out slave in)

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 72
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

• MISO (master in slave out)

In full duplex operation, the MISO pin of the master SPI module is connected to
the MISO pin of the slave SPI module. The master SPI simultaneously receives
data on its MISO pin and transmits data from its MOSI pin. Slave output data on
the MISO pin is enabled only when the SPI is configured as a slave. To support
a multiple-slave system, a logic 1 on the SS pin puts the MISO pin in a high-
impedance state.

The MOSI pin of the master SPI module is connected to the MOSI pin of the
slave SPI module. The master SPI simultaneously transmits data from its MOSI
pin and receives data on its MISO pin.

The serial clock signal from master to slave synchronizes data transmission
between the two. A byte of data is exchanged in 8 clock cycles.

The SS is used to select a slave when a device is configured in slave mode.
When an SPI is configured as a master, the SS input can be used in conjunction
with a flag to prevent multiple masters from driving MOSI and SPSCK, thus
resolving contention.

5.12 SCI (Serial Communications Interface)
This is the Motorola implementation of the RS-232 asynchronous serial commu-
nications bus. It is a partial implementation, in that only the two I/O data lines
are implemented, and they are at TTL voltage level instead of the standard bipo-
lar signals as in the RS-232 specifications.

For short distance connections, such as within a piece of equipment, direct TTL
levels are sufficient. If long transmission distance is necessary, or if the other
end of the connection is a standard RS-232 port such as the PC COM port, volt-
age translation between TTL and RS-232 can be done.

Several manufacturers produce chips for this purpose. An example is the
MAX232A by Maxim. It operates from a 5V power supply and generates
typical voltages of +8 V and –8 V using charge pump voltage doubler and
voltage inverter.

5.13 Microwire
This is a serial interface bus defined by National Semiconductor and used in
many of their products including the COPS microprocessors. It is a three-wire
(SO, SI and CK) interface very similar to the SPI. In fact many microprocessors

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 73
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

with SPI interface may be used to connect to Microwire memories and peripheral
devices.

5.14 1-Wire Bus
This is a serial bus defined by Dallas Semiconductor. 1-Wire devices lower
system cost and simplify design with an interface protocol that supplies control,
signalling, and power over a single-wire connection. A variety of identification,
sensor, control, and memory functions are available in conventional IC packages,
and stainless-steel-clad casing called iButtons.

A 1-Wire network consists of a master and one or more slave devices connected
together through the 1-Wire interface. The master initiates and controls half
duplex data transfer on the bus. It uses conventional TTL voltage levels of
maximum 0.8 V for logical 0 and minimum 2.2 V for logical 1. The master has
a weak resistive pull-up open drain output. A slave short circuits the data line to
change the logical state to 0. For large networks, the weak pull-up is supple-
mented by a controlled strong pull-up.

Every slave device has a unique 64-bit address, which consists of an 8-bit family
code, a 48-bit serial number and an 8-bit CRC of the first seven bytes.

Slave devices must have their own timing circuits, synchronised by the falling
slope of the signal on the bus. A slave typically obtains its power from the 1-
Wire bus by means of an on-chip capacitor.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 74
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

6 Web-based Embedded Systems

6.1 Introduction
Traditional networking of embedded systems is through the use of dedicated
serial or parallel link as show below. A number of industrial bus standards are
available. However, more often than not, straightforward non-standard data link
layer protocols are often used in most laboratories for ease of implementation.

The proliferation of the Ethernet and Internet brings another dimension to net-
working embedded systems. In a nutshell, the suite of Internet protocols and the
cost reduction in embedded Ethernet hardware changes the way embedded sys-
tems are connected in a distributed environment. It is now cheaper and simpler
to connect an embedded system, even a very simple and small one, to another
piece of equipment via the Internet (or its variation the Intranet), than to link the
two together using a traditional direct connection.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 75
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

When the equipment is within the range of a LAN (typically ~ 100 m), the
Ethernet is the choice for physical connection. To cover large distances, the
Ethernet will typically have one of several ways to connect to the public tele-
communications network. Thus the embedded system is connected to the WAN
(wide area network). The links to the telecommunications network can be mo-
dems, ISDN, DSL, or leased lines. These links are not the job of the embedded
systems designers. The job of the designers boils down to adding the Ethernet
connection to the equipment, or a serial link to the modem if Ethernet is not
used.

The suite of Internet protocols (UDP and TCP/IP and application protocols FTP,
HTTP, SNMP etc.) is covered by other lectures in this workshop, so we shall not
delve into this topic in any depth. However, the Ethernet interface and the serial
link that connect the embedded system to the Internet shall be discussed here.

The last few years have seen the appearance of experimental, hobbyist and
commercial real-time embedded systems on the Internet that can be accessed
easily using standard browsers. However, one of the earlier implementations is
the Cambridge coffee pot webcam that appeared in 1991 (predated world wide
web) and was subsequently put on the www.
(http://www.cl.cam.ac.uk/coffee/coffee.html) Now there are numerous webcams
on the Internet. At the height of its fame, there were more than 2 million people
viewing the plain coffee pot in the Trojan Room of the Computer Laboratory in
Cambridge.

While it is fascinating and significant to be able to view video frames from any
place in the world with an Internet connection, the basic principle is straightfor-
ward and simple. A server gets data (video frames in this case) ready in a form
meaningful to the client (the web browser) and the client accesses it via the

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 76
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Internet. It turns out that the server side effort is relatively simple (writing an
HTML document, with SSI server side includes). The client (the browser) is a
complex program but it is a standard application in all platforms. In fact, the
earliest Cambridge coffee pot server and client implementation was done in one
day, at that initial stage, for fun!

The more recent implementations of web-based applications that are of interest
to the embedded community is in the implementation of small and lean embed-
ded web servers. These are standalone servers that have their own IP (Internet
address) and are connected to the Internet without using a PC. One of the tiniest
is a match head sized web server using an 8-pin PIC microcontroller
(PIC12C509A). (http://www-ccs.cs.umass.edu/~shri/iPic.html) It has a TCP/IP
stack and a HTTP web-server. The TCP/IP stack is fitted into 256 bytes. This
project proves the point that putting up a web-based embedded system, albeit a
rather basic one, can be done with very little hardware, and software!

More realistic embedded web servers are built with microcontrollers with more
memories than that of the PIC12C509A, which has a mere 1536 bytes of ROM
and 41 bytes of RAM. Almost every microcontroller manufacturer now has
application notes on how to implement a TCP/IP stack on their range of micro-
controllers.

Vendors and suppliers of embedded web servers are mushrooming in the Internet
because of the potential market they see. At the moment embedded Ethernet
modules that have memories in the range of 256 Kbytes to 1 Mbytes, an Ethernet
link, several serial links, and parallel I/Os are available in the price range of $50
~ $100. For most laboratory applications where the volume is low, this is the
most cost effective way to implement embedded web-based systems.

6.2 Migration to Web-based Systems
The embedded systems designer faces a dilemma – whether to build the com-
plete application on the new embedded web-based modules or to retain the exist-
ing or legacy systems. As in the case of other technological innovations, there
are several approaches to handling the migration to the new technology. In
embedded systems at this time, there are two ways as shown below.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 77
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The first decision that has to be made is whether to use the new embedded web-
based microcontroller module as:

(1) An add-on to the legacy system or
(2) A replacement of the legacy electronics.

The add-on option has the advantage of little or no disruption to the existing
system. In many cases where the existing systems have standard serial or paral-
lel I/Os, no hardware or software modifications are needed. In others, appropri-
ate modification to bring the existing system peripheral acceptable to the embed-
ded Ethernet module has to be done. This is straightforward in many laboratory
type systems. This is also a good option to adopt if the legacy system is a com-
plex piece of equipment

The shortcoming of this add-on option is the lack in functional enhancement of
the final system other than the Internet connection. Of course the Internet con-
nection may be all that is needed, in which case it is obviously the simplest
solution.

The replacement option is to replace part or all of the existing controller elec-
tronics with the embedded module. This is an attractive solution in some cases
because new functions may be added to the existing system using the more
powerful embedded microcontroller. Cost may be another factor. The new
crops of embedded microcontroller modules are substantially cheaper than the
older microprocessor-based systems. Thus if additional systems are needed, the
old hardware may be expensive or obsolete. However, the effort and cost of
rewriting or porting the software and firmware have to be weighed carefully
against the gain achieved through hardware replacement.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 78
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

6.3 Hardware Connection to the Internet
Irrespective of the way – add-on or replacement – the new embedded web-based
module functions in the legacy system, there are two alternatives for connecting
to the Internet world:

(1) Ethernet connection
(2) Serial connection

The Ethernet is now so widely deployed that there is hardly any laboratory or
office that does not use it to network PCs or other equipment. Thus, for embed-
ded systems, an Ethernet capable feature would simplify connection to the Inter-
net. A 10Base-T or 100Base-T connection from an embedded system will be
most convenient; the connection to the outside world then reduces to linking the
system to a hub or switch with a simple CAT-5 UTP (unshielded twisted pair)
cable.

Until recently, the rather complex CSMA/CD physical layer protocol (MAC) and
the large buffer size (~ 1500 bytes) required for the Ethernet frame meant that
implementation was costly. Interface to the Ethernet controller chips was typi-
cally designed for 16- or 32-bit buses which were rather uncommon in small and
medium scaled embedded systems. Many small embedded systems thus cannot
justify having an Ethernet interface. The situation has changed in the last two
years. Both cost reduction and simplification of driving circuitry make it now
possible to tug an Ethernet interface on an embedded system. Only two key
components are needed – an Ethernet controller chip and a line driver trans-
former. An 8-bit microcontroller can now be used to interface to the controller
chip. The cost of the Ethernet controller and the line driver is in the range of $10
~ $20.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 79
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

While the Ethernet interface is the ubiquitous link to the Internet, it is not the
only way. An embedded system can be connected to the outside world via a
serial link like the RS-232 COM port on the PC. There are a number of situa-
tions where this method of connection is preferred. First, it is cheaper to use a
serial port, which is a standard item in most microcontrollers. This cost reduc-
tion refers to the embedded system side. It is noted that a matching serial port
(in the form of Internet router) is needed on the network side. This may increase
the overall system cost because an Internet router with serial ports has to be
installed. Such Internet routers are not as common as the Ethernet hubs in most
laboratories. Dispensing with the Ethernet controller chip reduces both the
hardware and software complexity needed on the microcontroller host. In the
tiny web server project mentioned earlier using a small PIC controller, there are
simply not enough hardware resources on the microcontroller to drive an
Ethernet controller.

Another reason for deploying a serial link is to connect to a modem for Internet
access. This is a very common mode of connection. Most of us use a modem
dial-up to access the Internet at home. Embedded systems to be used at locations
without an Ethernet can use the serial mode in a similar manner.

In a very small implementation of a single embedded system connected to a PC
acting as a host processor or controller, the serial link is also the choice. In this
case, the PC host’s COM port is simply connected to the serial port of the em-
bedded system using a crossover cable (null modem).

6.4 Ethernet Connection
While there are several types of Ethernet connections and several high speed
Ethernets (e.g. 10 Gbps) being introduced and standardized, the type that con-
cerns the embedded systems designer is the plain 10Base-T, which is 10 Mbps,
base-band, with a twisted pair. This is the most widely used method of accessing
the Ethernet in most laboratories. In a typical network, switches or hubs are used
to link the various Ethernet nodes. An embedded system with a 10BaseT port
only needs an Ethernet cable (CAT-5, UTP with modular RJ45 plugs at both
ends, up to 100 m) to connect to an available port on a hub.

In the event that you have to build your own Ethernet for your embedded sys-
tems network in your laboratory, what hardware components are involved? First
you typically need a PC with an Ethernet connection. Many new PCs in the
market have a built-in Ethernet port. For older PCs, a PCI Ethernet card (less
than $20) can be used. Then you need an Ethernet hub which connects all nodes
in your network. Hubs come in various forms. A small one with 4 to 8 ports

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 80
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

($20 ~ $50) would normally be sufficient. Then of course you need the cables
with RJ45 terminations.

As in the case of serial link, it is possible to connect a host PC to an embedded
system with just a crossover cable. No Ethernet hub is necessary in this case.
This turns out to be a handy set-up for testing and debugging your embedded
system. Before you deploy your embedded system on the Internet, you may
want to test your system by just connecting it to a standalone host PC with a
simple crossover cable.

6.5 Ethernet Controller
Most PC users are familiar with the NIC (network interface card), which pro-
vides the interface to the Ethernet. Two widely used cards are the 3Com 3C509
and the Novell NE2000. These cards, typically connected to either an ISA or
PCI bus, use Ethernet controller chips, which are rather sophisticated. The full
functions of these Ethernet controller chips are often not required in embedded
systems. Although the controller chips are rather complex, they nevertheless can
be implemented in small 8-bit microcontroller systems with relative ease.

One such controller is the RTL8019AS produced by Realtek, which is the most
widely used with 70% world market share in 1999. Both controllers are simple
to use and relatively low cost. Packaged in a 100-pin PQFP (plastic quad flat
pack) measuring 14 by 20 mm the RTL8019AS has the following main features:

• 16 Kbytes SRAM
• IEEE802.3 compliant
• Software compatible with NE2000
• PnP
• Full-duplex
• Power down modes
• Supports BROM
• Diagnostics LED outputs

Another similar controller is the CS8900A by Cirrus Logic. Originally designed
as an ISA-bus Ethernet controller, it can be adapted for 8-bit microcontroller use.
A complete Ethernet circuit can be designed on a PCB of about 10 cm2. A block
diagram of this chip is shown below:

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 81
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The controller is accessed through either 8- or 16-bit ports. There are 8 registers
which can be memory mapped into the usual address space. Each register is 16
bits. For embedded system applications, those registered are accessed directly
by the microcontroller.

Address
Offset

I/O Register

0h R/W Receive/Transmit Data (Port 0)
2h R/W Receive/Transmit Data (Port 1)
4h W TxCMD (Transmit Command)
6h W TxLength (Transmit Length)
8h R Interrupt Status Queue
Ah R/W PacketPage Pointer
Ch R/W PacketPage Data (Port 0)
Eh R/W PacketPage Data (Port 1)

The Ethernet frame transmission is carried out as follows:

(1) To transmit a frame, first write a transmit command (00C0h) to the
TxCMD port and the length to the TxLength port. In the case of 8-bit
connection, each frame is done in two steps, a low byte and then a high
byte to the appropriate address. The BusTX register is then checked to
see if the transmit buffer is available. This is done by setting the Packet-
page Pointer with the correct value (in this case 0138h) and checking the
PacketPage Data (Port 0) for the appropriate status, in this case bit 8
(Rdy4TxNow flag).

(2) If a transmit buffer is available (Rday4TxNow flag set), data are written,
one byte at a time, to the Receive/Transmit Data (Port 0), two bytes in two
consecutive locations of the port.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 82
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The steps for frame reception are:

(1) Poll Rx Event Register to determine if a frame is ready to be read. This
is done by reading the RxStatus word from data port 0, high order byte
first.

(2) The frame length is then read from data port 0, again high order byte

first.

(3) The frame data is then read from data port 0, low order byte first. Repeat
until the whole frame is read.

One can see the simplicity of interfacing the controller from the following refer-
ence design for an 8-bit microcontroller using the CS8900A.

Two LED outputs are usually provided by the Ethernet controller to monitor line
status as shown in the diagram above. A LANLED is turned on (logical low)
when the controller transmits or receives a frame, or when a collision is detected.
It remains low until there has been no line activity for 6 ms.

A LINKLED is controlled by either the controller or the host. In the former, this
LED is turned on whenever there are valid 10Base-T pulses. In the latter case,
this LED is turned on whenever a HCB0 bit (a bit in a SelfCTL register) is set.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 83
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

Ethernet controllers such as the CS8900A have a built-in 10Base-T transceiver
including analogue and digital circuitry needed to connect to a simple isolation
transformer. A block diagram of the transceiver is as follows:

Fifth-order Butterworth low-pass filters are used for the receiver and transmitter.
The nominal 3 dB cutoff frequency of the filters is 16 MHz and the attenuation at
30 MHz is –27 dB.

In the 10Base-T transmitter, Manchester encoded data from the ENDEC (en-
coder decoder) passes through a predistortion circuit for wave shaping and pre-
equalization. The signal is then filtered before being fed to differential drivers
and finally brought out to the TxD+ and TxD- pins. Link pulses are sent in the
absence of transmit packets. These are positive pulses, one bit time wide, gener-
ated every 16 ms.

In the receiver, a squelch circuit determines if the incoming filtered signal is
valid (reaches the threshold). The receiver pair RxD+ and RxD- is monitored
continuously. If a packet or link pulse is not received within a time limit (150
ms), transmission of packet is disabled. The received signals are also checked
for polarity. In the case of polarity reversal, it is possible to set the controller to
correct for the reversal.

6.6 On Simple Laboratory Measurements Using Em-
bedded Processors

The really basic measurements in physics laboratories are simply time (t) and
voltage (V).

It is obvious that the time of occurrence of an event must be recorded. All other
physical parameters can be converted to voltages using transducers and appro-
priate electrical circuitries. A transducer may produce a change in electrical
voltage directly when the physical parameter varies (e.g. thermocouples and

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 84
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

piezoelectric transducers). However, it is more common to encounter a trans-
ducer that causes one or more of the basic electrical parameters (resistance R,
capacitance C and inductance L) to change.

Embedded systems, perhaps with a few additional components, are extremely
good at carrying out such measurements.

Event counting and time measurement used to be rather tedious and often expen-
sive because of the dedicated circuitries needed. They are now easily achieved,
with microsecond resolution, using common microcontrollers. Such time resolu-
tion is sufficiently high for a great variety of experiments in physics laboratories.
Interestingly, real-time measurements at microsecond resolution can be achieved
with very lost cost embedded systems such as PIC microcontrollers rather than
with a high end PCs because of the heavy software overhead and the non-real-
time nature of the OS in PCs.

Another nice feature of the small microcontrollers is the built-in analogue-to-
digital (ADC) function. Often four or eight multiplexed ADC inputs are avail-
able, typically with 8-bit to 10-bit resolution. Acquisition is often in the micro-
seconds or tens of microseconds using successive approximation technique.
These translate to about 20K – 200K samples per second, a rather impressive
performance for microcontroller costing about one dollar or one euro. There are
many situations when such ADCs are adequate in laboratories and an example
has been given earlier in a motion detector application.

In some situations, precision voltage measurements cannot be avoided. This was
again a costly and complicated business. However, the situation has changed
quite dramatically in the last few years. It is now possible to acquire a small
ADC chip with up to 17 bits resolution (using dual slope conversion) for about
$3 (Microchip TC500A) and together with a precision voltage reference IC
(MCP1525 at about $0.5), one has an ADC subsystem capable of measuring
physical parameters up to a precision of 1 part in 10^5, or 0.0008%. Some seri-
ous experiments can be done with such precision. One limitation of this low-cost
high-precision ADC is of course the speed of conversion. It can typically per-
form four to seven conversions per second.

As mentioned earlier, most physical parameters can be converted to voltages by
means of transducers and the job then boils down to measuring the electrical
voltages with an appropriate ADC circuit. However, in practice there is an
alternative and rather simple solution in place of the ADC, if the transducer is a
resistive or capacitive type. A rather versatile timer IC, 555, first introduced by
Signetics in 1971, has been used to measure resistance and capacitance with
good precision at very low cost. Even though the design is 30 years old now, a

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 85
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

large number of its derivatives are still being used widely for timing and measur-
ing of R and C. The success of this IC is due to its simple, elegant and ingenious
design that allows R and C to be measured accurately, independent of the IC
components and power supply variations. Typically, the accuracy is dependent
on only one or two external components over which the user has control. In the
astable multivibrator mode the period of oscillation is given by the famous rela-
tion:

t1 = 0.693 (R1 + R2) C
t2 = 0.693 (R2) C

T = 0.693 (R1 + 2 R2) C

where R1, R2 and C are the external components of the circuit.

Since the period t is independent of the supply voltage and the internal IC pa-
rameters, rather high precision can be achieved if the external components are
precise and stable. For example, to achieve an accuracy of 1 part in 10^6, one
only has to set the period to about one second and measure it with a resolution of
one microsecond. This is easily achieved with microcontrollers as we know.
Thus a capacitive transducers that has a nominal capacitance of 1 uF requires
only R1 and R2 to be in the range of M ohms and stable to within the accuracy
required by the user.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 86
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

By means of the 555 timer, we have transformed the problem of accurate meas-
urements of physical parameters to time measurements using low cost microcon-
trollers such as PIC, TINI or RabbitCore. An example using such as circuit for
temperature measurement is given below.

Being able to time physical events and read voltages is only doing part of the job
of an instrumentation/control system. In most cases, some kinds of outputs must
be carried out too. Once again, microcontrollers with its parallel ports are very
good at producing digital outputs and sending out digital control signals at mi-
crosecond precision. In physics laboratories, very often, software controllable
variable voltage sources are required. This calls for digital to analogue conver-
sion (DAC). It is typically done outside a microcontroller. Fairly low cost
DACs are available nowadays. For example, a 10-bit DAC, TC1321 from Mi-
crochip costing $1.5, can provide analogue voltage output up to about 100K
samples per second with an accuracy of 1 part in 1000 or 0.1%. This again is
sufficient for a rather large range of experiments in laboratories.

6.7 An Example of a Distributed Embedded System
A web-based distributed embedded system is given in this section to illustrate
the technique of interfacing simple legacy equipment via the Internet. For sim-
plicity, relatively small amount of hardware is involved. A RabbitCore is con-
nected to two legacy devices, each an HC11-based board, in a master slave
configuration where the RabbitCore is the master. To illustrate the technique of
implementing a small distributed system, these two legacy devices are linked to
the RabbitCore via an RS485 serial bus. Thus they may be as far apart as 4000
ft, simply connected via a pair of twisted wires.

Each HC-11 board has an input device and an output device. The input device is
a 555 timer while the output device consists of three LEDs of different colours.
The 555 timer can be used as (1) a thermometer, (2) a simple capacitance meter,
(3) a simple ohmmeter and (4) pulse generator. A rotary switch is used to select
one of these functions manually.

The RabbitCore communicates with the HC-11boards via a simple byte-oriented
protocol as shown below. The master (RabbitCore) sends a command or mes-
sage packet to the slaves whenever it wants to get temperature reading or control
LEDs.

The RabbitCore is also connected to an Ethernet using a 10BaseT UTP connec-
tion. A web server is implemented so that other PCs can access the legacy de-

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 87
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

vices using a standard web browser. If the RabbitCore is assigned an external
IP, then Internet access is possible.

Master Slave Protocol

The format of the packet sent from the RabbitCore (master) to the HC11 boards
(slaves) is as follows.

STX DN DT DATA ETX

The first byte is Start of Transmission (STX), followed by a Device Number
(DN) byte that specifies the device of interest. Thus DN=1 addresses the first
device and DN=2 the second and so on. A simple broadcast address (e.g. 0 or
FFh) may be assigned. The next field is Data Type to tell the addressed device
the function needed, e.g. “T” for temperature measurement, “R” for resistant
measurement, “C” for capacitance measurement and “F” for pulse width meas-
urement, “L” for controlling the LEDs. The DATA field is parameter or data
needed for a particular function, e.g. the LED pattern. Finally the packet is
terminated with an End of Transmission.

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 88
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

The slave devices respond with the following data packet:

STX DT DATA ETX

For simplicity error detection is done at the byte level using parity and framing
error detection. The whole packet can be further protected with packet level
check word such as checksum or CRC if necessary.

Web Server Software

The main program in the web server in RabbitCore consists of an HTML page
together with the necessary service-side include (SSI) and common gateway
function interface (CGI) functions. The HTML page shows a graphical user
interface depicting LEDs, switches (to toggle the LEDs), and temperature or
other readings. SSIs are used to perform specific server-side function such as
taking a temperature reading and displaying the value on the page. Examples:

<! - - #exec cmd=” r ead_devi ce0” - - >
This SSI tag requests the server to execute a r ead_devi ce0 function that
presumably will send a command to the slave device 0 to take a reading.

<! - - #echo var =” r eadi ng0” - - >
This SSI tag puts the reading0, which presumably is the returned reading from
the slave device 0, into the HTML output string.

 <i mg SRC=“ but -
t on. gi f ” ></ A>
This tag shows how a button image hyperlink generates an HTTP requests to a
CGI function t oggl e_gr een_l ed. cgi . This CGI function, upon execu-
tion, will send a toggle request to the slave device and also toggle the value of
the green LED on the HTML page, by using different gif images.

Client Side Software - Temperature Log

A simple program was implemented on a client PC to convert the system into a
temperature logger. A simple web client is implemented using an HTTP GET
request to the RabbitCore web server to get a temperature reading. The return
value in the web page is parsed and logged down in a temperature log file. If
this is executed periodically using, for example, the scheduler crond daemon in
Linux, we then have a temperature logging system. The temperature logs can

Embedded Systems Ang, Chu Suan

Second Workshop on Distributed Laboratory Instrumentation Systems 89
Abdus Salam ICTP, Trieste, Italy. October 20 – November 14, 2003

then be accessed in the raw form or presented to other web browser clients in the
form of graphs.

