
The TINI Platform

A.J. Wetherilt†∗

† Artesis AS
34950 Tuzla, Istanbul, Turkey

Lecture given at the:
Second Workshop on

Distributed Laboratory Instrumentation Systems
Trieste, 20 October — 14 November 2003

LNS

∗anthony.james.wetherilt@arcelik.com

Abstract

The TINI hardware platform is described together with its operating sys-
tem, Java functionality, and programming usage

Keywords: Linux TINI, Java, TINIOS, 1-wire
PACS numbers: 64.60.Ak, 64.60.Cn, 64.60.Ht, 05.40.+j

Contents

1 Introduction 1

2 TINI hardware 2
2.1 Overview . 2
2.2 The DS80C390 micro-controller 5
2.3 Memory map . 5

3 Tools and utility software 6
3.1 The TINI Runtime Environment 6
3.2 The TINI Operating System 8

4 The System boot sequence 9
4.1 Initialisation of the Runtime Environment 10

5 Using TINI 11
5.1 Setting up the Ethernet connection 12
5.2 Programming TINI . 13
5.3 Using TINI’s hardware capabilities 14

6 Summary 14

References 16

1

1 Introduction

The current workshop is devoted to topics involving the design, implementation
and use of distributed control and information gathering systems, primarily in
the laboratory but of relevance to many other areas and disciplines. As it’s name
suggests, the study of Distributed systems concerns the practice of using local
devices for data acquisition and control of processes in the laboratory or else-
where. They are distributed in the sense that they are local to the application
and generally have the ability to communicate with other devices over a network
of some description. Each device on the network performs a separate function,
and the functionality of the network as a whole is dependent on the individual
devices. These devices can have varying degrees of intelligence depending on the
precise application, available hardware, and cost considerations. As hardware
becomes less and less expensive (or more and more power becomes available for
the same unit cost), it becomes much more efficient to have small, dedicated
and cheap units performing data acquisition and control functions rather than
a large and complex central system responsible for many devices. Such dedi-
cated systems are not only relatively easy to develop but they also allow addi-
tion, removal or modification of individual devices in a much easier fashion than
a monolithic system. Thus in the same way that distributed workstations have
virtually replaced the previous generation of super computers, distributed pro-
cess control systems are rapidly becoming the norm in industrial and research
environments.

Experience has shown that development time and costs associated with it are
often the most crucial elements in the development of any system with the actual
cost of hardware being insignificant in comparison. The single most important
contribution to the development costs, without exception is that of the process of
software development and testing. It is therefore essential to choose a develop-
ment system that ensures short programme development cycles in a number of
ways. Firstly, the platform chosen for the development (not necessarily the final
target platform) must have available good development tools (compilers, debug-
gers, simulators, profilers etc) and be fast enough (if only to prevent frustration
in the programmer). Secondly, the programming language selected for develop-
ment must allow the programmer the necessary functions to write code quickly,
to reuse code, and most importantly, to prevent the programmer making the
numerous mistakes that human beings are capable of and that are often very
difficult to detect. The classic example here is of the so called ’Memory leak’,
where a block of memory is allocated dynamically and never released. By itself
this may not be so serious, but when the code causing the memory leak is re-
peated, the amount of memory allocated grows steadily and can eventually cause
device failure. C is particularly notorious for this behaviour as it has no built
in methods for either detection or prevention. C++ is not much better in this
respect and eradication of memory leaks can literally take weeks to months of
the life cycle of a project. Thirdly, since the pace of hardware development is
dramatic, the choice of hardware can be expected to be redundant after only a
few years. This means that any code written must easily be portable to other

2 LATEX Industrial networking systems

processors without lengthy rewriting of drivers, or other sections of code.
With the above considerations in mind, Java is an excellent choice of pro-

gramming language: It is highly portable between platforms, has excellent de-
velopment environments, allows code classes to be reused and protects the pro-
grammer from making many common errors. Java has been declared the lan-
guage of the Internet and indeed has found many applications in that field. It
is also highly suited for the task of programming embedded or small micro-
controller based systems. The Tiny Internet Interface or TINI is a complete Java
based platform built for the Dallas Semiconductor DS80C390 micro-controller.
The TINI evaluation kit is relatively cheap and comes complete with built in Eth-
ernet, CAN and other serial communications interfaces and sufficient RAM and
flash memory to hold a practically complete Java virtual machine and run-time
environment. It is therefore ideal for the task in hand which is a platform for
the development of networked, localised, intelligent systems for process control
which communicate with each other over the Ethernet using TCP/IP, and will be
used during the course of the practical sessions of this workshop. These notes
then outline the features of the TINI platform, including its hardware, program-
ming characteristics and operating system API, and give an overview in sufficient
depth to facilitate its use in the practical sessions. For a more complete coverage,
the reader is referred to the TINI Specification and User’s Guide available in PDF
form from the TINI website.

2 TINI hardware

2.1 Overview

The TINI development board (TBM390) is a small board measuring 31.8 x 102.9mm
that is designed fit into a 72 pin SIMM socket. The TBM390 carries the processor
(DS80C390), with 1M of SRAM in two 512k chips (made non-volatile by the pro-
vision of a lithium battery), a flash RAM, an Ethernet controller chip and a host
of interface drivers, and support chips listed in table 1. All connections to the
outside world are made via the 144 pins of the SIMM connector along the lower
edge of the board. In use, the TBM390 must be attached either to a bus system
that provides the necessary power and signals or to a development socket such
as the TINI Socket E manufactured by Dallas Semiconductors. This socket has
the Eurocard form factor (100 x 160 mm) and includes the sockets listed in table
2. Space for the following extra functions is provided on the board:

• An extra 512k flash RAM
• 16 parallel input and 16 output lines
• Support for a 16550 compatible UART
• A CAN bus interface with optional end-line terminator

Other manufacturers who produce TINI compatible socket boards are listed
in table 3 .

3

Figure 1: The TBM390 card (1)

Figure 2: The TBM390 card (2)

4 LATEX Industrial networking systems

Part no. Description Component Data sheet

U1 CPU DS80C390 www.dalsemi.com/datasheets/
pdfs/80c390.pdf

U2 Flash RAM AM29f040B www.amd.com

U3 Ethernet interface LAN91C96 www.smsc.com

U4 SRAM HY628400A http://www.ineltek.ru/pdf/
Hynix/sram/Low Power/
4M-bit/HY628400A.pdf

U5 Real-Time clock DS1315E http://www.chipdocs.com/
pndecoder/datasheets/
DALAS/DS1315E-5.html

U6 1-Wire interface DS2480B http://pdfserv.maxim-ic.com/
en/ds/DS2480B.pdf

U7 SRAM non-volatiser DS1321 http://pdfserv.maxim-ic.com/
en/ds/DS1321.pdf

U8 Ethernet address DS2502-UNW pdfserv.maxim-ic.com/
arpdf/DS2502-UNW-
DS2506S-UNW.pdf

U9 Ethernet filter PM-1006 www.premiermag.com

U10 RS232 interface DS232A pdfserv.maxim-ic.com/en/
ds/DS232A.pdf

Table 1: Major components of the TBM390 board

Part no. Description Component

J1 DTR Reset Enable 2 pin header
J2 1-Wire net RJ11
J3 RS232 DCE serial port DB9 (male)
J6 RS232 DTE serial port DB9 (female)
J7 Ethernet port RJ45
J8 Coaxial power connector
J12 TINI socket SIMM72

Table 2: Connectors on the TINI E socket

5

Supplier Email Description

Systronix sales@systronix.com A wide range of socket boards
Vinculum sales@vinculum.com Development sockets and expansion boards

Table 3: Alternative TINI socket boards

2.2 The DS80C390 micro-controller

At the heart of the TINI hardware is the DS80C390 micro-controller. This device
behaves like an extended 8051 operating at an equivalent clock speed of 120MHz
using a 40MHz crystal. The processor is capable of addressing up to 4Mbytes
of external memory using 22 bit addresses, in addition to 4kbytes of internal
SRAM. High speed 32 bit arithmetic operations are performed in a dedicated
maths accelerator with a 40 bit wide accumulator.

The DS80C390 has the following internal hardware ports:

• 3 timer/counters,
• 2 full duplex 80C52 compatible serial ports
• 4 8-bit I/O ports
• Programmable watchdog timer
• Programmable IrDA clock
• 2 full-function CAN ports

The chip is available in two packages: a 64 pin QFP and a 68 pin PLCC. The
former is used on the TINI TBM390 board.

2.3 Memory map

The memory map for the TINI system is shown in figure 3 and has two com-
ponents: the Address space and the Peripheral Chip Enable (PCE) space, each
of 4Mbytes size. On the TBM390 board the PCE space is unused as access to
devices in this space is slower and less efficient than to the Address space. The
Address space is subdivided into three main areas known as the Code, Data and
Peripheral segments mapped between the fixed addresses 0-0x0fffff, 0x100000
- 0x2fffff and 0x300000 - 0x3fffff respectively. The Code segment needs a min-
imum of 512kbytes and a maximum of 1Mbytes of flash RAM and contains the
runtime environment consisting of the TINIOS and Java API. Similarly the Data
segment requires a minimum of 512kbytes and a maximum of 2Mbytes.A part
of this area is used by the system to store any data it needs to write, but the
majority is set aside for use as a file system and heap.Finally, the TBM390 maps
all peripheral devices into the Peripheral segment. The Ethernet controller is
found at 0x300000 - 0x307fff and the RT Clock at 0x310000. If required, other
peripherals can be added to socket boards at higher addresses up to the end of
this segment, provided care is taken not to overload the driving capacity of the

6 LATEX Industrial networking systems

0x7000

0x8000

0x100000

0x000000

0x300000

0x3fffff

Heap + File system

System memory

TINIOS and Java API
Runtime environment

Peripheral components
(Ethernet adaptor,
Clock etc)

Code segment

Data segment

Peripheral segment

Address space Expanded Code segment

Primary Java Application

Interrupt vectors

Bootstrap loader

Runtime environment

Figure 3: The TINI memory map

bus. The devices internal to the processor are not mapped to either the Address
or PCE spaces but use special, internal registers and memory.

3 Tools and utility software

3.1 The TINI Runtime Environment

The feature that makes the TINI hardware really useful as a platform is perhaps
the firmware provided by the manufacturer. The firmware comes as a set of soft-
ware tools and utilities that allow applications written in Java to be compiled,
downloaded and run on TINI. The TINI Runtime Environment provides a flash
resident environment where previously compiled Java binary code can execute.
At the top of the Runtime Environment, a Java Virtual Machine (JVM) executes
the Java code which makes calls to the Java Applications Programming Interface
(API) as shown in figure 4. The API includes reasonably complete (within the lim-
itations of the platform) implementations for most classes in the most commonly
used Java core packages given in the following table 4. Differences in the func-
tionality of the classes implemented in these packages and the JDK1.1.8 API do
exist and can be found in the file “APIDiffs.txt” included with the TINI SDK doc-
umentation. Although every effort is being made to standardise the packages,
it is neither expected nor is it desirable to include the entire functionality of the
official Java SDK in the same way that a small embedded controller with limited
resources will never be able to perform in the same manner as a fully fledged
workstation. However, most of the functionality that is relevant to the platform
is expected to be included.

7

Package Contents

java.lang Classes that are fundamental to the Java language

java.io Provides for system input and output through data streams,
serialization and the file system

java.net Provides classes for implementing networking applications.

java.util Collections framework, legacy collection classes, event model,
date and time facilities, internationalization, and miscellaneous
utility classes (a string tokenizer, a random-numbergenerator,
and a bit array).

Table 4: Core Java packages implemented in the TINI API

TINI OS

Native Interface Layer

Native Methods

Memory subsystem

TCP/IP
stack

drivers

Manager
I/O

Device
drivers

Process and thread
scheduling

File system
manager

manager
Heap Garbage

collector
Network

I/O subsytems

Java application

API

Java application

API
JVM

Hardware

Figure 4: The TINI memory map

8 LATEX Industrial networking systems

3.2 The TINI Operating System

The bottom layer of the Runtime Environment is the TINIOS or TINI Operating
System. This is a structured set of software routines that performs the many
and varied functions that are needed for managing hardware input and output,
memory management and process scheduling.

TINIOS is a multitasking system, and as such needs special functionality to
create and destroy processes. A process is a unit of code that and can generally
be thought of as a running programme. If a system can run but a single process,
all the operating system needs do is to start running the process and tidy up
after the process terminates. When a system can multi-task by running two or
more such processes, some mechanism must be provided to switch between or
schedule the processes. Many different types of scheduling exist depending on
how they function. One of the simplest, known as round-robin scheduling is to
put all processes in a circular buffer and let them run for a set period of time
known as the time slice. Other methods allocate each process a priority, and
allow only the highest priority process to run until it either completes or blocks
waiting for some system resource to become available. This would be the situa-
tion in a Real-Time system where system response time is critical. Variations on
round-robin scheduling on the other hand are generally used in non-time critical
systems such as Linux and Windows. An essential item of both systems is the
system clock for different reasons. Under TINI, processes are scheduled using
standard round-robin scheduling with a time slice of 8ms and a system clock
that generates an interruption once every millisecond. Within a process, sepa-
rate threads or lightweight processes can run in a similar manner. Threads have
the advantage that since they share the same code and variable set, they are
relatively straightforward and inexpensive in terms of time and code to sched-
ule in comparison with processes. TINIOS also uses round-robin scheduling for
threads with a time slice of 2ms. The number of processes is limited to 16 by
TINIOS which in practice is a sufficient quantity for most device applications.

At the lowest level of TINIOS, the hardware devices (both internal and external
to the DS80C390 micro-controller) are interfaced to a set of device drivers which
control the flow of data and information into the TINI system. As usual with de-
vice drivers, their function is to manage bidirectional data into a format that can
be handled at a higher level in a device independent manner in the I/O manager
layer, and in the lower level hardware. The drivers support the standard serial
ports as well as devices as diverse as the CAN and 1-wire systems. There are no
built in drivers to handle any devices that may be attached to the expansion bus
as the devices can be arbitrary.

Handled separately from the other I/O devices is the the TCP/IP stack as this
imposes rather specialised requirements on the operating system. Indeed, the
TCP/IP stack is reported to be the one of the largest blocks of code in the whole
runtime environment. Multiple network interfaces such as Ethernet and Point
to Point Protocol (PPP) are supported by the stack, using the Ethernet and serial
port device drivers respectively.

The Memory management subsystem is responsible for the two main tasks

9

in the Data segment: managing the file system; and memory allocation and
deallocation. Java applications can access files through various classes in the
java.io package. TINIOS therefore provides a file system to allow the storage
and retrieval of data through the familiar concept of a file system, in which files
are manipulated within a directory structure. On those systems equipped with
RAM non-volatiser circuitry, the file system, much as on a hard disk, is not lost
when power is cut, and data is retained across booting sessions. It should be
remembered that when there is limited memory available, a large file system
inevitably has consequences on the size of applications that can be run and vice
versa.

When Java allocates an object using the new operator, the memory needed
for that object has to be supplied from the heap. As in any other walk of life,
improperly managed resources can lead to shortages and delays in issuing those
resources. In an environment where objects are continually being created (and
destroyed) proper memory management is essential to the continuing operation
of the system. Under Java unlike C and C++, memory is not implicitly reclaimed
and an object known as a garbage collector is employed to examine blocks of
memory and determine whether or not they are still being used. If not, the block
of memory are released back to the heap for reuse by a future object. Under
TINIOS, the garbage collector is implemented as a process that is created during
the boot process, and runs under certain well defined conditions:

• A new operation causes the available memory to fall below a threshold of
64kbytes

• The garbage collector is called directly by use of the gc process in
java.lang.System

• A Java process exits and implicitly invokes the garbage collector

When the garbage collector runs through invocation by one of the above, it
examines the memory allocation of only the process that called it either directly
or indirectly, and frees any allocated memory no longer in use. It does not free
memory belonging to any other process.

4 The System boot sequence

When power is applied to a system, its micro-controller undergoes a series of
actions that load a portion of code found in non-volatile memory. This code
can be the main application that is to be run or more often, especially in more
complicated systems, it is a small portion of code that helps initialise and load
larger programmes which in turn load other programmes and so on. This process
is called bootstrapping. The DS80C390 used in TINI boots using the code found
at the very beginning of the flash RAM in the Bootstrap Loader following the
interrupt vectors. (figure 3). On booting, the processor starts by loading the
Reset Vector at address 0x0000 containing the starting address of the bootstrap
loader. This action causes control to jump to that location and execute the code

10 LATEX Industrial networking systems

Normal
boot

?

Reset
initiated

While
!Timeout

&&
!Command

Command
Launch

Shell

flash
Rewite

Normal
boot

NOYES

NORMAL BOOT

CONTINUE

Check Heap

Check FS

Initialise drivers

(Garbage collector
Main application)

Launch processes

Sleep

Figure 5: The bootstrap sequence

found there. The bootstrap loader can perform two separate actions depending
on whether the reset was triggered by power being applied or whether an external
reset was issued by bringing the RST low (pin 2 on the QFP version used with
TINI). It distinguishes between these actions (and indeed whether the system
was reset by a watchdog timeout) by which bits are set in one of the internal
special function registers (SFRs). If a power on reset has occurred after the
power has been applied and reached a minimum stable level, the boot-loader
transfers control the the runtime environment. Alternatively, if the reset was
caused by an external reset, the bootstrap loader initialises the Serial 0 port and
waits for a pre-set sequence of bits to arrive. On receipt of this signal, a small
command interpreter shell is run that allows a user to reload the flash RAM by
downloading from a host machine over the serial port. In this way, the contents
of the flash can be changed when for example a new application needs to be
installed or the run time environment needs to be updated. If the correct bit
sequence does not arrive within 3 seconds, control reverts back to the normal
boot procedure. The bootstrap sequence is summarised in figure (5)

4.1 Initialisation of the Runtime Environment

The normal initialisation sequence consists of four steps:

• First the heap is checked to determine whether there are any inconsisten-
cies. Since the TBM390 includes an on board battery for the RAM, the heap
will remain in the same state as it was when last running. Certain ac-
tions such as unexpected power interruption can leave the heap in a state
of disarray, and it is important to remove these inconsistencies before any
process tries to use any objects saved on the heap. If the heap is found to
be damaged, it is simply erased and all information lost. In any case, the
heap can be expected to contain unused and unwanted objects following

11

termination of applications by loss of power. These objects are removed and
their memory reclaimed.

• Next, the file system is checked for internal consistency and any irregulari-
ties dealt with.

• The device drivers for the main hardware (Serial, Ethernet ports etc). Other
devices such as the CAN and 1-wire are not initialised at this stage, but on
an as needed basis by a running application.

• Finally, the processes to be run by the system are initialised and launched.
In most cases, first the garbage collector process and then the main Java
application are created at this time. The garbage collector has nothing to
do at this stage as no other processes are running and the heap is clean,
so it immediately sleeps and waits to be woken when one of the conditions
outlined previously are met. Thus the main application, once started is
the only active process and has full use of the available processor time. It
must first initialise the Java Virtual Machine and the various classes of the
TINI API. Once these actions have been performed, the primordial thread
is started with execution being transferred to the main() function of the
application. It is worth noting at this stage, that unlike more conventional
systems where an application is typically run with limited privileges (i.e.
it cannot access ports directly but must make use of services provided by
the operating system), TINI gives an application full control of all resources.
Indeed, in order to use some of the hardware resources, an application
must first configure and initialise them. It is the responsibility of the main
application to launch any other processes required to provide the desired
functionality. These may be processes developed specially for certain tasks
or general in nature. A specific example to be covered in greater detail later,
is the launching of slush a small command interpreter provided as a utility
function with the TINI SDK. This can be a very useful tool when developing
software.

5 Using TINI

When developing applications for TINI, a host system must be attached to the
TINI board to display both user input and responses from TINI. The host can
be any system that runs the Windows, Linux or Solaris operating systems (and
possibly other systems that supports Java and have ports for the software items
listed later in this section). The host must provide an Ethernet adapter for com-
munications with the board, and if the runtime environment is to be installed or
changed, a standard RS232 port is needed. These conditions are met by virtually
any contemporary PC or workstation. For our purposes, we will assume the host
to be a PC running the Linux operating system. The host must also have the
following items of software installed and accessible:

• Java Development Environment
• Java Communications API

12 LATEX Industrial networking systems

• TINI Software Development Kit

Java development environments are available from a variety of both free and
commercial sources. The Java Communications API is supplied by Sun Mi-
crosystems. For Linux (and a rapidly increasing selection of other platforms) an
Open Source version is available from RXTX ([4]).

The latest version of the TINI SDK is available by downloading from from Dal-
las Semiconductor ([3]). It contains a number of files essential to the developer
together with full documentation and copious programming examples. Among
other tools it contains:

• tini.jar: Includes the JavaKit and TINIConverter programmes.
• tiniclasses.jar: The class files for the TINI API.
• tini.tbin: The binary image of the TINI Runtime Environment.
• slush.tbin: The binary image of the slush command shell.

Once the above packages are installed JavaKit should be run to kick start
the TINI board into action. A straight RS232 cable should be first be attached
between the PC and the board and JavaKit used to load both the command shell
slush and the runtime environment using the JavaKit’s LoadFile command from
the File menu. Once loaded, it is necessary to load the first 64kbytes of heap
with zeroes. This is done by typing the commands:

• BANK 18
• FILL 0

and finally

• EXIT

This last command quits the serial loader and launches first TINOS and then
slush. To log in to as root use root and tini as the username and password re-
spectively. Slush is a shell with a Unix like command set and feel and anyone
familiar with Linux should have little difficulty navigating around. Help is avail-
able by typing help which prints a list of the available commands. Typing help
followed by a command gives brief information as to how the command is used.

5.1 Setting up the Ethernet connection

Whilst the serial link is a useful way of booting the system for the first time, the
real power of TINI comes from its networking abilities. However, before leaping
into setting up TINI as a web server, the Ethernet adapter must first be config-
ured. Before starting this an IP address should be obtained from the system
administrator if a Dynamic Host Configuration Protocol (DHCP) server is not
available. The command ipconfig can be used to set the network properties. Just
typing this command will give a list of the options available under TINIOS. If a
DHCP server is not present, typing ipconfig -a xx.xx.xx.xx -m yy.yy.yy.yy where
xx.xx.xx.xx and yy.yy.yy.yy are the domain and subnet mask respectively will be
sufficient as a minimum configuration. TINIOS will issue the prompt:

13

• OK to proceed? (Y/N)

and after entering y the on board ftp server will start (assuming an Ethernet
cable has been attached). The TINI Board should now be able to communicate
with other hosts using the standard set of network utilities (ping, telnet, ftp etc).

5.2 Programming TINI

Writing programmes for TINI involves creating the source file on the host ma-
chine, compiling, converting the class file to a loadable image, downloading the
image to TINI and finally running the code on TINI under slush. Writing the
source file can be done using any text editor and saving the resulting file with a
.java extension. Compiling rather depends on the particular environment cho-
sen. Using the Java SDK, type:

• javac Progname.java

and the programme should compile and, if there are no error, produce the
output file: progname.class. The next step is to convert the class file into a format
acceptable to TINI. This is accomplished using the TINIConverter application
from Tini.jar. This application needs the following arguments:

• -f Input file
• -d API Database
• -o Output file

Thus converting the file Progname.class to Progname.tini would need:

• java -classpath tini.jar TINIConverter -f Progname.class -d tini.db -o Pro-
ganame.tini

Here it is assumed that the directory paths for Java, TINIConverter and tini.db
have been included in the environment PATH variable, enabling a much simpli-
fied command line.

The final step is to transfer the resulting binary file to TINI over the Ethernet
connection. This is done by starting a ftp session on the host and connecting to
TINI. As before login using root and tini and issue the commands

• bin
• put Progname.tini
• bye

At this point, the programme is loaded in TINI but has yet to be executed.
This can be done by opening a telnet session and executing:

• Java Progname.tini

This will cause the programme to execute.

14 LATEX Industrial networking systems

Package Description

com.dalsemi.comm Low level classes for CAN the controllers and
serial port configuration

com.dalsemi.fs Extensions to the standard java.io.File class

com.dalsemi.io A few classes to aid conversion from specific
encoding schemes

com.dalsemi.onewire Classes for accessing Dallas Semiconductors
onewire communications protocols

com.dalsemi.protocol Classes used by various networking protocols

com.dalsemi.shell Implementations of command shells for ftp
and telnet servers

com.dalsemi.system Classes for accessing the native hardware of
the DS80C390

com.dalsemi.tininet Classes for both configuring and manipulating
networking hardware, and providing support for
network protocols

Table 5: com.dalsemi packages

5.3 Using TINI’s hardware capabilities

Whilst a discussion on the nuts and bolts of programming every facet of the the
standard TINI platform is subject matter of a complete book, an overview is not
out of place.

The drivers for each item of standard hardware (i.e.the inherent DS80C390
peripherals and the device appearing on the TBM390 board) are wrapped by
Java classes. In some cases, where the devices fulfill functions common to most
Java implementations such as RS232 communications, the classes are included
in one or other of the standard packages. However, in the majority of cases, the
hardware is non-standard and customised classes have been provided. These
can be found in a group of packages known collectively as the com.dalsemi
packages, and which are included with the TINI SDK. Also included is full html
documentation for the entire set of packages.

There are seven packages included in com.dalsemi outlined in table 5

6 Summary

The information presented in this chapter, has of necessity been a brief intro-
duction to the hardware, operating system and use of the TINI platform. For

15

Site Web page

The TINI Interest Group www.maxim-ic.com/TINIdocs/interest.cfm
Unofficial TINI Information site www.smartsc.com/tini
Java Guru www.jguru.com/faq/TINI
TINI Resources www.apms.com.au/tini
Brent’s TINI page www.nordist.net/TINI
TINI Board Resource Center www.junun.org/TINI
TINI binding for JXTA www.tini.jxta.org
TINI Board WebRing www.vinculum.com/webring
TINI development in C www.vigor.nu/tini.html

Table 6: com.dalsemi packages

practical applications the reader is always referred to the documentation accom-
panying the TINI SDK (ref).

The platform is a remarkably compact and versatile system with a rapidly
growing and enthusiastic user base. There exist a number of web sites devoted
to its promotion and use, which are more than worth a casual browse (table 6.

www.maxim-ic.com/TINIdocs/interest.cfm
www.smartsc.com/tini
www.jguru.com/faq/TINI
www.apms.com.au/tini
www.nordist.net/TINI
www.junun.org/TINI
www.tini.jxta.org
www.vinculum.com/webring
www.vigor.nu/tini.html

16 LATEX Industrial networking systems

References

[1] Don Loomis (2001). The TINI Specification and Developer’s Guide. Addison-
Wesley

[2] www.java.sun.com

[3] www.ibutton.com/TINI 5

[4] www.rxtx.org 5

	Introduction
	TINI hardware
	Overview
	The DS80C390 micro-controller
	Memory map

	Tools and utility software
	The TINI Runtime Environment
	The TINI Operating System

	The System boot sequence
	Initialisation of the Runtime Environment

	Using TINI
	Setting up the Ethernet connection
	Programming TINI
	Using TINI's hardware capabilities

	Summary
	References

