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Abstract 
 

Several embedded system core components, ranging from small 
single chip microcontrollers to large CPU modules, are described 
in the first part of these lectures.  Embedded systems networking 
in a distributed environment is covered in the second part with a 
bias towards techniques used in the laboratory environment, tak-
ing into account both legacy and new systems. 
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1   Embedded System Processors and Modules 

1.1   Introduction 
The overall objectives of these lectures are (1) to introduce the current embedded 
system hardware components or subsystems that are both available and afford-
able, and (2) to introduce the rudiments of networking various small embedded 
systems including both new and old (legacy) components.  
 
The scene of embedded processors has changed significantly.  Motorola, Intel 
and Zilog are no longer the obvious choices for most small research or teaching 
laboratories.  Instead, Dallas Semiconductor, Atmel, Microchip, Rabbit Semi-
conductor and others are getting more and more competitive and have been 
widely adopted in laboratories. Several types of embedded processors suitable 
for embedded systems, spanning a wide range of capabilities and thus costs, are 
introduced here. 
 
It is of course impossible to deal exhaustively with the available processors or 
subsystems in the market in a few lectures.  One may tend to group them and do 
a generalized treatment.  But a general idea of hardware is not sufficient for 
building an embedded system.  At the end of the Workshop, it is hoped that 
participants will acquire sufficient knowledge to design and build their own 
systems.  General treatment will not achieve that.  The devil is in the detail. 
 
Hardware or hardware subsystems for five different processors, ranging from the 
very small and simple to the complex but affordable, are chosen as examples of 
processors in the different embedded system classes.   
 

1. PIC 
2. TINI 
3. Rabbit Core  
4. Etrax MCM  
5. ICOP PC/104 Embedded CPU Module 

 
The PIC family of microcontrollers by Microchip has been extremely successful 
for small embedded system applications.  The smaller members of PIC are under 
one dollar which is truly low cost.  Of course a tiny eight-legged MCU is not 
quite a full embedded system but you will be surprised how little more is re-
quired to make it so.  With an additional few dollars one can have a small PCB, 
connectors and a small line driver to make it a fully-fledged embedded system, 
which can be networked together via a serial bus such as the RS485.  It will 
count events, it will control LEDs, it will also sense switches, and it will even 
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read analogue voltages.  Many of them can be distributed over a large area and 
connected to a PC or bigger system using a serial bus which is just a twisted pair 
of wires.  This makes distributed systems in laboratories really feasible at low 
cost.  A PIC system as small as a match box costing under 5 dollars has really 
more or less the capabilities of the Motorola board used in the early microproc-
essor colleges that preceded this Workshop in the 1980s.   
 
TINI is the workhorse in this Workshop.  It is one of the rising stars in the not-
so-small embedded microcontrollers and it falls in the category of 50-100 dollar 
systems.  The processor together with its many virtues is dealt with separately in 
another series of lectures and shall not be covered here. 
 
The Rabbit Cores by Rabbit Semiconductor fall in the same category as the 
TINI.  With an early successful entry in the market, there are now many different 
configurations and accessories available to suit different requirements.  With an 
on-board Ethernet connector on the core module, the extension board can usually 
be quite simple, and therefore possible for participants to produce in their home.  
It is also a good candidate to use for interfacing to legacy serial equipment.  It is 
of course a rather powerful embedded system in its own right and can be used in 
many localized tasks that require hard real-time control, using a real-time kernel 
such as uCOS.  A software development environment under the Linux platform 
is being carried out by two members of the Workshop.  
 
It was realized several years ago that a complete system, including memories and 
peripherals on a single chip with processing power equivalent to a low end PC, 
was feasible.  Well, one such processor is now available.  It is the ETRRAX 
100LX Multi Chip Module (MCM) by Axis Communications.  At 70 dollars, the 
chip has the processing power and hardware resources to run Linux and other OS 
of similar complexity.  It is a good candidate for complex real-time systems in a 
distributed environment in view of its high level OS capabilities and low cost. 
 
It is not true that one has to go for the cheapest possible hardware all the time.  
Many a time it is wiser to acquire appropriate hardware to do the job irrespective 
of the cost.  Off-the-shelf subsystems are often more cost effective in the end 
because of the time saved in using them.  In embedded systems, one such group 
is the commercially available high end embedded CPU modules.  They are, in 
general, entire PCs in cards called single board computers (SBC).  Many stan-
dards and form factors have appeared over the years, including the STB Bus, 
PC/104, EBX, half-size SBC, and 3.5”  embedded module.  The large number of 
manufacturers each producing a myriad of boards makes the choice of such 
boards difficult. PC/104 is a small form-factor (3.6 x 3.8 inches, 90 x 96 mm) 
worldwide standard now gaining popularity.  It supports both ISA and PCI ex-
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pansion in self-stacking modules, at 0.6 inch spacing.  One such card is the 
Vortex86-6070 by ICOP Technology.   

 
If you compare the above board with that of Axis 82 using Etrax 100LX MCM, 
you will see that it is definitely more suitable for bigger jobs.  While the raw 
processing power of the two is comparable, the Vortex86 has significantly larger 
on-board memory.  Expansion is straightforward with PC/104 modules. A dis-
play controller is also embedded, which may be required in some embedded 
applications (e.g. mimic diagram or synoptic panel of the railway network on a 
high resolution colour LCD panel?).  
 
Basically such an embedded processor is more or less like a desktop PC in terms 
of computing power and peripherals such as mass storage and display. The pro-
gramming environment is practically identical to that of a desktop PC and cross 
development becomes straightforward or perhaps unnecessary for the system 
itself can be a development environment.  The differences lie in its compactness 
and economy – the whole embedded system can be held in a palm and probably 
costs half that of the desktop PC doing the same job. 
 

1.2 PICmicro® MCUs 
PICmicro® MCUs are RISC-based devices produced by Microchip Technology 
Inc. that have had tremendous success in replacing older microcontrollers in 
small embedded system applications in recent years.  The family of MCUs has 
more than 140 products featuring a variety of memory configurations, low volt-
age and power, small footprints and ease-of-use.  These products can be grouped 
into five families of 8-bit MCUs: 
 
PIC12CXXX/PIC12FXXX Family: 8-pin 12-bit/14-bit program word 
These are the smallest MCUs using RISC-based PICmicro® architecture housed 
in 8-pin DIP and SOIC packages. They are available with either a 12-bit or 14-
bit wide instruction set, a low operating voltage of 2.5V, small package foot-
prints, interrupt handling, a deeper hardware stack, multiple A/D channels, 
FLASH, OTP or ROM program memory, and EEPROM data memory.  
 
PIC16C5X Family: 12-bit program word 
These are very popular MCUs because they offer cost-effective solutions in 
many embedded system applications. They have a 12-bit wide instruction sets 
and are currently offered in 14-, 18-, 20- and 28-pin packages, in the SOIC and 
SSOP packaging options. Low-voltage operation, down to 2.0V for OTP MCUs, 
makes this family ideal for battery-operated applications. The PIC16HV5XX can 
operate up to 15 volts for use directly with a 12-volt battery. 
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PIC16CXXX/PIC16FXXX Family: 14-bit program word 
A new family that provides high performance Analog-to-Digital Converter capa-
bility at 12-bits for an MCU. The family offers a wide-range of options, from 18- 
to 68-pin packages as well as low to high levels of peripheral integration. This 
family has a 14-bit wide instruction set, interrupt handling capability and a deep, 
8-level hardware stack.  
 
PIC17CXXX Family: 16-bit program word 
This family has a 16-bit instruction word, enhanced instruction set and powerful 
vectored interrupt-handling capabilities. A powerful array of precise on-chip 
peripheral features provides the performance for more demanding applications. 
 
PIC18CXXX/PIC18FXXX Family: enhanced 16-bit program word 
Top of the line of the PIC devices.  The family has enhanced core features, ADC, 
32 level-deep stacks, and multiple internal and external interrupts sources. Other 
nice features include programmable Low Voltage Detect (LVD) and program-
mable Brown-Out Detect (BOD). The separate instruction and data busses of the 
Harvard architecture allow a 16-bit wide instruction word with the separate 8-bit 
wide data. The two-stage instruction pipeline allows all instructions to execute in 
a single cycle, except for program branches, which require two cycles. A total of 
77 instructions (reduced instruction set) are available. The MCU operates up to 
10 MIPS. 

1.3 An Example of PICmicro® MCUs PIC12F675 
This is a CMOS Flash-based 8-bit microcontroller using the Microchip PIC 
architecture housed in an 8-pin package and featuring 4 channels of 10-bit Ana-
log-to-Digital (A/D) converter, 1 channel Comparator, and 128 bytes of 
EEPROM data memory. It is used for small applications, especially when field 
re-programming is necessary. 
 
The RISC CPU has only 35 instructions and they execute in one cycle except 
branches which require two.  The clock or oscillator operates from DC to 20 
MHz while the instruction cycle is DC to 200 ns.  An 8-level deep hardware 
stack is available.  Addressing modes are Direct, Indirect, and Relative. 
 
Other secondary hardware related features are: 
 

• Internal and external oscillator options 
• External Oscillator support for crystals and resonators 
• 5 µs wake-up from SLEEP 
• Power saving SLEEP mode 
• Wide operating voltage range: 2.0V to 5.5V 
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• Industrial and Extended temperature range 
• Low power Power-on Reset (POR) 
• Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) 
• Brown-out Detect (BOD) 

• Watchdog Timer (WDT) with independent oscillator  
• Multiplexed MCLR/Input-pin 
• Interrupt-on-pin change 
• Individual programmable weak pull-ups 
• Programmable code protection 
• FLASH/EEPROM Cell 

- 100,000 write FLASH endurance 
- 1,000,000 write EEPROM endurance 
- FLASH/Data EEPROM Retention: > 40 years 

• Standby Current: 
- 1 nA @ 2.0V, typical 

• Operating Current: 
- 8.5µA @ 32 kHz, 2.0V, typical 
- 100µA @ 1 MHz, 2.0V, typical 

• Watchdog Timer Current 
- 300 nA @ 2.0V, typical 

• Timer1 oscillator current: 
- 4 µA @ 32 kHz, 2.0V, typical 

• Peripheral Features: 
-  6 I/O pins with individual direction control 
-  High current sink/source for direct LED drive 

• Analog comparator module with: 
- One analog comparator 
- Programmable on-chip comparator voltage reference (CVREF) 
- Programmable input multiplexing from device inputs 
- Comparator output is externally accessible 

• Analog-to-Digital Converter module: 
- 10-bit resolution 
- Programmable 4-channel input 
- Voltage reference input 

• Timer0: 8-bit timer/counter with 8-bit programmable prescalar 
• Enhanced Timer1: 

- 16-bit timer/counter with prescaler 
- External Gate Input mode 

• In-Circuit Serial ProgrammingTM (ICSPTM) via two pins 
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1.4 PIC12F675 Memories and Registers 
In PIC, memories are divided into program and data sections.  PIC12F675 has a 
13-bit program counter capable of addressing an 8K x 14 program memory 
space. Only the first 1K x 14 (0000h - 03FFh) is physically implemented.  Ac-
cessing a location above these boundaries will cause a wrap around within the 
first 1K x 14 space.  The RESET vector is at 0000h and the interrupt vector is at 
0004h. 
 
The data memory is partitioned into two banks, which contain the General Pur-
pose registers and the Special Function registers. The Special Function registers 
are located in the first 32 locations of each bank. Register locations 20h-5Fh are 
General Purpose registers, implemented as static RAM and mapped across both 
banks. All other RAM is unimplemented and returns ‘0’  when read. RP0 is the 
bank select bit. RP0 = 0 selects Bank 0; RP0 = 1 selects Bank 1. 
 
The register file is organized as 64 x 8 in the PIC12F629/675 devices. Each 
register is accessed, either directly or indirectly, through the File Select Register 
FSR. 
 
The Special Function registers are static RAM used by the CPU and peripheral 
functions for controlling the desired operation of the device.   Details of the core 
and peripheral assignment of these registers can be found in the data sheet.  
 
The STATUS register contains the arithmetic status of the ALU, the RESET 
status, and the bank select bits for data memory.  The STATUS register can be 
the destination for any instruction, like any other register. However, if the 
STATUS register is the destination for an instruction that affects the Z, DC or C 
bits, then the write to these three bits is disabled. These bits are set or cleared 
according to the device logic.  
 
The OPTION register is a read/write register that contains various control bits to 
configure TMR0/WDT prescaler, external GP2/INT interrupt, TMR0, and weak 
pull-ups on GPIO. 
 
The INTCON register is a read/write register that contains the various enable and 
flag bits for TMR0 register overflow, GPIO port change and external GP2/INT 
pin interrupts. 
 
The PIE1 register contains the peripheral interrupt enable bits.  The PIR1 register 
contains the interrupt flag bits.  The Power Control (PCON) register contains 
flag bits to differentiate between a: 

• Power-on Reset (POR) 
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• Brown-out Detect (BOD) 
• Watchdog Timer Reset (WDT) 
• External MCLR Reset 

 
The program counter (PC) is 13-bits wide. The low byte comes from the PCL 
register, which is a read/write register. The high bits (PC<12:8>) are not directly 
accessible and they come from PCLATH. On any RESET, the PC is cleared.  
 
The stack is 8 levels deep and 13 bits wide. It is not part of either program or 
data space and the stack pointer is not directly accessible. The PC is PUSHed 
onto the stack when a CALL instruction is executed, or an interrupt causes a 
branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE 
instruction execution. PCLATH is not affected by a PUSH or POP operation.  
The stack operates as a circular buffer. This means that after the stack has been 
PUSHed eight times, the ninth push overwrites the value that was stored from 
the first push. There are no status bits to indicate stack overflow or underflow.  
There are no instructions/mnemonics called PUSH or POP. These are actions 
that occur from the execution of the CALL,  RETURN, RETLW and RETFI E 
instructions, or the vectoring to an interrupt address. 
 
Indirect Addressing is achieved by addressing the INDF register which is not a 
physical register.  Any instruction using the INDF register will access data 
pointed to by the File Select register (FSR). Reading INDF itself indirectly will 
produce 00h. Writing to the INDF register indirectly results in a no operation 
(although STATUS bits may be affected). An effective 9-bit address is obtained 
by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>). 

1.5 PIC12F675 I/O Port 
There are six general purpose I/O pins available. Depending on which peripher-
als are enabled, some or all of the pins may not be available as general purpose 
I/O. In general, when a peripheral is enabled, the associated pin may not be used 
as a general purpose I/O pin. 
 
GPIO is a 6-bit wide, bi-directional port. The corresponding data direction regis-
ter is TRISIO. Setting a TRISIO bit (= 1) will make the corresponding GPIO pin 
an input (i.e., put the corresponding output driver in a Hi-impedance mode). 
Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output 
(i.e., put the contents of the output latch on the selected pin). The exception is 
GP3, which is input only and its TRISIO bit will always read as ‘1’ .  
 
Reading the GPIO register reads the status of the pins, whereas writing to it will 
write to the port latch. All write operations are read-modify-write operations. 
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Therefore, a write to a port implies that the port pins are read, this value is modi-
fied, and then written to the port data latch. GP3 reads ‘0’  when MCLREN = 1. 
The TRISIO register controls the direction of the GP pins, even when they are 
being used as analog inputs. The user must ensure the bits in the TRISIO register 
are set when using them as analog inputs. I/O pins configured as analog inputs 
always read ‘0’ . 
 
Every GPIO pin has an interrupt-on-change option and every GPIO pin, except 
GP3, has a weak pull-up option.  Control bits WPUx enable or disable each pull-
up.  Each weak pull-up is automatically turned off when the port pin is config-
ured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU 
bit (OPTION<7>).  
 
For enabled interrupt-on-change pins, the values are compared with the old value 
latched on the last read of GPIO. The ‘mismatch’  outputs of the last read are 
OR'd together to set the GP Port Change Interrupt flag bit (GPIF) in the INT-
CON register.  This interrupt can wake the device from SLEEP. The user, in the 
Interrupt Service Routine, can clear the interrupt by reading or writing of GPIO, 
or by clearing the flag bit GPIF.  A mismatch condition will continue to set flag 
bit GPIF.  Reading GPIO will end the mismatch condition and allow the flag bit 
GPIF to be cleared. 
 
Each GPIO pin is multiplexed with several other functions. The pins and their 
combined functions are briefly described below. 
 

• GP0/AN0/CIN+ 
- a general purpose I/O 
- an analog input for the A/D 
- an analog input to the comparator 

• GP1/AN1/CIN-/VREF 
- as a general purpose I/O 
- an analog input for the A/D  
- an analog input to the comparator 
- a voltage reference input 

• GP2/AN2/T0CKI/INT/COUT 
- a general purpose I/O 
- an analog input for the A/D 
- the clock input for TMR0 
- an external edge triggered interrupt 
- a digital output from the comparator 

• GP3/MCLR/Vpp 
- a general purpose input 
- as Master Clear Reset 
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• GP4/AN3/T1G/OSC2/CLKOUT 

- a general purpose I/O 
- an analog input for the A/D (PIC12F675 only) 
- a TMR1 gate input 
- a crystal/resonator connection 
- a clock output 
 

• GP5/T1CKI/OSC1/CLKIN 
- a general purpose I/O 
- a TMR1 clock input 
- a crystal/resonator connection 
- a clock input 

1.6 PIC12F675 Timers 
The timer/counter module Timer0 has the following features: 

• 8-bit timer/counter 
• Read/Write  
• 8-bit software programmable prescaler 
• Internal or external clock select 
• Interrupt on overflow from FFh to 00h 
• Edge select for external clock 

 
Timer mode is selected by clearing the T0CS bit (OPTION_REG<5>). In Timer 
mode, the Timer0 module will increment every instruction cycle (without 
prescaler). If TMR0 is written, the increment is inhibited for the following two 
instruction cycles. The user can work around this by writing an adjusted value to 
the TMR0 register.  
 
Counter mode is selected by setting the T0CS bit (OPTION_REG<5>). In this 
mode, the Timer0 module will increment either on every rising or falling edge of 
Pin GP2/T0CKI. The incrementing edge is determined by the source edge 
(T0SE) control bit (OPTION_REG<4>). Clearing the T0SE bit selects the rising 
edge. 
 
A Timer0 interrupt is generated when the TMR0 register timer/counter over-
flows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be 
masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) 
must be cleared in software by the Timer0 module Interrupt Service Routine 
before re-enabling this interrupt. The Timer0 interrupt does not wake the proces-
sor from SLEEP since the timer itself is shut-off during SLEEP. 
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An 8-bit counter is available as a prescaler for the Timer0 module, or as a post-
scaler for the Watchdog Timer. The prescaler assignment is controlled in soft-
ware by the control bit PSA (OPTION_REG<3>). Clearing the PSA bit will 
assign the prescaler to Timer0. Prescale values are selectable via the PS2:PS0 
bits (OPTION_REG<2:0>). The prescaler is not accessible directly. When as-
signed to the Timer0 module, all instructions writing to the TMR0 register (e.g., 
CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to 
WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog 
Timer.  The prescaler assignment is under software control and it can be changed 
on the fly during program execution. 
 
The PIC12F675 has a second timer module Timer1 with the following features: 

• 16-bit timer/counter (TMR1H:TMR1L) 
• Readable and writable 
• Internal or external clock selection 
• Synchronous or asynchronous operation 
• Interrupt on overflow from FFFFh to 0000h 
• Wake-up upon overflow (Asynchronous mode) 
• Optional external enable input (T1G) 
• Optional LP oscillator 

 
The Timer1 Control register (T1CON) is used to enable/disable Timer1 and 
select the various features of the Timer1 module.  There are three modes of 
operation for Timer1: 

• 16-bit timer with prescaler 
• 16-bit synchronous counter 
• 16-bit asynchronous counter 
 

In Timer mode, Timer1 is incremented on every instruction cycle. In Counter 
mode, Timer1 is incremented on the rising edge of the external clock input 
T1CKI. In addition, the Counter mode clock can be synchronized to the micro-
controller system clock or run asynchronously. In Counter and Timer modules, 
the counter/timer clock can be gated by the T1G input. If an external clock oscil-
lator is needed (and the microcontroller is using the INTOSC w/o CLKOUT), 
Timer1 can use the LP oscillator as a clock source. 
 
The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over 
to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit (PIR1<0>) is set. 
To enable the interrupt on rollover, these bits must be set:  

• Timer1 interrupt Enable bit (PIE1<0>) 
• PEIE bit (INTCON<6>) 
• GIE bit (INTCON<7>) 
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The interrupt is cleared by clearing the TMR1IF in the Interrupt Service Routine. 
 
Timer1 has four prescaler options allowing 1, 2, 4, or 8 divisions of the clock 
input. The T1CKPS bits (T1CON<5:4>) control the prescale counter. The pre-
scale counter is not directly read or written; and it is cleared upon a write to 
TMR1H or TMR1L. 
 
Time1 is in asynchronous counter mode if control bit T1SYNC (T1CON<2>) is 
set.  In this mode the timer increments without synchronizing to the internal 
clock.  And it will continue to run during SLEEP mode and generate an interrupt 
on overflow. 
 
A crystal oscillator circuit is built-in between pins OSC1 (input) and OSC2 
(amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). 
The oscillator is a low power oscillator rated up to 37 kHz.  It will continue to 
run during SLEEP. It is primarily intended for a 32 kHz crystal. 
 

1.7 PIC12F675 Analog Comparator 
The PIC12F675 has an analog comparator which compares the inputs at GP0 and 
GP1 by multiplexing. There is an on-chip Comparator Voltage Reference that 
can also be applied to an input of the comparator.  The comparator output is read 
through the CMCON register which is read only. In addition, GP2 can be con-
figured as the comparator output (digital). The Comparator Control Register 
(CMCON) contains the bits to control the comparator.  The analog input must be 
between Vss and Vdd and the source impedance not larger than 10K ohms. 
 
Both the comparator and voltage reference, if enabled before entering SLEEP 
mode, remain active during SLEEP. This results in higher SLEEP currents. 
 
The comparator interrupt flag is set whenever there is a change in the output 
value of the comparator. Software will need to maintain information about the 
status of the output bits, as read from CMCON<6>, to determine the actual 
change that has occurred. The CMIF bit, PIR1<3>, is the comparator interrupt 
flag. This bit must be reset in software by clearing it to ‘0’ . Since it is also possi-
ble to write a '1' to this register, a simulated interrupt may be initiated. 
 

1.8 PIC12F675 Analog-to-Digital Converter 
The PIC12F675 has a 10-bit analog-to-digital converter (A/D). Four analog 
inputs are multiplexed into one sample and hold circuit. The output of the sample 
and hold is connected to the input of the converter. The converter generates a 
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binary result via successive approximation and stores the result in a 10-bit regis-
ter. The voltage reference used in the conversion is software selectable to either 
Vdd or a voltage applied by the Vref pin.  
 
The ANS3:ANS0 bits (ANSEL<3:0>) and the TRISIO bits control the operation 
of the A/D port pins.  
 
The A/D conversion cycle requires 11 Tad. The source of the conversion clock is 
software selectable via the ADCS bits (ANSEL<6:4>). There are seven possible 
clock options: 

• Fosc/2 
• Fosc/4 
• Fosc/8 
• Fosc/16 
• Fosc/32 
• Fosc/64 
• FRC (dedicated internal RC oscillator) 

For correct conversion, the A/D conversion clock (1/Tad) must be selected to 
ensure a minimum Tad of 1.6 µs.  The minimum acquisition time is approxi-
mately 20 µs.  The A/D converter module can operate during SLEEP. 
 

1.9 PIC12F675 EEPROM Memory 
The PIC12F675 has 128 bytes of EEPROM data memory. This memory is not 
directly mapped in the register file space. Instead, it is indirectly addressed 
through the Special Function Registers. There are four SFRs used to read and 
write this memory:  

• EECON1 
• EECON2 (not a physically implemented register) 
• EEDATA 
• EEADR 

EEDATA holds the 8-bit data for read/write, and EEADR holds the address of 
the EEPROM location being accessed.  A byte write automatically erases the 
location and writes the new data (erase before write). The write time is con-
trolled by an on-chip timer. When the data memory is code protected, the CPU 
may continue to read and write the data EEPROM memory while the device  
 
EECON1 is the control register with four low order bits physically implemented. 
The upper four bits are not implemented and read as '0's. Control bits RD and 
WR initiate read and write, respectively. These bits cannot be cleared, only set, 
in software. They are cleared in hardware at completion of the read or write 
operation. The WREN bit, when set, will allow a write operation.  On power-up, 
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the WREN bit is clear. EECON2 is not a physical register. Reading EECON2 
will read all '0's. The EECON2 register is used exclusively in the Data EEPROM 
write sequence.  
 
Data memory can be code protected by programming the CPD bit to ‘0’ . When 
the data memory is code protected, the CPU is still able to read and write data to 
the Data EEPROM. It is recommended to code protect the program memory 
when code protecting data memory. This prevents anyone from programming 
zeroes over the existing code (which will execute as NOPs) to reach an added 
routine, programmed in unused program memory, which outputs the contents of 
data memory. Programming unused locations to ‘0’  will also help to prevent data 
memory code protection from being breached. 
 

1.10 PIC12F675 Special Features 
A number of features that make the PIC12F675 useful in real-time applications 
are also included: 
 

• Oscillator selection 
• RESET 
- Power-on Reset (POR) 

- Power-up Timer (PWRT) 
- Oscillator Start-up Timer (OST) 
- Brown-out Detect (BOD) 
• Interrupts 
• Watchdog Timer (WDT) 
• SLEEP 
• Code protection 
• ID Locations 
• In-Circuit Serial Programming 

 
The PIC12F629/675 has a Watchdog Timer that is controlled by configuration 
bits. It runs off its own RC oscillator for added reliability. There are two timers 
that offer necessary delays on power-up. One is the Oscillator Start-up Timer 
(OST), intended to keep the chip in RESET until the crystal oscillator is stable. 
The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms 
(nominal) on power-up only, designed to keep the part in RESET while the 
power supply stabilizes. There is also circuitry to reset the device if a brown-out 
occurs, which can provide an at least 72 ms RESET. With these three functions 
on-chip, most applications need no external RESET circuitry. The SLEEP mode 
is designed to offer a very low current Power-down mode. The user can wake-up 
from SLEEP through: 
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• External RESET 
• Watchdog Timer wake-up 
• An interrupt 

Several oscillator options are also made available to allow the part to fit the 
application. The INTOSC option saves system cost while the LP crystal option 
saves power.  
 
If the code protection bit(s) have not been programmed, the on-chip program 
memory can be read out for verification purposes. 
 
Four memory locations (2000h-2003h) are designated as ID locations where the 
user can store checksum or other code identification numbers. These locations 
are not accessible during normal execution but are read and written during Pro-
gram/Verify phase. Only the Least Significant 7 bits of the ID locations are used. 
 
In-Circuit Serial Programming is done with two lines for clock and data, and 
three other lines for: 

• power 
• ground 
• programming voltage 
 

This allows one to produce boards with unprogrammed devices, and then pro-
gram the microcontroller just before use. It thus allows the most recent firmware 
or a custom firmware to be programmed. The device is placed into a Pro-
gram/Verify mode by holding the GP0 and GP1 pins low, while raising the 
MCLR (Vpp) pin from VIL to VIHH. GP0 becomes the programming data and 
GP1 becomes the programming clock. Both GP0 and GP1 are Schmitt Trigger 
inputs in this mode. After RESET, to place the device into Programming/Verify 
mode, the program counter (PC) is at location 00h. A 6-bit command is then 
supplied to the device. Depending on the command, 14-bits of program data are 
then supplied to or from the device, depending on whether the command was a 
load or a read.  
 

1.11 PIC12F675 Instruction Set 
The PIC12F629/675 instruction set is highly orthogonal and is comprised of 
three basic categories:  

• Byte-oriented operations 
• Bit-oriented operations 
• Literal and control operations 
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Each PIC12F629/675 instruction is a 14-bit word divided into an opcode, which 
specifies the instruction type, and one or more operands, which further specify 
the operation of the instruction.  
 
One instruction cycle consists of four oscillator periods; for an oscillator fre-
quency of 4 MHz, this gives a normal instruction execution time of 1 µs. All 
instructions are executed within a single instruction cycle, unless a conditional 
test is true, or the program counter is changed as a result of an instruction. When 
this occurs, the execution takes two instruction cycles, with the second cycle 
executed as a NOP.  
 
Any instruction that specifies a file register as part of the instruction performs a 
Read-Modify-Write (R-M-W) operation. The register is read, the data is modi-
fied, and the result is stored according to either the instruction, or the destination 
designator ‘d’ . A read operation is performed on a register even if the instruction 
writes to that register. 
 
The following table is a summary of the instruction set: 

 
Mnemonic Description 

BYTE-ORIENTED FILE REGISTER OPERATIONS 
ADDWF  
ANDWF 
CLRF 
CLRW 
COMF 
DECF 
DECFSZ 
INCF 
INCFSZ 
IORWF 
MOVF 
MOVWF 
NOP 
RLF 
RRF 
SUBWF 
SWAPF 
XORWF 

f, d 
f, d 
f 
- 
f, d 
f, d 
f, d 
f, d 
f, d 
f, d 
f, d 
f 
- 
f, d 
f, d 
f, d 
f, d 
f, d 

Add W and f 
AND W with f 
Clear f 
Clear W 
Complement f 
Decrement f 
Decrement f, Skip if 0 
Increment f 
Increment f, Skip if 0 
Inclusive OR W with f 
Move f 
Move W to f 
No Operation 
Rotate Left f through Carry 
Rotate Right f through Carry 
Subtract W from f 
Swap nibbles in f 
Exclusive OR W with f 

BIT-ORIENTED FILE REGISTER OPERATIONS 
BCF 
BSF 
BTFSC 

f, b 
f, b 
f, b 

Bit Clear f 
Bit Set f 
Bit Test f, Skip if Clear 



Embedded Systems  Ang, Chu Suan 

Second Workshop on Distributed Laboratory Instrumentation Systems 17 
Abdus Salam ICTP, Trieste, Italy.  October 20 – November 14, 2003 

BTFSS f, b Bit Test f, Skip if Set 
LITERAL AND CONTROL OPERATIONS 

ADDLW 
ANDLW 
CALL 
CLRWDT 
GOTO 
IORLW 
MOVLW 
RETFIE 
RETLW 
RETURN 
SLEEP 
SUBLW 
XORLW 

k 
k 
k 
- 
k 
k 
k 
- 
k 
- 
- 
k 
K 

Add literal and W 
AND literal with W 
Call subroutine 
Clear Watchdog Timer 
Go to address 
Inclusive OR literal with W 
Move literal to W 
Return from interrupt 
Return with literal in W 
Return from Subroutine 
Go into Standby mode 
Subtract W from literal 
Exclusive OR literal with W 

 
The different fields are shown below: 
 

Field Description 
f  
W 
b  
k   
d 

Register file address (0x00 to 0x7F) 
Working register (accumulator) 
Bit address within an 8-bit file register 
Literal field, constant data or label 
Destination select; d = 0: store result in W, d = 1: 
store result in file register f. Default 1 

 

1.12 PIC12F675 Development Environment 
Program development support from the manufacturer of PICmicro®, Microchip 
Technology Inc. is good.  They consist of a number of hardware and software 
development tools: 

• Integrated Development Environment 
• Assemblers/Compilers/Linkers 
• Simulators 
• Emulators 
• In-Circuit Debugger 
• Device Programmers 
• Low Cost Demonstration Boards 
• Evaluation Kits 
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The manufacturer’s web site (http://www.microchip.com) has very comprehen-
sive information including product datasheets, product guides, application notes, 
prices and information on related products or systems.   
 
Because of the popularity of these devices, there are now a host of third party 
suppliers for hardware and software products based on these MCUs.  Amongst 
them is Basic Stamps produced by Parallax, Inc. (http://www.parallax.com). 
 
The company released a stamp sized microcomputer using PIC chip that was 
programmed in BASIC.  These BASIC Stamps have been very popular because 
of their ease of use, and relative low cost.  It allows many beginners to program a 
microcontroller for the first time.  Parallax’s customers include everyone from 
scientists and hobbyists to engineers and entrepreneurs. By 2002 there were over 
three million BASIC Stamps in use. 

There are also books aiming at introducing these devices and their use.  John 
Iovine’s “PIC Microcontroller Project Book” (McGraw-Hill, 2000, ISBN 0-07-
135479-4) is an introductory book on the subject.  It does not assume any prior  
knowledge on microcontrollers.  The author simplifies the programming of these 
devices by using a BASIC compiler produced by microEngineering Lab, Inc. 
(http://www.melabs.com). A dozen simple projects are described in the book, 
including simple I/O control, speech synthesizer, LCD display, sensor monitor-
ing and motor control.  
 
While the majority of compilers and development environment for PIC are MS 
Windows or DOS based, there are now versions available under Linux environ-
ment. Information can be found at: 
http://www.eg3.com/WebID/embedded/pic/blank/perspage/1-a-p.htm 

  
Finally, the cost of the PIC12F675 varies from about $1.25 to $1.65, depending 
on the type of packaging. A PDIP 300mil package type (PIC12F675-I/P) is 
available at $1.25 per piece.  
 

1.13 PIC Application – Motion Detector 
Small microcontrollers such as the PICs are well suited for a large range of 
applications in laboratories.  They are particular useful in implementing small 
real-time applications.  Real-time requirements mean tasks must be executed at 
precise times or over specific durations.  Such requirements are difficult to fulfil 
if there are a large number of concurrent tasks in the system.  However, if one 
can partition the system into small modules or sub-systems, the problem is much 
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simple to handle.  This is similar to the principle of encapsulation used in object 
oriented programming.   
 
Many tasks that requires very stringent timing, e.g. monitoring the output of a 
sensor accurately every second and doing so for exactly 10 ms each time, are 
very easy to implement using small microcontrollers which have crystal oscilla-
tors, timers and perhaps real-time clock.   
 
A one dollar microcontroller can easily resolve time to within microseconds and 
typically has long term time stability of one part in 105 using crystal oscillator.  
In the event that this produces unacceptable drift in a distributed environment, 
one simple solution is to synchronous with a master clock in the system, or 
implement isochronous clock for the entire distributed system. 
 
This section describes a small project using a PIC12LC672 microcontroller to 
illustrative the simplicity in using this type of device.  The timing requirement in 
the project makes it a small real-time system in a way. The objective is to con-
struct a simple, lightweight and low cost motion detector.  There are many situa-
tions when movements of personnel, animals or other objects in rooms under 
normal lighting conditions may be of interest.  And there are many ways of 
detecting such motions, ranging from applying video pattern recognition to using 
mechanical sensors or accelerometers.   
 
A conceptually very simple method is to monitor the change of light intensity 
with a sensor affixed to the object of interest, and hence reduce the status of 
whether the object is stationary or moving. This method is attractive because 
cadmium sulphide (CdS) light dependent resistors (LDRs) can be used as light 
sensor and they are small, low cost, readily available and easy to handle.  Several 
LDRs are shown in the picture below; the smallest one has a diameter of about 4 
mm and costs less than $1 each.  Unfortunately, a practical motion detector using 
a LDR requires a fair bit of signal processing.  Before the arrival of low cost 
microcontrollers such as PICs, analogue and digital circuits were used for this 
signal processing.  The situation has changed dramatically with the use of small 
microcontroller as embedded processor.  Most of the signal conditioning can be 
done in software now. 
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The common LDR has a nonlinear resistance range of just under 1kΩ (at 10 lux) 
to 20 MΩ (dark).  These are five orders of magnitude change, which is good.  
However, in normal use, one cannot expect changes from 10 lux to complete 
darkness when moving about in a room!  The resultant resistance change while 
one is moving about is considerably smaller.  By having a  tunnel or telescopic 
view from the LDR, the light and hence resistance change can be enhanced to a 
certain extent.  However, there is a limit to the improvement possible.  An over-
all change of 0.1 to 10 times in resistance is more likely the case.  This magni-
tude of change is sufficiently large for an 8-bit ADC to be used, since a resolu-
tion of 256 levels can be achieved with 8 bits.   
 
The difficulty lies in the dynamic range of the ambient light intensity.  Even in 
offices, the brightness of areas under lamps, when sunlight shines through win-
dows and at dark corners varies considerably, resulting in orders of magnitude 
change in resistance.  Thus when an 8-bit ADC is used in a straightforward 
manner, it will not function properly.  If a large dynamic range is set, it is insen-
sitive to changes due to normal movement.  On the other hand, if the dynamic 
range is small, it will not work in bright or dark areas which produce extreme 
resistance values. 
 
One possible solution to the dynamic range problem is to use potential divider 
arrangement with a fixed resistor connected in series with the LDR.  The poten-
tial across one of the resistors is measured with the ADC of the microcontroller.  
By switching in different fixed resistors, one can cover practically any range of 
resistance value of the LDR.  There are however a couple of shortcomings with 
this arrangement.  First, the fixed resistor will typically have resistance value of 
the same order of magnitude as the LDR.  This may mean unnecessary drain on 
power, which has to be kept as small as possible for such battery operated de-
vices. Second, most modern lighting in offices uses fluorescent lamps which 
produce fluctuating light intensity at twice the mains frequency (f) due to the 
mercury discharge characteristic.  Thus when the mains is 50-Hz, the light in a 
room actually various between zero and maximum every 10 ms or half the period 
(t= 1/f), even though not discernable to us due to persistence of vision of our 
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eyes.  This, however, is detected by the LDR.  Spot measurement of the resis-
tance of LDR thus reflects both flickering of the fluorescent lamp (when meas-
urement is taken) and motion of the sensor (where the sensor points to).   
 
An average or integration over multiple t (half period) is needed to overcome this 
problem.  This can be done by accurate sampling many times within the period 
mentioned and take the average. 
 
There is however a better solution to the problem.  An integration can be done 
with ease by using an RC charging technique.  Instead of using a DC potential 
arrangement, a capacitor is connected to the LDR in series. By charging the 
capacitor via the LDR over a period of t or multiple t, the voltage on the capaci-
tor is an indication of the integration over the period.  This will eliminate the 
fluctuating light output problem of fluorescent lamps. 
 
If different capacitances can be switched in, the dynamic range of five orders of 
magnitude can be achieved quick easily.  This arrangement has the added advan-
tage that even when the LDR resistance is low, the current through the circuit is 
kept low, limited by the charging characteristic of the RC circuit.   
 
A practical arrangement using the above technique for motion detection is shown 
below.  The circuit consists of a PIC12LC672, an LDR, an LED, two MOSFETs, 
4 capacitors and a resistor.  The whole circuit is powered by a 3 V lithium ion 
coin battery such as the CR2032.   One output pin GP2 is used to control the 
indicator LED; the series resistor R2 limits the current through the LED to sev-
eral mA.  The Vref output provides the charging current through the LDR while 
the voltage across the capacitor(s) is measured by analog input pin AN1.  GP0 is 
configured as an input to discharge the capacitors.  GP4 and GP5 act as output, 
controlling the MOSFET switches for capacitors C3 and C4. 
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It can be seen that the LDR is always connected in series with C2 to ground.  
Two other capacitors C3 and C4 may be switched in (in parallel to C2) via MOS-
FET Q1 and Q2 respectively.  The voltage across the capacitors and ground is 
measured by the ADC of the microcontroller.  Vref controls the charging of the 
capacitor(s).  Normally it is kept at 0 V.  When a measurement is needed, it is 
turned to high for t second thus charging the capacitor(s) for exactly half the 
period of the mains.  The ADC reading is taken and the resistance of the LDR 
can be deduced.   
 
Adaptive measurement to cover a wide dynamic range by selectively switching 
in C3 or C4 when necessary.  When it is bright and LDR resistance low, C2 will 
charged up to saturation rapidly, well within t second.  If this condition is de-
tected, C3 is switched in before the next sampling.  The same procedure is re-
peated for C4 if necessary.  Similarly, C3 and C4 may be switch out when the 
ADC reading is too low, indicating too high a LDR resistance. 
 
After each measurement, the capacitors are discharged to 0V by turning GP0 to 
low. 
 
The LED acts as an indicator in this simple example.  It is turned on momentar-
ily when motion is detected.   
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Since light intensity is sensed in this circuit, we can use it to monitor changing 
lighting condition.  Interesting enough, this may pose a problem when the circuit 
is used as a motion detector.  Changing ambient light intensity due of switching 
on or off of lamps, gradual brightening or dimming of rooms due to external 
light variation (e.g. sun rising) may be misconstrued as resulting from motion. 
This can be avoided by appropriate algorithms.  Gradual changing of room 
brightness may be software filtered.  The rate of change of the light input can be 
used as a criterion.  The sudden switching on and off of lamps will produce 
strictly step changes in light intensity which again can be identified by software. 
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2 Microprocessors by Rabbit Semiconductor 
A Z-80 based high performance 8-bit microcontroller Rabbit 2000® was first 
introduced in 1999 by Rabbit Semiconductor, a fabless semiconductor company 
in Davis, California.  The subsequent RabbitCore line of products introduced in 
2001 has been very well received and it is one of the most popular MCU mod-
ules for embedded systems.  Now a relatively wide range of cores are available 
that are very cost effective while offering a wide variety of form factors, memory 
capacities and functionalities. 
 
Amongst the major attractions of this family of processors are the relatively large 
memory size of 1 Mbytes, Ethernet and TCP/IP support, and an integrated soft-
ware development environment using Dynamic C. 
 
Like other semiconductor manufacturers, Rabbit Semiconductor offers a range of 
products from simple components to full development systems.  They are Rabbit 
Microprocessors, Microprocessor Core Modules, Development Kits, Peripherals 
and Accessories, and Software.  Due to the complexity of the range of Rabbit 
Microprocessors, they are no longer simple to implement.  These processors, by 
virtue of their processing power and resources, are generally large chips with 100 
or 128 leads using quad flat package (QFP) or ball grid array (BGA) housings.  
These surface mount packages are generally beyond the means of ordinary labo-
ratories that are not working in microelectronics.   
 
Microprocessor core modules that contain the processor and necessary peripheral 
components including connectors on a small PCB are therefore more suitable for 
laboratory use.  It turns out that the core modules produced by manufacturers 
such are Rabbit Semiconductor are generally very cost effective.  We shall there-
fore introduce the core modules instead of the basic processors. 
 

2.1 RabbitCores 
Two series of core modules based on the Rabbit 2000 and 3000 processors re-
spectively are produced to cater for a wide range of applications and require-
ments.  The RCM2000 cores have the following main features: 

• Rabbit 2000 processor 
• 256K Flash memory 
• 128-512K SRAM 
• 40 general purpose I/O 
• 18 – 25 MHz clock 
• 1.9”  x 2.3”  x 0.5”  
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• 5V operation 
 
The smallest member, RCM2020 with 128K SRAM, operates at 18.432 MHz 
and is retailing at $39 per unit while the RCM2000 with 256K SRAM and 
25.8MHz clock is at $69.  These are extremely powerful modules requiring very 
few external components for many laboratory or other applications. 
 
One of the major attractions of the RabbitCores is the incorporation of 10Base-T 
Ethernet capability including an RJ45 socket, as in the case of RCM2200 series.  
Based on the same processor, the other features are similar, other than a smaller 
number (26) of I/O pins are available to the users.  
 
The high end series by Rabbit Semiconductor is the RCM3000.   This series has 
10Base-T Ethernet, up to 512K each of Flash and SRAM, encoder inputs, PWM 
outputs, and pulse capture and measurement capabilities. Two 34-pin connection 
headers provide 52 digital I/O shared with 6 serial ports and alternate I/O fea-
tures. It also features a battery-backed real-time clock, glueless memory and I/O 
interfacing, and low power "sleepy" modes (<2mA). A fully enabled slave port 
permits easy master-slave interfacing with another processor-based system, and 
an alternate I/O bus can be configured for 8 data lines and 6 address lines sharing 
with parallel I/O.  
 

2.2 RCM3700 Hardware 
We shall now look at the hardware of one of the RabbitCores, RCM3700, in 
more detail.  A picture and the dimensions are shown below.  The main hardware 
and physical specifications are given in the manufacturer’s datasheet and are 
tabulated below for reference. 

                  
 

Parameter RCM3700 RCM3710 

Microprocessor Low-EMI Rabbit 3000 at 22.1 MHz 

Ethernet Port 10Base-T, RJ-45, 2 LEDs 
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Flash Memory 512K 256K 

SRAM 512K 256K 

Serial Flash Memory 1Mbyte 

Backup Battery 
Connection for user-supplied backup battery 

(to support RTC and SRAM) 

General-Purpose I/O 
33 parallel digital I/0 lines: 

• 31 configurable I/O 
• 2 fixed outputs 

Additional I/O Reset 

Auxiliary I/O Bus 
Can be configured for 8 data lines and 

5 address lines (shared with parallel I/O lines), 
plus I/O read/write 

Serial Ports 

Four 3.3 V CMOS-compatible ports configurable 
as: 

• 4 asynchronous serial ports (with IrDA) 
or 

• 3 clocked serial ports (SPI) plus 1 HDLC 
(with IrDA) or  

• 1 clocked serial port (SPI) plus 2 HDLC 
serial ports (with IrDA)  

Serial Rate Maximum asynchronous baud rate = CLK/8 

Slave Interface 

A slave port allows the RCM3700 to be used as 
an intelligent peripheral device slaved to a master 
processor, which may either be another Rabbit 
3000 or any other type of processor 

Real-Time Clock Yes 

Timers 
Ten 8-bit timers (6 cascadable), one 10-bit timer 
with 2 match registers 

Watchdog/Supervisor Yes 

Pulse-Width Modula-
tors 

4 PWM output channels with 10-bit free-running 
counter and priority interrupts  
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Input Capture/ 
Quadrature Decoder 

2-channel input capture can be used to time input 
signals from various port pins 

• 1 quadrature decoder unit accepts inputs 
from external incremental encoder mod-
ules or  

• 1 quadrature decoder unit shared with 2 
PWM channels  

Power 
4.75-5.25 V DC 

100 mA @ 22.1 MHz, 5 V; 78 mA @ 11.05 
MHz, 5 V 

Operating Tempera-
ture 

-40°C to +70°C 

Humidity 5% to 95%, noncondensing 

Connectors One 2 x 20, 0.1" pitch 

Board Size 
1.20" x 2.95"" x 0.88" 

(30 mm x 75 mm x 22 mm) 

Price $59 $49 

 
A simplified block diagram of the RCM3700 is show below: 
 

 
 
The various ports and I/O lines are shown in the following diagram. 
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Most of the I/O lines on the Rabbit 3000 microprocessor are dual function. The 
factory defaults and the alternate configurations are shown in the following table: 
 

Pin Pin 
Name Default Use Alternate Use Notes 

1-8 PA[7:0] Parallel I/O 

External data 
bus 
(ID0-ID7) 
Slave port data 
bus 
(SD0-SD7) 

External 
Data Bus 

9 PF1 Input/Output 
QD1A 
CLKC 

 

10 PF0 Input/Output 
QD1B 
CLKD 

 

11 PB0 Input/Output CLKB  

12 PB2 Input/Output 
IA0 
/SWR 

External 
Address 0 
Slave port 
write 

Header 
J1 

13 PB3 Input/Output 
IA1 
/SRD 

External 
Address 1 
Slave port 
read 
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14 PB4 Input/Output 
IA2 
SA0 

External 
Address 2 
Slave Port 
Address 0 

15 PB5 Input/Output 
IA3 
SA1 

External 
Address 3 
Slave Port 
Address 1 

16 PB7 Input/Output 
IA5 
/SLAVEATTN 

External 
Address 5 
Slave Port 
Attention 

17 PF4 Input/Output 
AQD1B 
PWM0 

 

18 PF5 Input/Output 
AQD1A 
PWM1 

 

19 PF6 Input/Output 
AQD2B 
PWM2 

 

20 PF7 Input/Output 
AQD2A 
PWM3 

 

21 PC0 Output TXD 
Serial Port 
D 

22 PC1/PG2 Input/Output RXD/TXF 

Serial Port 
D 
Serial Port 
F 

23 PC2 Output TXC 
Serial Port 
C 

 

24 PC3/PG3 Input/Output RXC/RXF 

Serial Port 
C 
Serial Port 
F 
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25 PE7 Input/Output 
I7  
/SCS 

External 
Address 7 
Slave Port 
Chip Select 

26 PE5 Input/Output 
I5  
INT1B  

 

27 PE4 Input/Output 
I4  
INT0B  

 

28 PE1 Input/Output 
I1 
INT1A  

I/O Strobe 
1 
Interrupt 
1A 

29 PE0 Input/Output 
I0  
INT0A  

I/O Strobe 
0 
Interrupt 
0A 

30 PG7 Input/Output RXE 

31 PG6 Input/Output TXE 

Serial Port 
E 

32 /IOWR Output  
External 
write strobe 

33 /IORD Input   
External 
read strobe 

34 PD4 Input/Output ATXB 

35 PD5 Input/Output ARXB 

Alternate 
Serial Port 
B 

36 /RES Reset output Reset input 

Reset out-
put from 
Reset 
Generator 

37 VBAT    

38 GND    

39 +5 V    

Header 
J1 

40 GND    
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2.3 RCM3700 Memory & I/O Bus 
The core module typically comes with onboard memories large enough for your 
application.  In this case they are 512 KB of flash memory and 512 KB of 
SRAM (RCM3700) or 256 KB each (RCM3710).  A Flash Memory Bank Select 
jumper configuration option based on 0 Ω surface-mounted resistors exists at 
header JP1 on the RCM3700 modules. This option, used in conjunction with 
some configuration macros, allows Dynamic C to compile two different co-
resident programs for the upper and lower halves of the 512K flash in such a way 
that both programs start at logical address 0000. This is useful for applications 
that require a resident download manager and a separate downloaded program.  
 
An additional 1 MB of serial flash memory is available for mass storage pur-
poses such as data and web pages. 
 
Thus the address lines (A0-A18) and all the data lines (D0-D7) are routed inter-
nally to the onboard flash memory and SRAM chips. However, I/0 write 
(/IOWR) and I/0 read (/IORD) are available for interfacing to external devices.  
 
Parallel Port A can be used as an external I/O data bus to isolate external I/O 
from the main data bus. Parallel Port B pins PB2-PB5 and PB7 can also be used 
as an auxiliary address bus.  
 
It is noted that /RES is an output from the reset circuitry that can be used to reset 
other peripheral devices. This pin can also be used to reset the microprocessor.  

2.4 RCM3700 Serial, Ethernet & Programming Ports 
The core module provides five serial ports designated as Serial Ports A, C, D, E, 
and F. All five serial ports can operate in an asynchronous mode up to the baud 
rate of the system clock divided by 8. An asynchronous port can handle 7 or 8 
data bits. A 9th bit address scheme, where an additional bit is sent to mark the 
first byte of a message, is also supported.  
 
Serial Port A is normally used as a programming port, but may be used either as 
an asynchronous or as a clocked serial port once the RCM3700 has been pro-
grammed and is operating in the Run Mode.  
 
Serial Ports C and D can also be operated in the clocked serial mode. In this 
mode, a clock line synchronously clocks the data in or out. Either of the two 
communicating devices can supply the clock. Serial Ports E and F can also be 
configured as HDLC serial ports. The IrDA protocol is also supported in SDLC 
format by these two ports.  
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It is noted that Serial Ports C and D, and Serial Port F share some common pins 
on header J1 and hence only one of the two can be used at any one time. The 
choice of port(s) depends on the application.  Serial Ports C and D are for clock 
serial links while Serial Port F is for an HDLC serial link.  
 
The core module has an Ethernet port (J3) complete with an RJ45 socket.  Two 
LEDs are placed next to the RJ-45 Ethernet socket, one to indicate an Ethernet 
link (LINK) and one to indicate Ethernet activity (ACT).  The RJ-45 connector is 
shielded to minimize EMI effects to/from the Ethernet signals.  
 
Serial Port A has special features that allow it to cold-boot the system after reset. 
Serial Port A is also the port that is used for software development under Dy-
namic C.  The RCM3700 is accessed using a 10-pin program header labeled J2. 
The programming port uses the Rabbit 3000's Serial Port A for communication, 
and is used for the following operations: 

• Programming/debugging  
• Cloning  
• Remote program download/debug over an Ethernet connec-

tion  

The Rabbit 3000 startup-mode pins (SMODE0, SMODE1) are available at the 
programming port so that an externally connected device can force the 
RCM3700 to start up in an external bootstrap mode. The RCM3700 can be reset 
by Dynamic C via the /RESET line on the programming port.  
 
The clock line for Serial Port A is presented to the programming port, which 
makes synchronous serial communication possible.  
 
The programming port is used to start the RCM3700 in a mode where the 
RCM3700 will download a program from the port and then execute the program. 
It is also used during debugging.  The programming port may also be used as an 
application port when necessary. 
 
All three clocked Serial Port A signals are available as  

• a synchronous serial port  
• an asynchronous serial port, with the clock line usable as a 

general CMOS input  
• two general-purpose CMOS inputs and one general-purpose 

CMOS output.  

The two startup-mode pins, SMODE0 and SMODE1, are available as general 
CMOS inputs after they are read during the initial boot-up. The logic state of 
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these two pins determines the startup procedure after a reset. The status pin may 
also be used as a general-purpose CMOS output.  
 
For convenience, the RCM3700 is automatically set into program mode when 
the PROG connector on the programming cable is attached, and automatically 
into run mode when no programming cable is attached.  The DIAG connector of 
the programming cable may be used on header J2 of the RCM3700 Prototyping 
Board with the RCM3700 operating in the run mode. This allows the program-
ming port to be used as a regular serial port.  
 
It is noted that the RCM3700 board does not have any serial transceivers directly 
on the board. These transceivers may be incorporated on the motherboard the 
RCM3700 is mounted on. The manufacturer has Prototyping Boards with 
RS232, RS-485 and IrDA transceiver chips mounted.  However, it is quite 
straightforward to build your own. 

2.5 RCM3700 Special Features 
The RCM3700 uses the Rabbit 3000 microprocessor's internal clock doubler that 
allows half-frequency crystals to be used to reduce radiated emissions. The 22.1 
MHz frequency specified for the RCM3700 is generated using an 11.06 MHz 
resonator. The clock doubler may be disabled if 22.1 MHz clock speed is not 
required. This will reduce power consumption and reduce radiated emissions.  
 
Another special feature is spectrum spreading. The Rabbit 3000 uses a spectrum 
spreader unit that modifies the clock by shortening and lengthening clock cycles. 
The effect of this is to spread the spectral energy of the clock harmonics over a 
fairly wide range of frequencies. This limits the peak energy of the harmonics 
and reduces EMI that may interfere with other devices as well as reducing the 
readings in government mandated EMI tests. The spectrum spreader has two 
operating modes, normal spreading and strong spreading. The spreader can also 
be turned off.  

2.6 A  RabbitCore Application – Mass Storage using 
MultiMediaCard (MMC) 
 
In a later section of this series of lectures, a demonstration system is set up using 
a Rabbit Core as a web server accessible in the Internet.  The Rabbit Core acts as 
an embedded Ethernet Module talking to two separate legacy boards (HC11) via 
an RS485 network.  Each legacy board is a thermometer using a thermistor with 
a 555 timer circuit to measure resistance.  It demonstrates quite a few elements in 
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a distributed laboratory instrumentation system.  In this section an memory 
extension to the RabbitCore is described.  It is hoped that it provides some useful 
information for those who require mass data storage in small embedded systems. 
 
Embedded processors such as RabbitCores and TINIs are really powerful work-
horses in embedded systems around laboratories.  Many laboratory experiments 
and projects do not require any more processing power than what is available in 
these processors.  However, being 8-bit processors, these systems usually lacks 
mass storage capabilities.  RabbitCore is typically limited to 1MB of Flash and 
SRAM.  The inclusion of an additional 1 MB of serial Flash memory in the 
newer core such as RCM3700 is a much welcomed feature.   
 
There are many situations when more mass storage capacity is required.  A field 
data logging system is a classic example.  While the process of data logging is 
straightforward and can be handled by a RabbitCore easily, the amount of data to 
be collected often prove too much for such a core module.  If the embedded 
system can be networked to other computers, data collected by the former can be 
transferred to the mass storage of a PC.  A better solution is to implement local 
mass storage on the embedded system itself. 
 
In PCs, hard disks have been standard mass storage all along. Unfortunately, 
connecting standard hard disks to a RabbitCore system, while tempting in terms 
of costs, is rather complicated in both software and hardware.  One is thus forced 
to use the PC itself as a secondary storage.  This is acceptable in many applica-
tions.  However, it leaves an umbilical cord between the embedded system and 
the PC. 
 
The recent crop of miniature USB Flash memories, emulating disk drives (called 
by different names including Pen Drive) in PC systems, is another tempting 
solution. Unfortunately, yet again, the implementation of USB host in systems 
like RabbitCore or TINI  is difficult if not practically impossible.   
 
There is another solution though.  It turns out that commercially available Flash 
memories designed typically for consumer products such as digital cameras are 
readily available and are affordable.  For a few tens of dollars one can get a 128 
Mbytes of Flash card. There are several types of such cards in the market.  One 
candidate best suited for interfacing to a small embedded system is the MultiMe-
diaCard (MMC) because it requires only a few lines for interfacing.  A high 
speed serial interface using Serial Peripheral Interface (SPI) allows data to be 
transferred.   
 
This section describes a small project to incorporate an MMC mass storage 
device on a RabbitCore thereby enhancing the power of this 8-bit embedded 
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processor significantly.  With the possible of having 512 MB of removable 
storage on the RabbitCore the scope of application instantly widens enormously. 
 

 
 
The MMC, introduced by SanDisk and Siemens/Infineon in 1997, is a highly 
integrated flash memory that is accessed via a dedicated serial interface, opti-
mized for fast (up to 20Mbps) and reliable data transmission. It is a low-power 
device with a very small form factor (32mm x 24mm x 1.4mm) weighing ap-
proximately 1.5g. It has been chosen as the storage medium of choice because it 
provides an inexpensive, mechanically robust storage medium in card form, yet 
having a simple interface with minimal hardware requirements. 
 
The MMC includes an on-card microcontroller, which manages the interface 
protocols, data storage and retrieval, error correction code, defect handling, 
diagnostics, power management and clock control. All device and interface 
configuration data are stored on the MMC itself. It has a seven pin serial inter-
face, which allows for easy integration into any design regardless of the micro-
processor/microcontroller used. 
 
The standard MMC interface with external processor implements the MultiMe-
diaCard protocol, which offers a high performance serial link designed for 
maximum scalability and configurability. In addition to the MMC interface, the 
MMC also supports an alternate communication protocol based on the Serial 
Peripheral Interface (SPI) standard. The SPI standard defines the physical link 
only, and not the complete data transfer protocol. The MMC SPI implementation 
uses a subset of the MultiMediaCard protocol and command set. It is intended to 
be used by systems that require a small number of cards (typically one) and have 
lower data transfer rates compared to MultiMediaCard protocol based systems. A 
comparison of these two modes of communication and their different pin as-
signments are given in the two tables below. 
 

MultiMediaCard/SPI Comparison 
MultiMediaCard SPI 
Three-wire serial data bus (Clock, Command, 
Data) 

Three-wire serial data bus (Clock, 
Data In, Data Out) + card specific 
chip-select signal 

Up to 64k cards addressable by the bus protocol Card selection via a hardware chip-
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MultiMediaCard SPI 
select signal 

Easy card identification Not available 
Error protected data transfer Optional 
Sequential and single/multiple block oriented data 
transfer 

Single/multiple block read/write 

 
MultiMediaCard Pad Definition 

MultiMediaCard Mode SPI Mode Pin # 

Name Description Name Description 
1 RSV Reserved for future use CS Chip Select 
2 CMD Command/Response DI Data In 
3 VSS1 Ground VSS1 Ground 
4 VDD Supply voltage VDD Supply voltage 
5 CLK Clock SCLK Clock 
6 VSS2 Ground VSS2 Ground 
7 DAT Data DO Data Out 

 
Although the SPI mode has a lesser set of features, the design effort is less.  We 
use this mode in the RabbitCore implementation.  The interface between the 
MMC and the RabbitCore is shown below.  

 

 
 
As can be seen above, the hardware interface between the MMC and the host 
processor is rather straightforward. The program required to implement the basic 
communication with the MMC in SPI mode is relatively simple. In SPI mode, 
the communication always starts by driving the /SS line low and keeping it in 
that state until a complete MMC-host processor two-way transaction is done. All 
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commands to the card are six bytes long. The first byte is always the “command”  
byte. After the command byte is sent, it must always be followed by four argu-
ment or address bytes, with the most significant byte sent first. Even if the com-
mand has no arguments, four “null”  or “don't care”  bytes must be sent. The last 
byte to be sent is the CRC byte. In SPI mode, the default mode of operation is 
“non-protected”. This means that CRC calculation is disabled and the command 
protocol can be satisfied by sending an $FF in the CRC byte. As in the case of 
the argument bytes, the CRC byte must be sent even if CRC checking is disabled 
to ensure that the command sequence is six bytes long. 
 
CMD ARG1 

(MSB) 
ARG2 ARG3 ARG4 

(LSB) 
CRC 

 
The challenge in incorporating the MMC in a RabbitCore system is not in the 
device level program, but rather in the implementation of a file system to be used 
with it. Custom file systems may be implemented for simple storage require-
ments in a closed system. However, in many applications, it is often desirable to 
be able to directly access the data written to the MMC from a PC.  Thus a stan-
dard file system should be implemented if possible. 
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3 ETRAX System-on-Chip by Axis Semicon-
ductor 
While RabbitCores and TINIs are very powerful and low cost microcomputers 
that are very useful in a lot of embedded system application, there are neverthe-
less limitations in terms of memory and processing power when compared to 
standard desktop PCs.  Thus the last few years saw several manufacturers an-
nounced or attempted to bring up truly small and highly integrated modules that 
will run operating systems such as Linux and have memory and peripheral de-
vices similar to those of PCs.  System on a chip in other words.  One such chips 
is available now – the ETRAX 100LX MCM 2+8 by Axis Semiconductor. 
 
The history of the this chip dates back to 1990s when Axis Semiconductor de-
signed a series of ASIC chips for their business in the IBM mainframe and 
printer protocol converter market. ETRAX which is an acronym of Ethernet, 
Token Ring, Axis, is a 32-bit RISC chip first appeared in 1993, the first system-
on-a-chip for networking applications. Subsequent development led to the inclu-
sion of SCSI and memories.   
 
The companies now market two chips.  The ETRAX 100LX has a 100 Mbps 
Ethernet and runs at 100 MIPS, besides having MMU, USB, synchronous serial 
ports and SDRAM support.  The most sophisticated member is the ETRAX 
100LX MCM 2+8.  In this chip there are 2 MB flash and 8 MB SDRAM which 
will run embedded Linux.  With a built in MMU, ETRAX 100LX runs Linux 2.4 
kernel as is, without resorting to uClinux patches. More memories are being 
planned and shall be available soon. 
 

3.1 ETRAX 100LX  
 
 

 
 
This 100-MIPS 32-bit 0.25µm RISC chip has very impressive specifications: 
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• 32 bit RISC CPU core  
• 10/100 Mbps Ethernet controller  
• 4 asynchronous serial ports  
• 2 synchronous serial ports  
• 2 USB ports  
• 2 Parallel ports  
• 4 ATA (IDE) ports  
• 2 Narrow SCSI ports (or 1 Wide)  
• Support for SDRAM, Flash, EEPROM, SRAM 
• $40 

The CPU has 32-bit data and address format and has 15 general purpose 32-bit 
registers.  The instruction set is optimised for 16/32 bit operation.  The clock 
speed is 100 MHz.  There are User and Supervisor mode for restricted access and 
selection of appropriate address mapping by the MMU. 
 
The Memory Management Unit (MMU) is really a feature that distinguishes this 
type of CPU from smaller ones.  The MMU allows 4 GB of virtual address space 
for each user process with space protection.  There is also an 8-KB cache mem-
ory. 
 
Network access capability is of course another key feature in the new crop of 
embedded chips.  In ETRAX, the Ethernet controller supports both 100 Mbps 
and 10 Mbps, compatible with IEEE 802.3 and Fast Ethernet standards. 
 
A high speed CPU is not sufficient if the system has to do any data handling 
jobs.  Direct memory access is a must.  There are 10 DMA channels each with 
64 bytes FIFO for low latency and high throughput data transfer from internal 
and external units.  A total of 200 MBytes per second bandwidth is available. 
DMA and cache feature helps to allow bursty access to and from memory to take 
full advantage of SDRAM and EDO DRAM performance. 
 
The four built in asynchronous serial ports operate over a wide range of speed.  
The internal baud rate is programmable from 48 Hz to 1.5625 MHz and the 
external baud rate can be double that.  Fixed baud rates are available from 300 
Hz to 1.8432 MHz and at 6.25 MHz which is non-standard.  Synchronous serial 
transfer is possible with clock rates from 32 kHz to 4.096 MHz.  There are two 
such ports. 
 
As serial connection is rapidly dominated by Universal Serial Bus (USB), the 
EXTRAX offers two such ports.  It supports USB 1.1 Host and Device mode 
operation for control and bulk traffic only.  The hardware supports dynamic 
connect/disconnect, suspend/resume and remote wakeup. 
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Two parallel I/O ports are available and can be used through register access or 
internal DMA.  Many protocols are supported: 

• IBM XT/AT compatible Centronics 
• IBM PS/2 compatible Centronics 
• HP Fast Mode 
• IBM Fastbyte 
• IEEE 1284 – byte, nibble, ECP and EPP 
• Parallel port wide – 16 bit, 12 MBytes per second 

ETRAX supports either two 8-bit or one 16-bit SCSI interface in both synchro-
nous and asynchronous modes, including SCSI-3 and FAST-20.  However, 
external bus drivers are needed.  This bus is multiplexed on the same pins as the 
EIDE/ATA-2 ports, the parallel ports and two of the serial ports. 
 
To support disk drives and other devices using the EIDE/ATA-2 interface, the 
ETRAX supports 4 such ports or up to 8 disk drives.  This bus is on the same 
pins as the SCSI, the parallel ports and two of the serial ports. 
 
The built-in bus interface and memory controllers work with SDRAM, EDO 
DRAM, SRAM, EPROM, parallel EEPROM and FlahsPROM.  Thu bus can be 
configured to 16 or 32 bits.  It also supports 64-bit SDRAM DIMM and SO-
DIMM modules, Double Data Rate SDRAM, and power save mode. 
 
Bootstrapping is a necessary feature.  The ETRAX supports loading to internal 
cache memory from parallel port, serial port, and network interface.  Code, 
loaded to cache, can subsequently be used to enable the downloading of program 
to Flash PROM or other external memory. 
 
In most embedded system applications, timers and watchdog are essential for 
numerous real-time operation and to ensure that the system can reset itself in 
exceptional circumstances.  There are two 8-bit timer with programmable clock 
from 381 Hz to 12.5 MHz. Or fixed timer clocks from 300 Hz to 1.842 MHz, 
and a nonstandard clock at 6.25 MHz. There is also a watchdog timer. 
 
Other features of the EXTRAX includes two general purpose port each having 8 
programmable I/O pins.  The internal clock of 100 MHz is derived from a 30-
MHz external clock using PLL technique.  Interrupt controls include internal 
interrupts due to I/O ports, network interface, DMA and timer, and external 
interrupts from IRQ and NMI. 
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Power dissipation of the chip with outputs open is from 350 mW to 610 mW.  
The operating voltage is from 3 to 3.6 V.  The ambient temperature range is 0 to 
70°C. 
 
The chip is 27x27x2.15 mm in size.  However, it has 256 pins housed in a Plastic 
Ball Grid Array (PBGA) package.  The special requirements in handling BGA 
devices make it difficult to use such chips at CPU level.  In view of this, Axis 
Communications produces development boards or systems which come complete 
with all the necessary peripheral devices and connectors.   
 

3.2 ETRAX 100LX MCM 2+8  
 

 
 
This is the true system-on-chip version produced by Axis Communications.  It 
boasts a full Linux computer on a single chip. This is made possible by the in-
corporation of 2 MB Flash memory and 8 MB SRAM.  The Multi-Chip Module 
(MCM) uses High Density Packaging (HDP) technology that integrate naked 
dies (i.e. chips without their capsules, e.g. ETRAX, RAM, Flash) and other 
components (like resistors and capacitors) to provide very compact overall mod-
ule.  It is built around the ETRAX 100LX system-on-chip processor. All neces-
sary components for building a networked embedded system are included.  In a 
256-pin PBGA package measuring only 27x27 mm there are these components: 
 

• ETRAX 100LX System-On-Chip 
• 2Mbyte of Flash memory 
• 8Mbyte of SDRAM memory 
• Ethernet transceiver 
• Reset circuitry 
• ~50 passive components (resistors and capacitors) 
 

The only mandatory external components are a 3.3 V power supply and a 20 
MHz crystal oscillator.  Additional flash memory and SRAM are not mandatory 
but may be added externally to the module. 
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Due to the additional components, power consumption increases to 900 mW 
(typical) or 1100 mW (maximum).  This module is priced at $75. 
 

3.3 Axis 82 - Development Board 
As mentioned earlier, the ETRAX 100LX or the MCM, while having practical 
all that’s required to form a complete system, the PBGA package make it impos-
sible for most people to access the I/O!  Axis 82 is the solution to this problem.  
It is a development board that has all the hardware including indicators, connec-
tors and even a casing as in case of Axis 83.  However, an equally important 
additional feature is the inclusion of more Flash memory and SRAM.  This is 
needed because the on-chip 2MB + 8MB memories are really bare bone mini-
mum for the Linux environment.  There is hardly any memory left for user appli-
cations.  The main features of this 140x118 mm board are as follows: 
 
ETRAX 100LX MCM 2+8  
FLASH: 6 MByte (2MB inside the MCM chip)  
RAM: 16 MByte SDRAM, 32-bit interface (8MB inside the MCM chip)  
DUAL Ethernet 10/100 MBit Twisted Pair  
One using the internal full-speed 100MBit controller in the ETRAX  
One using a Ethernet-to-USB controller, thus limiting the theoretical maximum 
speed to 12MBit (i.e. the max speed of USB 1.1)  
RS-232 serial ports, 9 pin male D-SUB  
(with RX, TX, RTS, CTS, DTR, DSR, CD and RI signals)  
1 RS-485/RS-422 serial port on a screw terminal block  
(1 combined RX/TX pair and 1 TX pair)  
Power LED, Eth0 LED, Eth1 LED  
TEST button  
RESET button  
BOOT button - to enable network boot  
Power: 9-24 V AC (or DC) on a standard connector and on screw terminal block  
1 parallel port on pin headers (3.3 V, with buffers) 
Full access to system bus and other important pins on ETRAX 
Shipped with Axis embedded Linux port 
� 
 
This Axis 82 development board is priced at $299 while the Axis 83 which has a 
casing is at $309. 
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3.4 ETRAX 100LX Software and Development Tools 
There is comprehensive software development support offered by the manufac-
ture at the following website http://developer.axis.com/doc/index.html.  The 
Linux kernel 2.4 for ETRAX 100LX including device drivers for all ETRAX 
ports and the GNU CC including compiler, debugger and other tools, are avail-
able for download. 
 
The SDK includes a number useful applications.  Many are standard applications 
compiled for the ETRAX platform, but some are specifically developed for the 
ETRAX platform.  They are tabulated below: 
 

Init Implements a mini init daemon. 
Telnetd Simple Telnet server - allows you to log on to the devel-

oper board. 
Inetd This program invokes all internet services as needed. 
in.telnetd Telnet server. This is the default telnet server. 
Sftpd Lightweight FTP server. 
Sftpclient Lightweight FTP client. 
shells/ash Ash is a fairly small Bourne compatible shell which 

offers the power and flexibility of shell scripting for an 
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embedded system. 
Boa High performance web server with support for CGI. 
Smtpclient This program is a minimal SMTP client that takes an 

email message body and passes it on to a SMTP server 
(default is the MTA on the local host). 

Bootblocktool Sets/gets bootblock parameters using a specified device. 
hwtest/IO  Input / Output test utility. 
hwtest/serial  Program to test serial port functionality. 
hwtest/hwtest Program for setting or getting status from parallel port 

serial port, button, and some other useful devices. 
sysklogd Sysklogd provides two system utilities which provide 

support for system logging and kernel message trapping. 
Support of both internet and Unix domain sockets en-
ables this utility package to support both local and re-
mote logging. 

editors/easyedit An easy to use text editor. 
editors/editcgi This is a simple CGI based editor and file browser. 
login Login is used when signing onto a system. It can also be 

used to switch from one user to another at any time (most 
modern shells have support for this feature built into 
them, however). 

dhcp Complete DHCP client. 
busybox Busybox combines tiny versions of many common 

UNIX utilities into a single small executable. 
ipsetd Daemon for setting IP address with ARP+Ping in user-

space. 
iptables Implements a NAT (Network Address Translation) 

firewall. 
tools/gdbserver The gdbserver will help you debug user applications 

running on the Developer Board for Bluetooth 
utils/eraseflash Flash erasing utility. 
utils/readbits Utility for reading bits on ETRAX general purpose I/O 

(GPIO) ports. 
ppp-2.4 PPP daemon, which negotiates with the peer to establish 

the link and sets up the PPP network interface. 
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4 PC/104 & PC/104-Plus 
Hardware used in embedded systems is by no means limited to the very small 
microcontrollers and highly integrated system-on-chip modules introduced in the 
previous lectures.  In many embedded systems, PCs are used as embedded proc-
essors.  It is the application rather than the hardware that defines embedded 
system processors.  
 
PCs – whether the desktop, notebook, tablet or even the pocket version – are 
indeed widely used in embedded systems, especially in laboratories.  It is often 
simpler or even cheaper to use the standard PC as an embedded processor be-
cause of the accessibility, software support and availability of a host of periph-
eral devices.  However, there are shortcomings too.  Amongst them are size, 
reliability and possibly cost.  
 
In view of these disadvantages of standard PCs as embedded processors, many 
manufacturers have come out with a myriad of compatibles, mostly in the form 
of single board computers (SBCs).  They are typically PCs shrunk into small 
packages, offering more or less the power of the PC together with standard pe-
ripherals, and capable of running most PC software.  There are hundreds if not 
thousands of different SBCs in the market catering for a very wide range of 
embedded system applications.  Some are specifically designed to operate in 
very harsh industrial environments; others offer a cheaper solution than the 
standard PCs.  Yet others have small form factors and are lightweight.   
 
One family of small form PC compatible embedded processors that is gaining 
market share is the PC/104 and PC/104 Plus.  In 1992, an industry wide effort 
led to the setting up of a PC/104 Consortium consisting of 12 companies, which 
then produced the standard.  Now over 100 companies are members of the Con-
sortium.  The initial standard was to offer an open design that had the power and 
flexibility of the PC but small in size and suitable for embedded system applica-
tions. 
 
PC/104 technology is based on the ISA bus that was used in PCs.  In fact, the 
104 in the name is derived from the number of conductors used in the ISA bus.  
This 16-bit bus system is really very powerful, and is more than sufficient for 
most embedded system applications.  Thus despite the fact that the IEEE P996 
ISA Bus Specification has been withdrawn and major PC manufacturers have 
stopped manufacturing ISA bus systems, the PC/104 continues to flourish in the 
embedded system world. 
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In order to tap the power of the higher speed, 32-bit PCI bus, the Consortium 
added the PC/104-Plus standard in 1997.  However, this does not replace but 
merely complements the PC/104. 

4.1 PC/104 and PC/104-Plus Standards 
In essence, the PC/104 standards are self stacking modules with 104-pin ISA or 
120-pin PCI bus connectors that allow multiple modules to be added without 
using backplanes or motherboard.  Each module is only 3.6 x 3.8 in size and 
power consumption is typically 1 to 2 watts per module.  PC/104 modules can 
also be arranged on a big custom carrier board instead of being stacked.  In such 
cases application specific interfaces can be connected to various modules easily. 
 
PC/104-Plus is compatible with PC/104 and supports 32-bit PCI interconnection.  
An additional 120-pin small pitch 2-mm connector is included on the other side 
of the ISA connector.  Data throughput can now reach 132 MBytes/second which 
is 26 times that of PC/104.  Bus drive current is 3 mA minimum while loading is 
700 uA maximum. Five modules including the base CPU module can be stacked. 
The following diagrams show the physical dimensions and the stacking ar-
rangement. 
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Technical specifications of PC/104 and PC104-Plus can be downloaded from the 
PC/104 Consortium website: 
http://www.pc104.org/technology/pc104_tech.html 
 
Since the functional specifications are really based on ISA and PCI standards, 
these two open standards should also be referred to. 

 

4.2 PC/104 & PC/104-Plus Products 
Almost every SBC manufacturer is producing PC/104 and PC/104-Plus products, 
including CPU and most peripheral modules.  In the case of PC/104-Plus, high 
performance SBC, full motion video modules, high speed LANs, interfaces 
including 100BaseT, USB, IEEE-1394, high speed data acquisition, etc. are 
either available or being developed. 
 
As a reference, one PC/104 SBC, Vortex86-6071, from ICOP Technology Inc., 
Taiwan is outlined below: 
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This is an embedded Vortex86 166 MHz system-on-chip CPU module with a lot 
peripherals included as can be seen from the manufacturer’s specifications: 
 

Chipset  Embedded Vortex86, 166MHz System-on-Chip CPU  
Real Time Clock with lithium battery backup  

BIOS  AMI BIOS  
RAM  128MB SDRAM on board  
I/O  Enhanced IDE interface x 1 

RS232 port x 3 
RS232/RS485 port x 1 
Parallel Port x 1 
FDD interface x 1 
USB ports x 2 

Bus Interface  ISA and PC/104 standard compliant  
Connector 2.0mm 44-pin box header for IDE 

2.0mm 10-pin box header x 4 
2-pin header for RS-485 
2.0mm 26-pin box header 
2.0mm 34-pin box header 
2.54mm USB ports x 2 
Audio connectors: 
4-pin header for Mic-in,4-pin header for line-in,4-pin 
header for line-out 
10-pin box header for VGA connection 
44-pin box header for LCD connection 
5-pin box header for AT-keyboard 
5-pin box header for PS-2 Mouse 
RJ-45 connector for 10/100Base-T 

Display  SiS550 embedded SOC, AGP Rev 2.0 Compliant 
Shared system memory area up to 128MB 
CRT/LCD display 
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Resolution up to 1920 x1440 true colors  
LAN  Realtek 8100B single chip  

Full-duplex transfer mode, doubles effective band-
width 
NE2000 compatible with built-in 16KB RAM buffer 
Throughput: 10/100 Mbps  

Audio Full compliant with AC97 CODEC V2.1 
Internal MIC-in, Line-in and Line-out Interface 

Power Require-
ments  

Single Voltage +5V @1.4A  

Dimensions  90(L) x 96(W) mm (3.54" x 3.78") 
Watch Dog 
Timer 

Software Watchdog Timer 
Three 8254 Compatible Programmable 16-bit Count-
ers 

Operating Tem-
perature  

-20~+60°C  
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5   Embedded Systems Networking in 
Distributed Environment 

5.1   Introduction 
There are two broad methods of connecting embedded systems in a distributed 
environment: 
 

(1) Non-Internet connection 
(2) Internet connection 

 
Before the proliferation of the Ethernet and Internet, connecting embedded sys-
tems in a distributed environment such as a laboratory or a factory was usually 
achieved by conventional parallel or serial connections.  Parallel connections 
were suitable for short-range use, typically within a few meters, limited by diffi-
culties in driving synchronous multiple signals and the cost of cabling. The 
advantage of parallel connection was obviously higher data rates on a parallel 
bus.  Parallel bus standards at Mbps rates were implemented when the standard 
serial link was still at Kbps. 
 
While there are dedicated parallel bus standards designed for specific industries 
or environments such as the General Purpose Interface Bus (GPIB), the Com-
puter Automated Measurement And Control (CAMAC) and the Small Computer 
System Interface (SCSI), the most common method is the parallel port, used 
typically for printer connection.  This is simple to use and is readily available, 
being a standard I/O port in all PCs.  The newer version (IEEE 1284) available in 
most new PCs is being used for many purposes other than connecting to a 
printer. 
 
However, by far the most important networking technique in a distributed envi-
ronment beyond the size of a test bench is, of course, the serial bus, exemplified 
by the RS-232-C (Recommended Standard number 232, revision C from the 
Electronic Industry Association) and its related standards.  Like the parallel port, 
the use of this serial technique is extremely handy.  There are two serial ports 
available in most standard desktop PCs – COM1 and COM2.  Users and manu-
facturers alike are taking advantage of these two serial ports for almost every 
type of equipment.   
 
The limitations of the standard PC serial ports are data rate and distance, being 
20 Kbps and <50 feet.  Related standards such as RS-485 eliminate such limita-
tions to a great extent while still maintaining the simplicity of the standard.  For 
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example, RS-485 is capable of 4000 feet and 10 Mbps performance.  It has an 
added advantage of a bus configuration which allows it to connect to 32 trans-
mitters and 32 receivers.  (For comparison, the RS-232 is a point-to-point con-
nection which can only connect two machines together.)  Although existing OS 
in PCs would not be able to handle continuous 10 Mbps data rate, the 4000-foot 
transmission distance is a welcome feature in a distributed laboratory environ-
ment. 
 
As newer equipment and gadgets (especially video devices) demand higher and 
higher data rates, there are a couple of high-speed serial communication stan-
dards that have been introduced to the PC world in recent years.  Universal Serial 
Bus (USB) provides for peripheral speeds of up to 1.5 Mbps for low-speed de-
vices and up to 12 Mbps for full-speed devices. The latest USB 2 specification 
increases the data rate to 480 Mbps.  The cable length is limited to 5 metres, 
extendable to 25 metres using 4 hubs or with active cables.  A total of 127 de-
vices may be connected. 
 
A competing standard to USB is the IEEE 1394 (FireWire or iLink) which has a 
maximum data rate of 400 Mbps and is cable of connecting up to 63 devices.  At 
this dazzling speed, full frame rate video can be transmitted from cameras to PCs 
directly through a thin cable.  The cable length is 4.5 metres, again extendable 
with hubs and repeaters. 
 
Some applications call for wireless connection.  This is provided by IrDA, a 
standard defined by the Infrared Data Association. It specifies wireless transfer 
via infrared radiation at 875 nm.  IrDA 1.1 has a maximum data rate of 1.152 
Mbps.  At this rate, the range is small, typically less than 20 cm. 
 
The recent ubiquitous deployment of the Ethernet and Internet, together with the 
availability of low cost embedded systems capable of functioning as web servers, 
has changed everything in networking equipments in a distributed environment.  
It is now the age of the Internet!  In this respect there are two approaches.  One is 
to forget your old equipment and design new web-based ones and network them.  
The other is to add a web-enabled front-end or intermediary to your existing 
equipment and thus make it accessible via the Internet.  Prudence and reality tell 
us that there are many situations where existing equipment cannot be abandoned 
or redesigned.  Thus the second approach is an important one.  Indeed, many 
companies dedicated to providing such hardware and software have appeared in 
the last couple of years.  Their solutions are typically very attractive and cost 
effective, and we shall look at a couple of them. 
 
If you embark on an entirely new project then you have two options in hardware 
for your embedded systems.  If you are lucky enough to have a large budget, use 
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a PC or one of its derivatives (SBC and embedded PC) as your embedded proc-
essor.  The interface hardware can also be purchased as standard plug-in boards 
on the PCI (Peripheral Component Interconnect) bus.  This eliminates hardware 
design completely.  There are numerous suppliers producing a plethora of I/O 
boards.  You can almost always find what you want provided you can afford it.  
We shall not look into this area in these lectures. 
 
Sometimes a PC is an overkill for your applications or your budget simply can-
not afford using PCs.  Until recently, building web-based applications under such 
situations has been difficult.  One often settled for the non-Internet option.  
Rather affordable hardware is currently available in the market either as compo-
nents or ready built modules that are web-enabled.  We shall look into this area.   

5.2   Non-Internet Connection 
The hardware or physical layer specifications of a few common methods of 
connecting embedded systems are described in this section.  They are 
 

(1) The parallel port  
(2) The serial port 
(3) Selected high-speed ports 

5.3   The Parallel Port  
Originally intended for printer connection, this port has undergone several revi-
sions and it now provides bi-directional connection to a host of equipment.  The 
initial printer port in the IBM PC in 1981 was really designed for unidirectional 
connection to the relatively slow dot-matrix printers at the time.  It transferred 
data at 150 kilobytes/second and was software intensive.  Lack of design stan-
dards forced a cable limitation of 6 feet.  In 1987, IBM PS/2 was introduced and 
this PC enhanced the parallel port by adding bi-directional data flow. 
 
Printer and computer manufacturers started to enhance the parallel port standard 
in 1991 and this resulted in two improved standards: EPP (Enhanced Parallel 
Port) and ECP (Extended Capability Port).  EPP was introduced by Intel, Xircom 
and Zenith Data Systems and was used primarily by non-printer peripherals such 
as CD-ROMs, tape drives, hard disks etc.  ECP was introduced by Hewlett Pack-
ard and Microsoft and was used primarily by new printers and scanners. 
 
In 1994 the current IEEE 1284 standard, “Standard Signalling Method for a Bi-
directional Parallel Peripheral Interface for Personal Computers” , was released.  
This standard encompasses all the other modes of parallel port, viz. 
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(1) Compatibility mode – Centronics or standard mode 
(2) Nibble mode – 4 bits at a time using status line for data 
(3) Byte mode – 8 bits at a time using data line 
(4) EPP – bi-directional, up to 2 Mbytes/second 
(5) ECP – bi-directional, DMA transfer, up to 2 Mbytes/second 

 
The standard specifies a cable length of 10 metres. 
 
The original parallel port consists of 17 signal lines falling into three groups – 
Data (8 lines), Status (5 lines) and Control (4 lines).  The remaining 8 lines in the 
DB25 connector port are grounded.  For compatibility, the 17 signal lines are 
maintained even in the advanced EPP and ECP mode.  However, the function 
and designation of the lines are modified according to the new requirements of 
the modes.  
 
In the original PC, the data lines are output-only lines and thus they cannot be 
used to read data from peripheral devices.  (The nOC output control pins of the 
74LS374 D-type flip-flops are permanently grounded to enable all output lines.)   
To get round this problem, the Nibble mode uses 4 of the 5 status (input) lines to 
read 4 bits at a time from the peripheral devices.  While this is more complicated 
and slow, it has the advantage of compatibility with the oldest PCs.   
 
Most PCs produced after 1987 have the ability to control the direction of the data 
port thus making bi-directional transfer of 8-bit data using the same port possi-
ble.  This is the Byte mode. 
 
For the first three modes of communication – Compatibility, Nibble and Byte – 
handshaking of data between the PC and peripheral is carried out by the CPU 
and it takes several clock cycles to transfer a single byte or nibble.  This limits 
the data rate to 150K bytes per second for byte-wide transfer and to 50K bytes 
per second for nibble-wide transfer.  These data rates are however quite respect-
able for many laboratory applications.  Because of their simplicity, they are used 
in many embedded system applications.  Hence, we shall look into the actual 
transfer cycles in these modes. 
 
The EPP mode enhances the performance of the parallel port by increasing the 
data rate to 2M bytes per second while still maintaining compatibility with the 
standard port.  A read or write cycle is done within one ISA I/O cycle.  This is 
achieved with a local protocol between the host and peripheral using a state 
machine and the necessary hardware to carry out interlocking handshakes.  To 
enhance the performance, the EPP protocol defines four types of data transfer 
cycles: (1) data write, (2) data read, (3) address write and (4) address read.  
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While data cycles and address cycles are intended for transferring data and ad-
dress/command respectively, they are really just two transfer channels and can 
be used flexibly by device manufacturers. 
 
The EPP data rates are sufficient for use with network adapters, hard disks, other 
tape storage devices and CD ROMs.  Thus many device manufacturers adopted 
the EPP mode swiftly as an optional data transfer method. 
 
The ECP came even later as another high performance parallel port mode.  It is 
specifically designed with printers or similar devices in mind.  The protocol 
allows for (1) data and (2) command cycles in both forward (write) and reverse 
(read) directions.  In this respect it is similar to the EPP.  However, it includes 
several features that are very specific to implementations but powerful.  They are 
(1) Run Length Encoding (RLE) data compression, (2) FIFOs on both forward 
and reverse channels and (3) DMA and programmed I/O for the host register 
interface. 
 
The RLE, with a compression ration up to 64:1, is useful for printers and scan-
ners that handle raster images with large amounts of identical data (blank or 
black).  The channel addressing concept is intended for addressing multiple 
logical devices using a single physical port.  A good example of such a require-
ment is the combined Fax/Scanner/Printer machine.   
 
The following tables show the pin designations and other relevant information 
for the first three modes of operation.  These are modes that are widely used by 
embedded systems implementers in the laboratory.  The remaining two modes, 
EPP and ECP, while more advanced, are not as commonly used in simple labora-
tory applications.   When high data rates are required, it is now advisable to 
implement high-speed serial link interfaces such as USB or FireWire. 
 
Compatibility Mode (or Standard Parallel Port Mode) 
 

Pin Signal I/O Reg Description 
1 nSTROBE  Out CR-0 Falling edge strobes data byte into printer  

2 D0  Out DR-0 Bit 0 of data 

3 D1  Out DR-1 Bit 1 of data 

4 D2  Out DR-2 Bit 2 of data 

5 D3  Out DR-3 Bit 3 of data 

6 D4  Out DR-4 Bit 4 of data 

7 D5  Out DR-5 Bit 5 of data 

8 D6  Out DR-6 Bit 6 of data 

9 D7  Out DR-7 Bit 7 of data 

10 nACK  In SR-6  Low pulse indicates byte received 
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11 BUSY  In SR-7  High indicates printer busy  

12 PE In SR-5  High indicates out of paper  

13 SELECTED  In SR-4  High indicates printer online  

14 nAUTOFEED  Out CR-1 
Low to insert line-feed on each carriage 
return 

15 nERROR  In SR-3  Low to indicate printer error  

16 nINIT Out CR-2 Low to reset printer  

17 nSELECT  Out CR-3 Low to select printer  
18-
25 

Ground    Ground 

CR - Control Register 
DR - Data Register 
SR - Status Register 
 
 
Compatibility Mode Data Transfer Cycle 
 
 

 
 
 
Nibble Mode (Reverse Transfer) 
 

Pin  SPP Signal Nibble Mode I/O Description 
1 nSTROBE  Not used Out Not used 

2 D0  Out 

3 D1  Out  

4 D2  Out  

5 D3  Out  

6 D4  Out  

7 D5  Out  

8 D6  Out  

9 D7  

 
 
 
 
Not used 

Out  

Not used 

10 nACK  PtrClk 
In 

Low indicates valid nibble  
High in response to HostBusy going high 

11 BUSY  PtrBusy In  Data bit 3 then bit 7  

12 PE AckDataReq In Data bit 2 then bit 6 

13 SELECTED  Xflag In Data bit 1 then bit 5 
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14 nAUTOFEED  HostBusy 
Out 

Low indicates host ready for nibble 
High indicates nibble received 

15 nERROR  nDataAvail In Data bit 0 then bit 4 

16 nINIT NINIT Out Not used 

17 nSELECT  1284Active Out High indicates 1284 mode 
18-25 Ground  Ground  Ground 

 
Nibble Mode Data Transfer Cycle 

 
 
 
 
On the peripheral side, the reverse transfer in the Nibble mode can be imple-
mented with a quad 2-line-to-1 multiplexer such as the 74LS157 as shown in the 
following diagram. 

 
 
Byte Mode 
 

Pin  SPP Signal Byte Mode I/O Description 
1 nSTROBE  HostClk Out Pulse low to indicate byte received 

2 D0  D0  I/O Bit 0 from peripheral to host 

3 D1  D1  I/O Bit 1 from peripheral to host 

4 D2  D2  I/O Bit 2 from peripheral to host 

5 D3  D3  I/O Bit 3 from peripheral to host 

6 D4  D4  I/O Bit 4 from peripheral to host 

7 D5  D5  I/O Bit 5 from peripheral to host 
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8 D6  D6  I/O Bit 6 from peripheral to host 

9 D7  D7  I/O Bit 7 from peripheral to host 

10 nACK  PtrClk 
In 

Low indicates valid data 
High in response to HostBusy going high 

11 BUSY  PtrBusy In  Printer busy 

12 PE AckDataReq In Follows nDataAvail 

13 SELECTED  Xflag In Extensibility flag, not used 

14 nAUTOFEED  HostBusy 
Out 

Low indicates host ready for nibble 
High indicates nibble received 

15 nERROR  nDataAvail In Low indicates data available 

16 nINIT NINIT Out Not used 

17 nSELECT  1284Active Out High indicates 1284 mode 
18-25 Ground  Ground  Ground 

 
 
Byte Mode Data Transfer Cycle 

 
 

5.4   The Serial Ports  
The two serial communication ports in the PC follow the RS-232 standard of the 
Electronics Industry Association.  It was introduced in early 1960s and has since 
been the most widely used serial communication technique in the laboratory.  
The title of the standard, "Interface Between Data Terminal Equipment and Data 
Communications Equipment Employing Serial Binary Data Interchange" indi-
cates the original intention.  That is, to connect Data Terminal Equipment (DTE) 
to Data Communications Equipment (DCE).  DTE and DCE are the two pieces 
of equipment at the two endpoints of a telecommunication channel.  The DTEs 
used to be dumb terminals with which the users interact.   The DCEs were mo-
dems that connected to telephone lines.  In most laboratory and office environ-
ments now, the DTEs are more likely to be PCs.  The DCEs may still be mo-
dems, but they may also be non-existent because the other endpoint is nearby 
and it is easier to use straight-through cables instead of the telephone network.  
In this case, the DCEs are called Null Modems. 
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The RS-232 uses an asynchronous mode.  Typically, data is transferred in sym-
bols or words of 5 to 8 bits, one bit at a time, least significant bit first, at a prede-
termined speed called the baud rate.  However, from one word to the next, the 
time interval is not fixed and thus asynchronous.  A long string of words may be 
transferred in a contiguous manner, one immediately trailing the previous one, or 
they may be sent intermittently, with varying pauses between words.   
 
No clock or other timing signal is sent.  It thus requires a start bit to indicate the 
beginning of a byte and a stop bit to signify the end.  It is the receiver’s job to 
sample the bits based on these marking bits.  For the purpose of error checking, a 
parity bit (either even or odd parity) may be added at the end of each word or 
symbol.  The transmitter computes the parity bit based on all the data bits.  The 
receiver checks if the actual parity bit value corresponds to the calculated value. 
  
The actual signals sent on the line are positive and negative voltages with respect 
to ground potential.  A bit 0 or logical 0 is sent as SPACE or +5 to +15 volts; a 
bit 1 or logical 1 is sent as MARK or –5 to –15 volts.  The receiver recognises    
–3 to –25 volts as MARK and +3 to +25 as SPACE.  The region between –3 
volts to +3 volts is a transition region where the state is undefined.  The wide 
range of voltages for the two valid states are very useful in actual implementa-
tion, taking care of line drop, supply fluctuation, ground potential difference etc.  
A number of restrictions imposed by the standard further enhance the robustness.  
For example, the output of the transmitter may be shorted to other lines without 
causing any damage to itself and the receiver must be able to withstand voltages 
in the range of –25 volts to 25 volts.   
 
When a line is idle, it is in the MARK state.  The start bit is SPACE, stop bit(s) 
is MARK.  The timing diagram of sending numeral “1”  or 0x31 with even parity 
is shown below.   
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The standard specifies a total of 21 control signals or ‘circuits’  on top of the two 
data lines (Transmit Data and Receive Data).  The original specification thus 
requires a DB-25 connector with 25 circuits.  The control lines are used to con-
nect to a DCE or modem for control or test functions.  It turns out that many of 
the control lines are not needed for standard modem connections.  In fact they 
may not be used at all if an RS-232 port is connected to another RS-232 port on 
two pieces of equipment.  In this case, the only requirement is of course to con-
nect the Transmit Data of one DTE (the PC) to the Receive Data of the other.  
This crossing of two wires, from pin 2 to pin 3, constitutes a Null modem. 
 
In most PCs, a subset of the lines is used for the serial port.  Six control signals 
are chosen, making it possible to house the port in a DB-9 connector with 9 
circuits.  The connector on the PC or DTE is a male (or plug) while the corre-
sponding one on the modem or DCE is a female (or socket).  If two PCs are 
connected using the serial COM ports, the cable (or the Null modem) obviously 
has two female DB-9 connectors.  
 
Three types of connectors are used for RS-232: DB-9 (9-pin D-shell connector), 
DB-25 (25-pin D-shell connector) and RJ45 (modular telephone connector).  The 
various signal assignments on the DTE (or PC) side are as follows: 
 
Name Direction Description DB-9 DB-25 RJ45 
CD � Carrier Detect 1 8 2 
RxD � Receive Data 2 3 5 
TxD �  Transmit Data 3 2 6 
DTR �  Data Terminal Ready 4 20 3 
Gnd  Signal Ground 5 7 4 
DSR � Data Set Ready 6 6 (1) 
RTS �  Request To Send 7 4 8 
CTS � Clear To Send 8 5 7 
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RI � Ring Indicator 9 22 1 
Direction is DTE (PC) relative to DCE (modem) 
 
The common bit rates of RS-232 are at 1200, 2400, 4800, 9600, 19200 bps.  
With modern drivers, higher bit rates, while non-standard, are possible. 
 
The standard specifies a cable length of 50 feet or 2500 pF in cable capacitance, 
at 20K bps.  If cables with lower capacitance are used, it is possible to transmit at 
distances greater than 50 feet.  For example the UTP Cat-5 cable has a capaci-
tance of 17 pF/ft.  Thus about 150 feet of cable may be used.  Likewise, reducing 
the transmission speed increases the maximum cable length.  Laboratory tests 
showed that a cable length of 500 feet is possible at 9600 bps. 
 
Flow control in RS-232 if needed is carried out either in hardware or software to 
prevent buffer overflow on the receiver.  In the hardware or the RTS/CTS flow 
control method, the transmitter asserts a Request To Send signal when it has data 
to transmit.  The receiver asserts a Clear To Send signal only when it is ready to 
receive data.  In the software or XON/XOFF control mode, the receiver tells the 
transmitter to send more data by sending an XON control character (0x11).  
When the receiver buffer is nearly full, it stops the transmitter by sending an 
XOFF control character (0x13).  Both the XON and XOFF are sent as data and 
no hardware control signals are involved.    
 
Very small embedded systems connected to the serial port may get their power 
from the serial port itself although this is not part of the standard.  A serial port 
mouse is such an example.  Since DTR and RTS are often not used as intended, 
they may act as a source of small power supply.  These pins are typically de-
signed to drive a load of 3~7 kOhm at 7 to 11 volts and they can be used to drive 
a regulator to produce regulated 5-volt output, provided that the load current is 
small (typically less than 10 mA, depending on the type of driver used in the 
port).  An output pin from a standard 1488 RS-232 driver chip can supply up to 
6.5 mA at 5 volts and that for the MAX232 is 5 mA.   Devices operated in this 
manner are called pin powered devices. 

5.5   Differential Drive Serial Communication Standards  
        (RS422, RS485) 
While RS-232 is simple and readily available, there are some shortcomings that 
reduce its speed and transmission distance.  First, it assumes common ground 
potential between the two endpoints, the result of the single-ended (or unbal-
anced) drive.  This may not be so when the separation of the devices increases.  
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A receiver at a different ground potential will sense the signal voltages with an 
undesired offset. 
 
A single signal cable makes screening or shielding of electromagnetic noise 
difficult if not impossible.  While a separate screen sheath may be used on the 
cable, internal noise generated by other signal lines is a problem.  This crosstalk 
effect becomes more and more severe as transmission speed goes up. 
 
A different EIA standard, the RS-423 attempts to eliminate the shortcomings of 
RS-232 to a certain extent.  By using different electrical parameters including a 
controlled slew rate on the signal (rise and fall times at 30% of unit interval at >= 
1K baud), a speed of 100K bps at 4000 feet can be achieved. 
 
However, a more significant enhancement of the serial communication technique 
is achieved by using differential or balanced drive.  Two famous EIA standards 
that operate in this mode are the RS-422 and RS-485.  A pair of wires is used for 
transmitting each signal.  The voltage difference between the two wires is unaf-
fected by difference in ground potentials and the receiver should function prop-
erly provided that the common mode voltage limit is not exceeded.  If these two 
balanced wires are twisted together the difference voltage is unaffected by exter-
nal electromagnetic noise, including crosstalk.  Noises picked up by the two 
wires are likely to be identical and hence they are cancelled at the receiver input 
which is a differential voltage sensor. 
 

 
 
 
Using this differential drive technique, transmission speeds up to 10Mbps can be 
achieved.  The cable length is specified at 4000 feet.  The RS-422 standard also 
specifies a multi-drop (party-line) arrangement where one driver (master) is 
connected to 10 receivers (slaves) that listen simultaneously.  The master trans-
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mit lines are connected to all the receivers of the slaves.  The slave transmit 
signal is carried on another pair.  They are all connected to the receiver of the 
master.  At any one time, only one of the slave transmitters is turned on to avoid 
garbling of data. 
 
The RS-485 is a true multipoint arrangement whereby all the transmitters and 
receivers are connected to a single pair of wires, the bus.  This is possible be-
cause the transmitter can be put into a high impedance or tri-state mode.  Up to 
32 pairs of transmitters and receivers may be connected together.  The standard 
does not specify the method for orderly transmission in this bus system.  One 
simple implementation method is for the master to initiate a communications 
request to a slave station by addressing it.  It turns off its transmitter immediately 
and the slave can then transmit on the bus.   
 

 
 
 
A 9-bit protocol is often used in the multidrop network shown above.  An extra 
9th bit is added to the typical 8-bit data in the serial transmission to indicate it is 
an address frame.  When the master wants to transmit a block of data to a par-
ticular slave, it first sends an address byte as data and turns on the 9th bit.  The 
particular slave, whose address matches that sent by the master, knows that it is 
being addressed.  It thus receives the subsequent block of data based on whatever 
protocol was agreed upon earlier.  Other slaves ignore the block of data not 
intended for them. 
 
As standard transceivers (or UART) for RS-232 do not support 9th bit address-
ing, the parity bit is often used as the 9th bit.  This is the case if the PC is used.  
In this case, the parity checking capability is lost of course.  However, this is 
often not a problem as many existing applications ignore the parity checking in 
the first place.  Other block checking techniques including the CRC are used. 
 
A summary of the RS-232 and RS-485 electrical specifications is shown below. 
 
RS-232 

Parameter Conditions Min Max Units
Output (Open Circuit)     25 V
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Output (Loaded) 3 K <=RL<= 7 K 5 15 V
Output Resistance -2V<=Vo<=2V  300 Ohm
Output Current (Short-
Circuit)

  500 mA

Output Slew Rate   30 V/µs
Maximum Load Ca-
pacitance

  2500 pF

Receiver Input Resis-
tance

3V <= V IN<=25V 3000 7000 Ohm

 
 
RS-485 

Parameter Conditions Min Max Units

Output (Open Circuit)
  
 

 1.5 
-1.5

 6 
-6

V 
V

Output (Loaded)
RLOAD = 54 Ohms 
 

 1.5 
-1.5

 5 
-5

V 
V

Output Current (Short-
Circuit)

Output to +12V or -
7V

 ±250 mA

Output Rise Time
RLOAD = 54 Ohms 
CLOAD = 50 pF

 30
% (bit 
width)

Output (Common 
Mode)

RLOAD = 54 Ohms -1 3 V

Receiver Sensitivity -7 <= Vcm <= +12  ±200 mV
Receiver (Common-
Mode)

 -7 +12 V

Receiver Input Resis-
tance

 12K  Ohm

 

5.6   Universal Serial Bus (USB) 
The Universal Serial Bus (USB) was standardised in 1995 by a group of compa-
nies to introduce an advanced serial bus to the PC.  In the short period since its 
appearance, it has been widely accepted and all new PCs now incorporate USB 
ports.  There are myriads of USB peripheral devices produced (over 1000 prod-
ucts have passed the compliance test), including mice, scanners, printers, digital 
cameras, hard disks, multimedia equipment, etc. 
 
For embedded system developers, USB provides an alternative and more power-
ful way of interfacing to the PCs.  It is a serial bus with hot-swap capability, 
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meaning a device may be connected or disconnected without turning off the 
power.  
 
USB 1.1 offers two data rates, full speed at 12 Mbps and low speed at 1.5 Mbps.  
USB 2.0 offers high speed at 480 Mbps.  Devices of different speeds may be 
mixed and the bandwidth may be divided into asynchronous and isochronous 
streams.  The latter offers guaranteed or reserved bandwidth and is useful for 
streaming devices, such as audio and video equipment. 
 
A total of 127 devices may be connected to a single host.  This is done by con-
necting multiple USB hubs in a daisy chain.  Devices are connected to the down-
stream port of a hub while the upstream port is connected to the host or another 
hub (in the upstream of the bus topology).  Devices are either self powered or 
powered from the bus.  A typical USB hub may provide 100 mA on each down-
stream port in the Bus Powered mode, and 500 mA on the Self Powered mode. 
 

 
 
 
USB devices are connected using a simple cable consisting of a twisted pair of 
wires for signals and an untwisted pair for power (Vbus at 5 V and ground).  
Cable segments can be up to several metres long depending on the wire gauge 
used.   
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The clock speeds for high-, full- and low-speed operations are 480, 12, and 1.5 
Mbps respectively.  The voltage level for logical 1 at the final target connector is 
defined by (D+) - (D-) > 200 mV and that for logical 0 is (D-) - (D+) > 200 mV. 
 
The USB uses a polled bus protocol whereby the host (or PC) initiates all data 
transfers.  A transaction begins by the host sending a token packet.  The packet 
contains information on the type and direction of transaction, device address,  
and endpoint number.  Data transfer than occurs between the source and the 
destination by the source sending either a data packet or a packet indicating no 
data.  The destination closes the transaction by returning a packet indicating 
whether the previous packet had been received successfully. 
 
The pipe concept is used to refer to the channel between an endpoint in a device 
and that in a host.  Two types of pipes are defined: stream and message.  Streams 
have no defined data structure while messages have.  A message pipe called 
Default Control Pipe is set up when a device is powered.  It provides access to 
the device configuration, status and control information.  Pipes have associations 
of data bandwidth, transfer service type, and endpoint characteristics like direc-
tions and buffer sizes.   A flow control mechanism allows the construction of 
flexible schedules.  This allows concurrent servicing of a heterogeneous mix of 
streams, i.e. multiple streams can be served at different intervals with packets of 
different sizes. 
 
There are four types of data transfers: (1) Control Transfer, (2) Bulk Data Trans-
fer, (3) Interrupt Data Transfer and (4) Isochronous Data Transfer.   
 
Control transfer, a lossless data transfer method, is used to configure a device at 
attach time.  Bulk data transfer is used for asynchronously transferring large 
volumes of data.  Data integrity is ensured at hardware level by error detection 
and retries if necessary.  An example is a transfer from the host to a printer.  
 
Interrupt data transfer is used for transferring small amounts of data with small 
latency or rate specified by the device.  Data are typically event notifications, 
characters or coordinates in one or more bytes.  An example is the pointing 
device. 
 
Isochronous data transfer is designed for real-time streams such as voice and 
video.  A dedicated bandwidth is allocated for this transfer.  Timeliness is en-
sured at the expense of occasional transient data losses. In other words, hardware 
retries are not used in case of data loss.  This is known to be better for real-time 
voice and video transmission. 
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The USB standard implements a data flow model that can be divided intro three 
layers: (1) Function Layer, (2) USB Device Layer, and (3) Physical Layer as 
shown below. 
 

 
 
The physical layer provides physical, signalling and packet connectivity func-
tions between the host and a device.  The device layer carries out general USB 
operations between the host and a device through a logical link.  In the host, this 
is typically carried out in the operating system, as API for example.  The func-
tion layer is used for high level function communication between the host and a 
device, again through a logical link as viewed by the software.   
 
There are a number of manufacturers producing components specially designed 
for implementing embedded systems using USB.  The functions of the physical 
and device layers are taken care of by USB chips.  An example is the 
CY7C630/1XXA series produced by Cypress Semiconductor Corporation.  This 
particular series of chips conforms to the USB 1.1 specifications operating at 1.5 
Mbps.  Members of the family have an 8-bit RISC microcontroller with a built-in 
1.5-Mbps USB Serial Interface Engine (SIE).  Memories are in the range of 128 
bytes RAM and 2 to 4 Kbytes EPROM.  Besides the USB interface, two 8-bit 
parallel ports are available.  Such USB chips are suitable for small to medium 
scale applications including serial port conversion, keyboard, mouse, joystick 
and many others.   A block diagram of a CY7C63000 chip is shown below. 
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5.7   IEEE 1394 Bus 
This is an emerging high speed serial bus originally developed by Apple (called 
FireWire) and used by Sony in digital video equipment (called iLink).  It was 
accepted as an industrial standard in 1995 (called IEEE 1394).  Before the intro-
duction of USB 2.0 specifications, the IEEE 1394 was the highest speed serial 
bus at 400 Mbps.  1.6 Gbps and 3.2 Gbps versions are being defined and devel-
oped.  The following is a partial list of peripherals available with IEEE 1394 
interface: digital video camcorders, digital cameras, printers, mass storage de-
vices, ADCs. 
 
The IEEE 1394 bus is similar to USB in principle.  It has both asynchronous and  
isochronous modes of transmission suitable for both bursty data and real-time 
video streams.  At 400 Mbps, full frame rate digital video streams can be trans-
mitted.  It has hot swapping capability.  It allows up to 63 devices to be con-
nected.  Devices can also be bus powered or self powered. 
 
One significant difference between IEEE 1394 and USB is the bus topology.  
The IEEE 1394 uses a peer-to-peer configuration, instead of the master-slave 
configuration.  This means a PC is not needed to act as a host or master for 
communication.  An IEEE 1394 digital video camera can be connected to a 
video player directly.  Similarly, more than one PC can be connected to a digital 
camera to use the same video stream.   
 
This, together with speed and other requirements, makes the specifications rather 
complex.  The specifications document is a few hundred pages divided into 
many areas of applications, including instrumentation, industrial and automotive, 
on top of the more familiar video related specifications of digital video, MPEG, 
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digital TV, etc.  In the instrumentation area, one application is to replace the now 
rather slow IEEE 488 GPIB with an IEEE 1394 bus.  There is an ongoing effort 
to define how the IEEE 488.2 command structure can be transmitted over IEEE 
1394. 
 
As in USB, IEEE 1394 uses a three layer model for communication: Physical, 
Link and Transaction.  The physical layer handles the signals required by the 
bus; the link layer formats data into packets.  Packets are passed on to the trans-
action layer which then presents them to the application above it.  Semiconductor 
chips are available for handling the functions of the physical and link layers.  
Some of the transaction layer functions are also handled by the dedicated IEEE 
1394 chip.  The rest are in software, in the OS and the user programs. 
 
In the Linux environment, version 2.2 onwards supports IEEE 1394.  The sub-
system has been included with the standard kernel sources since version 2.3.40.  
It is distributed as a patch to version 2.2.  IEEE 1394 is also supported on the 
Windows and Macintosh platforms. 
 
The IEEE 1394 cable consists of two differential signal pairs, a power and a 
ground line.  Two types of connectors are defined: a six-wire version (measures 
10 mm by 5 mm) and a four-wire version (measures 5 mm by 3 mm) without the 
power pair.  The maximum cable length for speeds greater than 200 Mbps is 4.5 
m.  At lower speeds, cables up to 14 m long can be used.  Multiple devices can 
be daisy-chained using repeaters to extend communication distance.  It is inter-
esting to note that the future IEEE 1394b specifications also support cable 
lengths of 100 m using plastic optical fibre and multiple kilometres using glass 
optical fibre.   CAT-5 cables can be used at 100 Mbps at distances up to 100 m. 

5.8   Controller Area Network (CAN) 
The Control Area Network (CAN), originally developed for the automotive 
industry by Robert Bosch in 1980s, is a real-time serial data communications bus 
now being deployed in many distributed environment.  It is now accepted as an 
international standard (ISO 11898 and ISO 11519 for high and low speed appli-
cations respectively).   Many semiconductor manufacturers (e.g. Atmel, Fujitsu, 
Intel, Microchip, Motorola, Philips, Siemens, etc.) produce a wide range of 
controller and interface chips for CAN.  
 
CAN controllers are physically small and relatively cheap devices used for real-
time data acquisition and control applications.  Data are transmitted on a two-
wire bus using 5-V differential mode using a multicast protocol.  A large number 
of devices may be connected to the bus.  The limit is imposed by the drive capa-
bilities of the control chips and up to 64 nodes is common.  Unlike most other 
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bus arrangements, devices are not identified by their device address.  Data mes-
sages transmitted on the bus do not carry source or destination addresses.  
Unique message identifiers are used instead.  A node sends out a message with 
an identifier and all the nodes on the bus receive it.  It is up to the receiving node 
to decide whether to process the incoming message.  The message identifier also 
serves as a priority indicator.  The lower identifier has a higher priority.   
 
Contention is solved by Carrier Sense, Multiple Access with Collision Detect 
(CSMA/CD) as in the Ethernet.  However, an enhanced feature for non-
destructive bitwise arbitration is used to resolve collision.  This is achieved by a 
wired-AND mechanism.  A logical 0 in the identifier bit pattern is considered 
dominant and it overwrites a logical 1 which is recessive as shown below.  Thus 
a node sending out a message with an identifier 123h will overwrite a node with 
message identifier 223h and then with identifier 124h.  Once a node transmitter 
with a lower priority loses, it turns into a receiver and listens to the message at a 
higher priority (or lower identifier value). 
 

                    
 
 
A useful feature in the message-based protocol of the CAN is the Remote 
Transmit Request (RTR).  This allows a node to request information from other 
nodes.  The protocol also permits additional nodes to be added without having to 
reprogram the existing nodes in the network.   
 
Four different types of messages or frames are defined: (1) Data Frame, (2) 
Remote Frame, (3) Error Frame and (4) Overload Frame.   
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A data frame consists of the data field and several other fields to provide addi-
tional information.  The whole frame can be divided into an Arbitration Field, a 
Control Field, a Data Field, a CRC Field, an Acknowledge Field and an End of 
Frame Field.  The Arbitration Field is the message ID mentioned above and is 
used for prioritising messages on the bus.  The prioritising field has 11 (standard 
frame) or 29 (extended frame) identifier bits and one RFR bit.  If the RFR is set, 
the frame becomes a remote frame.  The Control Field consists of a bit that 
signifies an extended frame and a four-bit Data Length Code (DLC).  The value 
of the DLC is between 0 and 8 representing 0 to 64 bits.  The remote frame has 
no data field, irrespective of the value of the DLC. 
 
The CRC Field is a 15-bit CRC field with a delimiter.  The Acknowledge Field 
is used to indicate if the message was received correctly, irrespective of whether 
it was processed or ignored.  This is done by asserting a dominant bit on the bus 
at the ACK slot bit time. 
 
When a node detects an error, it sends an error frame.  When a node is not ready 
to receive additional messages, it sends an overload frame on to the bus.  CAN 
was designed with error tolerance and robustness in mind.  Thus, there are many 
types of errors being used: (1) CRC Error, (2) Acknowledge Error, (3) Form 
Error, (4) Bit Error, and (5) Stuff Error.   
 
Although CAN is not a standard bus in PCs, CAN interface cards are readily 
available.  As mentioned earlier, a wide range of CAN-based controller chips are 
available as standard semiconductor parts.  There are two hardware implementa-
tions: (1) Basic and (2) Full.  The former uses a standalone CAN controller 
connected to an existing microcontroller.  The latter integrate a CAN controller, 
a CPU and a RAM in a single package.   
 
Data rates of CAN bus depend on the length of the bus.  For ISO11898 compli-
ant devices, 1 Mbps is guaranteed for lengths up to 40 m.  Up to 500 m lengths 
of cable may be used if the data rate is reduced to 125 Kbps. 
 
An example of a small CAN controller chip is the MCP2510 by Microchip.  It is 
an 18-pin standalone CAN controller featuring an industry standard SPI serial 
interface. On-board features include interrupt capability, message masking and 
filtering, message prioritisation, and multi-purpose I/O pins.  Multiple trans-
mit/receive buffers significantly offload the microcontroller overhead required to 
handle CAN message traffic. Applications for the MCP2510 include device 
control, sensor monitoring, meter interfacing, automotive electronics, and in-
strument control. 
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5.9   Inter-IC Serial Buses 
Working with embedded systems, one often comes across several serial buses 
used between ICs or modules within a system.  These are typically de facto 
standards originally developed by IC manufacturers for specific functions and 
subsequently expanded to more general use.  Even though they are only used for 
short interconnections, they are increasingly important to embedded systems 
designers as miniaturisation and simplicity in designs are emphasised. For exam-
ple, using a serial bus between a flash memory device and the microcontroller 
not only reduces the complexity in circuit design, but also brings down the over-
all cost as serial devices are typically cheaper because of the smaller package and 
the PCB would be significantly smaller.  The only drawback in using a serial bus 
is of course transmission speed reduction.  However, in many laboratory scale 
embedded systems, the data rates of ~100 Kbps to ~10 Mbps available in serial 
buses are more than sufficient. 

5.10   I2C (Inter Integrated Circuit Bus) 
This is a bidirectional two-wire serial bus introduced by Philips Semiconductor 
in the 1980s for their television and other audiovisual products.  Today it is 
widely used in the industry for embedded systems. 
 
The two active lines are the SDA (serial data) and SCL (serial clock).  A device 
has a unique address (7 or 10 bits) and may be receiver-only, or transmit-
ter/receiver.  Each device may be either a master or slave depending on whether 
it initiates a data transfer.  Multiple masters are allowed in a bus.  Over the years, 
data transfer speed has increased from 100 Kbps (standard) to 400 Kbps (fast) 
and 3.4 Mbps (high speed). 
 
A bus master places the address of the destination (slave) on the bus.  All devices 
on the bus listen and the one being addressed communicates with the master.  If 
more than one master transmits, an arbitration scheme is used to decide the 
priority. 

5.11   SPI (Serial Peripheral Interface) 
This is a bidirectional full-duplex four-wire serial bus used originally by Mo-
torola in their microcontrollers.  The four wires are a clock, a data in, a data out 
and a select signal.  The generic names of the SPI input/output (I/O) pins are: 
 

• SS (slave select) 
• SPSCK (SPI serial clock) 
• MOSI (master out slave in) 
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• MISO (master in slave out) 
 
In full duplex operation, the MISO pin of the master SPI module is connected to 
the MISO pin of the slave SPI module. The master SPI simultaneously receives 
data on its MISO pin and transmits data from its MOSI pin.  Slave output data on 
the MISO pin is enabled only when the SPI is configured as a slave.  To support 
a multiple-slave system, a logic 1 on the SS pin puts the MISO pin in a high-
impedance state. 
 
The MOSI pin of the master SPI module is connected to the MOSI pin of the 
slave SPI module. The master SPI simultaneously transmits data from its MOSI 
pin and receives data on its MISO pin.   
 
The serial clock signal from master to slave synchronizes data transmission 
between the two.  A byte of data is exchanged in 8 clock cycles. 
 
The SS is used to select a slave when a device is configured in slave mode.  
When an SPI is configured as a master, the SS input can be used in conjunction 
with a flag to prevent multiple masters from driving MOSI and SPSCK, thus 
resolving contention. 

5.12   SCI (Serial Communications Interface) 
This is the Motorola implementation of the RS-232 asynchronous serial commu-
nications bus.  It is a partial implementation, in that only the two I/O data lines 
are implemented, and they are at TTL voltage level instead of the standard bipo-
lar signals as in the RS-232 specifications. 
 
For short distance connections, such as within a piece of equipment, direct TTL 
levels are sufficient.  If long transmission distance is necessary, or if the other 
end of the connection is a standard RS-232 port such as the PC COM port, volt-
age translation between TTL and RS-232 can be done. 
 
Several manufacturers produce chips for this purpose.  An example is the 
MAX232A by Maxim.  It operates from a 5V power supply and generates 
typical voltages of +8 V and –8 V using charge pump voltage doubler and 
voltage inverter. 

5.13   Microwire 
This is a serial interface bus defined by National Semiconductor and used in 
many of their products including the COPS microprocessors.  It is a three-wire 
(SO, SI and CK) interface very similar to the SPI.  In fact many microprocessors 
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with SPI interface may be used to connect to Microwire memories and peripheral 
devices.   

5.14   1-Wire Bus 
This is a serial bus defined by Dallas Semiconductor.  1-Wire devices lower 
system cost and simplify design with an interface protocol that supplies control, 
signalling, and power over a single-wire connection. A variety of identification, 
sensor, control, and memory functions are available in conventional IC packages, 
and stainless-steel-clad casing called iButtons. 
 
A 1-Wire network consists of a master and one or more slave devices connected 
together through the 1-Wire interface.  The master initiates and controls half 
duplex data transfer on the bus.  It uses conventional TTL voltage levels of 
maximum 0.8 V for logical 0 and minimum 2.2 V for logical 1.  The master has 
a weak resistive pull-up open drain output.  A slave short circuits the data line to 
change the logical state to 0.  For large networks, the weak pull-up is supple-
mented by a controlled strong pull-up. 
 
Every slave device has a unique 64-bit address, which consists of an 8-bit family 
code, a 48-bit serial number and an 8-bit CRC of the first seven bytes.   
 
Slave devices must have their own timing circuits, synchronised by the falling 
slope of the signal on the bus.  A slave typically obtains its power from the 1-
Wire bus by means of an on-chip capacitor.    
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6     Web-based Embedded Systems  

6.1   Introduction 
Traditional networking of embedded systems is through the use of dedicated 
serial or parallel link as show below.  A number of industrial bus standards are 
available.  However, more often than not, straightforward non-standard data link 
layer protocols are often used in most laboratories for ease of implementation. 
 

 
 
The proliferation of the Ethernet and Internet brings another dimension to net-
working embedded systems.  In a nutshell, the suite of Internet protocols and the 
cost reduction in embedded Ethernet hardware changes the way embedded sys-
tems are connected in a distributed environment.  It is now cheaper and simpler 
to connect an embedded system, even a very simple and small one, to another 
piece of equipment via the Internet (or its variation the Intranet), than to link the 
two together using a traditional direct connection.   
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When the equipment is within the range of a LAN (typically ~ 100 m), the 
Ethernet is the choice for physical connection.  To cover large distances, the 
Ethernet will typically have one of several ways to connect to the public tele-
communications network.  Thus the embedded system is connected to the WAN 
(wide area network).   The links to the telecommunications network can be mo-
dems, ISDN, DSL, or leased lines.  These links are not the job of the embedded 
systems designers.  The job of the designers boils down to adding the Ethernet 
connection to the equipment, or a serial link to the modem if Ethernet is not 
used. 
 
The suite of Internet protocols (UDP and TCP/IP and application protocols FTP, 
HTTP, SNMP etc.) is covered by other lectures in this workshop, so we shall not 
delve into this topic in any depth.  However, the Ethernet interface and the serial 
link that connect the embedded system to the Internet shall be discussed here.   
 
The last few years have seen the appearance of experimental, hobbyist and 
commercial real-time embedded systems on the Internet that can be accessed 
easily using standard browsers.  However, one of the earlier implementations is 
the Cambridge coffee pot webcam that appeared in 1991 (predated world wide 
web) and was subsequently put on the www.  
(http://www.cl.cam.ac.uk/coffee/coffee.html) Now there are numerous webcams 
on the Internet.  At the height of its fame, there were more than 2 million people 
viewing the plain coffee pot in the Trojan Room of the Computer Laboratory in 
Cambridge.  
 
While it is fascinating and significant to be able to view video frames from any 
place in the world with an Internet connection, the basic principle is straightfor-
ward and simple.  A server gets data (video frames in this case) ready in a form 
meaningful to the client (the web browser) and the client accesses it via the 
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Internet.  It turns out that the server side effort is relatively simple (writing an 
HTML document, with SSI server side includes).  The client (the browser) is a 
complex program but it is a standard application in all platforms.  In fact, the 
earliest Cambridge coffee pot server and client implementation was done in one 
day, at that initial stage, for fun! 
 
The more recent implementations of web-based applications that are of interest 
to the embedded community is in the implementation of small and lean embed-
ded web servers.  These are standalone servers that have their own IP (Internet 
address) and are connected to the Internet without using a PC.  One of the tiniest 
is a match head sized web server using an 8-pin PIC microcontroller 
(PIC12C509A). (http://www-ccs.cs.umass.edu/~shri/iPic.html)  It has a TCP/IP 
stack and a HTTP web-server.  The TCP/IP stack is fitted into 256 bytes.  This 
project proves the point that putting up a web-based embedded system, albeit a 
rather basic one, can be done with very little hardware, and software! 
 
More realistic embedded web servers are built with microcontrollers with more 
memories than that of the PIC12C509A, which has a mere 1536 bytes of ROM 
and 41 bytes of RAM.  Almost every microcontroller manufacturer now has 
application notes on how to implement a TCP/IP stack on their range of micro-
controllers.   
 
Vendors and suppliers of embedded web servers are mushrooming in the Internet 
because of the potential market they see.  At the moment embedded Ethernet 
modules that have memories in the range of 256 Kbytes to 1 Mbytes, an Ethernet 
link, several serial links, and parallel I/Os are available in the price range of $50 
~ $100.  For most laboratory applications where the volume is low, this is the 
most cost effective way to implement embedded web-based systems. 
 

6.2   Migration to Web-based Systems 
The embedded systems designer faces a dilemma – whether to build the com-
plete application on the new embedded web-based modules or to retain the exist-
ing or legacy systems.  As in the case of other technological innovations, there 
are several approaches to handling the migration to the new technology.  In 
embedded systems at this time, there are two ways as shown below. 
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The first decision that has to be made is whether to use the new embedded web-
based microcontroller module as: 
 

(1) An add-on to the legacy system or  
(2) A replacement of the legacy electronics.    

The add-on option has the advantage of little or no disruption to the existing 
system.  In many cases where the existing systems have standard serial or paral-
lel I/Os, no hardware or software modifications are needed.  In others, appropri-
ate modification to bring the existing system peripheral acceptable to the embed-
ded Ethernet module has to be done.  This is straightforward in many laboratory 
type systems.  This is also a good option to adopt if the legacy system is a com-
plex piece of equipment 
 
The shortcoming of this add-on option is the lack in functional enhancement of 
the final system other than the Internet connection. Of course the Internet con-
nection may be all that is needed, in which case it is obviously the simplest 
solution.   
 
The replacement option is to replace part or all of the existing controller elec-
tronics with the embedded module.  This is an attractive solution in some cases 
because new functions may be added to the existing system using the more 
powerful embedded microcontroller.  Cost may be another factor.  The new 
crops of embedded microcontroller modules are substantially cheaper than the 
older microprocessor-based systems.  Thus if additional systems are needed, the 
old hardware may be expensive or obsolete.  However, the effort and cost of 
rewriting or porting the software and firmware have to be weighed carefully 
against the gain achieved through hardware replacement. 
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6.3   Hardware Connection to the Internet 
Irrespective of the way – add-on or replacement – the new embedded web-based 
module functions in the legacy system, there are two alternatives for connecting 
to the Internet world: 

 
(1) Ethernet connection 
(2) Serial connection 

The Ethernet is now so widely deployed that there is hardly any laboratory or 
office that does not use it to network PCs or other equipment.  Thus, for embed-
ded systems, an Ethernet capable feature would simplify connection to the Inter-
net.  A 10Base-T or 100Base-T connection from an embedded system will be 
most convenient; the connection to the outside world then reduces to linking the 
system to a hub or switch with a simple CAT-5 UTP (unshielded twisted pair) 
cable. 
 
Until recently, the rather complex CSMA/CD physical layer protocol (MAC) and 
the large buffer size (~ 1500 bytes) required for the Ethernet frame meant that 
implementation was costly.  Interface to the Ethernet controller chips was typi-
cally designed for 16- or 32-bit buses which were rather uncommon in small and 
medium scaled embedded systems.  Many small embedded systems thus cannot 
justify having an Ethernet interface.  The situation has changed in the last two 
years.  Both cost reduction and simplification of driving circuitry make it now 
possible to tug an Ethernet interface on an embedded system.  Only two key 
components are needed – an Ethernet controller chip and a line driver trans-
former.  An 8-bit microcontroller can now be used to interface to the controller 
chip. The cost of the Ethernet controller and the line driver is in the range of $10 
~ $20.   
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While the Ethernet interface is the ubiquitous link to the Internet, it is not the 
only way.  An embedded system can be connected to the outside world via a 
serial link like the RS-232 COM port on the PC.  There are a number of situa-
tions where this method of connection is preferred.  First, it is cheaper to use a 
serial port, which is a standard item in most microcontrollers.  This cost reduc-
tion refers to the embedded system side.  It is noted that a matching serial port 
(in the form of Internet router) is needed on the network side.  This may increase 
the overall system cost because an Internet router with serial ports has to be 
installed.  Such Internet routers are not as common as the Ethernet hubs in most 
laboratories.  Dispensing with the Ethernet controller chip reduces both the 
hardware and software complexity needed on the microcontroller host.  In the 
tiny web server project mentioned earlier using a small PIC controller, there are 
simply not enough hardware resources on the microcontroller to drive an 
Ethernet controller. 
 
Another reason for deploying a serial link is to connect to a modem for Internet 
access.  This is a very common mode of connection.  Most of us use a modem 
dial-up to access the Internet at home.  Embedded systems to be used at locations 
without an Ethernet can use the serial mode in a similar manner.   
 
In a very small implementation of a single embedded system connected to a PC 
acting as a host processor or controller, the serial link is also the choice.  In this 
case, the PC host’s COM port is simply connected to the serial port of the em-
bedded system using a crossover cable (null modem).   

6.4   Ethernet Connection 
While there are several types of Ethernet connections and several high speed 
Ethernets (e.g. 10 Gbps) being introduced and standardized, the type that con-
cerns the embedded systems designer is the plain 10Base-T, which is 10 Mbps, 
base-band, with a twisted pair.  This is the most widely used method of accessing 
the Ethernet in most laboratories.  In a typical network, switches or hubs are used 
to link the various Ethernet nodes.  An embedded system with a 10BaseT port 
only needs an Ethernet cable (CAT-5, UTP with modular RJ45 plugs at both 
ends, up to 100 m) to connect to an available port on a hub.   
 
In the event that you have to build your own Ethernet for your embedded sys-
tems network in your laboratory, what hardware components are involved?  First 
you typically need a PC with an Ethernet connection.  Many new PCs in the 
market have a built-in Ethernet port.  For older PCs, a PCI Ethernet card (less 
than $20) can be used.  Then you need an Ethernet hub which connects all nodes 
in your network.  Hubs come in various forms.  A small one with 4 to 8 ports 
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($20 ~ $50) would normally be sufficient.  Then of course you need the cables 
with RJ45 terminations. 
 
As in the case of serial link, it is possible to connect a host PC to an embedded 
system with just a crossover cable.  No Ethernet hub is necessary in this case.  
This turns out to be a handy set-up for testing and debugging your embedded 
system.  Before you deploy your embedded system on the Internet, you may 
want to test your system by just connecting it to a standalone host PC with a 
simple crossover cable. 

6.5   Ethernet Controller 
Most PC users are familiar with the NIC (network interface card), which pro-
vides the interface to the Ethernet.  Two widely used cards are the 3Com 3C509 
and the Novell NE2000.  These cards, typically connected to either an ISA or 
PCI bus, use Ethernet controller chips, which are rather sophisticated.  The full 
functions of these Ethernet controller chips are often not required in embedded 
systems.  Although the controller chips are rather complex, they nevertheless can 
be implemented in small 8-bit microcontroller systems with relative ease.  
 
One such controller is the RTL8019AS produced by Realtek, which is the most 
widely used with 70% world market share in 1999.  Both controllers are simple 
to use and relatively low cost.  Packaged in a 100-pin PQFP (plastic quad flat 
pack) measuring 14 by 20 mm the RTL8019AS has the following main features:  

• 16 Kbytes SRAM  
• IEEE802.3 compliant  
• Software compatible with NE2000 
• PnP 
• Full-duplex 
• Power down modes 
• Supports BROM 
• Diagnostics LED outputs 

 
Another similar controller is the CS8900A by Cirrus Logic.  Originally designed 
as an ISA-bus Ethernet controller, it can be adapted for 8-bit microcontroller use.  
A complete Ethernet circuit can be designed on a PCB of about 10 cm2.  A block 
diagram of this chip is shown below: 
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The controller is accessed through either 8- or 16-bit ports.  There are 8 registers 
which can be memory mapped into the usual address space.  Each register is 16 
bits.  For embedded system applications, those registered are accessed directly 
by the microcontroller. 
 
Address 
Offset 

I/O Register 

0h R/W Receive/Transmit Data (Port 0) 
2h R/W Receive/Transmit Data (Port 1) 
4h W TxCMD (Transmit Command) 
6h W TxLength (Transmit Length) 
8h R Interrupt Status Queue 
Ah R/W PacketPage Pointer 
Ch R/W PacketPage Data (Port 0) 
Eh R/W PacketPage Data (Port 1) 

 
The Ethernet frame transmission is carried out as follows: 
 

(1) To transmit a frame, first write a transmit command (00C0h) to the 
TxCMD port and the length to the TxLength port.  In the case of 8-bit 
connection, each frame is done in two steps, a low byte and then a high 
byte to the appropriate address.   The BusTX register is then checked to 
see if the transmit buffer is available.  This is done by setting the Packet-
page Pointer with the correct value (in this case 0138h) and checking the 
PacketPage Data (Port 0) for the appropriate status, in this case bit 8 
(Rdy4TxNow flag).   

 
(2) If a transmit buffer is available (Rday4TxNow flag set), data are written, 
one byte at a time, to the Receive/Transmit Data (Port 0), two bytes in two 
consecutive locations of the port.  
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The steps for frame reception are: 
 

(1) Poll Rx Event Register to determine if a frame is ready to be read.  This 
is done by reading the RxStatus word from data port 0, high order byte 
first. 

 
(2) The frame length is then read from data port 0, again high order byte 

first. 
 

(3) The frame data is then read from data port 0, low order byte first.  Repeat 
until the whole frame is read. 

 
One can see the simplicity of interfacing the controller from the following refer-
ence design for an 8-bit microcontroller using the CS8900A. 
 

 
 
Two LED outputs are usually provided by the Ethernet controller to monitor line 
status as shown in the diagram above.  A LANLED is turned on (logical low) 
when the controller transmits or receives a frame, or when a collision is detected.  
It remains low until there has been no line activity for 6 ms. 
 
A LINKLED is controlled by either the controller or the host.  In the former, this 
LED is turned on whenever there are valid 10Base-T pulses.  In the latter case, 
this LED is turned on whenever a HCB0 bit (a bit in a SelfCTL register) is set. 
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Ethernet controllers such as the CS8900A have a built-in 10Base-T transceiver 
including analogue and digital circuitry needed to connect to a simple isolation 
transformer.  A block diagram of the transceiver is as follows: 
        

 
Fifth-order Butterworth low-pass filters are used for the receiver and transmitter.  
The nominal 3 dB cutoff frequency of the filters is 16 MHz and the attenuation at 
30 MHz is –27 dB.   
 
In the 10Base-T transmitter, Manchester encoded data from the ENDEC (en-
coder decoder) passes through a predistortion circuit for wave shaping and pre-
equalization.  The signal is then filtered before being fed to differential drivers 
and finally brought out to the TxD+ and TxD- pins.  Link pulses are sent in the 
absence of transmit packets.  These are positive pulses, one bit time wide, gener-
ated every 16 ms. 
 
In the receiver, a squelch circuit determines if the incoming filtered signal is 
valid (reaches the threshold).  The receiver pair RxD+ and RxD- is monitored 
continuously.  If a packet or link pulse is not received within a time limit (150 
ms), transmission of packet is disabled.  The received signals are also checked 
for polarity.  In the case of polarity reversal, it is possible to set the controller to 
correct for the reversal.   

6.6 On Simple Laboratory Measurements Using Em-
bedded Processors 

The really basic measurements in physics laboratories are simply time (t) and 
voltage (V).   
 
It is obvious that the time of occurrence of an event must be recorded.  All other 
physical parameters can be converted to voltages using transducers and appro-
priate electrical circuitries.  A transducer may produce a change in electrical 
voltage directly when the physical parameter varies (e.g. thermocouples and 
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piezoelectric transducers). However, it is more common to encounter a trans-
ducer that causes one or more of the basic electrical parameters (resistance R, 
capacitance C and inductance L) to change. 
 
Embedded systems, perhaps with a few additional components, are extremely 
good at carrying out such measurements. 
  
Event counting and time measurement used to be rather tedious and often expen-
sive because of the dedicated circuitries needed.  They are now easily achieved, 
with microsecond resolution, using common microcontrollers.  Such time resolu-
tion is sufficiently high for a great variety of experiments in physics laboratories.  
Interestingly, real-time measurements at microsecond resolution can be achieved 
with very lost cost embedded systems such as PIC microcontrollers rather than 
with a high end PCs because of the heavy software overhead and the non-real-
time nature of the OS in PCs.   
 
Another nice feature of the small microcontrollers is the built-in analogue-to-
digital (ADC) function.  Often four or eight multiplexed ADC inputs are avail-
able, typically with 8-bit to 10-bit resolution.  Acquisition is often in the micro-
seconds or tens of microseconds using successive approximation technique. 
These translate to about 20K – 200K samples per second, a rather impressive 
performance for microcontroller costing about one dollar or one euro.  There are 
many situations when such ADCs are adequate in laboratories and an example 
has been given earlier in a motion detector application. 
 
In some situations, precision voltage measurements cannot be avoided.  This was 
again a costly and complicated business.  However, the situation has changed 
quite dramatically in the last few years.  It is now possible to acquire a small 
ADC chip with up to 17 bits resolution (using dual slope conversion) for about 
$3 (Microchip TC500A) and together with a precision voltage reference IC 
(MCP1525 at about $0.5), one has an ADC subsystem capable of measuring 
physical parameters up to a precision of 1 part in 10^5, or 0.0008%.  Some seri-
ous experiments can be done with such precision. One limitation of this low-cost 
high-precision ADC is of course the speed of conversion.  It can typically per-
form four to seven conversions per second. 
 
As mentioned earlier, most physical parameters can be converted to voltages by 
means of transducers and the job then boils down to measuring the electrical 
voltages with an appropriate ADC circuit.  However, in practice there is an 
alternative and rather simple solution in place of the ADC, if the transducer is a 
resistive or capacitive type.  A rather versatile timer IC, 555, first introduced by 
Signetics in 1971, has been used to measure resistance and capacitance with 
good precision at very low cost.  Even though the design is 30 years old now, a 
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large number of its derivatives are still being used widely for timing and measur-
ing of R and C.  The success of this IC is due to its simple, elegant and ingenious 
design that allows R and C to be measured accurately, independent of the IC 
components and power supply variations. Typically, the accuracy is dependent 
on only one or two external components over which the user has control.  In the 
astable multivibrator mode the period of oscillation is given by the famous rela-
tion: 
 

 
 
t1 = 0.693 (R1 + R2) C   
t2 = 0.693 (R2) C   
 
T = 0.693 (R1 + 2 R2) C   
 
where R1, R2 and C are the external components of the circuit. 
 
Since the period t is independent of the supply voltage and the internal IC pa-
rameters, rather high precision can be achieved if the external components are 
precise and stable.  For example, to achieve an accuracy of 1 part in 10^6, one 
only has to set the period to about one second and measure it with a resolution of 
one microsecond.  This is easily achieved with microcontrollers as we know.  
Thus a capacitive transducers that has a nominal capacitance of 1 uF requires 
only R1 and R2 to be in the range of M ohms and stable to within the accuracy 
required by the user.   
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By means of the 555 timer, we have transformed the problem of accurate meas-
urements of physical parameters to time measurements using low cost microcon-
trollers such as PIC, TINI or RabbitCore.  An example using such as circuit for 
temperature measurement is given below. 
 
Being able to time physical events and read voltages is only doing part of the job 
of an instrumentation/control system.  In most cases, some kinds of outputs must 
be carried out too.  Once again, microcontrollers with its parallel ports are very 
good at producing digital outputs and sending out digital control signals at mi-
crosecond precision.  In physics laboratories, very often, software controllable 
variable voltage sources are required.  This calls for digital to analogue conver-
sion (DAC).  It is typically done outside a microcontroller.  Fairly low cost 
DACs are available nowadays.  For example, a 10-bit DAC, TC1321 from Mi-
crochip costing $1.5, can provide analogue voltage output up to about 100K 
samples per second with an accuracy of 1 part in 1000 or 0.1%.  This again is 
sufficient for a rather large range of experiments in laboratories.   
 

6.7 An Example of a Distributed Embedded System 
A web-based distributed embedded system is given in this section to illustrate 
the technique of interfacing simple legacy equipment via the Internet.  For sim-
plicity, relatively small amount of hardware is involved.  A RabbitCore is con-
nected to two legacy devices, each an HC11-based board, in a master slave 
configuration where the RabbitCore is the master.  To illustrate the technique of 
implementing a small distributed system, these two legacy devices are linked to 
the RabbitCore via an RS485 serial bus.  Thus they may be as far apart as 4000 
ft, simply connected via a pair of twisted wires.  
 
Each HC-11 board has an input device and an output device.  The input device is 
a 555 timer while the output device consists of three LEDs of different colours.  
The 555 timer can be used as (1) a thermometer, (2) a simple capacitance meter, 
(3) a simple ohmmeter and (4) pulse generator.  A rotary switch is used to select 
one of these functions manually. 
 
The RabbitCore communicates with the HC-11boards via a simple byte-oriented 
protocol as shown below.  The master (RabbitCore) sends a command or mes-
sage packet to the slaves whenever it wants to get temperature reading or control 
LEDs.   
 
The RabbitCore is also connected to an Ethernet using a 10BaseT UTP connec-
tion.  A web server is implemented so that other PCs can access the legacy de-
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vices using a standard web browser.  If the RabbitCore is assigned an external 
IP, then Internet access is possible.   
 
 

 
 
 
Master Slave Protocol 
 
The format of the packet sent from the RabbitCore (master) to the HC11 boards 
(slaves) is as follows. 
 
STX DN DT DATA ETX 

 
The first byte is Start of Transmission (STX), followed by a Device Number 
(DN) byte that specifies the device of interest.  Thus DN=1 addresses the first 
device and DN=2 the second and so on.  A simple broadcast address (e.g. 0 or 
FFh) may be assigned.  The next field is Data Type to tell the addressed device 
the function needed, e.g. “T”  for temperature measurement, “R”  for resistant 
measurement, “C” for capacitance measurement and “F”  for pulse width meas-
urement, “L”  for controlling the LEDs.  The DATA field is parameter or data 
needed for a particular function, e.g. the LED pattern.  Finally the packet is 
terminated with an End of Transmission.   
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The slave devices respond with the following data packet: 
 
STX DT DATA ETX 

 
For simplicity error detection is done at the byte level using parity and framing 
error detection.  The whole packet can be further protected with packet level 
check word such as checksum or CRC if necessary.  
 

Web Server Software 

The main program in the web server in RabbitCore consists of an HTML page 
together with the necessary service-side include (SSI) and common gateway 
function interface (CGI) functions.  The HTML page shows a graphical user 
interface depicting LEDs, switches (to toggle the LEDs), and temperature or 
other readings.  SSIs are used to perform specific server-side function such as 
taking a temperature reading and displaying the value on the page.  Examples: 
 
<! - - #exec cmd=” r ead_devi ce0” - - > 
This SSI tag requests the server to execute a r ead_devi ce0 function that 
presumably will send a command to the slave device 0 to take a reading.   
 
<! - - #echo var =” r eadi ng0” - - > 
This SSI tag puts the reading0, which presumably is the returned reading from 
the slave device 0, into the HTML output string. 
 
<A HREF=” / t oggl e_gr een_l ed. cgi ” > <i mg SRC=“ but -
t on. gi f ” ></ A> 
This tag shows how a button image hyperlink generates an HTTP requests to a 
CGI function t oggl e_gr een_l ed. cgi .  This CGI function, upon execu-
tion, will send a toggle request to the slave device and also toggle the value of 
the green LED on the HTML page, by using different gif images. 
 

Client Side Software - Temperature Log 

A simple program was implemented on a client PC to convert the system into a 
temperature logger.  A simple web client is implemented using an HTTP GET 
request to the RabbitCore web server to get a temperature reading.  The return 
value in the web page is parsed and logged down in a temperature log file.  If 
this is executed periodically using, for example, the scheduler crond daemon in 
Linux, we then have a temperature logging system.  The temperature logs can 
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then be accessed in the raw form or presented to other web browser clients in the 
form of graphs. 
 
 


