
Shell Programming

P. Bartholdi†∗

† Observatory of Geneva
CH-1290 Sauverny – Switzerland

Lecture given at the:
Second Workshop on

Distributed Laboratory Instrumentation Systems
Trieste, 20 October — 14 November 2003

LNS

∗Paul.Bartholdi@obs.unige.ch

Abstract

In this chapter we look at the use of Unix commands in general and at shell
scripts as a very high level computer language, where the elementary units
are not only numbers or strings, but also files, tasks, priorities etc.

The Unix commands most useful for shell programing are presented in
more details.

The two families of Unix shells, Bourn and C shells, are presented, pin-
pointing where they differ and what are their respective advantages.

Many short examples illustrate the text, without to much theoretical con-
siderations.

Keywords: Unix, Unix file system, Shell Programming, C-Shell, Bourn Shell.
PACS numbers:

Contents

1 UNIX Tools 1
1.1 UNIX as a Programming Language 1
1.2 Pipes and Redirections . 1
1.3 Five ways to input data into a programme 2
1.4 Aliases and functions . 2
1.5 Searching Tools . 3
1.6 Looking for parts of a file . 4
1.7 Stream Editor: sed and gawk 4
1.8 Character conversion using tr 5
1.9 Use of the history . 6
1.10 Command/file name completion 6

1.10.1 Finding something in a large directory tree – find 6
1.11 Executing just What is Necessary, using make 7
1.12 RCS and SCCS: Automatic Revision Control 9

1.12.1 RCSin a multiuser environment 11
1.12.2 Remarks concerning RCS 11

2 Shell programming 11
2.0.1 Comments . 12
2.0.2 Quotes . 12
2.0.3 Parameter passing 12
2.0.4 Variables . 13
2.0.5 PATHEnvironment variables 13
2.0.6 Reading data . 14
2.0.7 Loop – foreach command 14
2.0.8 File name modifiers 15

2.1 bash and csh command syntax compared 15
2.1.1 Signals used with shells 17
2.1.2 Sample shell scripts 18

2.2 Use of the history . 25
2.3 Command/file name completion 25

3 References and Bibliography 26
3.1 Unix Tools . 26

1

1 UNIX Tools

The goal of this section is not to introduce UNIX per se, but to show how some
UNIX tools can help in the production of good software.

1.1 UNIX as a Programming Language

Forty years ago, much programming was done in assembler, if not with wires.
Then higher level languages like Fortran, C, Cobol etc. permitted the develop-
ment of codes more or less independent of the hardware and operating system,
that is much easier to read, that can be developed in reusable modules. Yet,
the basic building blocks are still relatively low level instructions that are com-
bined into higher and higher modules to form a single large program, where the
modules are ‘hard’ interconnected.

The pipes and redirections, the very large number of simple standard tools
available in UNIX and the facilities to build newer tools in the same spirit, and
then interconnect them into streams and shells, make UNIX an ideal interactive
programming environment.

1.2 Pipes and Redirections

Pipes permit to write small modules dedicated to simple tasks, and to intercon-
nect them through standard input/output. Such modules are much simpler to
develop and test individually, while the pipe checks for the interfaces. When
fully tested, these modules can be put together in larger ones. The number of
successive pipes is practically unlimited.

ls -l | less
Redirection is a good way to have all input data (including test ones) in files

that can be text-edited. Output redirection, in particular using tee , builds sets
of files against which future version’s output can be compared (use diff for
that).

prog < test.data > test.results
or

prog < test.data | tee test.results | less
While every module has only one standard input, it has effectively two output

ones: the standard output and the standard error output. The output redirection
sign (>) followed by an ampersend (&) merge the two output strams into the
given file. Similarely, the pipe sign (|) followed by an ampersend merge the two
output streams into a single one as input to the following programme. Finaly,
if the variable noclobber is defined, then the redirections will not overwrite old
existing files, except if the redirection operator is followed with a ! sign,

Here is a summary of all redirections and pipes:

2 Database Systems

< file redirect file into standard input
<< ”Word” redirect the following lines, until the

one starting with ”Word”
> file redirect standard output to file
>> file append standard output to the end of

file
>& file redirect standard output and standard

error to file
>>& file append standard output and standard

error to the end of file
>! file same as above, but ignore noclobber
>&! file same as above, but ignore noclobber

1.3 Five ways to input data into a programme

a) type data by hand
b) prog < data-file
c) cat data-file | prog
d) echo "data" | prog
e) cat << FOF | prog

...
data

...
FDF

1.4 Aliases and functions

Every complex command that may be used regularly could be aliased into a
simple mnemonic name :

alias mnemonic=’ equivalent string ’
The exact form of alias depends on the shell used. Here I have adopted the

bash form.
Many examples of aliases are given below.
Aliasing into usual UNIX command should be carefully avoided if the use of

the original version can be dangerous when the aliased one is expected.
alias rm=’/bin/rm -i’

is a typical example. In another environment, rm will not ask you for confir-
mation when you expected it.

Inversely, tools that require a mode, should specify so: use ”˜/bin/rm -f ”
and not ”rm”.

But:
alias ls=‘/bin/ls -CF’

is a perfectly acceptable one. If it is not yet the case, put this alias in your
.tcshrc or .bashrc file. ls will then automaticaly append a “* ” at the end of

3

executable files, a “/ ” at the end of directories and a “” at the end of symbolics
links.

Notice that, except in csh and tcsh, it is not possible to pass parameters to an
alias. In most cases, but not with csh or tcsh, a function can replace an alias. In
ksh and bash, a function is defined by:

function name() { commands }
Inside the function body (commands), parameters are referred by their posi-

tions in the calling statement, that is $1 for the first parameter, and so on. See
the examples bellow, page 3.

The keyword function itself is optional in bash.
Another method, probably safer than an alias and shell independent, is to

have a reserved ˜/bin directory, and a corresponding scripts for each alias:
Put in your .login file a command:

PATH=˜/bin:$PATH
and then:

echo "/bin/rm -i" > ˜/bin/rmi
This will create a file, usually called a script (do not forget to make it exe-

cutable), instead of the alias command. Typing rmi will execute that file.

1.5 Searching Tools

grep is a very powerful tool to do all sorts of searches and filters, in particular
as part of a pipe stream. It looks for all occurrences of a pattern inside a set of
files, and print the corresponding lines. It has many options (see the man pages),
among them three avec very useful: -h suppress the prefixing of filenames on
output, -i ignore case distinctions, and -v to select non-matching lines.

For example, finding all files that use stdio.h :
grep stdio.h *.c *.h or *.[ch]

Printing error messages only, with full output into a file:
test < test.data | tee test.res | egrep -i error

grep can also be used very effectively to “search” through a “data base”. Sup-
pose that you have a file with names, phone numbers and remarks, more or less
in free form, another with hints on different subjects concerning your programs
etc.

Then you can define the following aliases (tcsh) or functions (bash, ksh):
alias help "egrep -ih \!* ˜/.help ./.help"
function help(){egrep -ih $1 ˜/.help ./.help}
alias tel "egrep -ih \!* ˜/.phones /share/phones"
function tel()={egrep -ih $1 ˜/.phones /share/phones}

help xxx will print all lines from ˜/.help and ./.help that contains the
string “xxx”.

tel abc will do the same for the phone files. With tel or help you can look for
anything, not necessarily name or first name, but also for partial phone numbers
etc. tel 0039 will list all entries in Italy, while tel rinus will find our director’s
one.

4 Database Systems

Here is another application, to list only the files that have been modified this
day in the current directory:

alias today ’set TODAY=‘date +"%h %d"‘; ls -al | egrep $TODAY’

A similar command to see all files modified this day, in alphabetical order:
alias Today ’find . -ctime 0 -print | sort’

1.6 Looking for parts of a file

head and tail can be used to select only a few useful lines:
To see only the first line of a set of subroutines:

head -1 *.c
To see only the largest (or the most recently modified) files:

ls -l | sort +4n -5 | tail -16
ls -rtl | tail

Long output could also be piped into more (or less , most).
uniq can be combined efficiently with sort to find “words” that are rarely

used, and so possibly wrong (sort -u would do the same).

1.7 Stream Editor: sed and gawk

sed is a very simple but powerful editor that can be inserted in the middle of a
stream. gawk can be used in the same way for very complex text manipulation.
The simplest using of sed looks like:

... | sed -e ’s/abc/efgh/g’ | ...
It will simply replace everywhere the pattern “abc” with “efgh”. The first char-

acter after s will be used as the separator, it is not necessarily a / .
Here is a more elaborated example:

#!/bin/csh
add a new user (board), in group 501
and set the same encrypted passwd as in other machines.
\index{password}

/usr/sbin/adduser -g501 board
set today=‘date +’%Y%m%d:%H%M’‘
cd /etc
cp passwd passwd_$today
sed -e ’s/board\:\!/board\:7s0kry.rn.dco/’ passwd_$today > passwd

gawk is a very complex program for which the manual is more than 300 pages,
but it can also be used very effectively as a single line program. In the simplest
case, gawk is used to reorder the fields or choose among the fields in every lines.
For example:

awk ’ { print $3 $7 }’ file
will leave only the third and seventh fields.
Here is little more complex example:

5

#!/bin/tcsh
lock all users with no password
put a ! in the second field of the file /etc/passwd
if that field is empty.

cd /etc
set today=‘date +’%Y%m%d:%H%M’‘
cp passwd passwd_${today}
/bin/awk ’ BEGIN {FS=":"; OFS=":"} \

{ if(NF>=7) { if($2=="") $2="!";
print $0 } } ’ passwd_${today} > passwd

1.8 Character conversion using tr

tr is intended to do all sorts of character conversion, including special charac-
ters, and optionally to replace strings of the same character by a single one.

Normally, two strings of characters are given as parameters to tr . tr will re-
place all occurances of characters in the first string by the corresponding char-
acter in the second string.

If the option -d is given, then the characters from the first string are deleted.
If the option -s is given, strings of the same characters are replaced by a

single one.
Special characters are represented with \ and a character.
\a ctrl G bell
\f ctrl L form feed
\n ctrl J new line
\r ctrl M carriage return
\t ctrl I tab
\v ctrl K vertical tab
\ nnn octal value

It is also possible to give a class of characters instead of a string. In this
case, the string should have the form ’[: class:]’ , where class is one of alnum
alpha digit cntrl blank lower upper punct .

Here are a few examples of using tr . The first three are equivalent. The last
two can be very usefull if you have a mix of PC, Mac and Unix machines.

cat myfiile.c | tr ABC...Z abcd...z > ...
cat myfiile.c | tr A-Z a-z > ...
cat myfiile.c | tr ’[:upper:]’ ’[:lower:]’ > ...

tr ’\r’ ’’ < dos_file > unix_file
tr ’\r’ ’\n’ < mac_file > unix_file

6 Database Systems

1.9 Use of the history

tcsh keeps a log of the last n commands. n is defined with the command set
history= n in the file .cshrcr or .tcshrc .

This log can be used in the following ways:
history prints (on screen) the list of the last n commands executed,
fc repeats the last command,
fc n repeats a given command,
fc -n repeats a given relative command,
fc abc repeats the last command starting with the same letters,
fc -s/ old / new/g repeats the last command with editing (substitution

[+global]),
Part of the repeated command can be re-used by the following word designa-

tors:
0 word 0 (= command)
n nth word
ˆ first word
$ last word
m–n words m through n
– words 0 through but last

words 1 through last
% word matched by the string

The word designators can be modified by appending a modifier to the specifier:
<specifier>:< modifier>

r root of the file name
e extension of the file name
h head of the path (but last comp)
t tail of the path
s/old/new/ substitution
g global (comes before s)
p print but no execution
q quote words
u make first lower case letter upper
l make first upper letter case letter lower

1.10 Command/file name completion

After you have typed a few letters of a command or file name:
<TAB> will complete it if possible and unique,
<ctrl>d will list all possible completions.

1.10.1 Finding something in a large directory tree – find

find allows to search through any directory tree, looking for matching file names
or files modified before or after a given date for example, and then execute any

7

sort of command, like printing file name with full path, deleting, executing a
grep on them etc.

find has many options, but we will see only four. Refer to the man pages for
all other ones.

find . -name < file name, possibly with wild card> -print
find . -ctime < n> -exec < command>

In the command, use {} to replace the file name, ending the command with
\;

The first parameter (“. ”) is the starting point, root of the directory we are
searching.

The second is the selection criteria, according to file names or times.
Then comes the execution for all files that match the selection criteria.
In facts, many selection criteria and many executions can be used simultane-

ously. Selection criteria can possibly be joined by or or and and not .
find without any execution part simply produces a list of the selected files on

the standard output. This can be used with cpio to copy directories recursively.
Examples:

1. Remove all core files, printing their full path:

find . -name core -exec rm -f {} \;

2. List all files created today in any subdirectory:

find . -ctime 0 -print

3. Search for use of stdio.h in all c files:

find . -name *\.c -exec grep stdio {} \;

4. copy a directory tree on an other place:

find < source directory> | cpio -dpm < destination directory>

1.11 Executing just What is Necessary, using make

When a project gets larger, it becomes more and more difficult to track which
compilations, link and execution are necessary.

make permits to do such operations automatically, based on declared depen-
dencies and last modification time. The set of commands executed in each case
is completely open and not restricted in any way to compilation or link. Further,
the dependencies can be given explicitly, supplied by compilers like gcc -M , or
even assumed implicitly by make itself in many cases from the file suffixes.

The use of implicit assumptions make it faster to write but more difficult to
read the dependency file.

The general form of a dependency file (usually named Makefile) is the follow-
ing:

8 Database Systems

target(s): dependencies
<TAB> commands to produce the target(s)

make without a parameter will check the first target for dependencies, and
then recursively through the file. If a target is older than a dependency, then the
corresponding commands are executed.

If make is used with a parameter (a target in the Makefile), then the search
starts from this target.

Here is a small example of a Makefile

all: prog test

prog: main.o sub.o
$(LINK.c) -o $@ main.o sub.o

main.o: incl.h main.c
gcc -c main.c

sub.o: incl.h sub.c
gcc -c sub.c

test: prog test.data
prog < test.data > test.results

touch can be used to change the date of last modification.
make can also be used as a simple user interface for commands, when there

are dependencies among them. Suppose that you have a dBase on which you
can edit, make extraction, preformat, visualize or print. The user could then
say: make visualize or make edit , and all necessary operations will be done
automatically. Here is the corresponding makefile:

all : catalogue stickers

catalogue : Catalogue.dvi
dvips -Php0d Catalogue

stickers : Stickers.dvi
dvips -Php0 Stickers

catalogue.win : Catalogue.dvi
xdvi Catalogue &

stickers.win : Stickers.dvi
xdvi Stickers &

Catalogue.ps : Catalogue.dvi
dvips Catalogue -o

Stickers.ps : Stickers.dvi
dvips Stickers -o

9

Catalogue.dvi : Catalogue.tex catalogue.tex
latex Catalogue

Stickers.dvi : Stickers.tex stickers.tex
latex Stickers

catalogue.tex : m.rdb
report catalogue.report < m.rdb > catalogue.tex

stickers.tex : m.rdb
report stickers.report < m.rdb > stickers.tex

m.rdb : mediatheque.rdb
cp mediatheque.rdb m.rdb

mediatheque.rdb : mediatheque.db
m.awk mediatheque

clear :
rm catalogue.tex stickers.tex Catalogue.dvi Stickers.dvi \
Catalogue.ps Stickers.ps Catalogue.log Stickers.log \
Catalogue.aux Stickers.aux

If the files reside on more than one machine (using NFS for example), they
should all be synchronized with ntp or similar time protocols.

For very large projects, when many persons are involved in the development,
make is not sufficient. make ignores the notion of version or file locking that are
necessary in these circumstances.

Other tools exists for them, in particular sccs , RCSor CV. diff and patch
can be used to keep track of incremental updates and versions (including the
recovery of previous code).

1.12 RCS and SCCS: Automatic Revision Control

RCS and SCCS designate sets of tools that help maintaining revisions of a prod-
uct. Only RCS will be discussed; SCCS offers approximately the same capabili-
ties while having an older, clumsier syntax. CVS is intended for the simultaneous
update of files by many users.

If a program of a certain importance is being developed, it is essential to
keep all versions of the source code — not just the last, or the ten last. All
versions should be numbered; a log file should account for all the modifications
made between two numbers; version numbers should be allowed to ramify in a
tree-like manner; the binary code produced should be stamped with the version
number; and if many people work on the same project, there should be some
coordinating means between them.

RCS is a set of tools for UNIX that manages automatically these tasks. Text
files are normally hidden by RCS. A developer may check a file out, that is make
it visible in his directory for modification, while locking other developer’s access

10 Database Systems

to it; edit it, write appropriate logging information; and check it in back. Initially,
a file f.c is placed under RCS’ supervision with

ci f.c

with initial version 1.1. The file is moved to a special directory, usually
˜/RCS/ . An edit cycle would now be:

co f.c
edit f.c
ci f.c

If you have EMACS, you may use its built-in capabilities to simplify this pro-
cess: edit the file using its true path (˜/RCS/f.c), and type Ctrl-X and Ctrl-Q to
check the file in and out respectively.

It is not necessary to modify your Makefile s, as make automatically checks
out and deletes files it doesn’t find. If you really wanted to, you would just put:

...
f.c: /home/mickeymouse/RCS/f.c
<TAB> co $<
...

RCS can stamp source and object code with special identification strings. To
obtain them, place the marker “Id ” somewhere inside your source file. co will
automatically replace it with $Id: filename revision number date time author
state locker$ and the marker “Log ” is replaced by the log messages that are
requested during a check-in.

RCS keeps all your previous versions through reverse deltas, i.e. keeps the
last version in full, and reverse diff’s to obtain previous revisions. These are
accessed through

co -r<revision #>

and a sub-branch, new level major release etc. may be defined with

ci -r<new revision #>

Besides ci and co , RCS provides a few commands:
ident extracts identification markers
rlog extracts log information about an RCS file
rcs changes an RCS file’s attribute
rcsdiff compares revisions

Refer to the manual pages for more detail.

11

1.12.1 RCSin a multiuser environment

UNIX by itself provides no file lock, neither file access control. But all the nuts
and bolts are present.

For a good multiuser system with personalized file access control,

• create a user rcs , without terminal access (no shell) and locked password
(*LK* in passwd file),

• make RCSdirectories belonging to rcs ,

• for each file, use rcs -a to give access to every authorized users.

1.12.2 Remarks concerning RCS

1. The directory ˜/RCS is not made automatically (use mkdir RCS)

2. ci will not move . . . c,v files automatically to RCS(use mv)

3. co and ci will look automatically in ˜/RCS/ if the file is not found in the
current directory, and ˜/RCS exists.

4. co and ci will not lock automatically the files, use co -l instead.

5. co and ci work also on wild card. For example, co -l *.c will extract all
.c files at once.

6. rcs -l file will lock the file. This is necessary if you modified a non locked
file.

7. rcs -U / rcs -L file will enable/disable the file, doing strict locking.

2 Shell programming

When a set of commands is repeated more than 2 or 3 times, then it is usually
worth putting them into a file and executing the file, passing possibly parame-
ters. Such files are called script files in UNIX.

All UNIX shells offer lots of usual programming constructions, as variables,
conditionals and loops, input and output, even some rudimentary arithmetic.
Shell programming cannot replace C programming, in particular it is much
slower, but it can be very effective to organize together the repetitive and pos-
sibly conditional execution of programs.

Writing script files can have two other advantages:
– They can be edited until it works, even once . . .
– They keep track of what was done, either as a log, or as an example for a

similar problem in the future.

12 Database Systems

To be executable, a file just needs the x bit set. This is done with the chmod +x
script command.

As many different shells can be used in UNIX, it is preferable to add as a first
line a comment telling the system which one is used. So the first line of a script
file should look like #!/bin/sh or whatever other shell is used (remember they
have different syntax, and should not be confused).

2.0.1 Comments

Any character between the # and the end-of-line is treated as a comment. The
example just above is really a comment, and is understood by the shell as a
possible indication about which shell should be used. In such a case, the # is
called the magic number.

2.0.2 Quotes

Two quotes symbols can be used: ’ and " .
Inside ’ ’ , no special character is interpreted.
Inside " " , then $, ‘ , ! , and \ are the only ones interpreted.
Any special character can be transformed into a normal one with a \ in front.

Try:

Test="NoGood"
echo 1. Test # just ascii string
echo 2. $Test # $ in front
echo 3. \$Test # \$ in front
echo 4. \\$Test # \\$ in front

2.0.3 Parameter passing

A command can be followed by parameters as “words” separated with spaces or
tabs. The end-of-line, a ; , redirections or pipes end the command.

Inside a script, $n, where n is a digit, will be replaced by the corresponding
parameter. Notice that $0 corresponds to the name of the command itself.

As a very simple example, here is a script that will compile a C program, and
execute it immediately. The name of the program is passed as a parameter.

#!/bin/sh -x
gcc -O3 -o $1 $1.c
$1

To compile and execute threads.c, one would type ccc threads .

13

2.0.4 Variables

Variables can be defined inside a shell. Except if exported, they are not seen
outside the shell. Variable names are made of letters, digits and underscores
only, starting with a letter or an underscore.

They can be defined with =, without any space around the = sign, or read from
the terminal or a file.

Test="Order==$1"
read answer

and used, as for parameters, with a $ in front for them to be replaced with their
content.

if ["x$answer" = "xY"]; then
SetPower $level

fi
select "$Test"

2.0.5 Environment variables PATH, MANPATHand LD LIBRARY PATH

When the name of a program (a file name effectively) is given for execution, the
system will look in successive directories, and execute the first one found.

In the same way, man looks in successive directories and prints the first corre-
sponding pages found, and the loader looks in the list of directories for dynamic
libraries.

These lists of directories are given in the variables LD LIBRARY PATH, MANPATH
and PATH.

The directory names are separated with colon (“: ”) characters.
To add a new directory, use command (in bash):

PATH=${PATH}:< my dir>
or

PATH=<my dir>:$ {PATH}
The first version puts the new directory at the end, the second in front of the

list. Both versions have some advantages.
tcsh keeps a hash table of all executables found in the PATH. This table is

setup at login, but it is not automaticaly updated when PATH changes. The
command rehash can be used to update manually the hash table.

• a “generous” PATHis predefined in most Linux systems

• the current directory “. ” is usually part of the PATH. It is better to put it at
the end of the list to avoid replacing a system program.

• you can put all your executables in a directory called ˜/bin and add ˜/bin
to your PATH. (in the file ˜/.login or ˜/.profile).

14 Database Systems

• you can do the same for your personal man pages.

• to see the full PATHas defined now, use the command:

echo $PATH

• to see all environment variables:

env

• to find where an executable is:

which my program

• to find where are all copies of a program (in the list defined by PATH):

whereis your program

You may have to redefine whereis in an alias to search the full PATH:

alias=whereis "whereis -B $PATH -f"

• If you add directories in an uncontrolled way, the same directory may ap-
pear in different places . . . To avoid this, you can use the PD program envv :

eval ‘envv add PATH my dir 1‘

The last number, if present, indicates the position of the new directory in
the list. Without a number, the new directory is put at the right end of the
list.

Notice that envv is insensitive to the shell used (same syntax in tcsh, bash
and ksh.

2.0.6 Reading data

Variables can be read from the keyboard with the read command as seen above.
Any file can be redirected to the standard input with the command exec 0<file .
Then the read command gets lines form the file into the variables. The argu-
ments can be individualy recovered with the set command:

exec 0< Classes
read head
set $head
echo The heads are: $1 $2 $3

2.0.7 Loop – foreach command

In bash , the command for permits to loop over many commands with a variable
taking successive values from a list (See section 2.1 for a csh equivalent).

The syntax is:

15

for < variable name> in < list of values> ; do)
<commands>
<commands>
...
done

Here are a few examples using foreach in csh scripts. Try to rewrite them in
ksh ones.

1. Repeat 10 times a benchmark:

for bench in 1 2 3 4 5 6 7 8 9 10 ; do
echo Benchmark Nb: $bench
benchmark | tee bench.log_$bench

done

2. Doing ftp to a set of machines. We assume that the commands for ftp
have been prepared in a file ftp.cmds :

for station in 1 2 3 7 13 19 27 ; do
echo "Connecting to station infolab-$station"
ftp infolab-$station < ftp.cmds

done

Such commands enable us to update a lot of stations in a relatively easy
way.

2.0.8 File name modifiers

The variable names can be modified with the following modifiers:
<variable name>:r suppresses all the possible suffixes.
<variable name>:s/< old>/< new>/ substitutes <new> for <old>.
Many more modifiers exist, look in the man pages of csh for a complete list.

Example: Save all executables and recompile:

for file in *.c ; do
echo $file
cp $file:r $file:r_org
gcc -g -o $file:r $file

done

2.1 bash and csh command syntax compared

Today, many people use tcsh for interactive work. Other prefer bash or ksh . It
has so many goodies. But for shell programming, writing scripts, the choice is
really open between sh and its offspring (ksh , bash . . .) on one side, and csh

16 Database Systems

on the other. ksh or bash are now the default standard on Linux, probably the
simpler yet most powerful of all. csh on the other end has the advantage of
being a subset of tsch , with which the user is probably more comfortable. As
with many other choices with computers, it has become a question of religion.
Make your mind!

If your problem is more complex, if you need arrays, if you manipulate many
files, then probably neither bash or csh are sufficient.

awk is almost ideal to manipulate text in any form, but it is not really intended
for shell programming. It has only few interactions with the system, with the file
system etc.

perl provides almost everything you may ever whish, including, in the script
language, all facilities of awk and sed , both indexed and context addressed arrays
etc. perl 5 is now available with most Linux distributions. As for tsch , it is not
part of the system and has to be installed specifically by the “system manager”.

The following pages compare the main commands used in bash and csh . As
you will see, some are missing on one or the other side, others are definitely
simpler on one side, and many are quite similar.

ksh csh

Arithmetic
$((...)) @ var=expr
expr expression

Loops
for id in words ; do foreach var (words)

list ; . . .
done end

Repeated command
– repeat count command

Menu input
select id in words ; –

do list ;
done

Case
case word in switch (string)

pattern) list ;; case label :
pattern) list ;; . . .
*) list ;; breaksw

esac default:
endsw

Conditionals
if list ; then if (expression) then

list ; . . .
elif else if (expression) then

list ; . . .
else else

17

ksh csh

list ; . . .
fi endif

Conditional loops
while list ; do while (expression)

list ; . . .
done end

until list ; do
list ;

done

Function
function id () { list ; }

Signal capture
trap command signal onintr label

Breaking loops
– break

continue

2.1.1 Signals used with shells

The main signals used in shells are: INT (2), QUIT (3), KILL (9), TERM(15), STOP
(23) and CONT(25). KILL can not be caught or ignored, and will bring your shell
to an end. STOPand CONTallows to stop temporarely a shell (or any task) and
then restart it without loosing anything.

Here is a full list of signals as used in LINUX. It is extracted from the file
/usr/src/linux/include/asm/signal.h

#include <linux/types.h>

#define SIGHUP 1
#define SIGINT 2
#define SIGQUIT 3
#define SIGILL 4
#define SIGTRAP 5
#define SIGABRT 6
#define SIGIOT 6
#define SIGBUS 7
#define SIGFPE 8
#define SIGKILL 9
#define SIGUSR1 10
#define SIGSEGV 11
#define SIGUSR2 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGSTKFLT 16
#define SIGCHLD 17
#define SIGCONT 18

18 Database Systems

#define SIGSTOP 19
#define SIGTSTP 20
#define SIGTTIN 21
#define SIGTTOU 22
#define SIGURG 23
#define SIGXCPU 24
#define SIGXFSZ 25
#define SIGVTALRM 26
#define SIGPROF 27
#define SIGWINCH 28
#define SIGIO 29
#define SIGPOLL SIGIO
/*
#define SIGLOST 29
*/
#define SIGPWR 30
#define SIGSYS 31
#define SIGUNUSED 31

/* These should not be considered constants from userland. */
#define SIGRTMIN 32
#define SIGRTMAX (_NSIG-1)

2.1.2 Sample shell scripts

The following pages list some shell scripts that present various aspect of shell
programming. Almost every construction is present, though not necessarely with
every options. Some are just toy scripts (calc), some real programs used daily
for system maintenance (crlicense , png1 and png2). flist has been used to
create this listing.

Here is a table of commands and corresponding scripts where they are used.
The scripts bellow are in alphabetical order. Their names appear in the listing at
the right, after a long dash line separating the various scripts. They are written
in ksh or bash , but are easily converted to csh .

arithmetic calc calc2 guess1 guess2 minutes
awk KillKillMeAfter

loops convert convert2 flist tolower toupper
select term1 term2

case convert minutes term2
if KillKillMeAfter KillMeAfter convert ddmf check

filinfo flist grep2 guess1 guess2 term1 term2
while calc2 convert guess1 guess2 minutes

function convert3
trap calc2 guess1

Tue Oct 3 11:41:33 MEST 2000
-- KillKillMeAfter
#!/bin/bash -f
Kill the KillMeAfter started by pid $1

19

Also kill the sleep started by KillMeAfter

ostype="‘uname -mrs | tr ’ ’ ’_’‘"
GAWK=/unige/gnu/${ostype}/bin/gawk

KMApid=‘ps -ef | \
tr -s ’ ’ | \
egrep KillMeAfter | \
$GAWK -v pid=$1 ’$10 == pid { echo $2 } ’ ‘

sleeppid=‘ps -ef | \
tr -s ’ ’ | \
egrep sleep | \
$GAWK -v pid=$KMApid ’$3 == pid { echo $2 } ’ ‘

echo "$0 : KillMeAfter pid : $KMApid"
echo "$0 : sleep pid : $sleeppid"

if ["X$KMApid" != "X"] ; then
echo "killing pid : $KMApid and $sleeppid"
kill -9 $KMApid $sleeppid

fi

exit 0
-- KillMeAfter
#!/bin/bash
called by some script, with pid as parameter $1,
expected to kill it after $2 sec

echo $0 : pid=$1
echo $0 go to sleep for $2 sec
sleep $2
echo $0 weak up
if ‘ps -ef -o pid | egrep $1 > /dev/null ‘ ; then

kill -9 $1
echo pid : $1 should be dead now
else
echo pid : $1 was already killed
fi
exit 0
-- calc
#!/bin/bash
Very simple calculator - one expression per command

echo $(($*))
exit 0
-- calc2
#!/bin/bash
simple calculator, multiple expressions until ˆC

trap ’echo Thank you for your visit ’ EXIT

while read expr’?expression ’; do

20 Database Systems

echo $(($expr))
done
exit 0
-- convert
#!/bin/bash
convert tiff files to ps

echo there are $# files to convert :
echo $*
echo Is this correct ?

done=false
while [[$done == false]]; do

done=true
{

echo ’Enter y for yes’
echo ’Enter n for no’

} >&2
read REPLY?’Answer ?’
case $REPLY in

y) GO=y ;;
n) GO=n ;;
*) echo ’***** Invalid’

done=falase ;;
esac

done
if [["$GO" = y\"y"]]; then

for filename in "$@"; do
newfile=${filename%.tiff}.ps
eval convert $filename $newfile

done
fi
exit 0
-- convert2
#!/bin/bash
simple program to convert tiff files into ps

for filename in "$@" ; do
psfile=${filename%.tiff}.ps
eval convert $filename $psfile

done
exit 0
-- convert3
#!/bin/bash
simple program to convert tiff files into ps

function tops {
psfile=${1%.tiff}.ps
echo $1 $psfile
convert $1 $psfile
}

for filename in "$@" ; do

21

tops $filename
done
exit 0
-- copro
#!/bin/bash
coprocess in ksh

ed - memo |&
echo -p /world/
read -p search
echo "$search"
exit 0
-- copro2
#!/bin/bash
coprocess 2 in ksh

search=eval echo /world/ | ed - memo
echo "$search"
exit 0
-- filinfo
#!/bin/bash
print informations about a file

if [[! -a $1]] ; then
echo "file $1 does not exist !"
return 1

fi

if [[-d $1]] ; then
echo -n "$1 is a directory that you may"
if [[! -x $1]] ; then

echo -n " not "
fi
echo "search."

elif [[-f $1]] ; then
echo "$1 is a regular file."

else
echo "$1 is a special file."

fi

if [[-O $1]] ; then
echo "You own this file."

else
echo "You do not own this file."

fi

if [[-r $1]] ; then
echo "You have read permission on this file."

fi

if [[-w $1]] ; then
echo "You have write permission on this file."

fi

22 Database Systems

if [[-x $1]] ; then
echo "You have execute permission on this file."

fi
exit 0
-- flist
#!/bin/ksh

list files separated with name and date as header

ECHO=/unige/gnu/bin/echo

narg=$#
if test $# -eq 0
then

$ECHO "No file requested for listing"
exit

fi

if test $# -eq 2
then

head=$1
shift

fi

$ECHO ‘date‘
for i in $* ; do

$ECHO ’ ’
$ECHO -n ’-- ’
if test $narg -ne -1
then head=$i
fi
$ECHO $head
cat $i

done
$ECHO ’ ’
$ECHO ’-- end’

exit 0
-- grep2
#!/bin/ksh

search for two words in a file

filename=$1
word1=$2
word2=$3
if grep -q $word1 $filename && grep -q $word2 $filename
then

echo "’$word1’ and ’$word2’ arre both in file: $filename."
fi
exit 0
-- guess1

23

#!/bin/ksh

simple number guessing program

trap ’echo Thank you for playing !’ EXIT

magicnum=$(($RANDOM%10+1))

echo ’Guess a number between 1 and 10 : ’

while read guess’?number> ’; do
sleep 1
if (($guess == $magicnum)) ; then

echo ’Right !!!’
exit

fi
echo ’Wrong !!!’

done
exit 0
-- guess2
#!/bin/ksh

an other number guessing program

magicnum=$(($RANDOM%100+1))

echo ’Guess a number between 1 and 100 :’

while read guess’?number > ’; do
if (($guess == $magicnum)); then

echo ’Right !!!’
exit

fi
if (($guess < $magicnum)); then

echo ’Too low !’
else

echo ’Too high !’
fi

done
exit 0
-- minutes
#!/bin/bash
count to 1 minute

i=1
date
while test $i -le 60; do

case $(($i%10)) in
0) j=$(($i/10))

echo -n "$j" ;;
5) echo -n ’+’ ;;
*) echo -n ’.’ ;;

esac

24 Database Systems

sleep 1
let i=i+1

done
echo
date
-- term1
#!/bin/bash
setting terminal using select

PS3=’terminal? ’
oldterm=$TERM
select term in vt100 vt102 vt220 xterm dtterm ; do

if [[-n $term]]; then
TERM=$term
echo TERM was $oldterm, is now $TERM
break

else
echo ’***** Invalid !!!’

fi
done
-- term2
#!/bin/bash
set terminal using select and case

PS3=’terminal? ’
oldterm=$TERM
select term in ’DEC vt100’ ’DEC vt220’ xterm dtterm; do

case $REPLY in
1) TERM=vt100 ;;
2) TERM=vt220 ;;
3) TERM=xterm ;;
4) TERM=dtterm ;;
*) echo ’***** Invalid !’ ;;

esac
if [[-n $term]]; then

echo TERM is now $TERM
break

fi
done
-- tolower
#!/bin/bash
convert file names to lower case

for filename in "$@" ; do
typeset -l newfile=$filename
eval mv $filename $newfile

done
-- toupper
#!/bin/ksh
convert file names to upper case

for filename in "$@" ; do
typeset -u newfile=$filename

25

echo $filename $newfile
eval mv $filename $newfile

done
-- end

2.2 Use of the history

tcsh keeps a log of the last n commands. n is defined with the command set
history= n in the file .cshrcr or .tcshrc .

This log can be used in the following ways:
history prints (on screen) the list of the last n commands executed,
fc repeats the last command,
fc n repeats a given command,
fc -n repeats a given relative command,
fc abc repeats the last command starting with the same letters,
fc -s/ old / new/g repeats the last command with editing (substitution

[+global]),
Part of the repeated command can be re-used by the following word designa-

tors:
0 word 0 (= command)
n nth word
ˆ first word
$ last word
m–n words m through n
– words 0 through but last

words 1 through last
% word matched by the string

The word designators can be modified by appending a modifier to the specifier:
<specifier>:< modifier>

r root of the file name
e extension of the file name
h head of the path (but last comp)
t tail of the path
s/old/new/ substitution
g global (comes before s)
p print but no execution
q quote words
u make first lower case letter upper
l make first upper letter case letter lower

2.3 Command/file name completion

After you have typed a few letters of a command or file name:
<TAB> will complete it if possible and unique,
<ctrl>d will list all possible completions.

26 Database Systems

3 References and Bibliography

The following bibliography is not necessarily very coherent. It contains old and
new books, as well as some reference articles. They are all in my personal library.
I have not read all of them, but they all contain something that impressed me
and changed my way of using computers.

Many of these books have been reprinted, some re-edited, and the dates given
may not be up-to-date.

3.1 Unix Tools

- Bolinger D. and Bronson T. Applying RCS and SCCS. O’Reilly & Associates
1995

- DuBois Paul Type Less, Accomplish More Using csh & tcsh. O’Reilly &
Associates 1995

- Kernighan B.W. and Plauger P.J. Software Tools. Addison-Wesley 1976

- Miller W. A Software Tools Sampler. Prentice-Hall 1987

- Quigley E. Unix Shells by Examples (Csh, sh, ksh, awk, grep and sed).
Prentice-Hall 1999

- Rosenblatt Bill Korn Shell. O’Reilly & Associates 1993

- Wall L., Christiansen, T, Schwartz, R. L. Programming Perl O’Reilly &
Associates 1996

- Welch B. B. Practical Programming in Tcl and Tk. Prentice-Hall 1997

	Unix Tools
	Unix as a Programming Language
	Pipes and Redirections
	Five ways to input data into a programme
	Aliases and functions
	Searching Tools
	Looking for parts of a file
	Stream Editor: sed and gawk
	Character conversion using tr
	Use of the history
	Command/file name completion
	Finding something in a large directory tree -- find

	Executing just What is Necessary, using make
	RCS and SCCS: Automatic Revision Control
	RCS in a multiuser environment
	Remarks concerning RCS

	Shell programming
	Comments
	Quotes
	Parameter passing
	Variables
	PATH Environment variables
	Reading data
	Loop -- foreach command
	File name modifiers

	bash and csh command syntax compared
	Signals used with shells
	Sample shell scripts

	Use of the history
	Command/file name completion

	References and Bibliography
	Unix Tools

