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Abstract

In these lecture notes the operating system support needed for a real-time
application is examined. Various features of Linux are described to provide
the necessary background for a discussion on its suitability for hard real-
time applications. The efforts to adapt Linux to the requirements imposed on
a hard real-time operating system are presented.
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1 Introduction and a few definitions

A real-time system is defined as a system that responds to an external stimulus
within a specified, short time. This definition covers a very large range of systems.
For instance, a data-base management system can justly claim to operate in real-
time, if the operator receives replies to his queries within a few seconds. As soon
as the operator would have to wait for a reply for more than, say, 5 seconds,
she would get annoyed by the slow response and maybe she would object to
the adjective “real-time” being used for the system. Apart from having unhappy
users, such a slow data-base query system would still be considered a real-time
system.

The real-time systems we want to deal with are much more strict in requiring
short response times than a human operator is, generally speaking. Response
times well below a second are usually asked for, and often a delay of a few
milliseconds is already unacceptable. In very critical applications the response
may even have to arrive in a few tens of microseconds.

In order to claim rightly that we are having a real-time system, we must spec-
ify the response time of the system. If this response time can be occasionally
exceeded, without any real harm being done, we are dealing with a soft real-time
system. On the contrary, if it is considered to be a failure when the system does
not respond within the specified time, we are having a hard real-time system. In
a hard real-time system, exceeding the specified response time may well result
in serious damage of one sort or another, or in extreme cases even in the loss
of human life. A data-base query system will generally fall in the first category:
it will make little difference if a human operator will have to wait occasionally 6
seconds, instead of the specified 5 seconds response time, and nobody will dare
to speak of a failure, as long as the replies to the queries are correct. This does
not mean that all data-base systems are soft real-time systems: a data-base may
well be used inside a hard real-time system, and its response may become part
of the overall reaction time of the system.

Data-base systems are not at the centre of our attention in this course; we
rather are interested in systems which control the behaviour of some apparatus,
machinery, or even an entire factory. We call these real-time control systems.
We are literally surrounded by such real-time control systems: video recorders,
video cameras, CD players, microwave ovens, and washing machines are a few
domestic examples. In the more technical sphere we will find the control of
machine tools, of various functions of a car, of a chemical plant, etc., but also
automatic pilots, robots, driver-less metro-trains, control of traffic-lights, and
many, many more. Several of those systems are hard real-time systems: the
automatic pilot is a good example.

We implicitly assumed that the systems we are dealing with are computer
controlled. We are in fact interested in investigating the role the computer plays,
what constraints are imposed by the part of the system external to the com-
puter, or the environment in general, and what these constraints imply for the
program that steers the entire process. We will pay particular attention to the
role the underlying operating system plays and to what extent it may help in the
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development and or running of a real-time control system.

At this point we should define two classes of real-time systems. On the one
hand we have embedded systems, where the controlling microprocessor is an
integral part of the entire product, invisible to the user and where the complete
behaviour of the system is factory defined. The user can only issue a very lim-
ited and predefined set of instructions, usually with the help of switches, push-
buttons and dials. There is no alpha-numeric keyboard available to give orders
to the device, nor is there a general output device which can give information
on the state of the system. On a washing machine we can select four or five
different programs, which define if we will wash first with cold and then with
warm water, or if we skip the first, or which define how often we will rinse, if
we will use the centrifugal drying or not, etc. If we add the control the user has
over the temperature of the water, we have practically exhausted the possibilities
of user intervention. The microprocessor included in the system has been pro-
grammed in the factory and cannot be reprogrammed by the user. Cost has been
the overriding design consideration, user convenience played a secondary or ter-
tiary role. These embedded systems run a monolithic, factory defined program
and there is no trace of an interface to an operating system which would allow
a user to intervene. This does not mean that such an embedded system does
not take account of a number of principles, which should not be neglected in a
system that claims to operate in real-time. All real-time aspects are folded into
the monolithic program, indistinguishable of the other functions of the program.

The other class of real-time control systems comprises those systems that
make use of a normal computer, which has not been severed of its keyboard
and of its display device and where a human being can follow in some detail
how the controlled process is behaving and where he can intervene by setting
or modifying parameters, or by requesting more detailed information, etc. The
essential difference with an embedded system is that a system in this second
class can be entirely reprogrammed, if desired. Also, in contrast to an embedded
system, the computer is not necessarily dedicated to the controlled process, and
its spare capacity may be used for other purposes. So, a secretary may type and
print a letter, while the computer continues to control the assembly line.

It is obvious that the latter class of real-time control systems needs to run an
operating system on the control computer. This operating system must be aware
that it is controlling external equipment and that several operations initiated by
it may be time-critical. The operating system must therefore be a real-time op-
erating system. We will see in these lectures what this implies for the design
and the capabilities of the operating system. We should keep in mind that we
speak of generic real-time systems and generic real-time operating systems. The
real-time control system does not necessarily use all features of the operating
system, but the unused ones remain present, ready to be used at a possible
later upgrade of the control system. This again is in contrast with the embedded
system, where the parts of the operating system needed are cast in concrete in-
side the controlling program and where all other parts of it have been discarded.
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2 The ingredients of a real-time computer controlled
system

In order to investigate a little further what the components and constraints of
a real-time control system are and what the implications are for a supporting
operating system, we will take a simple example, which does not require any
a-priori knowledge: a railway signalling system.

Safety in a railway system, and in particular collision-avoidance is based on
a very simple principle. A railway track, for instance connecting two cities, is
divided into sections of a few kilometers length each (the exact length depends
on the amount of traffic and the average speed of the trains). Access to a section
— called a block in railway jargon — is protected by a signal or a semaphore:
when the signal exhibits a red light, access to the block is prohibited and a train
should stop. A green light indicates that the road is free and that a train may
proceed. The colour of the light is pre-announced some distance ahead, so that a
train may slow down and stop in time. Access to a block is allowed if and only if
there is no train already present in the block and prohibited as long as the block
is “occupied”. Normally all signals exhibit a red light; a signal is put to green only
a short time before the expected passage of a train and if the condition mentioned
above is satisfied. Immediately after the passage of the train, the signal is put
back to red. The previous block is considered to be free only when the entire
train has left it.

We will try to outline briefly – and rather superficially – what would be re-
quired if we decided to make a centralized, computer controlled system for the
signalling of the entire railway system in a small or medium-sized country, com-
prising a few thousand kilometers of track, with hundred or so trains running
simultaneously. This would be a large-scale system, but it would be conceptu-
ally rather simple. The basic rule is: if there is a train moving forward in block
i− 1, and block i is free, the signal protecting the entrance to block i shall be put
to green and back to red again as soon as the first part of the train has entered
block i. For the time being we consider only double track inter-city connections,
where trains are always running in the same direction on a given track.

From the rule we see that we need to know at any instant in time which blocks
are free and which are occupied. So we need a sort of a data-base to contain this
information. This data base must be regularly updated, to reflect faithfully the
real situation. In fact, whenever a train is leaving a block and entering another,
the data-base must be updated.

How do we know that a train moves from one block to the next? Trains are
supposed to run according to a time table and at predefined speeds, so a simple
algorithm should be able to provide the positions of all trains in the system at
any moment. Unfortunately this assumption is not valid under all circumstances
and we need a reliable signalling system, exactly to be able to cope with more or
less unexpected situations where trains run too late, or not at all, or where an
extra train has been added, or another ran into trouble somewhere. We conclude
that it is better to actually measure the event that a train crosses the boundary
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between two blocks. We could put a switch on the rails, which would be closed
by the train when it is on top of the switch. We could scan all the switches in
our system at regular intervals. How long — or rather how short — should this
interval be? A TGV of 200 meter length and running at close to 300 km/h, would
be on top of a switch for 21

2
seconds. A lonely locomotive, running at 100 km/h

would remain on top of the contact for much less than a second. So we must
scan some thousand or more contacts in, say 1

2
second. This can be done, but it

would impose a heavy load on the system and we would find the vast majority of
the switches open in any case. We could refine our method and scan only those
contacts where we expect a train to arrive soon. This would reduce the load on
the system, as only hundred or so contacts have to be scanned, but it still is
not very satisfactory, as we will continue to find many open contacts. Note that
instead of contacts, we could have used other detection methods: strain gauges
on the rails, or photo-cells.

A better way of detecting the passage of a train, is by using hardware inter-
rupts 1. We could generate an interrupt when the contact closes and another
when it opens again, indicating the entrance of a train into block i and the exit
of the same train from block i− 1, respectively. We don’t lose time then anymore
for looking at open contacts. We also simplify the procedure, for we do not have
to look anymore at the data-base before the start of a scan, to find out which
contacts are likely to be closed by a train soon.

We have discovered here a very important ingredient of any real-time control
system: the instrumentation with sensors and actuators. In our case we must
sense the presence of a train at given positions along the tracks, and we must
actuate the signals, putting them to green and to red again. Generally speaking,
the instrumentation of a real-time control system is a very important aspect,
which must be carefully considered. Usually, apart from sensors which provide
single-bit information, such as switches, push-buttons, photocells, which can
also be used to generate hardware interrupts, we will need measuring devices,
giving an analog voltage output, which then has to be converted into a digital value
with an analog-to-digital converter. Conversely, output devices may be single bit,
such as relays, lamps and the like, or digital values, to be converted into analog
voltages. Accuracy, reproducibility, voltage range, frequency response etc. have to
be considered carefully. The operation of a system may critically depend on how
it has been instrumented. The interface to the computer is another aspect to take
into account for its possible consequences. Speed, reliability and cost are some
of the concurring aspects. We will not dwell any further on these topics in these
lectures, as they are too closely related to the particular application, making a
general treatment impossible.

For our railway signalling system we mentioned the timetable, claiming that
we could not rely on it. We can however use it to check the true situation against
it in order to detect any anomaly. These anomalies could then be reported im-

1For those who may have forgotten: a hardware interrupt is caused by an external electrical
signal. The normal flow of the program is interrupted and a jump to a fixed address occurs,
where some work is done to handle the interrupt. A “return from interrupt” instruction brings
us back to the point where the program was interrupted.



9

mediately. For instance, we could tell the station master of the destination, that
the train is likely to have a delay of x minutes. Another useful thing is to keep
a log of the situation. This can be used for daily reports to the direction (where
they would probably be filed away immediately), but they could prove valuable
for extracting statistics and for global improvement of the system. Operator in-
tervention is also needed. For instance, when a train, running from station A
to station B, leaves station A, it does not yet exist in the data-base of running
trains. Likewise, when it arrives at B, it has to be removed from this data-base.
This could be done automatically, in principle, but what do we do if it has been
decided to run two extra trains, because there is an important football match?
We conclude that data-logging, operator intervention and some calculations (to
check actual situation against predicted one) are also essential ingredients of a
real-time control system, in addition to the interrupt handling, interfacing to the
sensors and actuators and updating of the data-base reflecting the state of the
system.

This idyllic picture of our railway signalling system might stimulate us to start
coding immediately. A program which uses the principles outlined above does
not seem too difficult to produce. We simply let the program execute a large
loop, where all different tasks are done one after the other. The interrupts have
made it possible to get rid of a serious constraint, so all seems to be nice and
straightforward. Once we would have a first version of the program ready, we
would like to test it. Hopefully we will use some sort of a test rig at this stage,
and abstain from experimenting with real trains. During the testing stage, we
will then quickly wake up and find that we have to face reality.

In our model, we assumed double track connections between cities, where on
a given track, trains always run in the same direction. But, even in the case that
the entire railway network is double track between cities, we must nevertheless
consider also single track operation, because a double track connection may
have to be operated for a limited period of time and for a limited distance as a
single track, repair or maintenance work making the other track unusable.

Assume that, on a single track, we have two trains, one in block k+1, the other
in block k − 1, running in opposite directions, both toward block k. If we would
apply our simple rule, they would both be allowed to enter block k (supposing
it was free) and a head-on collision would result. The problem can be solved
by slightly modifying our rule: If a train is moving forward in block i − 1 toward
block i, then access to block i will be allowed if blocks i and i + 1 are free. So
both trains will be denied access to block k in our example. We have eliminated
the possibility of a head-on collision, but we now have another problem. Assume
that our two trains are in block k − 2 and k + 1 respectively and running toward
each other. Applying our new rule, they would be allowed to enter block k−1 and
k respectively and both trains would stop, nose to nose at the boundary between
these two blocks. We have created a sort of a deadlock situation.

The true solution is of course not to allow a south-bound train into an entire
section of single track, as long as there is still a north-bound train somewhere
in this entire section, and vice-versa. A section consists of several blocks and
inside a section there are no switches enabling a train to move from one track
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to another, nor to put it on a side-track. South-bound and north-bound trains
compete for the same “resource”, the piece of single track railway. They are
mutually exclusive and only one type (north-bound or south-bound) of train
should be allowed to use the resource. As long as it is used, the other contender
must be excluded until the resource has become free again. If the stretch of
single track is long enough, and comprises several blocks, more than one north-
bound train can be running on that stretch of track. Now assume that several
north-bound trains are occupying the stretch of single track and that a south-
bound train presents itself at the northern end of the stretch. It obviously has to
wait, but while it is waiting, do we continue to allow more north-bound trains into
the stretch? This is a matter of priority, which should be defined for each train.
A scheduler should take the priorities into account and deny the entrance into
the stretch for a north-bound train if the waiting south-bound one has higher
priority. As soon as the stretch has then been emptied of all north-going trains,
the south-bound one can proceed, possibly followed by others.

A similar situation, where two trains may be competing for the same resource,
arises when two tracks, coming from cities A and B, merge into a single track
entering city C. Obviously, if two trains approach the junction simultaneously,
only one can be allowed to proceed, which should be the one with the highest
priority. It should be noted that the priority assigned to a train is not necessarily
static. It may change dynamically. For instance, a train running behind sched-
ule, may have its priority increased at the approach of the junction and allowed
to enter city C, before another train which normally would have had precedence.
This latter example illustrates a synchronization problem: some trains may carry
passengers which have to change trains in city C; the two trains should reach
the station of C in the right order.

We have thus discovered some more ingredients (or concepts) for a real-time
control system: priorities, mutual exclusion, synchronization.

We started off by considering our railway signalling problem being controlled
by a single program, which guides all trains through all tracks, junctions and
crossings. We have gradually come to have a different look at the problem: a
set of trains, using resources (pieces of railway track), and sometimes competing
for the same resource. We can consider our trains as independent objects, more
or less unaware of the existence of similar objects and of the competition this
may imply. In order to get a resource, every train must put forward a request
to some sort of a master mind (the real-time operating system), who will honour
the request, or put the train in a waiting state.

At this stage, we realize that we better abandon our first version of the pro-
gram, because it would have to be rewritten from scratch in any case. We have
become aware that our particular real-time control system may have many things
in common with other real-time systems and that it would be advantageous to
profit from the facilities a real-time operating system offers to solve the problems
of mutual exclusion, priorities, etc. Once we have mastered the use of these
facilities, we can build on our experience for the implementation of another real-
time control system. In case we would obstinately continue to adapt our original
program, we would probably find, after months of effort, that we have rewritten
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large parts of a real-time operating system, but which have been so intimately in-
terwoven with the application program, that it will be difficult, if not impossible,
to re-use it for the next application we may be called to tackle.

Other aspects we have not yet considered may also profit from features pro-
vided by a real-time operating system. For instance, we have the problem of
dealing with emergencies. A train may have derailed and obstructed both tracks.
Such an unusual and potentially dangerous situation must be immediately no-
tified to the operating system which can then take the necessary measures. If
they cannot be notified, a mechanism for detecting potentially dangerous situa-
tions must be devised: in our particular case, the system should be alerted if a
train does not leave its block within a reasonable time. In other words, a time-out
could be detected.

Now that we mentioned it, we are reminded of the fact that time may play an
important role in any real-time system, either in the form of elapsed time, or of
the time of the day. It is difficult to think of a system that could operate without
the help of a clock. A real-time clock and the possibility to program it to generate
a clock interrupt at certain points in time, or after a given time-interval has
elapsed, are therefore indispensable ingredients of a real-time control system.

Reliability of the entire system is another item for serious consideration. You
certainly do not want a parity error in a disk record to bring your system to a
halt or to create a chain of very nasty incidents.

In many cases, we are not dealing with a closed system, so there must be
a means of communicating with other systems (our national railway network is
connected to other networks, and trains do regularly cross the border). User-
friendly interfaces to human operators, which usually implies the use of graphics,
are also very likely to be an essential ingredient of our real-time control system.
A large synoptic panel, showing where all trains are in the network, would be the
supervisor’s dream.

In the following lectures, we will investigate in more depth the various features
a real-time operating system should provide. Making use of these features will
prevent us from re-inventing the wheel.

The question then arises: which real-time operating system should I use?
There are several on the market: OS-9000 for Motorola 68000 machines, and
QNX or LynxOS for Intel machines, Solaris for Sparc processors, to mention only
a few of the older ones. These systems are sold together with the tools necessary
to build a real-time application: compiler, assembler, shell, editor, simulator, etc.
A minimum configuration would cost US$ 2000-2500, a full configuration may
push the price up into the 10 K$ range. This would cause no problem whatsoever
for a railway company, but what about you?

Another solution is to use a real-time kernel, useful for embedded systems,
which you compile and link into your application. VxWorks, MCX11 and µCOS
are rather oldish examples. They are much cheaper —or practically free: MCX11
and µCOS—, but you will need a complete development system in addition. This
development system could of course be Linux .

The ideal would be to be able to use Linux for development of a real-time control
system, as well as for running the application. We will see shortly to what extent
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this is possible at present. Before proceeding, however, we will make sure that
we understand the fundamental concept of a process.

3 Processes

In our example we have seen that a real-time system has a number of tasks
to accomplish: besides ensuring that trains could proceed from block to block
without making collisions, we had to log data, keep the data-base up-to-date,
communicate with the operator, cater for emergency situations, etc. Not all of
these tasks have the same priority or time constraints, of course.

When we analyse a real-time system, we will almost invariably be able to
identify different tasks, which are more or less independent of each other. “Inde-
pendent of each other” really means that each task can be programmed without
thinking too much of the other tasks the system is to perform. At most there
is some intertask communication, but every task does its job on its own, without
requiring assistance from other tasks. If assistance is required, the operating
system should organise and control it. The system designer should identify and
define the different tasks in such a way that they really are as independent of
each other as possible. Some synchronization may be needed: certain tasks can
only run after another task has completed. For instance, if some calculations
have to be done on collected data, the data collection tasks could be totally sepa-
rated from the calculation task. In order to make sense, the latter should only be
executed when the data collection task has obtained all data necessary for the
calculation. This implies that some inter-task communication is needed here.
The true difficulty of dividing the overall system requirement up into different
tasks consists of choosing the tasks for maximum independence, or —in other
words— for minimum need of inter-task communication and synchronization.

These various tasks can now be implemented as different programs and then
run as different processes.

What exactly is a process and what is the difference between a program and a
process? A program is an orderly sequence of machine instructions, which could
have been obtained by compilation of a sequence of high-level programming lan-
guage statements. It is not much more than the listing of these statements,
which can be stored on disk, or archived in a filing cabinet. It becomes useful
only when it is run on a machine and executing its instructions in the desired
sequence, thus obtaining some result. It is only useful when it has become a
running process.

A process is therefore a running (or runnable) program, together with its data,
stack, files, etc. It is only when the code of a program has been loaded into mem-
ory, and data and stack space allocated to it, that it becomes a runnable process.
The operating system will then have set up an entry in the process descriptor ta-
ble, which is also part of the process, in the sense that this information would
disappear when the process itself ceases to exist in the system. The operating
system may decide at a certain moment to run this runnable process, on the
basis of its priority and the priorities of other runnable processes. This would
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happen in general when the process that is using the CPU is unable to proceed
— e.g. because it is waiting for input to become available — or because the time
allocated to it has run out.

We should emphasize that we are considering only the case of a single pro-
cessor system, where only one process can run at a time. The other runnable
processes will wait for the CPU to become free again. If the different processes
are run in quick succession, a human observer would have the impression that
these processes are executed simultaneously.

The consequence of this is that we can write a program to calculate Bessel
functions, without having to think at all about the fact that when we will run
our program, there may already be fifty or more other processes running, some
of them even calculating Bessel functions. In as far as we have written our pro-
gram to be autonomous, it will not be aware of the existence of other runnable
processes in the computer system. Consequently, it cannot communicate with
the other processes either: its fate is entirely in the hands of the operating sys-
tem1.

There may exist on the disk a general program to calculate Bessel functions
and on a general purpose time-sharing computer system several users may be
running this program. A reasonable operating system should then keep only
one copy of the program code in memory, but each user process running this
program should have its own process descriptor, its own data area in memory,
its own stack and its own files. All users of the computer system will presumably
run a shell. Command shells, such as bash or tcsh are very large programs and
it would be an enormous waste if every single user of a time-sharing system
would have his own copy of the shell in memory.

In general, we will have a number of runnable processes in our uniprocessor
machine, and one process running at a given instant of time. When will the
waiting processes get a chance to run? There are two reasons for suspending
the execution of the running process: either the time-slice allocated to it has
been exhausted, or it cannot proceed any further before some event happens. For
instance, the process must wait for input data to become available, or for a
signal from another process or the operating system, or it has first to complete
an output operation, etc. The programmer does not have to bother about this.
At a given point in the program, where it needs to have more input data, the
programmer simply writes a statement such as: read(file,buffer,n);. The compiler
will translate this into a call to a library function, which in turn will make a
system call, (or service request), which will transfer control to the kernel. Our
process becomes suspended for the time the kernel needs to process this system
call. In the case of a read operation on a file, the kernel will set this into motion,
by emitting the necessary orders to the disk controller. As the disk controller will
need time to execute this order, the kernel will decide to block the execution of
the process which was running and which made the system call. This blocked
process will be put in the queue of waiting processes, and it will become runnable

1And luckily so: the operating system will also provide protection, avoiding that other pro-
cesses interfere with ours.
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again later, when the disk controller will have notified the kernel —by sending
a hardware interrupt— that the I/O operation has been completed. The kernel
makes use of the scheduler to find, from the queue of runnable processes the
one that should now be run. The kernel will then make a context switch and
this will start our suspended process running.

A context switch is a relatively heavy affair: first all hardware registers of the
old (running) process must be saved in the process descriptor of the old process.
Then the new process must be selected by the scheduler. If the code and data
and stack of the new process are not yet available in memory, they must be
loaded. In order to be loaded, it may be necessary first to make room in memory,
by swapping out some memory pages which are no longer needed or which are
rarely used. The page tables must be updated, and the process descriptors
must be modified to reflect the new situation. Finally the hardware registers of
our machine must be restored from the values saved at an earlier occasion for
the process now ready to start running. The last register to be restored is the
program counter. The next machine instruction executed will then be exactly the
one where the new process left off when it was suspended the last time.

The execution of a program will thus proceed piecemeal, but without the pro-
grammer having to bother about it: the operating system takes care of every-
thing. So the application programmer can continue to believe that his program
is the only one in the world. The price to be paid for this convenience is the
overhead in time and memory resources introduced by the intervention of the
operating system.

For our Bessel function program we are entirely justified in thinking that
we are alone in the world. There are however situations where this is not the
case and where different processes interfere with each other, either willingly or
unwillingly. Here is my favourite example of such a case of interference1.

Assume that we have three separate bytes in memory which contain the hour,
minutes and seconds of the time of the day. There is a hardware device which
produces an interrupt every second and this will cause the process that will
update these three bytes to be woken up. Any process which wants to know
the time, can access these three memory bytes, one after the other (we assume
that our machine can address only one byte at a time). Now suppose that it
is 10.59.59 and that a process has just read the first byte ”10”, when a clock
interrupt occurs. As the process that updates the clock has a higher priority than
the running process, the latter is suspended. The clock process now updates the
time, setting it to 11.00.00. Control then returns to the first process which
continues reading the next two bytes. The result is: 10.00.00; which is one hour
wrong. What happened here is that two processes access the same resource —
the three memory bytes — and that one or both of them can alter the contents.
No harm would be done if both processes had read-only access to the shared
resource.

The reader should note that the concept of a process has allowed us to speak

1The reader should be aware that the example describes a primitive situation; no modern
operating system would allow this situation to occur.
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about them as if they were really running simultaneously. We do not have to
include in our reasoning the fact that there is a context switch and that com-
plicated things are going on behind the scenes. We only have to be aware that
access to shared resources must be protected, in order to avoid that another pro-
cess accesses the same resource ”simultaneously”. On a multi-processor system
”simultaneous” can really mean ”at the same instant in time”, on a uni-processor
machine it really means ”concurrently”. The processor concept is equally valid
for a uni- and a multi-processor machine.

The places in the program where a shared resource is accessed are so-called
critical regions. We must avoid that two processes access simultaneously the
resource and this can be done by ensuring that a process cannot enter a critical
region when another process is already in a critical region where it accesses the
same shared resource. The entrance to a critical region must be protected with
a sort of a lock.

Two operations are defined on such a lock: lock and unlock. The lock oper-
ation tests the state of the lock and if it is unlocked, locks it. The test and the
locking are done in a single atomic operation. If the lock is already locked, the
lock operation will stop the process from entering the critical region. The unlock
operation will simply clear a lock which was locked, and allow the other process
access to the critical region again. That these operations must be atomic means
that it must be impossible to interrupt them in the middle. Otherwise we would
get into awkward situations again. If the lock operation would not be atomic, we
could have a situation where process 1 inspects the lock and finds it open. If
immediately after this, process 1 gets interrupted, before it had a chance to close
the lock, process 2 could then also inspect the lock. It finds that it is open, sets
it to closed, enters the critical region where it grabs the resource (a printer for
instance) and starts using it. Some time later process 1 will run again, it will also
close the lock and it will also grab the same printer and start using it. Remember
that process 1 previously had found the lock to be open and it is unaware that
process 2 has been running in the meantime!

The lock and unlock operations must therefore be completed before an inter-
ruption is allowed. This can be done —primitively— by disabling interrupts and
then enabling them after the operation. No reasonable operating system would
allow a normal user to tinker with the interrupts, so this solution is excluded.

Some machines (for instance the Motorola m68000 series) have a test-and-
set instruction. The test-and-set instruction tests a bit and sets it to ”one” if it
was ”zero”. If it was already ”one” it is left unchanged. The result of the test (i.e.
the state of the bit before the test-and-set instruction was executed is available in
the processor status word and can be tested by a subsequent branch instruction.
The test-and-set instruction is a single instruction; a hardware interrupt arriving
during the execution of the instruction will be recognized only after the execution
is complete. This guarantees the atomicity of a test-and-set operation, making it
a candidate for use as a lock.

What do we do after the test-and-set instruction? If the lock was open, you can
safely enter the critical region. If, on the contrary, process A finds the lock closed,
it should go to sleep. The operating system will then suspend the execution of
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process A and schedule another process to run, say C, or E. The process B,
which had closed the lock in the first place, will also be running again at some
instant and eventually will unlock the lock and wakeup the sleeping process
A, for instance by sending it a signal. The system will then make process A
runnable again.

Now suppose that process A gets interrupted immediately after doing its —
unsuccessful — lock operation and before it could execute the sleep() call. Pro-
cess B will at some stage open the lock and wakeup A. As A is not sleeping, this
wakeup is simply lost. When A will run again, it will truly go to sleep, forever!

The solution to the problem was given in 1965 by Dijkstra, when he defined
the semaphore. A semaphore can count the number of such “lost wakeups”,
without trying to wake up a process that is not sleeping. It can only have a pos-
itive value, or ”0”. Two atomic operations are defined on a semaphore, which
we will call up and down1. Once an operation on a semaphore is started, no
other process can access the same semaphore, until the operation is finished.
Thus atomicity of a semaphore operation is guaranteed. The work done for a
down (and similarly for an up) operation must therefore be part of the operat-
ing system and not of a user process. The down operation checks the value of
the semaphore. If it is greater than zero, it decrements the value and the call-
ing process just continues execution. On the contrary, If the down operation
finds that the semaphore value is zero, the calling process is suspended and
the semaphore value left to zero. The up operation on a semaphore will always
succeed and increment its value. If one or more processes were suspended on
this semaphore (i.e. its value was equal to zero), one of them is selected by the
operating system. The selected process will then be allowed to run and it can
now complete its down, which had failed earlier. Thus, if the semaphore was
positive, it will simply be incremented, but if it was ”0” — meaning that there are
processes sleeping on it — its value will remain ”0”, but there will be one process
less sleeping.

We have described the general form of a semaphore: the counting sema-
phore, which is used to solve synchronization problems, ensuring that certain
events happen in the correct order. A binary semaphore can only take the val-
ues ”0” or ”1” and is particularly suited for solving problems of mutual exclusion,
which explains its other name: mutex.

To illustrate the use of mutexes and counting semaphores we show an ex-
ample of the Producer-Consumer problem. Suppose we have two collaborating
processes: a producer which produces items and puts them in a buffer of finite
size, and a consumer which takes items out of the buffer and consumes them. A
data acquisition system which writes the collected data to tape is a good example
of a producer-consumer problem. It is clear that the producer should stop pro-
ducing when the buffer is full; likewise, the consumer should go to sleep when
the buffer is empty. The consumer should wake up when there are again items
in the buffer and the producer can start working again when some room in the

1Various other names are also used: post and signal, wait and signal, P and V (the original
names given by Dijkstra), and possibly others. For mutexes, lock and unlock are often used.
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buffer has been freed by the consumer.
In order to obtain this synchronization between the two processes, two count-

ing semaphores are used: full which is initialized to ”0” and counts the buffer
slots which are filled, and empty, initialized to the size of the buffer and which
counts the empty slots. Access to the buffer, which is shared between the two
processes, is protected by a mutex, initially ”1” and thus allowing access. The ex-
ample is taken from Andrew Tanenbaum’s[1] excellent book1. The reader should
study carefully the listing of the Producer-Consumer problem given here. He
should be aware that the example is simplified: instead of two processes and a
buffer structure in shared memory, the listing shows two functions, using global
variables. Also the semaphores are not exactly what the standards prescribe.
Using semaphores and mutexes remains a difficult thing: changing the order of
two down operations in the listing below may result in chaos again.

#define N 100 /* number of slots in buffer */
typedef int semaphore; /* this is NOT POSIX !! */
semaphore mutex=1; /* controls access to critical region */
semaphore empty=N; /* counts empty buffer slots */
semaphore full=0; /* counts full buffer slots */

void producer(void) {
int item;
while(TRUE) { /* do forever (TRUE=1) */

produce_item(&item); /* make something to put in buffer */
down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
enter_item(&item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */

}
}
void consumer(void) {

int item;
while(TRUE) { /* do forever */

down(&full); /* decrement full count */
down(&mutex); /* enter critical region */
remove_item(&item); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume_item(&item) /* use the item */

}
}

1The reader is encouraged to read the chapter on Interprocess Communication, which provides
a much more detailed treatment of synchronization problems than is possible here.
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4 What is wrong with Linux ?

Unix has the bad reputation of not being a real-time operating system. This
needs some explanation. Time is an essential ingredient of a real-time system:
the definition says that a real-time system must respond within a given time to
an external stimulus. Theoretically, it is not possible to guarantee on a gen-
eral Unix time-sharing system that the response will occur within a specified
time. Although in general the response will be available within a reasonable
time, the load on the system cannot be predicted and unexpected delays may
occur. It would be a bad idea to try and run a time-critical real-time application
on an overloaded campus computer. Nevertheless, before discarding altogether
the idea of using Unix or Linux as the underlying operating system for a real-time
application, we should have a critical look at what the requirements really are,
to what extent they are satisfied by off-the-shelf Linux, and what can be done (or
has been done already) to improve the situation.

The Unix and Linux schedulers have been designed for time-sharing the CPU
between a large number of users (orprocesses). It has been designed to give a
fair share of theresources, in particular of CPU time, to all of these processes.
The priorities of the various processes are therefore adjusted regularly in order
to achieve this. For instance, the numerical analyst who runs CPU-intensive
programs and does practically no I/O, will be penalized, to avoid that he absorbs
all the CPU time.

Such a scheduling algorithm is not suitable for running a real-time appli-
cation. If the operating system would decide that this particularly demanding
application had consumed a sufficiently large portion of the available CPU time,
it would lower its priority and the application might not be able anymore to meet
its deadlines.

A real-time application must have high priority and — in order to be able
to meet its deadlines — must run whenever there is no runnable program with a
higher priority. In practice, the real-time process should have the highest prior-
ity, and it should keep this highest priority throughout its entire life1. Another
scheduling algorithm is therefore required: a certain class of processes should
be allocated permanently the highest priorities defined in the system. The nor-
mal scheduler of Linux did not have this feature, but another scheduler, designed
for mixed time-sharing and real-time use is available and is usually compiled into
the kernel.

Time being a precious resource for a real-time system, overheads imposed by
the operating system should be avoided as much as possible. Some of the over-
heads can be avoided by careful design of the real-time program. For instance,
knowing that forking a new process is a time-consuming business, all processes
which the real-time application may need to run, should be forked and exec’ed
(the fork and exec system calls will be illustrated in section 5) during the initial-

1It would be wise to run a shell with an even higher priority, in order to be able to intervene
when the real-time process runs out of hand. This shell would be sleeping, until it gets woken
up by a keystroke.
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ization phase of the application. Other overheads cannot be avoided so simply
and need some adaptation or modification of the operating system.

Context switches may be very expensive in time, in particular when the code
of the new process to be run is not yet available in memory and/or when room
must be made in memory. All code and data of a real-time application should
be locked into memory, so that this part of a context switch would not cause
a loss of time. Locking everything into memory will also prevent page faults to
happen, avoiding this way other memory swapping operations. Originally Linux
did not have the possibility of locking processes into memory, but again, memory
locking is now compiled into all recent kernels.

A further help in reducing the overheads due to context switches is to use so-
called light-weight processes or multi-threaded user processes. Linux as such
does not provide these, but library implementations do exist to implement the
standard POSIX pthreads.

Other places where to watch for lurking losses of time are Input/Output op-
erations. Normally, when a file is opened for writing, an initial block of disc
sectors is allocated — usually 4096 bytes — and inodes and directory entries are
updated. When the file grows beyond its allocated size, the relatively lengthy
process of finding another free block of 4096 bytes and updating inodes and di-
rectory entries is repeated. A real-time system should be able to grab all the disc
space it needs during initialization, so that these time losses may be avoided.
Linux does not allow this at present.

All input and output in Linux is synchronous. This means that a process
requesting an I/O operation will be blocked until the operation is complete (or
an error is returned). Upon completion of the operation, the process becomes
runnable again and it will effectively run when the scheduler decides so. How-
ever, “completion” of an output operation means only that the data have arrived
in an output buffer, and there is no guarantee that the data have really been
written out to tape or disc. When the process is only notified of completion of the
I/O operation when the data are really in their final destination, we have syn-
chronized I/O, which may be a necessity for certain real-time problems. Linux
does not spontaneously do synchronized I/O, but it can be easily imposed by
using sync or fsync.

Asynchronous I/O may be another real-time requirement. It means that
the process requesting the I/O operation should not block and wait for comple-
tion, but continue processing immediately after making the I/O system call. The
standard device drivers of Linux do not work asynchronously, but the primitive
system calls allow the option of continuing processing. A special purpose device
driver could make use of this and thus do asynchronous I/O. The process will
then be notified with an interrupt when the I/O operation has been completed.

The designer of a real-time system should of course also be aware that no
standard device drivers exist for exotic1 devices. They have to be written by the
application programmer. In a standard Unix system, such a new device driver

1With exotic I really mean very weird non-standard devices. The list of devices supported by
Linux is indeed incredibly long!
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must be compiled and linked into the kernel. Linux has a very nice feature: it
allows to dynamically load and link to the kernel so-called modules, which can
be — and very often are — device drivers.

We have shown before that it would be wise to divide a real-time system up
into a set of processes, which each can care for their own business, without
excessively interfering with each other. Nevertheless, some communication be-
tween processes may be needed. Old Unix systems had only two interprocess
communication mechanisms: pipes and signals. Signals have a very low infor-
mation content, and only two user definable signals exist. System V Unix added
other IPC mechanisms: sets of counting semaphores, message queues, and
shared memory. Most Linux kernels have the System V IPC features compiled
in.

Probably no real-time system could live without a real-time clock and in-
terval timers. They do exist in off-the-shelf systems, but the resolution, usually
1/50 th or 1/100 th of a second, may not be enough. The user-threads package
can work with higher resolutions, if the hardware is adequate.

The IEEE has made a large effort to standardize the user interface to oper-
ating systems. The result of this effort has been the POSIX 1003.1a standard,
which defines a set of system calls, and POSIX 1003.1b, which defines a stan-
dard set of Shell commands. Both were approved by IEEE and by ISO and thus
gained international acceptance. Also real-time extensions to operating systems
have been defined in the POSIX 1003.1c-1994 (called POSIX-4 in ancient times)
standard, which has also been accepted by ISO. All the points discussed above
are part of this POSIX 1003.1c standard. multiple threads and mutexes are de-
fined in a later extension. The so-called pthreads are part of the international
POSIX 1003.1cstandard.

In summary, Linux used to be weak on the following, and may still be on a
few items:

• Mutexes. A simple mutex did not exist in the original Linux kernel. The
System V IPC semaphores can be used, although they are overkill, intro-
ducing a large overhead. Atomic bit operations are defined in asm/bitops.h
and could possibly be used, but extreme care should be exercised (danger
of priority inversion). Mutexes are defined in the pthreads package. They
will work between user threads inside a single process, and for some imple-
mentations also between threads and another process.

• Interprocess Communication. System V IPC is usually part of the Linux
kernel and adds counting semaphores, message queues and shared mem-
ory to the usual mechanisms of pipes and of signals.

• Scheduling. A POSIX 1003.1c compliant scheduler for Linux exists and is
part of the kernel in most Linux distributions. The perfect scheduler will be
part of the 2.6 kernel, expected to be available soon.

• Memory Locking. Memory locking is part and parcel of the more recent
Linux kernels (at least above 2.0.x and maybe earlier).
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• Multiple User Threads. A few library implementations exist. The more re-
cent Linux distributions have Leroy’s Pthread library, which makes use of a
particular feature of Linux : the “clone” system call. It is entirely compliant
with the POSIX standard. You will soon get into close contact with it. The
new 2.6 kernel should have support for a much more efficient implementa-
tion of pthreads.

• Synchronized I/O. Can be obtained easily with sync and fsync.

• Asynchronous I/O. Not available in standard device drivers. Could be im-
plemented for special purpose device drivers.

• Pre-allocation of file space. Not available to my knowledge.

• Fine-grained real-time clocks and interval timers. They are part of the
available pthreads packages and could be used if the hardware is capable.

5 Creating Processes

Creating a new process from within another process is done with the fork() sys-
tem call. fork() creates a new process, called the child process, which is an exact
copy of the original (parent) process, including open files, file pointers etc. Before
the fork() call there is only one process; when the fork() has finished its job, there
are two. In order to deal with this situation, fork() returns twice. To the parent
process it returns the process identification (PID) of the child process, which
will allow the parent to communicate later with the child. To the child process it
returns a 0. As the two processes are exact copies of each other, an if statement
can determine if we are executing the child or the parent process.

There is not much use of a child process which is an exact copy of its parent,
so the first thing the child has to do is to load into memory the program code
that it should execute and then start execution at main(). A child is obviously too
inexperienced to do this on its own, so there is a system call that does it for him:
execl(). The entire operation of creating a new process therefore goes as follows:

/* here we have been doing things */
child=fork(); /* PID of new process --> child */
if(child) { /* here for parent process */

... /*continue parent’s business*/
} else

{ /* here for child process */
execl("/home/boss/rtapp/toggle_rail_signal",

"toggle_rail_signal", N_sigs, NULL);
perror("execl"); /* here in case of error */
exit(1);

}
/* here continues what the parent was doing */
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execl() will do what was described above, so in our example it will load the exe-
cutable file /home/boss/rtapp/toggle rail signal and then start execution of the
new process at main(argc,argv). The other arguments of execl() are passed on to
main(). execl is one of six variants of the exec system call: execl, execv, execle,
execve, execlp, execvp. They differ in the way the arguments are passed to main():
l means that a list of arguments is passed, v indicates that a pointer to a vector
of arguments is passed. e tells that environment pointer of the parent is passed
and the letter p means that the environment variable PATH should be used to
find the executable file.

This completes the creation of a new process. On a single CPU machine, one
of the two processes may continue execution, the other will wait till the scheduler
decides to run it. There is no guarantee that the parent will run before the child
or vice versa.

The new process can exit() normally when it has done its job, or when it hits
an error condition. The parent can wait for the child to finish and then find out
the reason of the child’s death by executing one of the following system calls:

pid_t wait(int *status); /* wait for any child to die */
or:
pid_t waitpid(pid_t which, int *status, int options)

/* wait for child "which" to die */
These wait calls can be useful for doing some cleaning-up and to avoid leav-

ing zombies behind. When the parent process exits, the system will do all the
necessary clean-up, childs included.

We can now understand what the shell does when we type a command, such
as cp file1 dir. The shell will parse the command line, and assume that the first
word is the name of an executable file. It will then do a fork(), creating a copy
of the shell, followed by an execl() or execv() which will load the new program, in
our example the copy utility cp. The rest of the command line is passed on to cp
as a list or as a pointer to a vector. The shell then does a wait(). When an & had
been appended to the command line, then the shell will not do a wait, but will
continue execution after return from the exec call.

The following gives a more complete and rather realistic example of a terminal
server and a client taken from Bill O. Gallmeister’s book[2]. The reader is invited
to study this example in detail.

The code for the server looks like:
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#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>
#include <errno.h>
#include "app.h" /* local definitions */

main(int argc, char **argv) {
request_t r;
pid_t terminated;
int status;

init_server(); /* set things up */
do {

check_for_exited_children();
r = await_request(); /* get some input */
service_request(r); /* do what wanted */
send_reply(r); /* tell we did it */

} while (r != NULL);
shutdown_server(); /* tear things down */
exit(0);

}

void service_request(request_t r) {
pid_t child;

switch (r->r_op) {
case OP_NEW:

/* Create a new client process */
child = fork();
if (child) { /* parent process */

break;
} else { /* child process */

execlp("terminal","terminal application",
"/dev/com1",NULL);

perror("execlp");
exit(1);

}
break;

default:
printf("Bad op %d\n", r->r_op),

break;
}
return;

}
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The terminal end of the application looks like:

#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>
#include "app.h" /* local definitions */

char *myname;

main(int argc, char **argv) {
myname = argv[0];
printf("Terminal \"%s\" here!\n", myname);
while (1) {

/* deal with the screen */
/* await user input */

}
exit(0);

}

Presumably request t is defined in app.h as a pointer to a structure. await request()
is a function which sleeps until a service request arrives from a terminal. The
operations performed by the other functions:
init server, service request(), check for exited children(), send reply(), shutdown server()
are implied by their names.

6 Interprocess Communication

In the case where we have a real-time application with a number of processes
running concurrently, it would be a normal situation when some of these pro-
cesses need to communicate between them. We said already that the classi-
cal Unix system only knows pipes and signals as communication mechanisms.
Interprocess communication, suitable for real-time applications is an essential
part of the POSIX standard, which adds a number of mechanisms to the minimal
Unix set. In the following we will briefly describe the various IPC mechanisms
and how they can be invoked. We will follow as much as possible the POSIX
standard, except where the facilities are not implemented in Linux İn that case
we will describe the mechanism Linux makes available.

6.1 Unix and POSIX 1003.1a Signals

The old signal facility of Unix is rather limited, but it is available on every im-
plementation of Unix or one of its clones. Originally, signals were used to kill
another process. Therefore, for historical reasons, the system call by which a
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process can send a signal to another process is called kill(). There is a set of
signals, each identified by a number (they are defined in <signal.h>), and the
complete system call for sending a signal to a process is:

kill(pid t pid, int signal)
The integer signal is usually specified symbolically: SIGINT, SIGKILL or SIGALRM,
etc., as defined in <signal.h>. pid is the process identification of the process to
which the signal shall be sent. If this receiving process has not been set up to
intercept signals, its execution will simply be terminated by any signal sent to
it. The receiving process can however be set up to intercept certain signals and
to perform certain actions upon reception of such an interceptable signal. Cer-
tain signals cannot be caught this way, they are just killers: SIGINT, SIGKILL
are examples. In order to intercept a signal, the receiving process must have set
up a signal handler and notified this to the operating system with the sigaction()
system call. The following is an example of how this can be done:

A structure sigaction (not to be confounded with the system call of the same
name!) is defined as follows:

struct sigaction {
void (*sa_handler)();
sigset_t sa_mask;
int sa_flags;
void(*sa_sigaction)(int,siginfo_t *,void *); };

This structure encapsulates the action to be taken on receipt of a signal.
The following is a program that shall exit gracefully when it receives the signal

SIGUSR1. The function terminate normally() is the signal handler. The admin-
istrative things are accomplished by defining the elements of the structure and
then calling sigaction() to get the signal handler registered by the operating sys-
tem.

void terminate_normally(int signo) {
/* Exit gracefully */

exit(0); }

main(int argc, char **argv) {
struct sigaction sa;
sa.sa_handler = terminate_normally;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGUSR1, &sa, NULL)) {

perror("sigaction");
exit(1);

}
/*...*/

}
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The operating system itself may generate signals, for instance as the result
of machine exceptions: floating point exception, page fault, etc. Signals may
also be generated by something which happens asynchronously with the process
itself. The signals then aim at interrupting the process: I/O completion, timer
expiration, receipt of a message on an empty message queue, or typing CTRL-C
or CTRL-Z on the keyboard. Signals can also be sent from one user process to
another.

The structure sigaction does not only contain the information needed to reg-
ister the signal handler with the operating system (in the process descriptor),
but it also contains information on what the receiving process should do when it
receives the registered signal. It can do one of three things with the signal:

— it can block the signal for some time and later unblock it;
— it can ignore the signal, pretending that nothing has happened;
— it can handle the signal, by executing the signal handler.

The POSIX.1 signals, described so far, have some serious limitations:

— there is a lack of signals for use by a user application (there are only two:
SIGUSR1 and SIGUSR2).

— signals are not queued. If a second signal is sent to a process before the
first one could be handled, the first one is simply and irrevocably lost.

— signals do not carry any information, except for the number of the signal.
— and, last but not least, signals are sent and received asynchronously. This

means in fact that a process may receive a signal at any time, for instance
also when it is updating some sensitive data-structures. If the signal han-
dler will also do something with these same data-structures, you may be in
deep trouble. In other words, when you write your program, you must al-
ways keep in mind that you may receive a signal exactly at the point where
your pencil is.

A very serious limitation to the use of signals in real-time applications is the
time that may elapse between the sending of a signal and its delivery to the
target process. In fact the signal, when sent, is registered by UNIX. When the
scheduler decides that the target process will be the next to run, UNIX will check
if there are signals pending for that process. If there is one and a handler has
been defined for it, UNIX will run the handler first — thus delivering the signal
— and then proceed to run the process from where it had left off previously.

Linux is compliant with this POSIX 1003.1a definition of signals.

6.2 POSIX 1003.1c signals

From the description above, we have seen that the POSIX 1003.1a signals are a
rather complicated business (in Unix jargon this is called flexibility). The POSIX
1003.1c extensions to the signal mechanism introduces even more flexibility.
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POSIX 1003.1c really defines an entirely new set of signals, which can peace-
fully co-exist with the old signals of POSIX 003.1a. The historical name kill() is
replaced by the more expressive sigqueue().

The main improvements are:

— a far larger number of user-definable signals;
— signals can be queued; old untreated signals are therefore not lost;
— signals are delivered in a fixed order;
— the signal carries an additional integer, which can be used to transmit more

information than just the signal number.

POSIX 1003.1c signals can be sent automatically as a result of timer expira-
tion, arrival of a message on an empty queue, or by the completion of an asyn-
chronous I/O operation. Unfortunately, not all features of the POSIX 1003.1c
signals are part of standard Linux , so we will not dwell on them any further.

6.3 pipes and FIFOs

Probably one of the oldest interprocess communication mechanisms is the pipe.
Through a pipe, the standard output of a program is pumped into the standard
input of another program. A pipe is usually set up by a shell, when the pipe
symbol ( | ) is typed between the names of two commands. The data flowing
through the pipe is lost when the two processes cease to exist. For a named
pipe, or FIFO (First In, First Out), the data remains stored in a file. The named
pipe has a name in the filesystem and its data can therefore be accessed by any
other process in the system, provided it has the necessary permissions.

A running process can set up a pipe to communicate with another process.
The communication is uni-directional. If duplex communication is needed, two
pipes must be set up: one for each direction of communication. The two “ends
of a pipe” are nothing else than file descriptors: one process writes into one of
these files, the other reads from the other.

Setting up a pipe between two processes is not a terribly straightforward op-
eration. It starts off by making the pipe() system call. This creates two file
descriptors, if the calling process still has file descriptors available. One of these
descriptors (in fact the second one) concerns the end of the pipe where we will
write, the other descriptor (the first one) is attached to the opposite end, where
we will read from the pipe. If we now create another process, this newly created
process will inherit these two file descriptors. We now must make sure that both
parent and child processes can find the file descriptors for the pipe ends. The
dup2 system call will in fact do this, by duplicating the “abstract” file descriptors
pipe ends[0] and pipe ends[1] into well-known ones. dup2 copies a file descrip-
tor into the first available one, so we should close first the files where we want
the pipe to connect (usually standard out for the process connected to the writ-
ing end and standard in for the process which will read from the pipe). Here is a
skeleton program for doing this in the case of a terminal server, which forks off
a terminal process to display messages from the server:
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/* First create the pipe */
if (pipe(pipe_ends) < 0) {

perror("pipe");
exit(1);

}
/* Then fork the child process */
global_child=child=fork();

if (child) {
/* here for parent process */
do_something();

}
else {

/*here for the child*/
/* pipe ends will be 0 and 1 (stdin and stdout) */
(void)close(0);
(void)close(1);
if (dup2(pipe_ends[0], 0) < 0)

perror("dup2");
if (dup2(pipe_ends[1], 1) < 0)

perror("dup2");
(void)close(pipe_ends[0]);
(void)close(pipe_ends[1]);
execlp(CHILD_PROCESS, CHILD_PROCESS, "/dev/com1", NULL);
perror("execlp");
exit(1);

}

The terminal process, created as the child could look:

#include <fcntl.h>
char buf[MAXBYTES]

/* pipe should not block, to avoid waiting for input */
if(fcntl(channel_from_server, F_SETFL, O_NONBLOCK) < 0) {

perror("fcntl");
exit(2);

}
while (1) {

/* Put messages on the screen */
/* check for input from the server */
nbytes = read(channel_from_server, buf, MAXBYTES);
if (nbytes < 0) && (errno != EAGAIN))

perror("read");
else if (nbytes > 0) {

printf("Message from the Server: \"%s\"\n", buf);
}
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In this example1, the server process simply writes to the write end of the pipe
(which has become stdout) and the child reads from the other end, which has
been transformed by dup2 into stdin. To set up a communication channel in the
other direction as well, the whole process must be repeated, inverting the roles of
the server and the terminal client (the first becomes the reader, and the second
the writer) and using two other file descriptors (for instance 3 and 4 if they are
still free). Note that the dup calls must be made before the child does its exec
call, otherwise, the file descriptors for the two pipe ends would be lost.

The use of named pipes is simpler: the FIFO exists in the file system and any
process wanting to access the file can just open it. One process should open
the FIFO for reading, the other for writing. A FIFO is created with the POSIX
1003.1a mkfifo() system call.

6.4 Message Queues

When we have compiled the System V IPC facilities into the Linux kernel, we have
message queues available, which however do not conform to the POSIX 1003.1c
standard. We will nevertheless describe them briefly, as they are the only ones
we have at present.

In system V struct msqid ds describes the message resource, which is allo-
cated and initialized when the resource is created. It contains the permissions,
a pointer to the last and the first message in the queue, the number of messages
in the queue, who last sent and who last received a message, etc. The messages
itself are contained in:

struct msgbuf {
long mtype;}
char mtext[l]; }

To set up a message queue, the creator process executes a msgget system call:
msqid = msgget(key t key, int msgflg); The msqid is a unique identification of
the particular message queue which ensures that messages are delivered to the
correct destination. The exact role of the key is complicated; in most cases the
key can be chosen to be IPC PRIVATE. The use of IPC PRIVATE will create a
new message queue if none exist already. If you want to do unusual things or
make full use of the built-in flexibility, you may fabricate your own key with the
ftok(char* pathname, char proj) library call and play with msgflg.

A process wanting to receive messages on this queue must also perform a
msgget call, in order to obtain the msqid.

A message is sent by executing:
int msgsnd(int msqid,struct msgbuf *msgp,int msgsz, int msgflg);

and similarly a message is received by:
int msgrcv(int msqid, struct msgbuf *msgp, int msgsz, long msgtyp, int msgflg);

msgtyp is used as follows:

1Which was also taken from Gallmeister’s book.
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if msgtyp = 0 : get first message on the queue,
> 0 : get first message of matching type,
< 0 : get message with smallest type which is ≤abs(msgtyp).

Finally, the msgctl calls allow you to get the status of a queue, modify its size,
or destroy the queue entirely.

The message queue can be empty. If a message is sent to an empty queue,
the process reading messages from the queue is woken up. Similarly, when the
queue is full, a writer trying to send a message will be blocked. As soon as a
message is read from the queue, creating space, the writer process is woken up.

6.5 Counting Semaphores

System V semaphore arrays are a complicated business again. The semget call
allocates an array of counting semaphores. Presumably, and hopefully, the array
may be of length 1. You also specify operations to be performed on a series of
members of the array. The operations are only performed if they will all succeed!

Counting semaphores can be useful in producer-consumer problems, where
the producer puts items in a buffer and the consumer takes items away. Two
counting semaphores keep track of the number of items in the buffer and allow
to “gracefully” handle the buffer empty and buffer full situations.

Producer-consumer situations can easily arise in a real-time application: the
producer collects data from measuring devices, the consumer writes the data to a
storage device (disk or tape).

Another example is a large paying car park: There is one counting semaphore
which is initialized to the total number of places in the car park. A separate
process is associated with each entrance or exit gate. The process at an entrance
gate will do a wait on the semaphore, e.g. decrement it. If the result is greater
than zero, the process will continue, issue a ticket with the time of entrance, and
open the gate. It closes the gate as soon as it has detected the passage of the
car. If the value of the counting semaphore is zero when the decrement operation
is tried, the process is blocked and added to the pile of blocked processes. This
is just what is needed: the car park is full and the car will have to wait, so no
ticket is issued, etc.

The processes at the exit gates do the contrary: after having checked the
ticket, they open the gate and then do a post or increment operation on the
semaphore, effectively indicating that one more place has become free. This
operation will always succeed.

The System V counting semaphore mechanism is rather similar to the message
queue business: You create a semaphore (array) as follows:

int semid = semget(key t key, int nsems, int semflg);
The key IPC PRIVATE behaves as before. All processes wanting to use the sema-
phore must execute this semget call. You can then operate on the semaphore:

int semop(int semid, struct sembuf *sops, unsigned nsops);
(here is the oddity, you do nsops operations on nsops members of the array; the
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operations are specified in an array of struct sembuf ). This structure is defined
as:

struct sembuf {
ushort sem_num; /*index in array*/
short sem_op; /*operation*/
short sem_flg /*operation flags*/
}

Two kinds of operations can result in the process getting blocked:

i) If sem op is 0 and semval is non-zero, the process sleeps on a queue, wait-
ing for semval to become zero, or returns with error EAGAIN if (IPC NOWAIT
| sem flg) is true.

ii) If (sem op < 0) and (semval + sem op < 0), the process either sleeps on
a queue waiting for semval to increase, or returns with error EAGAIN if
(sem flg & IPC NOWAIT) is true.

Atomicity of the semaphore operations is guaranteed, because the mechanism is
embedded in the kernel. The kernel will not allow two processes to simulta-
neously use the kernel services. In other words, a system call will be entirely
finished before a context switch takes place.

6.6 Shared Memory

Shared Memory is exactly what its name says: two or more processes access the
same area of physical memory. This segment of physical memory is mapped into
two or more virtual memory spaces.

Shared Memory is considered a low-level facility, because the shared segment
does not benefit from the protection the operating system normally provides. To
compensate for this disadvantage, shared memory is the fastest IPC mecha-
nism. The processes can read and write shared memory, without any system
call being necessary. The user himself must provide the necessary protection, to
avoid that two processes “simultaneously” access the shared memory. This can
be obtained with a binary semaphore or mutex.

The shared memory facility available in Linux comes from System V, and
may be not conforming to POSIX.1c. The related system calls are similar to the
System V calls we have already seen:

There is, of course, a shared memory descriptor, struct shmid ds. Shared
memory is allocated with the system call:

shmid = shmget(key t key, int size, int shmflg);
The size is in bytes and should preferably correspond to a multiple of the page
size (4096 bytes). All processes wanting to make use of the shared memory seg-
ment must make a shmget call, with the same key. Once the memory has been
allocated, you map it into the virtual memory space of your process with:

char *virt addr;
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virt addr = shmat(int shmid, char *shmaddr, int shmflg);
shmaddr is the requested attach address:

if it is 0, the system finds an unmapped region;
if it is non-zero, then the value must be page-aligned.

By setting shmflg = SHM RDONLY you can request to attach the segment read-
only.

You can get rid of a shared memory segment by:

int shmdt(char *virt addr);
Finally, there is again the shmctl call, which you may use to get the status, or
also to destroy the segment (a shared segment will only be destroyed after all
users have detached themselves).

If you are using shared memory, and you need malloc as well, you should
malloc a large chunk of memory first, before you attach the shared memory
segment. Otherwise malloc may interfere with the shared memory.

A word about the Linux implementation of the System V IPC mechanisms is
in order. All System V system calls described above make use of a single Linux
system call: ipc(). A library of the system V IPC calls is available, which maps
each call and its parameters into the Linux ipc() call. An example is:

int semget (key\_t key, int nsems, int semflg)
{

return ipc (SEMGET, key, nsems, semflg, NULL);
}

The constants are defined in <linux/ipc.h>

7 Scheduling

The original scheduling algorithm of Linux aimed at giving a fair share of the
resources to each user. It therefore was a typical time-sharing scheduler. A
time-sharing scheduler is based on priorities, like any other type of scheduler,
but the system keeps changing the priorities to attain its aim of being fair to
everyone.

For time-critical real-time applications you want another sort of scheduler. You
need a high priority for the most critical real-time processes, and a scheduler
which will run such a high priority process whenever no process with higher
priority is runnable1.

Less critical processes of the real-time application can run at lower priorities
and other user jobs could also be fitted in at priorities below.

SVR6 (System V, Release 6) has a scheduler that does both time-sharing and
real-time scheduling, depending on the priority assigned to a process. Criti-
cal processes run at priorities between, say, 0 and 50, and benefit from the

1Remember that you need a sleeping shell at a still higher priority.
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priority scheduling. Other jobs run at lower priorities and have to accept the
time-sharing scheduler. This aspect of System V has not been ported to Linux.

A POSIX.1c compliant scheduler has been ported to Linux. In order to make
use of it, you must make patches to the kernel code and recompile the kernel
together with this POSIX.1c scheduler. At the time these notes were prepared,
we had not yet had a chance to try it.

The advantage of a POSIX.1c scheduler is, of course, that your application
program will be portable between different platforms.

What does a POSIX.1c scheduler do? Here is what it provides1:

#include <unistd.h>
#ifdef _POSIX_PRIORITY_SCHEDULING
#include <sched.h>
int i, policy;
struct sched_param *scheduling_parameters;
pid _t pid;

sched_setscheduler(pid_t pid, int policy,
struct sched_param *scheduling_parameters);

int sched_getscheduler(pid_t pid);
int sched_getparam(pid_t pid,

struct sched_param *scheduling_parameters);
int sched_setparam(pid_t pid,

struct sched_param *scheduling_parameters);
int sched_yield(void);
int sched_get_priority_min(int);
int sched_get_priority_max(int);
#endif _POSIX_PRIORITY_SCHEDULING

You see that you define a scheduling ”policy”. You have a choice:
SCHED FIFO : pre-emptive, priority-based scheduling,
SCHED RR : pre-emptive, priority-based with time quanta,
SCHED OTHER : implementation dependent scheduler.

With the first choice, the process will run until it gets blocked for one reason
or another, or until a higher priority process becomes runnable. The second policy
adds a time quantum: a process running under this scheduling policy will only
run for a certain duration of time. Then it goes back to the end of the queue
for its priority (each priority level has its own queue). Thus, at a given priority
level, all processes in that level are scheduled round-robin. In future, deadline
scheduling will probably have to be added as another choice.

There is a range of priorities for the FIFO scheduler and another range for the
RR scheduler.

After a fork(), the child process inherits the scheduling policy and the priority
of the parent process. If the priority of the child then gets increased above the

1Again from Gallmeister’s book.
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priority of the running process, the latter is immediately pre-empted, even before
the return from the sched setparam call! So be careful, you may seriously harm
yourself.

On the other hand, you may ”yield” the processor to another process. You
cannot really be sure which process this is going to be. As a matter of fact, the
only thing yield does, is to put your process at the end of the queue at your
particular priority level.

All this is nice, but we are still stuck with the fact that the kernel itself cannot
be pre-empted. This is usually not too much of a problem. Most of the system
calls will take only a short time to execute.

Usually, the system calls that may take a considerable time (such as certain
I/O related calls), should be relegated — as far as possible — to those tasks that
run at a lower priority level. Also some common sense will help: it is much faster
to write once 512 bytes to disk than to write 512 times a single byte!

Other system calls do take a long time. fork and exec for example. You
should therefore create all necessary processes during the initialization phase of
your application. Let the processes that you only need sporadically just sleep for
most of the day.

8 Timers

You may want to arrange for certain things to happen at certain times, or a given
time interval after something else happened. So you will nearly always have the
need for a timer and/or an interval timer.

Standard Unix (and Linux ) has a real-time clock. It counts the number of
seconds since 00:00 a.m. January 1, 1970. (called the Epoch). You get its value
with the time() function:

#include <time.h>
time_t time(time_t *the_time_now);

You can also call time() with a NULL pointer.
Linux also has the gettimeofday call, which stores the time in a structure:

struct timeval {
time_t tv_sec /* seconds */
time_t tv_usec } /* microseconds */

gettimeofday returns a 0 or -1 (success, failure respectively).
You can make things happen after a certain time interval with sleep() :

unsigned int sleep(unsigned int n_seconds);

The process which executes this call will be stopped and resumed after n seconds
have passed. The resolution is very crude! As a matter of fact, many real-time
systems would need a resolution of milliseconds and, in extreme cases, even
microseconds.
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To overcome this drawback, Linux has also interval timers. each process has
three of them:

#include <sys/time.h>

int setitimer(int which_timer,
const struct itimerval *new_itimer_value,
struct itimerval *old_itimer_value);

int getitimer(int which_timer,
struct itimerval *current_itimer_value);

The first argument, which timer, has one of the three following values: ITIMER REAL,
ITIMER VIRTUAL and ITIMER PROF. setitimer() sets a new value of the interval
timer and returns the old value in old timer value.

When a timer expires, it delivers a signal: SIGALRM, SIGVTALRM and SIG-
PROF respectively. The calls make use of a structure:

struct itimerval {
struct timeval it_val /* initial value */
struct timeval it_interval } /* interval */

The ITIMER REAL measures the time on the “wall clock” and therefore in-
cludes the time used by other processes. ITIMER VIRTUAL measures the time
spent in the user process which set up the timer, whereas ITIMER PROF counts
the time spent in the user process and in the kernel on behalf of the user pro-
cess. It is thus very useful for profiling.

The resolution of these interval timers is given by the constant HZ, which is
defined in <sys/param.h>. On Linux machines, HZ=100, so the resolution of the
interval timers is 10000 microseconds.

POSIX.1c extends the timer facilities to a number of implementation defined
clocks, which may have different characteristics. Timers and intervals can be
specified in nanoseconds.

9 Memory Locking

As we already pointed out before, the real-time processes – at least the critical
ones – should be locked into memory. Otherwise you could have the very unfor-
tunate situation that your essential task has been swapped out, just before it
becomes runnable again. Faulting a number of pages of code back into memory
may add an intolerable overhead.

Remember also that infrequently used pages may be swapped out by the sys-
tem, without any warning. Faulting them back in again may make you miss a
deadline. Thus, not only the program code, but also the data and stack pages
should be locked into memory.

A POSIX.1c conformant memory locking mechanism is available for Linux.
Unfortunately, we have not yet been able to test it. It does the following:
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#include <unistd.h>
#ifdef _POSIX_MEMLOCK
#include <sys/mman.h>
int mlockall(int flags);
int munlockall(void);
#endif /* _POSIX_MEMLOCK */

mlockall will lock all your memory, e.g. program, data, heap, stack and also
shared libraries. You may choose, by specifying the flags, to lock the space you
occupy at present, but also what you will occupy in future.

Instead of locking everything, you may also lock parts:

#include <unistd.h>
#ifdef _POSIX_MEMLOCK_RANGE
#include <sys/mman.h>
int mlock (void *address, size_t length);
int munlock (void *address, size_t length);
#endif /* _POSIX_MEMLOCK_RANGE */

Finally, you may want to lock just a few essential functions: a signal handler
or an interrupt handler, for instance. You should not do this from within the
interrupt handler, but from a separate function:

void intr_handler()
{ ...

/* do your work here */
}
void right_after_intr_handler()
{

/* this function serves to get an address */
/* associated with the end of intr_handler() */

}

void intr_handler_init()
{ ...

i = mlock(ROUND_DOWNTO_PAGE(intr_handler),
ROUND_UPTO_PAGE(right_after_intr_handler -

intr_handler));
}

The function right after intr handler() does nothing. It serves only to get an
address associated with the end of the interrupt handler. This is needed to
calculate the argument length for the mlock() call.
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10 Multiple User Threads

All we have seen so far happened at the process level and kernel intervention
was needed for every coordinating action between processes. The overall picture
has become quite complicated and a programmer must master many details or
else he runs into trouble.

Is there not another solution, where the user has more direct control over
what is going on? Fortunately, there is: multiple user threads. POSIX.4a (or
POSIX.1c if you prefer) standardises the API (Application Programmer’s Interface)
for multiple threads.

Threads are independent flows of control inside a single process. Each thread
has its own thread structure — comparable to a process descriptor —, its own
stack and its own program counter. All the rest, i.e. program code, heap storage
and global data, is shared between the threads. Two or more threads may well
execute concurrently the same function. The services needed to create threads,
schedule their execution, communicate and synchronise between threads are pro-
vided by the threads library and run in user space. For the kernel exists only
the process; what happens inside this process is invisible to the kernel1.

Lightweight Processes, as in Solaris or SunOS 4.x, are somewhere mid-way:
a small part of the process structure has been split off and can be replicated
for several LWPs, all continuing to be part of the same process, using the same
memory map, file descriptors, etc. The split-off part is still a kernel structure,
but the kernel can now make rapid context switches between LWPs, because
only a small part of the complete process structure is affected. Inside a LWP,
multiple threads may be present.

Multiple threads offer a solution to programming which has a number of
advantages. The model is particularly well suited to Shared-memory Multiple
Processors, where the code, common to all threads, is executed on different pro-
cessors, one or more threads per processor. Also for real-time applications on
uniprocessors, threads have advantages. In the first place, the fastest, easiest
intertask communication mechanism, — shared memory — is there for free!

There are other advantages as well. The responsiveness of the process may
increase, because when one thread is blocked, waiting for an event, the other
can continue execution. The fact that threads offer a sort of “do-it-yourself”
solution makes the user have a better grasp of what he is doing and thus he
can produce better structured programs. Communication and synchronisation
between threads is easier, more transparent and faster than between processes.
Each thread conserves its ability to communicate with another process, but it is
wise to concentrate all inter-process communication within a single thread.

Multiple threads will in general lead to performance improvements on shared
memory multiprocessors, but on a uniprocessor one should not expect miracles.
Nevertheless, the fact that there is less overhead and that some threads may
block while others continue, will be felt in the performance.

It sounds as if we just discovered a gold mine. Well . . . , there are a few

1at present for the standard kernels at least.
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things which obscure the picture somewhat. For threads to be usable with no
danger, the library functions our program uses must be threads-safe. That
is, they must be re-entrant. Unfortunately, many libraries contain functions
which modify global variables and therefore are not re-entrant. For the same
reason, your threaded program must be re-entrant, so it has to be compiled with
REENTRANT defined. In addition, for a real-time application, you still need at
least a few facilities from the operating system: memory locking and real-time
priority scheduling.

Threads can be implemented as a library of user functions. The standard set
of functions is defined in POSIX.1c, but other implementations also exist. The
most commonly used package1 implements the POSIX.1c pthreads. There are
some 50 service requests defined. They are described in detail in the man pages.
We will illustrate only a few of them, the most important ones.

Pthreads defines functions for Thread Management, Mutexes, Condition Vari-
ables, Signal Management, Thread Specific Data and Thread Cancellation. Threads,
mutexes and condition variables have attributes, which can be modified and
which will change their behaviour. Not all options defined by the various at-
tributes need to be implemented. <pthread.h> defines eight data types:

Type Description

pthread attr t Thread attribute
pthread mutexattr t Mutex attribute
pthread condattr t Condition variable attribute
pthread mutex t Mutual exclusion lock (mutex)
pthread cond t Condition variable
pthread t Thread ID
pthread once t Once-only execution
pthread key t Thread specific data key

Attributes can be set or retrieved with calls of the following type:
int pthread_attr_setschedpolicy ( pthread_attr_t *attr,

int newvalue );
or:
int pthread_mutexattr_getprotocol( pthread_mutexattr_t *attr,

*protocol);

See the man pages for the complete list. The scheduling policy can be one
of: SCHEDFIFO, SCHED RRand SCHEDOTHER, as for the POSIX.1c standard. The
scheduling parameters can also be set and retrieved.

When the process is forked, main(argc, argv) is entered. In the main program
you may then create threads. Each thread is a function, or a sequence of func-

1Xavier Leroy’s implementation, called LinuxThreads, which is part of many recent Linux
distributions (Xavier.Leroy@inria.fr).



39

tions. At thread creation, the entry point must be specified:
int pthread_create( pthread_t *thread,

const pthread_attr_t *attr,
void *(*entry)(void *),
void *arg );

void pthread_exit( void *status );

does what is expected from it. It should be noted that NULL may often be used
to substitute an argument in the function call. This is notably the case for
pthread attr t *attr and void *status .

An important function is:
int pthread_join() When this primitive is called by the running thread, its

execution will be suspended until the target thread terminates. If it has already
terminated, execution of the calling thread continues. pthread join() is therefore
an important mechanism for synchronising between threads. So-called detached
threads cannot be joined. You specify at creation time or at run time if the thread
has to be detached or not.

Mutexes can have as the pshared attribute, PTHREADPROCESSSHAREDor
PTHREADPROCESSPRIVATE, meaning that the mutex can be accessed also by
other processes or that it is private to our process. Private mutexes are defined
in all implementations, shared mutexes are an option. The two usual operations
on a mutex are:
int pthread mutex lock( pthread mutex t *mutex );
and
int pthread mutex unlock( pthread mutex t *mutex );

but you can also try if a mutex is locked and continue execution, whatever the
result:
int pthread mutex trylock ( pthread mutex t *mutex );

All memory occupied by the process is shared among the various threads,
which we said was an important advantage of threads. Nevertheless, sometimes
a thread needs to protect its data against attacks from other threads. For this
reason a few primitives which allow to create and manipulate thread specific
data are defined. For details see the man pages.

We have not yet met condition variables, which are another feature of pthreads.
Condition variables are always associated with a mutex. A condition variable is
used to signal a thread that a particular condition has been satisfied in another
thread. The first thread — the one receiving the signal — will then be allowed
to proceed if it had blocked on the condition variable (CV). It works as shown in
table 1.

Translated into code, this becomes as shown in the next table, 2
Note that pthread cond wait() will automatically free the mutex for you and

your thread will go to sleep on the condition variable.
pthreads is really a subject in itself and our quick review has been very super-

ficial. Threads are well suited for implementing Server-Client problems. Due to
the shared memory, the communication between the server and the — possibly
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Thread 1 Thread 2

lock the mutex
test the condition
FALSE! unlock mutex
sleep on CV

lock the mutex
change the condition
signal thread 1
unlock mutex

lock mutex
test condition again
TRUE! do the job
unlock mutex

Table 1: Using condition variables, algorithm

Thread 1 Thread 2

pthread mutex lock(&m);
while (!my condition) {
while (pthread cond wait(&c, &m) != 0) { ;

pthread mutex lock(&m);
my condition = TRUE ;
pthread cond signal(&c);
pthread mutex unlock(&m);

do thing();
}
}
pthread mutex unlock(&m);

Table 2: Using condition variables, code example
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many — clients is easy.
We close this section with a complete code example1. The example concerns

an Automatic Teller Machine, e.g. one of those machines that distribute ban-
knotes. The main program, which is the server, receives requests over a com-
munication line from ATMs scattered all over town. For each request received,
the server spawns a worker or client thread which undertakes the actions nec-
essary to satisfy the request. This example mainly illustrates the creation of
several threads.

typedef struct workorder {
int conn;
char req_buf[COMM_BUF_SIZE];
} workorder_t;

main(int argc, char **argv)
{

workorder_t *workorderp;
pthread_t *worker_threadp;
int conn, trans_id;

atm_server_init(argc, argv);

for(;;) {
/*** Wait for a request ***/
workorderp = (workorder_t *)malloc(sizeof(workorder_t));
server_comm_get_request(&workorderp->conn,

&workorderp->req_buf);

sscanf(workorderp->req_buf, "%d", &trans_id);
if (trans_id == SHUTDOWN) {

. . .
break;

}

/*** Spawn a thread to process this request ***/
worker_threadp = (pthread_t *)malloc(sizeof(pthread_t));
pthread_create(worker_threadp, NULL, process_request,

(void *)workorderp);

pthread_detach(*worker_threadp);
free(worker_threadp);

}
server_comm_shutdown();

}

1This and the next example are from B. Nichols et.al., Pthreads Programming, See Appendix C,
item ii
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The worker thread (the client) looks as follows:

void process_request(workorder_t *workorderp)
{

char resp_buf[COMM_BUF_SIZE];
int trans_id;
sscanf(workorderp->req_buf, "%d", &trans_id);

switch(trans_id) {
case WITHDRAW_TRANS:

withdraw(workorderp->req_buf, resp_buf);
break;

case BALANCE_TRANS:
balance(workorderp->req_buf, resp_buf);
break;
.
.

default:
handle_bad_trans_id(workorderp->req_buf, resp_buf);

}

server_comm_send_response(workorderp->conn, resp_buf);
free(workorderp);

}

There are two points to note in this example. The first concerns the passing
of arguments to a child thread. The standard allows a single argument only.
Encapsulating several arguments in a single structure and passing a pointer to
this structure to the child is a way to program around the restriction. The second
point is a subtle one and concerns the use of malloc. Using static storage for the
workorder does not work: for every newly created thread the workorder would be
overwritten and most threads would work with a corrupted workorder.

The following example, taken from the same source, illustrates the use of a
mutex and a condition variable. Two of the threads created in this example
simply increment a counter and check if it has reached a limit value. In that
case they signal the condition variable. The third thread waits on the condition
variable and prints its value. The main thread will exit when all three threads it
created have “joined”.

#include <pthread.h>
#define TCOUNT 10
#define WATCH_COUNT 12

int count = 0;
pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;
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pthread_cond_t count_threshold_cv = PTHREAD_COND_INITIALIZER;
int thread_ids[3] = {0, 1, 2};

main()
{

pthread_t threads[3];

pthread_create((&threads[0], NULL, inc_count, &thread_ids[0]);
pthread_create((&threads[1], NULL, inc_count, &thread_ids[1]);
pthread_create((&threads[2], NULL, watch_count, &thread_ids[2]);
for(i = 0; i < 3; i++)

pthread_join((&threads[i], NULL);
}

void watch_count(int *idp)
{

pthread_mutex_lock(&count_mutex);
while(count <= WATCH_COUNT) {

pthread_cond_wait(&count_threshold_cv, &count_mutex);
printf("watch: Thread %d, Count is %d\n", *idp, count);

}
pthread_mutex_unlock(&count_mutex);

}

void inc_count(int *idp)
{

int i;
for(i = 0; i < TCOUNT;, i++)

pthread_mutex_lock(&count_mutex);
count++;
printf("inc: Thread %d, count is %d\n", *idp, count);
if(count == WATCH_COUNT)

pthread_cond_signal(&count_threshold_cv);
pthread_mutex_unlock(&count_mutex);

}
}

In this example the reader should note that two threads share identical code
and that only one copy of this code is present in memory. The program counter
and the stack are of course private property of each individual thread.
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11 Real-time Enhancements to Linux

During the last eight years or so the community of Linux developers have put
considerable efforts into making enhancements to Linux in order to make it bet-
ter suitable for hard real-time applications. Spurred by an increasing demand
for embedded systems, industry also made considerable contributions to this
effort. The result is that versions of Linux are now available that have response
times better than a few tens of microseconds when running on —rather oldish—
processors such as a 133 MHz Pentium.

One of the he reasons why standard Linux cannot pretend to be a Real-time
Operating System is that when a low priority task is running, a prohibitively long
delay may occur between an external stimulus (hardware interrupt) to a sleeping
high-priority real-time task and the moment that this real-time task wakes up.
On the same Pentium a delay (latency) of 100 milliseconds is no exception. The
average response is much shorter and in fact Linux can be used “as is” in certain
soft real-time applications, such as playing music or video.

The latency can be broken down into two main components. First there is
the delay between the raising of an electrical interrupt signal by an external
device and the moment the processor “feels” the interrupt. This is due to the fact
that the Linux kernel may run for rather long periods with external interrupts
disabled. Secondly, the Linux kernel itself may introduce long delays between
the moment the high priority real-time task becomes runnable and the instant
the running lower priority task is preempted. For instance the scheduler will not
be run when the kernel is executing a system call, thus allowing a low priority
task to delay execution of higher priority tasks. The kernel is also generous
in protecting access to its own data structures for periods longer than strictly
necessary.

The different nature of these two causes of long latency times resulted in two
approaches to solving the problem. The first solution consists of adding a sec-
ond kernel to the system, which is small and fast. This real-time kernel is in
fact controlling the entire system. Its main duty is to run the real-time task at
highest priority, but when this task is idle the real-time kernel runs the entire
Linux system (including its kernel) at low-priority. The real-time kernel intercepts
all hardware interrupts and analyses them. Interrupts which are related to the
activities of the Linux kernel (such as normal I/O) are passed on to Linux , the
ones related to the real-time task are handled directly by the additional kernel.
Vice-versa, when Linux decides to disable interrupts the real-time kernel inter-
cepts this event and will stop passing on external interrupts to Linux . These
interrupts are not lost; they are kept in stock to be handed over to the Linux ker-
nel when it enables again its interrupts. This approach was appropriately called
by Tim Bird [3] Interrupt Abstraction. The first implementation was RTLinux
from the New Mexico Institute of Technology, followed by RTAI (Real-Time Appli-
cations Interface) from the “Dipartimento di Ingegneria Aereospaziale, Politecnico
di Milano”. KURT (Kansas University Real-Time) uses a different technique, less
effective in reducing latency. These three systems will be described in some more
detail below.
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The second approach is to improve preemption in the Linux kernel. This
problem was tackled in two different ways. The first consists in introducing
into the Linux kernel so-called preemption points, where the running kernel
thread may give up control or make itself available to being preempted. These
improvements are generally called low-latency patches to the kernel. The second
is to make use of macros for Symmetric Multi-Processor (SMP) operation which
exist already in the Linux kernel. The trick is to use these macros also in the case
of a Uni-Processor. The first solution was implemented mainly by Ingo Molnar,
one of the Linux kernel developers; the second was initiated by MontaVista. Both
solution paths will be described in some more detail below.

The two approaches to improving latency briefly described above are valid for
Linux running on a desktop machine as well as for embedded systems. For the
latter there is the additional requirement of reducing the size of the system so as
to fit into the limited storage available on most embedded systems. Embedded
systems are adequately covered in other lecture series in this Workshop, so we
will not dwell on them any longer.

11.1 Implementations based on a second kernel

11.1.1 RTLinux

RTLinux was developed in the mid nineties at the New Mexico Institute of Tech-
nology by Barabanov and Yodaiken [4] As briefly outlined above it consists of
an additional kernel (or Real-time Executive as they call it), which intercepts all
hardware interrupts and reacts immediately to those concerning the real-time
application that is running. This small kernel has total control over the machine
and normal Linux can only be run as a low priority process, during the periods
in which the real-time application has no work to do. All Linux facilities are thus
available to the user, via the normal keyboard. The real-time application has the
highest priority for this executive, and will therefore run immediately when it is
ready to do so, the entire Linux system being preempted to free the processor.

The real-time application should only take care of the time-critical tasks; the
others, such as recording data to disk, are left to be done under normal Linux
. This implies that there must be a mechanism for communication between the
time-critical part of the application program, running in kernel memory space
and the other, non-critical parts, which run as normal Linux processes in user
space. Normal pipes cannot be used (because of the two different memory
spaces), so another mechanism was developed: RT-FIFOs. They behave as pipes
really, but the interface to the task running in kernel space is different.

The real-time application program communicates to the real-time executive
via a special API (Application Programmer’s Interface), which is different from the
normal Linux API.

RTLinux is built by applying patches to a number of kernel source files and
recompiling the kernel. It can then be arranged that at boot-up time a choice
can be made between booting standard Linux or RTLinux. To change from one to
the other a reboot is necessary.
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The development of RTLinux started as a research project, but a few years
ago the techniques used in it were the subject of a patent and a version called
RTLinuxPro is commercialised. Another version, RTLinuxFree is still available
for developers and the GPL (GNU Public License) seems to apply to its use. There
also seems to be a distribution list for this GPL version, but I was unable to
locate it (http:// www.rtlinux.org is immediately redirected to the commercial
site, where no technical information is directly available).

11.1.2 RTAI

RTAI was developed at the Politecnico di Milano, where work is going on to
extend it and to make it more universal. It is distributed for free under the GNU
Public License. The principle is the same as for RTLinux, but the implementation
is different: the changes to the Linux kernel sources are very minimal: 20 lines
of the kernel source code are modified and 50 or so other lines are added. This
greatly improves maintainability and adaptation to newer kernel versions.

These relatively small changes to the kernel establish a Hardware Abstrac-
tion Layer. This HAL performs the same function of selecting and redirecting
hardware interrupts as in RTLinux. It consists of a table of pointers to interrupt
vectors and the two functions necessary to enable/disable interrupts. These
pointers can be re-established to their original values, thus allowing a return
from real-time mode of operation to normal mode.

All the rest of RTAI is implemented in the form of kernel modules which can
be dynamically loaded at runtime. The structure is very modular and the user
can arrange to load only those modules he needs, leaving the others aside. In
February 2003 eight different modules were available.

The basic frame of RTAI is implemented in the rtai module. If the only thing
you need is interrupt handlers for some devices, then this is the unique module
that must be loaded. When you wish to run a real-time task that is properly
scheduled, you must also load the module rtai sched. The module rtai fifo adds
FIFOs, if the real-time task needs to communicate with normal Linux processes.
Another way of communicating with a normal Linux process is via shared memory,
which necessitates loading of rtai shm. This last module is not restricted to
sharing memory between a real-time task and a Linux process, but it can also be
used for communication between two Linux processes, replacing in fact some of
the System V IPC mechanisms.

Two further modules, rtai pthread and rtai pqueue implement POSIX 1003.1c
compatible real-time threads and message queues.

A very interesting module is lxrt (LinuXRealTime). It in fact allows a hard real-
time task to run in user space, as opposed to kernel space. I cite from an article
available on the RTAI Website [5] : “Since the initial RTAI programs ran in kernel
space, LXRT is seen as an extension that brings this kernel API to userland
programs. The advantages are significant. It allows to define realtime and non-
realtime threads in the same program so that one (thread) could read/write a file
(=non-realtime) while the other runs with a deterministic period (=realtime). It
also allows IPC with standard Linux processes or allows your realtime program
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to have a GUI integrated. LXRT extensions allow to communicate in realtime
with hardware from these programs.”

LXRT requires another scheduler to be loaded as a kernel module:
rtai sched newlxrt, which schedules both kernel and lxrt tasks. Running lxrt
implies scheduling the realtime task in user space, introducing some overhead.
This overhead is however minimal and does not overshadow the benefits of run-
ning the real-time task in user space. On a Pentium PII at 300 MHz an extra 3 µs
overhead has been measured, on top of the 3 µs latency of the scheduler itself.

It should be noted that for the recent versions of RTAI after loading the rtai
module in the usual way (with ‘insmod rtai ’) nothing happens. rtai is in fact
a dormant module; it must be ‘mounted’ by calling rt mount rtai() to activate it.
Similarly, it can be de-activated by calling rt umount rtai().

Obviously the user has to write a program that cares for his real-time appli-
cation. In older versions of RTAI this user program also had to be written in the
form of a kernel module and therefore had to run in kernel space. With lxrt the
application can be written as a user program.

Some rules are to be obeyed however if one wants to avoid bad surprises. For
instance all memory needed for the real-time process should be allocated before
the task starts running and no call to ‘malloc’ should be made in the course of
its execution. Also system calls which are known to introduce large delays must
be avoided (such as ‘fork’ and ‘exec’).

A few more points concerning RTAI are worth mentioning. Semaphores, mu-
texes and conditional variables are available to the real-time task and so are
real-time FIFOs, shared memory and message queues. These allow to share and
transmit data between RTAI real-time tasks and Linux processes. RTAI can run
on a SMP (Symmetric Multi-Processor), where each real-time task can be as-
signed to any subset of the processors or to a single processor. In addition the
real-time interrupt service can be assigned to a single processor. In order to be
able to obtain information about the state of RTAI, the proc filesystem is avail-
able. The real-time task can make use of the Floating Point Unit (FPU), so that it
can perform floating point operations (see the example below).

For more details, including descriptions of the internal workings of RTAI,
the reader is refered to the website: http://www.aero.polimi.it/projects/
rtai or also: www.rtai.org/index.html . Some performance figures of RTAI
are given in an article [6] in Linux Journal of August 2000. They refer to a
Pentium II at 233 Mhz. The maximum possible real-time task iteration rate, with
Linux running simultaneously under heavy load, was measured to be 125 KHz.
The measured jitter on this rate was 0–13 µs. The context switching time was
approximately 4 µs.

The appendices A and B show simple real-time tasks to run with LXRT and
RTAI.

11.1.3 KURT

KURT, for Kansas University Real Time Linux was developed by Balaji Shrinavasan[7]
of the Information and Telecommunications Technology Centre (ITTC) of the

http://www.aero.polimi.it/projects/rtai
http://www.aero.polimi.it/projects/rtai
www.rtai.org/index.html
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University of Kansas. The author calls it a firm real-time system, somewhere
between hard and soft real-time. KURT was developed with multi-media applica-
tions in mind, which are characterised by the fact that, besides having rather
stringent time constraints, they have to rely heavily on services provided by
the normal Linux , such as handling network trafic and reading Compact Disks.
RTLinux does (did?) not provide access to normal operating system services from
within a real-time task.

The implementation of KURT is based on a different principle from RTLinux.
KURT allows the explicit scheduling by the applications programmer of real-

time events, instead of just processes. The event scheduling is done by the
system, which will call the appropriate Event Handler module.

Once KURT has been installed, Linux has acquired a second mode of oper-
ation. The two modes are: normal-mode and real-time mode. In the first the
system behaves as normal Linux , but when the kernel is running in real-time
mode, it executes only real-time processes. All system resources are then dedi-
cated to the real-time tasks. There is a system call that toggles between the two
modes.

During the setup phase the schedule of events to be executed in real-time
mode is established and the processes that must run in this mode are marked.
The kernel is then switched to the real-time mode. When all tasks have finished,
the kernel is switched back to normal-mode.

In order to obtain this behaviour, KURT consists of a Real-Time Framework
which takes care of scheduling any real-time event. When such an event is to
be handled, the real-time framework calls the event handler of the associated
RTMod (Real-Time Module). The RTMods can be very simple; calling them ac-
cording to a defined schedule is the responsibility of the real-time framework.
This framework also provides the system calls that switch the kernel between
the two modes.

The RTMods are kernel modules, which are loaded at runtime. Every RTMod
registers itself with the real-time framework, to which it provides pointers to its
functions: the event handler proper and —as required for a kernel module— its
initialisation and clean-up routines.

The instant in time when a RTMod must be invoked is defined in the Real-
Time Schedule, which is just a file. This file must be built beforehand. It can
be copied entirely into memory, or it can remain on disk. In the latter case, the
timing of events may become distorted by disk access times. Schedules read into
memory can be executed periodically.

Events can be scheduled with a high time resolution, when another package
has been installed: UTIME, for µsecond time. This package was developed at the
same Institute as KURT. It makes use of the time-stamp counter which is present
in most PCs. If it is not installed then the time resolution is only the usual 10
ms.

To install UTIME and/or KURT, the Linux kernel must be recompiled.
A more detailed description and sample programs are available from the KURT

Web sites listed in Appendix C.
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11.2 Implementations based on kernel patches

Whereas two of the implementations described sofar reduced the interrupt la-
tency time, the other potential source of long delays —scheduling of processes
in the Linux kernel— has also undergone close scrutiny, which resulted in spec-
tacular improvements. These improvements were gradually introduced into the
“development kernels” from release 2.5.4 onward. The release of the “stable”
kernel version 2.6 should make these a standard feature of Linux . The improve-
ments to the kernel are nicely described by Love[8].

11.2.1 Reducing scheduler latency

In the original implementations of the kernel, the latency of the process scheduler
grew proportionnally to the number of processes running on the system. The
scheduler effected a loop over all runnable processes on the system to find the
process that best merits to be run. The new scheduler needs a constant and
predictable time to find that lucky process. As described by Love[8], the new
algorithm is:

get the highest priority level that has runnable processes
get the first process in the list at that priority level
run that process

The algorithm, instead of having to search, simply looks up the things specified
in the first two lines. The kernel keeps a record of these two properties whenever
a process becomes runnable. The scheduler latency now is strictly constant and
independent of the total number of processes on the system. Apparently, on
modern machines, scheduler latency has been measured to be less than 500
nanoseconds!

11.2.2 Low-latency patches

With the classical Linux kernel, whenever a task is executing a system call it
will continue to run until the system call terminates, even beyond its time-slice
and irrespective of its priority. This rather primitive behaviour was an easy
solution to avoid concurrent access to shared data structures in the kernel. The
unfortunate consequence is that a low-priority task may block a real-time or
other high priority task for periods which may exceed hundreds of milliseconds.
The response can be improved by analysing the kernel code and finding those
pieces that execute for long periods, but which could be broken down into pieces
where no access is made to shared structures. During the execution of these
pieces no harm would be done if the task making use of this particular kernel
service would be preempted in favour of a higher priority task.

This approach was followed by Ingo Molnar and a number of kernel patches
which greatly reduced latency were the result. Some test results will be given
below. The problem with this approach is that it may involve patches spread
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over large parts of the kernel, impairing maintainability. And, how can one be
sure to spot all the potentially dangerous code segments?

Great progress has been made nevertheless, specially in the parts of the ker-
nel dealing with Virtual Memory and Virtual File Systems.

11.2.3 Introducing preemption points

The problem of preventing simultaneous access to shared data also exists on
Symmetric Multi-Processors (SMP)1. The Linux kernel was adapted for SMP ma-
chines already some time ago, by introducing spin locks 2. At MontaVista, a firm
in Florida, the idea was born to modify these spin locks so as to use them to
signal to the scheduler that the task executing in the kernel could be preempted
if desired. If the code holds a lock, it cannot be preempted; if it has no lock
activated, it can be safely replaced by another task.

This mechanism to profit of the spin locks in the kernel works also in the case
of a mono-processor machine. In this situation, a task must of necessity release
a lock before another task can run. Thus no task can ever block on a spin lock
in a single processor machine.

11.2.4 Some measured results

Back in March 2002, Clark Williams[9] of RedHat Inc. made some measurements
on the effect of the low-latency patches versus the preemptive kernel. He set up
a “stress-kernel” package which heavily loads the kernel and puts it under con-
siderable stress. It is not necessary to describe here the details of his procedure,
nor the exact configuration used for his tests. The numbers below therefore do
not have an absolute significance, but are representative of the improvements
that can be obtained with the kernel patches. Each test run lasted some 40
minutes during which 2048 interrupts per second were generated by a real-time
clock. At the end of a run a histogram file was output. The histogram recorded
the number of times the measured latency fell in a given interval. The latency
values were measured in milliseconds and tenths of a millisecond.

The first run was with an off-the-shelf kernel, release 2.4.17. The maximum
latency found was 232.6 ms, the average was 0.088 ms, with a standard devia-
tion of 2.119 ms. 92.84% of the measured values were below 0.1 ms, whereas
99.988% of the samples had a latency below 100 ms.

The same test was repeated with a 2.4.17 kernel which had the preemption
patches applied to it. The maximum latency now was 45.2 ms, the average
0.053 ms with a standard deviation of 0.046 ms. 97.95% of the samples showed
a latency below 100 µs, and 99.999% below 10 ms.

1Here access can be truly simultaneous and not simply concurrent.
2A spin lock is simply a flag, set by one of the processors when it enters a critical section

of code. Code running in another processor can repeatedly test the value of the flag (hence its
name: spin lock) and access the critical section when allowed again by the first processor.
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With the low-latency patches applied, the same kernel showed the following
results: maximum latency 1.3 ms, average 0.054 ± 0.025 ms. 99.62% of the
samples had a latency of less than 100 µs, and 99.999% were below 1 ms.

The tests show that the low-latency patches were more effective than the
preemption patch. Having noted that the two types of patches are practically
independent of each other, the author applied them both together to the same
2.4.17 kernel. This did not cause an impressive improvement however over the
low-latency patches alone, but it nevertheless decreased the maximum latency
from 1.3 to 1.2 ms.

In a run of approximately 14.5 hours duration with the low-latency patch
applied, one occurrence of a latency of 215.2 ms did happen!

11.2.5 Other improvements beneficial to real-time applications

A stable kernel version 2.6 is expected to be released in autumn 2003. The
improvements mentioned above will almost certainly be incorporated, together
with several others. All of them aim at boosting responsiveness. Thus disk
access will be improved and speeded up considerably. Also the Virtual Memory
system will be much improved.

Another great stride forward will be a much better kernel support for pthreads,
which results in drastically speeding up the execution of pthread related system
calls. In one test[8] the time to create and then kill a thread was measured. In
this test, ten threads were running initially, and each of these create a new child
thread and then kill it. The time to do this was reduced from 140 µs with the
old pthreads library to a bare 20 µs with the new NPTL (Native POSIX Threading
Library). When each initial thread created and then destroyed ten child threads,
the measured times were 170 µs and 20 µs.

Although these improvements may not all have a significant bearing on run-
ning real-time applications, every stone that can be added to the construction
will certainly be welcome. In particular there should be no a-priori obstacle to
use RTAI or RTLinux with the new 2.6 kernel. Avoiding excessive delays in those
parts of the real-time application that run under the supervision of Linux instead
of the additional real-time kernel, can only be beneficial.

12 Conclusion

We have tried in this course to give an overview of the requirements of a real-time
application and we have investigated to what extent “standard” Linux could do
the job. This led us to cover in some detail —at least in these written notes—
mechanisms internal to the Linux kernel and which could directly influence the
response time of a real-time application or have a bearing on its structure. We
have shown that the standard releases of Linux lacked the responsiveness needed
for a hard real-time application.

Over the last seven or eight years great improvements have been made by
a number of developers, which however did not make their way into the Linux
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kernel releases or the so-called Linux distributions, such as RedHat, Debian,
SuSE, etc. The situation now seems to change and the forthcoming release of
Linux version 2.6 will in all likelihood incorporate a number of improvements,
several of them aimed at reducing delays due to latency.

On the other hand, efforts to reduce the interrupt latency have led to the
development of, among others, RTLinux and RTAI. These supplements to Linux ,
when installed on a modern, fast PC will reach interrupt latency times of below
a few microseconds, thus allowing to run true hard real-time applications. It
is however doubtful if these supplements will make their way into the standard
kernel releases, so they might always require some extra development effort:
building a modified kernel.

The new Linux together with RTAI will in all likelihood represent a totally sat-
isfactory —and free— solution for the vast majority of problems that may arise
in industrial control or laboratory automation. Only in exceptional cases, such
as those that arise for instance in Particle Physics, would one have to resort to
specialised hardware or other frontend processors. It also becomes more and
more difficult to imagine in what respect a commercial real-time operating sys-
tem would do really better than the Linux + RTAI combination.

The important thing to remember is that you should analyse your problem
very carefully and thoroughly, before setting out to implement a solution. You
should single out the parts of your application that are really time critical and
put those under control of RTAI, whereas the rest of the application may run
under Linux . You should also take some precautions: allocate in the initialisa-
tion phase of your application all memory it needs (including stack space) and
lock your code into memory. Also create from the start all processes and threads
the application will need. As a last recourse, eliminate all other processes and
deamons from your machine and let your application run alone, to avoid en-
countering after tens of hours of perfect operation an unexpected latency time of
100 ms.

These lectures did not cater for those people who may be just interested
in hooking up existing laboratory instruments, using the bus they are already
equipped with: serial or USB, or GPIB or maybe Camac. In many cases a NIC
(Network Interface Computer) would be the ideal solution as was shown in this
workshop. Those who wish to hook up this sort of instruments directly to a PC,
should look for suitable packages running under Linux which are available on the
Web. For instance packages for controlling instruments via a GPIB or CAMAC
bus exist. The first parts of these were released already in 1995. They have
graphical interfaces, use X11 and are extensible1. And they are free!. These
packages are probably an ideal solution for laboratories using standard equip-
ment. Device drivers for VME crates and modules are part of some off-the-shelf
Linux distributions (SuSE 8.1 for instance).

Hopefully, this course has shown you the points to consider when you want to
build your real-time application, and where to search for existing and acceptable
solutions.

1You can ftp these packages from koala.chemie.fu-berlin.de.
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To end, I wish you a happy time programming your real-time applications!
Now that many more and much better tools are available than a few years ago,
there is a good chance that this wish comes true.

Enjoy!
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A RTAI example 1

This program is developed for the RTAI-1.4 version. You can find a Makefile, one
kernel module (rt process.c) and a Linux process (scope.c). By means of the scipt
Run you can run the program. The program simply generates a sine signal and
displays the instantaneous values on the screen.

------------- MAKEFILE --------------------
all: scope rt_process.o
LINUX_HOME = /usr/src/linux
RTAI_HOME = /home/rtai-1.4
INCLUDE = -I/include -I/include
MODFLAGS = -D__KERNEL__ -DMODULE -O2 -Wall
scope: scope.c

gcc -o $@ $<
rt_process.o: rt_process.c

gcc -c -o $@ $<
clean:

rm -f rt_process.o scope

-------------- RT_PROCESS.C -------------------
#include <linux/module.h>
#include <asm/io.h>
#include <math.h>
#include <rtai.h>
#include <rtai_sched.h>
#include <rtai_fifos.h>
#define TICK_PERIOD 1000000
#define TASK_PRIORITY 1
#define STACK_SIZE 10000
#define FIFO 0

static RT_TASK rt_task;

static void fun(int t)
{

int counter = 0;
float sin_value;
while (1) {

sin_value = sin(2*M_PI*1*rt_get_cpu_time_ns()/1E9);
rtf_put(FIFO, &counter, sizeof(counter));
rtf_put(FIFO, &sin_value, sizeof(sin_value));
counter++;
rt_task_wait_period();

}
}
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int init_module(void)
{

RTIME tick_period;
rt_set_periodic_mode();
rt_task_init(&rt_task, fun, 1, STACK_SIZE, TASK_PRIORITY, 1, 0);
rtf_create(FIFO, 8000);
tick_period = start_rt_timer(nano2count(TICK_PERIOD));
rt_task_make_periodic(&rt_task, rt_get_time() +

tick_period, tick_period);
return 0;

}
void cleanup_module(void)
{

stop_rt_timer();
rtf_destroy(FIFO);
rt_task_delete(&rt_task);
return;

}
-------------------- SCOPE.C ----------------------
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <signal.h>

static int end;
static void endme(int dummy) { end=1; }

int main (void)
{

int fifo, counter;
float sin_value;
if ((fifo = open("/dev/rtf0", O_RDONLY)) < 0) {

fprintf(stderr, "Error opening /dev/rtf0\n");
exit(1);

}
signal(SIGINT, endme);
while (!end) {

read(fifo, &counter, sizeof(counter));
read(fifo, &sin_value, sizeof(sin_value));
printf(" Counter : %d Sine : %f \n", counter, sin_value);

}
return 0;

}
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-------------------- RUN ----------------------
sync
insmod /home/rtai-1.4/modules/rtai.o
insmod /home/rtai-1.4/modules/rtai_sched.o
insmod /home/rtai-1.4/modules/rtai_shm.o
insmod /home/rtai-1.4/modules/rtai_fifos.o
insmod rt_process.o
./scope
rmmod rt_process
rmmod rtai_shm
rmmod rtai_fifos
rmmod rtai_sched
rmmod rtai

B RTAI example 2

This example is like the first one, but it uses the shared memory, instead of fifos,
to communicate between Linux and the RTAI-layer. The common data space is
declared in the header file parameters.h.

------------------ MAKEFILE -------------------------
all: scope rt_process.o
LINUX_HOME = /usr/src/linux
RTAI_HOME = /home/rtai-1.4
INCLUDE = -I/include -I/include
MODFLAGS = -D__KERNEL__ -DMODULE -O2 -Wall
scope: scope.c

gcc -o $@ $<
rt_process.o: rt_process.c parameters.h

gcc -c -o $@ $<
clean:

rm -f rt_process.o scope

------------------- RT_PROCESS.C ----------------------

#include <linux/module.h>
#include <asm/io.h>
#include <math.h>
#include <rtai.h>
#include <rtai_shm.h>
#include <rtai_sched.h>
#include "parameters.h"
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static RT_TASK rt_task;
static struct data_str *data;

static void fun(int t)
{

unsigned int count = 0;
float seno,coseno;
while (1) {

data->indx_counter = count;
seno = sin(2*M_PI*1*rt_get_cpu_time_ns()/1E9);
coseno = cos(2*M_PI*1*rt_get_cpu_time_ns()/1E9);
data->sin_value = seno;
data->cos_value = coseno;
count++;
rt_task_wait_period();

}
}
int init_module(void)
{

RTIME tick_period;
rt_set_periodic_mode();
rt_task_init(&rt_task, fun, 1, STACK_SIZE, TASK_PRIORITY, 1, 0);
data = rtai_kmalloc(nam2num(SHMNAM), sizeof(struct data_str));
tick_period = start_rt_timer(nano2count(TICK_PERIOD));
rt_task_make_periodic(&rt_task, rt_get_time()

+ tick_period, tick_period);
return 0;

}
void cleanup_module(void)
{

stop_rt_timer();
rt_task_delete(&rt_task);
rtai_kfree(nam2num(SHMNAM));
return;

}

---------------------- SCOPE.C ----------------------------
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <signal.h>
#include <rtai_shm.h>
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#include "parameters.h"

static int end;
static void endme(int dummy) { end=1; }

int main (void)
{

struct data_str *data;
signal(SIGINT, endme);
data = rtai_malloc (nam2num(SHMNAM),1);
while (!end) {

printf(" Counter : %d Sine : %f Cosine : %f \n",
data->indx_counter,

data->sin_value, data->cos_value);
}
rtai_free (nam2num(SHMNAM), &data);
return 0;

}

---------------- PARAMETERS.H -----------------------
#define TICK_PERIOD 1000000
#define TASK_PRIORITY 1
#define STACK_SIZE 10000
#define SHMNAM "MIRSHM"
struct data_str
{

int indx_counter;
float sin_value;
float cos_value;

};

----------------------- RUN ------------------------
sync
insmod /home/rtai-1.4/modules/rtai.o
insmod /home/rtai-1.4/modules/rtai_sched.o
insmod /home/rtai-1.4/modules/rtai_shm.o
insmod /home/rtai-1.4/modules/rtai_fifos.o
insmod rt_process.o
./scope
rmmod rt_process
rmmod rtai_shm
rmmod rtai_fifos
rmmod rtai_sched
rmmod rtai
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C For Further Reading

This is an annotated bibliography of books I found useful and which can give
you more insight or may be helpful when you run into a problem with Linux . The
bibliography is limited to books in English, but several of them have been trans-
lated and many others have been published directly in another language. The
list starts with a few books published in the mid-nineties. They may not contain
up-to-date information on the newest kernel releases or application packages (al-
though more recent editions than the ones indicated may have been published
in the meantime), but they still constitute a good base for a collection of books
on Linux .

1 Matt Welsh and Lar Kaufman, Running Linux, Sebastopol, CA95472, 1995,
O’Reilly & Associates, Inc; ISBN 1-56592-100-3
An excellent book, very complete and very readable. Contains extensive in-
dications on how to obtain and install Linux, followed by chapters on UNIX
commands, System Administration, Power Tools (including X11, emacs and
LATEX), Programming, Networking. The annexes contain a wealth of informa-
tion on documentation, ftp-sites, etc. One of the most readable books on
Linux, now at its 4th edition.

2 Olaf Kirch, Linux Network Administrator’s Guide, Sebastopol CA95472, 1995,
O’Reilly & Associates, Inc; ISBN 1-56592-087-2
An excellent book on Networking for Linux. Covers not only local networks
and TCP/IP, but also the use of a serial line to connect to Internet, and
other chapters on NFS, Network Information System, UUCP, e-mail and
News Readers. Essential reading if you want to use your Linux box on the
network. A 2nd edition has been published.

3 Alessandro Rubini, Linux Device Drivers, 1998, O’Reilly & Associates, ISBN
1-56592-292-1. This book is a real must for anyone wanting to write or
modify a device driver for Linux. Before publishing this book, the author
had written many articles in the kernel corner of Linux Journal. The book
leads the reader step by step through every corner of a Linux device driver.
No secrets are left unveiled. The book is at its 2nd edition.

4 Kamram Hussain, Timothy Parker et al., Linux Unleashed, 1996, SAMS
Publishing, ISBN 0-672-30908-4
Approx 1100 pages of text, covering Linux and many tools and applications:
Editing and typesetting (groff and Tex), Graphical User Interfaces, Linux
for programmers (C, C++, Perl, Tcl/Tk, Other languages, Motif, XView,
Smalltalk, Mathematics, Database products), System Administration, Set-
ting up an Internet site and Advanced Programming topics. The book con-
tains a CD-ROM with the Slackware distribution.
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5 Randolph Bentson, Inside Linux, a look at Operating System Development,
1996, Seattle, Specialized system Consultants, Inc; ISBN 0-916151-89-1.
This book provides some more insight into the internal workings of oper-
ating systems, with the emphasis being placed on Linux . It is written in
general terms and does not contain code examples.

6 John O’Gorman, Operating Systems with Linux, 2001, Houndmills, Bas-
ingstoke, UK, Palgrave; ISBN 0-333-94745-2.
A recent book, introducing operating system principles. All examples are
taken from Linux . Each chapter ends with a summary and discussion ques-
tions, including sometimes hands-on experiments.

7 M. Beck, H. Böhme, M. Dziadzka, U. Kunitz, R. Magnus, D. Verworner,
Linux Kernel Internals, 1996, Addison Wesley, ISBN 0-201-87741-4.
There is at least a second edition: ISBN 0-201-33143-8, 1998. For the
real sports! A translation of a german book, revealing all the internals of
the Linux kernel, including code examples, definitions of structures, tables,
etc. The book contains a CD-ROM with Slackware and kernel sources.
Indispensable if you want to make modifications to the kernel.

8 John Purcell (ed.), Linux MAN, the essential manpages for Linux , 1995,
Chesterfield MI 48047, Linux Systems Lab, ISBN 1-885329-07-5.
Indispensable for those who —like me— cannot stare at a screen for more
than 8 hours a day, or who like to sit down in a corner to write their pro-
grams with pencil and paper, but want to be sure they use system calls
correctly. As the title says, 1200 pages of “man pages” for Linux, from abort
to zmore, and including system calls, library functions, special files, file
formats, games, system administration and a kernel reference guide.

The following books concern real-time, POSIX.1003.1c and Embedded Linux:

i Bill O. Gallmeister, POSIX.4: Programming for the Real World, 1995, O’Reilly
& Associates, Inc.; ISBN 1-56592-074-0.
This book gives an in-depth treatment of programming real-time applica-
tions, based on the POSIX.4 standard. Several of the examples in the
present course were taken from this book. In addition to approximately 250
pages of text, the book contains 200 pages of “man pages” and solutions to
exercises.

ii Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell, Pthreads Pro-
gramming, 1996, O’Reilly & Associates, Inc, ISBN 1-56592-115-1.
Probably the best book on Pthreads published so far, concentrating on the
POSIX 1003.1c standard and written with a good didactical structure.

iii Bil Lewis, Daniel J. Berg, Threads Primer, A Guide to Multithreaded Program-
ming, 1996, Sunsoft Press (Prentice Hall);
ISBN 0-13-443698-9.
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An introduction to threads programming, mainly based on the Solaris im-
plementation of threads, but containing comparisons to POSIX threads and
a full definition of the Applications Programmer’s Interface to POSIX.4a
pthreads.

iv S. Kleiman, Devang Shah, B. Smaalders, Programming with Threads, 1996,
Sunsoft Press (Prentice Hall; ISBN 0-13-172389-8. This book contains a
more in-depth treatment of threads programming than the previous title. It
is also more pthreads-oriented.

v Craig Hollabaugh, Embedded Linux: Hardware, Software and Interfacing,
200?, Addison Wesley Professional, ISBN 0-672-32226-9 According to a
number of detailed and favourable book reviews, the author of this book
guides the reader step by step through the design and implementation of a
fictive, but realistic project. It covers the use of three different microproces-
sor boards and a large part of the book is dedicated to interfacing.

vi Karim Yaghmour, Building Embedded Linux Systems, 2003, O’Reilly & As-
sociates, Inc., ISBN 0-596-00222-X. A very recent book. The review I saw
complains about the first four chapters, which seem to provide some su-
perfluous information. The reviewer (Jerry Epplin) also critisises the “do it
yourself” approach, not suitable for developers of commercial equipment,
but which may be very profitable in an academic environment. A large part
of the 416 pages are dedicated to interfacing to various buses and I/O ports.

vii John Lombardo, Embedded Linux, 2002, Indianapolis, New Riders Publish-
ing. ISBN 0-7357-0998-X This book is more modest in size than the two
listed before. It contains nevertheless a good amount of practical advice.

Having mentioned Linux Journal, I should add that you can subscribe via one
of the following addresses: e-mail: subs@ssc.com, or on the web:
www.linuxjournal.com, Fax: +1-206 297 7515 and by normal mail: SSC, Spe-
cialized System Consultants, Inc., PO Box 55549, Seattle, WA 98155-0549, USA.
Also note that the last few years a number of periodicals on Linux have seen the
light in languages other than english.

The following non-commercial Web sites contain a wealth of information on
Linux for real-time and embedded applications:
http://www.realtimelinux.org
http://www.aero.polimi.it/projects/rtai or: http://www.rtai.org
http://www.linuxdevices.com
http://www.ittc.ku.edu/kurt (for KURT) and
http://www.ittc.ku.edu/utime (for UTIME)

To conclude, some mailing lists which may be useful. To subscribe to any
of the lists, send an email to: missdomo@realtimelinux.org with subscribe
‘listname’ in the body of the email.

• realtime — realtime@realtimelinux.org — general discussion.
• api — api@realtimelinux.org — API discussion.

http://www.realtimelinux.org
http://www.aero.polimi.it/projects/rtai
http://www.rtai.org
http://www.linuxdevices.com
http://www.ittc.ku.edu/kurt
http://www.ittc.ku.edu/utime
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• documentation — documentation@realtimelinux.org
• drivers — drivers@realtimelinux.org — discussion of drivers for use with

Realtime Linux.
• kernel — kernel@realtimelinux.org — Linux kernel modifications for use

with Realtime Linux.
• networking — networking@realtimelinux.org — Realtime networks.
• ports — ports@realtimelinux.org — Porting of RTL/RTAI to other platforms.

• testing — testing@realtimelinux.org — discussion on testing
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