
Industrial Networking Systems

A.J. Wetherilt†∗

† Artesis AS
34950 Tuzla, Istanbul, Turkey

Lecture given at the:
Second Workshop on

Distributed Laboratory Instrumentation Systems
Trieste, 20 October — 14 November 2003

LNS

∗anthony.james.wetherilt@arcelik.com

Abstract

Until recently, industrial networking relied heavily on serial based sys-
tems. The physical layers of several such systems are discussed and commu-
nications protocols presented for Modbus, Profibus, Fieldbus and CANOpen.
Industrial Ethernet and bus systems making using of it is presented. The use
of OPC servers as universal interfaces for SCADA systems is introduced with
reference to the OPC Data Access Specification

Keywords: Linux RS232, RS422, RS485, SCADA, DCS, TCP/IP, CAN, Profibus,
Profinet, Fieldbus, CanOpen, DeviceNet, OPC, OPCServer, Industrial Ethernet

PACS numbers: 64.60.Ak, 64.60.Cn, 64.60.Ht, 05.40.+j

Contents

1 Introduction 1

2 Serial communications 1
2.1 RS 232 . 1
2.2 RS 422/449 . 2
2.3 RS 485 . 4
2.4 Communicating over a 485 network 5

2.4.1 Common elements of address based communica-
tion protocols . 5

2.5 Controller Area Network (CAN) 7

3 Common industrial bus systems 8
3.1 Modbus . 9

3.1.1 ASCII mode . 9

4 RTU mode 10
4.0.1 Command response 10
4.0.2 Broadcasting . 10
4.0.3 Data and control functions 10

4.1 Profibus . 11
4.1.1 GSD Files . 13

4.2 Fieldbus . 16
4.3 CANOpen . 17

5 Industrial Ethernet 18

6 OPC: A universal interface 19
6.1 The Data Access Specification 20

7 Future trends 22

References 25

1

1 Introduction

Throughout most of this workshop we will have been talking about the various
methods of networking using the full power of TCP/IP running over Ethernet or
similar physical system. With modern techniques and hardware what can be
done with such systems is limited basically only by one’s imagination and expe-
rience. Nowadays everyone appears to need TCP/IP and Ethernet in one form or
another and it should thus be found wherever intelligent sensors provide data for
analysis systems. The hard facts of life, however, do not entirely bear this rosy
picture out: there are large data processing wastelands where neither TCP/IP
nor Ethernet can be found and other lower performance networking systems are
routinely employed for control and monitoring purposes. Industrial plants, in
Europe at least, until recently, traditionaly have rarely had Ethernet installed:
it is almost entirely confined to office use and seldom ventures onto the factory
floor. Yet monitoring and control are vitally important fields for the process en-
gineer. No industrial plant of even moderate scale could perform without the so
called SCADA (Supervisory Control and Data Acquisition) and DCS (Distributed
Control Systems) software monitoring systems showing the status of critical pro-
cess components.

This chapter reviews the basics of industrial networking solutions and dis-
cusses some of the protocols used for industrial process control. We will begin
by discussing the physical bases of serial communications used by common pro-
tocols. Next we will discuss the systems most commonly used in practice and
show how their protocols work. Industrial Ethernet and the recent extensions of
the common protocols to Ethenet will also be discussed. Finally, we will discuss
briefly attempts to provide a common interface between SCADA systems via the
OPC standard.

2 Serial communications

2.1 RS 232

Since the early days of computing and always since the advent of the PC, the se-
rial communications port has been virtually obligatory on every machine. The RS
232 standard of the Electronics Industry Association (EIA) is probably the most
well-known and most implemented standard in the history of the computer. It is
also probably the most non-standard ‘standard’ as every implementation seems
to differ from the next. The standard specifies a pair of data transmission lines
(RxD, TxD) together with a common return ‘ground’. Additionally, there are sev-
eral control lines intended primarily for modem handshaking control. In its sim-
plest form therefore, RS 232 communications can be achieved with just the two
data transmission lines and common return. There are however additional com-
plications that make this simple case difficult to implement. Firstly, equipment
using RS 232 comes in two varieties: Data Communications Equipment (DCE)
such as modems and Data Terminal Equipment (DTE) such as PCs, printers etc.

2 Industrial Networking Systems

If a DCE talks to a DTE then all is fine and dandy. Just connect the two pieces
of equipment pin to pin (i.e. RxD – RxD, TxD – TxD, and common – common)
and off you go. If, however, you wish to connect a DCE to a DCE or a DTE to a
DTE, a ’Null modem’ cable that reverses the connections between pairs of cables
(i.e. TxD – RxD in each case).1

Even when you have figured out what type of equipment it is, the three-line
connection may not work because of the logic levels required on the handshak-
ing lines by serial port adaptors themselves. Some of these can be disabled in
software but it is common practice in three wire connections to ‘loop back’ cer-
tain handshaking lines on the connector to provide the necessary logic levels. A
fully working implementation of the standard between two DTE devices requires
some two extra wire pairs over the simple approach. Data Terminal Ready (DTR)
connected to Data Set Ready (DSR), and Request To Send (RTS) connected to
Clear To Send (CTS), with the Data Carrier Detect (DCD) pins tied to DSR in
each connector.

Voltage levels are bi-polar with +(3 – 12V) indicating ON (or SPACE in the
terminology) and -(3 – 12V) OFF (or MARK). The dead area in between these two
states is intended to absorb line ground noise. A typical serial driver/receiver
chip or UART can transmit and receive at different internal clock frequencies.
The only requirement being that the clocks at both ends of the line agree on the
same frequency. The RS 232 standard specifies a maximum transmission rate
of about 20k bits/s at a cable length of 15m. At lower frequencies, longer cable
lengths are possible. Use of high quality, screened and twisted pairs for the
various line pairs can improve both the maximum cable length and the upper
frequency but in general as a result of the single ended cable with a common
ground return, noise is always a problem. Also connecting two remote ground
systems often results in the flow of potentially large ground currents further
affecting the noise susceptibility.

The RS 232 standard is intended primarily for asynchronous communica-
tions where each device has its own (un-synchronised) clock. Provision is made,
however for clocked synchronous communications in the full 25 pin connector
presented in table 1.

2.2 RS 422/449

To overcome the problems inherent with EIA RS 232 communications, the EIA
RS 422 electrical standard was developed. RS 422 uses balanced differential
drivers (labeled A or - and B or +)) for transmission of data over twisted pair
cables. Any externally developed noise is induced equally onto both wires of the
twisted pair and hence cancels out. Data rates of up to 100 k bits/s at distances
of up to 1200m are specified. RS 422 relies on the RS 449 mechanical standard
for connector specifications. A 37-pin connector is described, but allows 9 pin

1The problem is knowing, in advance, what type of device a given piece of equipment thinks it
is. A simple method involves measuring the voltages between the signal ground and TxD or RxD.
If VTDX < −3V then the device is a DTE; conversely if VRXD < −3V then the device is a DCE

3

Pin no Function
1 Frame ground
2 Transmitted data TxD
3 Received data RxD
4 Request To Send RTS
5 Clear To Send CTS
6 Data Set Ready DSR
7 Signal ground
8 Received line signal detect
9 Secondary Clear To Send
6 Data Set Ready DSR
7 Signal ground
8 Received line signal detect
9 Secondary Clear To Send
10 Received line signal detect
11 Undefined
12 Secondary Received line signal detect
13 Secondary Transmitted data
14 Secondary Clear To Send
15 Secondary Transmitted data
16 Secondary Received data
17 Receiver Signal element timing
18 Undefined
19 Secondary Request To Send
20 Data Terminal Ready DTR
21 Signal Quality Detector
22 Ring Indicator RI
23 Data Signal Rate Selector
24 Transmitter Signal Element Timing
25 Undefined

Table 1: RS 232 25 pin connections

4 Industrial Networking Systems

connectors on slave units. In practice the only connections needed are the data
lines and a shield.

Multi-drop applications where one driver is connected to up to ten receivers
are accommodated by the standard, but true multi-point applications where
multiple drivers and receivers exist tied to the same bus are not. Quasi multi-
point networks on the other hand can be constructed using two pairs of data
lines (the so called 4-wire connection). These networks are often used in what
is called half-duplex mode where a single master sends commands to multiple
slaves each listening in on the master’s transmission line pair. When a slave
recognises that a command is intended for itself, it responds by sending data
back on the second line pair attached to each slave’s transmission output. It
is important that data collisions are avoided by ensuring that only one device
responds at a time as typically all handshaking signals are ignored for simplicity
and cost.

In contrast to RS 232, RS 422 uses the voltage levels 0 and +5V with the
differential voltage between the A and B lines being important. VAB < −0.2V is
defined as OFF and VAB > 0.2V as ON, while a value between these limits is
undefined.

2.3 RS 485

The next instance in our discussion of bus types is the backbone of modern in-
dustrial communications. Like the RS 422 standard it uses balanced differential
drivers and receivers to achieve low noise over long distances at high data rates.
Its main difference is that whereas RS 422 specified that the output driver was
always active, RS 485 allows that the output driver is only activated during ac-
tual data transmission and disabled at all other times, by tri-stating (employing a
third, high impedence output in addition to low and high) the output. This allows
transmission and reception between multiple devices over a two wire twisted pair
bus (plus an additional signal ground). As before bus contention must be avoided
by ensuring that only a single device is active at a given time. This is generally
achieved in software by the use of a designated bus master, which decides which
device is to talk.

The voltage states on the differential lines can be one of the three states: ON;
OFF; and High Impedance. When all drivers are in the high impedance state, the
voltage on the data line can drift to values in excess of the safe common mode
limits, and bias resistors should be used to bring the idle voltages to safe levels
without seriously loading the system at other times. A pull up resistor to 5V
and a pull down resistor to ground should be attached to the B and A terminals
respectively. The exact value of the resistors depends on many factors including
the cable length, number of attached devices and so on.

At high data transfer rates or long cable lengths problems with reflections can
occur if the lines are not terminated correctly. We can determine the maximum
data rate an unterminated line can accept for a given set of conditions.1 Correct

1We assume that any reflection will damp down after a few round trips and that as the voltage

5

termination can be achieved by placing a resistance greater than or equal to (over
damping is generally preferred to under damping) the characteristic impedance
of the line between the two members of the twisted pair at each end of the cable.
It is not necessary to terminate the individual tapped nodes. Together with the
biasing resistors this technique is known as power termination.

The input impedance of each receiver is specified as being at least 12k. At this
impedance a minimum of 32 devices can be attached to the network segment. If
more than 32 devices are required, line repeaters must be employed at suitable
intervals. Alternatively, multiport serial adaptors can be used in the host pc to
set up multiple segments with up to 31 attached devices in each segment. In
this manner literally hundreds of devices can be attached to the network and
monitored from a single machine.

A common addition to RS 485 bus systems is a layer of optical isolation be-
tween the transceivers and the device. Industrial equipment can produce large
electrical pulses from the rapid switching of high currents and despite all other
precautions these pulses often find their way on to the twisted pairs where they
manifest themselves as large voltage spikes of very short duration. Such spikes
are often fatal to microprocessor based instrumentation causing resets, cor-
rupted data and other problems. Optical isolation can reduce the effects of these
pulses to manageable proportions allowing devices to function under electrically
aggressive environments.

2.4 Communicating over a 485 network

Having described the physical medium used in industrial networks, we will now
examine a simple protocol for data transmission over a multipoint line. The pro-
tocol illustrates some of the principles needed when performing serial commu-
nications. In subsequent sections we examine some of the commoner ‘standard’
protocols available over the RS 485 physical layer. Non-standard protocols are
popular with device manufacturers in that they are generally simple and both
easy and cheap to implement and can be tailored to fit the needs of their device.

2.4.1 Common elements of address based communication protocols

Many protocols are forced by the nature of the problem to contain similar ele-
ments, such as a byte to indicate the start of a command, the address of the
device to receive the command (as well as the address of the sender in a true
multipoint network), the command itself, any data needed by the command and

will be sampled in the middle of the pulse it must be stable at that point. We therefore look
at the rise time caused by the propagation delay. This is equal to the length of the cable x the
propagation speed (obtainable from the cable manufacturer and typically about 0.66% of the
speed of light) * the number of trips. If this value is comparable to half the pulse width we
need termination. For example, at 19200 baud one bit is 52µs wide and the signal should be
stable appreciably before half this value, say 16µs. If we assume that after three round trips the
reflections are completely damped, the total distance traveled is 6*L where L is the cable length.
The maximum cable length without terminations is then L=528m.

6 Industrial Networking Systems

a. Two wire multidrop (1 transmitter-many receivers)

b.Four wire quasi multipoint

MASTER SLAVE

c.Two wire multi-point with RS 485

MASTER SLAVE

Figure 1: 2 and 4 wire-balanced connections

7

STX ADDRESS COMMAND DADA1 DATA2 . . . DATAn CHECKSUM

Figure 2: Command packet structure

finally some form of checksum for ensuring that the command packet does not
get scrambled en route to the receiver. In some cases the number of bytes in
the command is fixed, in others the size will depend on the both the nature of
the command and any data associated with it. Many protocols start with the
ASCII character Start of Text (STX) that has the value 2. Depending on the total
number of devices that need to be addressed, the address field will require 1 or
two bytes. As a total of 256 devices is often sufficient, we will use one byte for
this purpose. We will also assume an arrangement in which one device (typically
the host PC) is designated as the master. In this case we do not need to include
the sender’s address, which we can set to a reserved value (typically 0 or 255).
For simple devices, the number of commands will rarely exceed 256 and so one
byte can be reserved for this purpose. We can also assume that the device can
work out how much data will be sent from the command and it is therefore not
necessary explicitly to reserve a field for this value. Finally, we must indicate a
checksum value that can be constructed from the other bytes in the packet and
reconstructed again by the receiver to check the validity of the packet. There are
many ways of constructing this checksum but we will use the simple method of
forming the exclusive or of the previous bytes in the packet and using this as the
checksum. The receiver will take the packet and again form the exclusive or of
all its bytes. If this value is not zero, the packet has been corrupted and should
be sent again.

A good protocol should also specify the response of the receiver to each com-
mand. A satisfactory way of doing this is to echo the first three fields (STX,
ADDRESS, COMMAND). In this case the address field is the address of the re-
sponding device, and COMMAND is the sent command if it was received satis-
factorily or a separate command indicating a receiver error. Again, data may be
sent with the packet and the checksum added as the final byte.

Protocols such as this are simple to implement and are sufficient for remark-
ably sophisticated devices. The actual protocol described here has been used for
multidrop master-slave communications in several instruments.

2.5 Controller Area Network (CAN)

The Controller Area Network or CAN is a networking system originally introduced
by the Bosch company in 1986 for communications between individual compo-
nents of automotive systems. Almost every car produced now contains at least
one CAN network and it is estimated that annual sales of CAN devices were more
than 100 million in the year 2000. CAN interfaces are now common on many de-
vices as second or third serial ports and its use extends well beyond the original
automotive applications. It is managed by the CAN in Automation organisation
(CiA) who promote and manage the standard as well as providing considerable

8 Industrial Networking Systems

Function
CAN L (CAN-) Dominant Low bus line
CAN H (CAN+) Dominant High bus line
CAN GND Common ground return
(CAN SHLD) Optional shield
(GND) Optional power ground
(CAN V+) Optional power supply

Table 2: CAN bus line definitions

information to potential vendors and developers.
In contrast to the RS 232 and RS485 based protocols discussed previously

which are either point to point or require a separate address for each device
on the bus a CAN device sends messages, each with a unique identifier. Each
unique message identifier is intended for a specific device or group of devices.
CAN defines a minimum of 3 data lines for communications used as a differ-
ential pair and a common return. Other optional lines are used for screening
and powering of opto isolators. The CAN L and CAN H lines are connected to
the inverting and non-inverting terminals of the differential inputs respectively
resulting in a negative level when CAN L > CANH and a posative level otherwise.
The differential driver outputs are arranged so that the logical result of two or
more values is the logical AND of the values. Since the logical AND of 0 with
any other value is always 0, the 0 state is said to be dominant whereas the 1
state is recessive. Cable lengths are specified up to 1000m at a maximum bau-
drate of 50kbits/s. At higher baudrates, the maximum cable length is reduced
considerably.

3 Common industrial bus systems

There exist numerous bus systems in use throughout the industrial world. Some
of the properties of these systems are summarised in table 6. The choice is be-
wildering, but in practice, only a few systems are worth describing: Modbus,
Profibus, Fieldbus and CANOpen. The first of these, Modbus has an open speci-
fication and is commonly used in many systems especially motor control devices
such as inverters. Since it has an open architecture, it can be used without
royalties or other fees and PC port adaptors are widely available from various
manufacturers. Profibus, on the other hand was developed primarily by Siemens
for use in its own products and then released to the community at large. It is
now governed by a European standard and its use regulated by the Profibus
Foundation, which exists to further the use of Profibus, to provide information
concerning the availability of products containing Profibus interfaces and to pro-
vide hardware for product manufactures. The Fieldbus Foundation performs a
similar role for the Fieldbus. Whereas Profibus is almost exclusively European,
Fieldbus is the emerging standard in North America and any company seeking to

9

Start Address Command Data 1 . . . Data n LRC End
: 2 chars 2 chars 2 chars 2 chars 2 chars 2 chars CRLF

2 chars

Figure 3: ASCII mode packet

sell its products in that region had better seriously consider its implementation.
All three systems (Modbus, Profibus and Fieldbus) have organisations active in
embedding their technologies in TCP/IP over Industrial Ethernet.

The final modern fieldbus to be discussed is CANOpen and is based on the
CAN system described earlier.

Since each of these systems is a topic in its own right, we will give only an
overview of the important points in each case.

3.1 Modbus

Modbus uses a twisted pair connection for multidrop communications with one
master and up to 247 slaves. All communications are initiated by the master
and devices talk only in response to a master command. The Modbus protocol
establishes a format for all commands and responses and each packet contains
the desired device address, the command code, any data needed by the command
and an error-checking field. If a device receives a command that either contains
an error or in executing that command the device is in error, the device can
construct an error response containing relevant information.

Modbus uses two distinct modes of communication: ASCII mode or Remote
Terminal (RTU) mode. The mode is selected along with the other communication
parameters (Baud rate, parity, data bits, stop bits etc) during initial configura-
tion. It is essential that all devices are configured in the same way otherwise the
entire network will probably fail.

3.1.1 ASCII mode

In this mode, each eight-bit byte in a message packet is sent as two ASCII charac-
ters. The main advantage of this mode is that it allows delays between individual
characters within the message packet of up to one second without error. The
message data is sent as the hexadecimal digits 0-9, and A-F with each digit sent
as one ASCII character. One start bit followed by 7 data bits, an optional parity
bit and finally one or two stop bits depending on whether parity was selected,
make up each transmitted character. The format of each packet is shown in
figure 3:

The start of each packet is always signified by the ‘:’ character and the end
with a carriage return-line feed pair. The longitudinal redundancy check (LRC) is
calculated as follows. The values of each byte of the message (excluding both the
starting colon and the terminating CRLF pair) are added together without carry
and then two’s complemented to form the result.

10 Industrial Networking Systems

Start Address Command Data 1 . . . Data n CRC End
4 silent chars 8 bits 8 bits 8 bits 8 bits 16 bits 4 silent chars

Figure 4: RTU mode packet

4 RTU mode

In RTU mode each message frame must be preceded by a period equal to at
least 3.5 characters at the selected baud rate. Similarly, if more than this period
of times elapses between successive bytes transmitted during a message, the
packet is assumed to be finished. On the other hand, if a period less than this
value occurs between successive packets, the two packets are considered as one.
This gives the packet structure that is shown in the figure 4.

The transmission of each byte consists of one stop bit, eight data bits, an
optional parity bit and one or two stop bits (depending on whether parity was
selected). The characters are transmitted as two digit hexadecimal values within
the eight bits of each field.

Calculation of the Cyclical Redundancy Check (CRC) used in RTU mode is a
much more complicated affair than for ASCII mode. First a sixteen-bit register is
loaded with ones. Then each data byte is first exclusively OR’ed with the register
and the contents of the register shifted right towards the least significant bit
(LSB), zeroes being padded in the most significant bit. If the LSB is one, the
register is again EOR’d with a preset value. The process continues until eight
such right shifts have occurred. Successive data bytes are then subjected to the
same process to obtain the final CRC.

4.0.1 Command response

Following receipt of a legal command a slave will respond with its address and
will echo the command in the packet. Any required data will also be included.
Allowable commands are values in the range 1-127. If an error occurs as the
result of an illegal or improperly executed command the slave will set the most
significant bit of the command field. In this case the data in the data field will
convey extra information concerning the type of error that occurred.

4.0.2 Broadcasting

The master can broadcast to all slaves by setting the address field to zero. Any
slave receiving such a broadcast will perform the required action but will not
respond for obvious reasons. In particular this means that error responses will
not occur with broadcasts.

4.0.3 Data and control functions

Modbus defines a number of data and control functions intended to permit a
variety of simple instruments and devices to be controlled by a uniform command

11

Layer 7 Application layer (FMS, PA)
Layer 6 Presentation layer
Layer 5 Session layer
Layer 4 Transport layer
Layer 3 Network layer
Layer 2 Data link layer
Layer 1 Physical layer

Figure 5: The ISO/OSI model

390Ω

390Ω

VP

Data +

220

Data −

Ω

DGND

Protective ground

VP(+5V) (6)
DGND (5)

Data − (8)

Data + (3)

Figure 6: Profibus RS 485 cable definitions and terminations

set. These are summarised in the following table:

4.1 Profibus

Profibus is a considerably more complex system than Modbus, and is a more
modern attempt to address the problems of device interoperability. It was de-
signed using the Open System Interconnection (OSI) model shown in Figure 4.1
and utilises layers 1, 2 and 7 of that model.

At the bottom of the model, the Physical layer describes the physical charac-
teristics of the transmission medium. Most frequently this is the RS 485 technol-
ogy discussed earlier, but also can be fiber optic technology. When used with RS
485 cabling Profibus uses four wires: a single twisted pair for data transmission
and one wire for ground return and a second wire at +5V. All are shielded. Power
termination is used at both ends of each segment, which can have a maximum
of 32 devices attached to it. Repeaters are used to connect multiple segments
together up to a total maximum of 127.

Communication rates between 9.6kBaud and 12Mbaud make data transfer
fast and efficient.

12 Industrial Networking Systems

Function No Function name Description
01 Read coil status Reads the ON/OFF status of

discrete outputs such as relays
or other logic devices

02 Read input status Read ON/OFF status of discrete inputs
03 Read holding register Read the binary contents of the output

registers (16 bit location) between
specified offsets

04 Read inputs registers Reads the binary contents of the input (4x)
registers between specified offsets

05 Force signal coil Force the specified single discrete output
device to give ON/OFF state

06 Load the specified (4x) register with
a present value

07 Read exception status Reads a set of eight status bits.
Certain bits are predefined but
some are device dependent

08 Diagnostics Get diagnostic information
11 Fetch Fetch a status word and the count of

communication communications events. This allows
a master to determine whether

event counter a command was handled correctly
12 Fetch common event log Fetch a status word, a message

count and a array of messages for
diagnostics

15 Force multiple coins Set the logic states of a series of discrete
outputs

16 Presets multiple Loads a sequence of registers with
registers preset values

17 Report slave ID Return device dependent information
from a slave

20 Read general reference Read from an extended set of register
21 Write general reference Read from an extended set of register
22 Mask write 4x register Modify a general register using logical

operations
23 Read/write 4x register Read and write a specified register

in a single operation
24 Read FIFO queue Read from a set of queued FIFO registers

Table 3: Predefined Modbus commands

13

Three varieties of Profibus exist: Profibus DP, Profibus FMS and Profibus PA,
respectively for high speed data communication in automation equipment, object
oriented general purpose communications, and process application areas where
intrinsic safety may be an issue. Approximately 90% of Profibus applications at
this time are Profibus DP which uses only layers one and two of the above OSI
model.

Both single and multiple masters can exist on a Profibus network. At a single
instant, only one master can be active and all others are temporarily reduced
to slave status. However, within a predefined time, the current master passes
control to the next master by issuing a special command called a token. On
issue of this command the current master relinquishes bus control to the new
master, which in turn takes control. This process repeats itself on a cyclic basis
with return periodically returning to a particular master device. Most devices,
however, are configured as slaves only and do not take part in the token passing.
A given master can address all the devices on the bus or a group of devices can
be specified. It is important that the time that a master owns the token is long
enough for it to communicate with all slave devices attached to it. This parameter
must be configured before bus usage.

The second layer of the OSI model describes the general format of data pack-
ets, which are known as telegrams, and can each contain up to 244 bytes of
data. Transmission services defined by this standard are:

SDA send data with acknowledge (for FMS only). Data are sent to the master or
slave and a short acknowledgement sent in response;

SRD send and request data with acknowledgement (for DP and FMS). Data are
sent and received in one telegram cycle;

SDN send data with no acknowledgement (for DP and FMS). Broadcast or Mul-
ticast (to a selected group telegrams);

CRSD Cyclic send and request data (FMS only).

Preceding each telegram must be a silent or idle period of at least 33 sync
bits (roughly 3.3 bytes). The first byte in any telegram is the Start Delimiter (SD)
used to distinguish the type of packet.

4.1.1 GSD Files

An important concept in Profibus and one which must strictly be adhered to for
a device to be approved as Profibus compatible, is the concept of a GSD file. A
device GSD file provides a clear and comprehensive description of the properties
and behaviour of the device. During configuration, the GSD file can be loaded
and using it a controller can both communicate with the device and understand
the meaning of data being transferred. With this view, gone are the days when
an engineer has to read the fine print of the device manual in order to get the
device talking to the network. All that is needed is to load the GSD file and all
translation is automatically performed.

14 Industrial Networking Systems

Telegram 1: Request FDL Status: Used to determine any new active stations on
the bus

Start Destination Source Function Frame End Delimiter
Delimiter Address Address Code Checking

Sequence,
SD DA SA FC FCS ED
0x10 0x16

Telegram 2: Data telegram with variable length data

SD LE LEr SD DA SA FC DSAP SSAP DU FCS ED
0x68 0x68 0x16

Telegram 3: Data telegram with fixed length

SD DA SA FC DU FCS ED
0xA2 8 bytes 0x16

Telegram 4: Token telegram: Telegram transferring access rights between two
bus masters

SD DA SA ED
0xDC 0x16

Figure 7: Profibus Telegrams

Note: Keys are shown in table 4

15

Key:

SD Start Distinguishes between telegram types
Delimiter

DA Destination Address of receiving device
Address

SA Source Address of sending device
Address

FC Function Function code to identify whether telegram
Code is a primary request, acknowledgment,

or response
FCS Frame Addition of the bytes within the indicated length

Checking
Sequence

ED End End of the telegram
Delimiter

LE Length Length of data within the telegram.
Includes DA, SA, DSAP, SSAP

LEr Length Repetition of the length for error checking
DSAP Destination The destination station uses this to determine

Service which service is to be executed
Access
Point

SSAP Source
Service
Access
Point

DU Data Unit Data bytes from 1 to 244 bytes

Table 4: Keys of Profibus Telegrams

16 Industrial Networking Systems

Clock

Data
1

Encoded
signal

0

Figure 8: The Manchester Biphase -L encoding scheme

4.2 Fieldbus

Fieldbus is a very advanced system that defines and deals with all aspects of
industrial process control. Like Profibus it is based on layers 1,2 and 7 of the OSI
model but achieves its implementation in a very different manner. Again its goals
are interoperability of devices, open but regulated definitions that encourage
independent manufactures to produce compatible devices and intrinsically safe
operation.

The only communication medium yet available is a cable consisting of a sin-
gle twisted pair. Rather than the asynchronous RS 485 based systems dis-
cussed earlier, Fieldbus uses synchronous communications based around what
is known as the Manchester Biphase-L technique (figure 8). In this system a
clock and a data signal are combined to give an output signal in which the edges
of the transitions rather than the amplitude of the signal are important. A rising
edge corresponds to a logical 0 and a falling edge to 1. The output voltage is
superimposed on a constant DC level and is designed to give a current variation
of between 15-20 mA when dropped over a pair of terminating resistors at either
end of the bus or trunk as it is known.

Each packet starts with a preamble consisting of a sequence of four 1 0 val-
ues. The data starts and ends with delimiters which are not Manchester encoded
(allowing transitions on the rising edge of the clock pulse).

It is possible to obtain power from the DC levels used to transmit the signal
although the number of devices that make use of this feature is limited by the
total current drawn.

From the Fieldbus point of view, any device attached to the bus is seen as
a node containing sets of parameters which collectively form what is known as
the Virtual Field Device (VFD). The design of Fieldbus uses an Object Oriented
approach to model the complex structures of typical devices in such a way that
they can properly be controlled. The VFD is responsible for communicating the
various objects that describe the device to other devices wishing to interact in
some way. Various classes of objects are defined such as Input classes, Con-

17

���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

���������������
���������������
���������������
���������������

10 9 8 7 6 5 4 3 2 1 0
R
T
R

S
O
F

B

C

BUS

A
Listen only

Listen only

Transmit data

Figure 9: How a CAN bus handles contention. Three devices A, B, C contend for
the bus at the same time. All are in step until position 5 of the Identifier when
device A emits a high (recessive) level and drops into the listening state. Similarly
device B drops out at postion 1, leaving device C as bus master

trol classes, Calculation classes and Output classes and each device must be
described in terms of its class. Other properties of a device may be specified in
terms of standard objects such as alarm objects or trending objects and once it is
known that a device supports a type of object it can be manipulated accordingly.

Fieldbus goes well beyond any other system in its process control capabili-
ties, but its introduction has been slow. Presently, the official Foundation Field-
bus website boasts of 100 registered devices, in comparison with over 300 for
Profibus in roughly the same time span. It is extremely versatile at the expense
of complexity, and only time will probably tell whether what is advertised as the
”21st century fieldbus” will really succeed.

4.3 CANOpen

CANOpen and DeviceNet are derivatives of the CAN system outlined earlier. At
any one time only a single device can be allowed to talk and effectively become
the master. The mechanism whereby a device recognizes whether or not it is to
respond to a message is interesting and worth outlining.

When the bus is idle, the lines are held in the recessive state. At this stage
a device that wishes to communicate,pulls the bus to a dominant state and
immediately releases it to indicate the start of a new frame (SOF). Each listening
device must then follow the sequence of bits defined in the message identifier
and put the correct value onto the bus. The message identifier is a sequence of
11 or 29 bits (depending on whether the frame is extended or not as determined
by the IDE bit) starting with the most significant bit. As the bits are output,

18 Industrial Networking Systems

S
O
F

I
D
E
N

R
T
R

I
D
E

D
L
C

D
A
T
A

C
R
C

A
C
K

E
O
F

I
F
S

IDLEIDLE

Figure 10: The CAN message frame

each device checks to see whether it can match the identifier output so far. If it
cannot it goes into a passive listenning condition and outputs a recessive state
otherwise it continues trying to match bits. In this way as the identifier bits
are output, devices pass from the active to the passeive listening states one by
one until the message identifier is complete. If a device is still active at the
end of the identifier it starts to processes the message. Following the message
identifier, the RTR bit disguishes the message as either a request for a device
to send data or actual data. In the later case the data are contained in up to 8
data bytes in the DATA field with the actual number of bytes set in the DLC byte.
Error checking can be performed by a cyclic redundancy checksum contained in
the CRC byte. An indication of whether or not the message has been received
correctly is given in the ACK bit. This bit is sent as recessive and is overwritten
with dominant values by each device that correctly recieved the message.Finally
an EOF bit is sent. Following the end of transmission, a time equivalent to set
minimum number of bits (IFS) must elapse prior to the next transmission and
the bus remains in the idle state until a device is ready to transmit.

Note that there is node need for separate acknowledgement messages as in
many other protocols as a device can immediately indicate any error by setting
the acknowledgement bit to the dominant state. Bus conflicts where two or more
devices compete for the write to talk are also handled by the bus in a simple and
natural manner. Following the start SOF bit, the bits will be placed onto the bus
by the competing devices. At each step any device that puts out a recessive bit
when another puts out a dominant bit goes into the listening state until only a
single device is left. Since the priority of a message is defined by the inverse of
the message identifier value (i.e. the higher the priority, the lower the message
identifier value), this mechanism determines that the device with the highest
priority message always wins in case of conflict (the highest priority will consist
of dominant zeroes).

5 Industrial Ethernet

As industrial automation and control gets more sophisticated and ubiquitous, a
natural step is to use the information gathered directly in planning, stock con-
trol, and management systems. Previous attempts at Process Application Man-
agement (PAM) and Enterprise Resource Planning (ERP) have utilised separate

19

networks for the factory level, fieldbus systems and the office level Local Area
Networks running TCP/IP, with PC based gateways acting to cross the divide. As
noted in the intoduction, traditionally very few devices have had Ethernet con-
nectivity. This situation is, however, changing with the introduction of Industrial
Ethernet and other networking systems. Industrial Ethernet is basically a more
robust version of standard Ethernet, better suited to the more extreme condi-
tions met in industry, with greater operating temperature range, higher noise
immunity hardware, and a wider range of connectors. All equipment is spec-
ified to operate using the industrial standard 24VDC and is guaranteed to be
backwards compatible for at least10 years, the typical lifetime of industrial com-
ponents. TCP/IP is used as the main protocol with the existing fieldbus protocols
embedded within the upper layers of the TCP/IP stack. Several protocols have
have taken advantage of the many benefits offered by Ethernet (high bandwidth
and transmission rates, fault tolerance, and cost to name a few) made this tran-
sition within the last few years including Modbus (Modbus TCP/IP), Profibus
(ProfiNet) and Fieldbus (Fieldbus HSE). Widespread usage of any of these has
yet to be achieved, but as instruments equiped with the appropriate hardware
become available, this situation can be expected to change significantlty.

6 OPC: A universal interface

One of the problems faced by any systems integrator faced with the task of
connecting a device to a SCADA monitoring system is to identify the various
functions a device performs and how to extract the information needed by the
monitoring software for alarm indication and trending. As we have seen many
protocols define sets of registers in which the various items of data can be found.
The problem is that no two devices ever appear to have a common set of regis-
ter definitions and that adding a new device to an existing fieldbus network has
often required extensive modifications to the SCADA software. A workable so-
lution to the problem is the provision of drivers for each device on the network,
that the software loads dynamically at run time. Such a driver will take care of
the peculiarities of a specific device and provide an interface through which the
software can access its data in a device independent manner. To be really useful,
however, the device driver should not be specific to a single SCADA system but
be available to all such systems.

OPC (OLE for Process Control) has been developed to fulfill these needs and
in its present form comprises a wide range of specifications and guidelines cov-
ering many aspects of process control. At its heart is the concept of transmis-
sion of objects (in the full object oriented sense) between different processes and
threads as originally specified by the Open Software Foundation (OSF) in the
1990s. Early efforts at implementing these ideas resulted in the Object Linking
and Embedding (OLE) technolgy developed by Microsoft which were later refined
into ActiveX controls working on top of Component Object Model (COM) compo-
nents. A COM server can either be In process or Out process meaning that it
is a Dynamically Linked Library (DLL) or a separate process respectively. For

20 Industrial Networking Systems

Key:

SD Start Distinguishes between telegram types
OPC Overview General description
OPC Common Definitions Common definitions and interfaces
OPC Data Access Reading and writing real time data
OPC alarms and events Event monitoring
OPC historical data Data trending
OPC Batch Extensions to Data Access
OPC and XML Integration of OPC and XML

for web applications

Table 5: OPC specifications

communication with objects on other machines on a network, Distributed COM
(DCOM) is used. In any case, each COM object specifies a number of interfaces
(or methods in OOPS) that once published are guaranteed not to change.

The creators of OPC have modelled the behaviour of generic devices and de-
fined a large number of specifications for all areas of functionality. Libraries of
base objects exist and COM controls for new devices can be created inheriting
all the interfcase of the parent objects, but tuned to the characteristics of a spe-
cific device. All a monitoring software needs to do is to load the particular COM
object at run time and use its published interfaces in the correct manner, thus
achieving both device and software vendor independence.

Although developed for the MSWindows environment, COM and DCOM tech-
nologies have been ported to other operating systems including Linux and other
versions of Unix as well as several operating systems for embedded applications
(Wind River in particular have versions for a number of processors). Thus the
technology is not confined to a single platform and OPC has gained wide spread
usage over the entire industry. Microsofts much vaunted .NET platform is the
successor to COM and OPC is currently being ported to that environment. This
will make it much more portable to other environments as at least one project to
produce an Open Source port of the entire .NET platform is in progress.

The various specifications currently covered by OPC are shown in the table 5.
In the following section, the Data Access specification is examined as an ex-

ample

6.1 The Data Access Specification

The Data Access Specification is the oldest of the OPC specifications and defines
an interface between client and server processes. One or more data access client
can access a data access server which can provide what are known as data
sources (such as temperature, vibration etc sensors) and data sinks (controllers
of various types). Together these data sinks and sources constitute a model of
the device to be connected. A data access client could be a very simple appli-
cation displaying data in a table or be a single component of something more

21

OPC Client

OPCServer

OPCGroup OPCGroup

OPCItem OPCItem OPCItem OPCItem

Root

Node1 Node2

Item2 Item3 Item3Item1

Data Access Server

Figure 11: A schematic representation of a Data Access Server. The OPC Client
connects to the OPCServer and OPCGroup objects. The namespace, represented
here as a tree starting at Root is scanned at startup and has OPCItem objects
created for the various items within the namespace

complicated system such as a SCADA system. Similarly, a data access server
can be a simple process such as one that communicates with a device and re-
turns selected values from its registers, or a complicated one performing multiple
control functions.

A data access server has two components that a client can use, the names-
pace, and the OPC object hierarchy. The namespace contains lists of all the
sources and sinks maintained by the server as a tree structure. Each node in
the tree also can contain information properties detailing how the node is to be
used and access paths describing the communication settings and pathways.
The object hierarchy consists of three levels of objects consisting the OPCServer
object, the OPCGroup objects and lastly the OPCItem objects. A single OPCServer
object can manage multiple OPCGroup objects which in turn are used to group or
structure multiple OPCItem objects. OPCItem objects represent the items within
the namespace. Both the OPCServer and OPCGroup objects are implementa-
tion independent with all implementation details being carried by the OPCItem
objects.

As the system boots, during the configuration stage, the namespace is scanned
to extract its information and OPCGroup and OPCItem objects are created ac-

22 Industrial Networking Systems

OPCServer

OPCGroup OPCGroup

OPCItem OPCItem OPCItem OPCItem

Root

Floor 1

Room 11 Room 12

Temp Humidity Temp Humidity Temp Humidity Temp Humidity

Floor 2

Room 21 Room 22

Figure 12: An example of namespace and object hierachies. Each item within
the namespace can have a corresponding OPCItem.

cordingly. For example, consider the following situation where the tempera-
ture and humidity of rooms in a multistory building are being monitored and
controlled. Each floor of the building has several rooms (in total N) in which
measurements are to be made giving rise to the tree shown in figure 11. If all
the temperature and humidity measurements are grouped together to form two
OPCGroups, each has N OPCItems representing measurements from each room.
The client can access the data by using the methods of the exposed OPC object
interfaces.

7 Future trends

As field buses get more complicated, faster and cheaper hardware solutions are
required. One of the great selling points of Profibus for example was the re-
duction in cost possible over the old 4-20 mA current loop technology, mostly
achieved as a result of using linear cable topologies rather than bringing all ca-
bles back to a central star point. It is evident that the main remaining expense
(apart from software) is the cost of the interfaces themselves. On the other hand
Ethernet technology is cheap and widely available. It can be expected that Eth-
ernet will become an important player in industrial networking.

Whether the ”Fieldbus Wars” as one commentator has described the current

23

position will be resolved in favour of a single standard is doubtful. Probably a
few of the older, less open standards will slowly disappear, as the advantages of
the modern systems become more apparent, but as in any democracy, there will
always be a small but vocal minority of devotees to a particular system who will
stoutly refuse to allow its demise.

24 Industrial Networking Systems

0
0

Fi
el

db
us

Sy
st

em
D

ev
el

op
er

Ye
ar

Si
em

en
s

Pr
of

ib
us

St
an

da
rt

EN
50

17
0/

D
IN

19
24

5
IE

C
 1

15
8−

2
A

si
cs

 fr
om

 S
ie

m
en

s
Pr

od
uc

ts
 fr

om
 >

30
0

m
an

uf
ac

tu
re

s

D
eg

re
e

of
op

en
ne

ss
M

ed
ia

Tw
is

te
d

pa
ir

O
pt

ic
 fi

be
r

M
ax

 #
of

no
de

s

12
7

M
ax

 d
is

ta
nc

e

10
0m

 b
et

w
ee

n
se

gm
en

ts
@

12
M

B
au

d

IN
TE

R
B

U
S−

S
Ph

oe
ni

x

19
95

19
84

D
IN

 1
92

58
Pr

od
uc

ts
 fr

om
 >

40
0

m
an

uf
ac

tu
re

s
Tw

is
te

d
pa

ir
O

pt
ic

 fi
be

r
25

6
se

gm
en

ts

D
ev

ic
eN

et
A

lle
n−

B
ra

dl
ey

19
94

IS
O

11
89

8
IS

O
11

51
9

17
 a

si
c

m
an

uf
ac

tu
re

s
Pr

od
uc

ts
 fr

om
 >

30
0

m
an

uf
ac

tu
re

s
Tw

is
te

d
pa

ir
64

40
0m

 b
et

w
ee

n

12
.8

km
 to

ta
l

6k
m

 w
ith

 re
pe

at
er

s

IN
TE

R
B

U
S−

S

A
R

C
N

ET
D

at
ap

oi
nt

19
77

A
N

SI
/A

TA
 8

78
.1

A
si

cs
, b

oa
rd

s,

A
N

SI
 d

oc
um

en
ts

C
oa

x
Tw

is
te

d
pa

ir
O

pt
ic

 fi
be

r

C
oa

x
60

m
T/

P
13

0m
O

/F
 2

00
0m

Fi
el

db
us

Fo
un

da
tio

n
Fi

el
db

us
Fo

un
da

tio
n

19
95

IS
A

 S
P5

0/
IE

C
61

15
8

C
hi

ps
 fr

om

m
ul

tip
le

 v
en

do
rs

Tw
is

te
d

pa
ir

O
pt

ic
 fi

be
r

m
en

t
24

0/
se

g−
19

00
m

@
31

.2
kB

au
d

Fo
un

da
tio

n

H
SE

Fi
el

db
us

Fi
el

db
us

Fo
un

da
tio

n

U
nd

er

te
st

IE
EE

 8
02

.3
u

Et
he

rn
et

, m
an

y
su

pp
lie

rs
Tw

is
te

d
pa

ir
O

pt
ic

 fi
be

r
T/

P
10

0m
 @

 1
00

M
kB

au
d

O
/F

 2
km

 @
 1

00
M

B
au

d

C
A

N
op

en
C

A
N

 In
A

ut
om

at
io

n
19

95
C

iA
17

 c
hi

p
ve

nd
or

s,

O
pe

n
sp

ec
ifi

ca
tio

n
Tw

is
te

d
pa

ir

25
5

12
7

(d
ep

en
ds

on
 B

au
d

ra
te

)

25
−1

00
0m

M
od

bu
s

M
od

ic
on

EN
 1

43
4

IE
C

 8
70

−5

O
pe

n
sp

ec
ifi

ca
tio

n

ha
rd

w
ar

e
ne

ed
ed

N
o

sp
ec

ia
l

Tw
is

te
d

pa
ir

25
0

N
od

es
/s

eg
35

0m

Table 6: Comparison of some common industrial bus systems (source: Syner-
getic)

25

References

[1] Modbus http://www.modbus.org .

[2] http://www.profibus.org .

[3] http://www.can-cia.org .

[4] http://www.fieldbus.org .

[5] http://www.opcfoundation.org .

[6] Frank Iwanitz and Jurgen Lange(2002). OPC Fundamentals, Implementation
and Application. Huthig.

http://www.modbus.org
http://www.profibus.org
http://www.can-cia.org
http://www.fieldbus.org
http://www.opcfoundation.org

	Introduction
	Serial communications
	RS 232
	RS 422/449
	RS 485
	Communicating over a 485 network
	Common elements of address based communication protocols

	Controller Area Network (CAN)

	Common industrial bus systems
	Modbus
	ASCII mode

	RTU mode
	Command response
	Broadcasting
	Data and control functions

	Profibus
	GSD Files

	Fieldbus
	CANOpen

	Industrial Ethernet
	OPC: A universal interface
	The Data Access Specification

	Future trends
	References

