
the
abdus salam
international centre for theoretical physics

strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

united nations
educational, scientific

and cultural
organization

international atomic
energy agency

301/1522_2

SECOND WORKSHOP ON DISTRIBUTED LABORATORY
INSTRUMENTATION SYSTEMS

20 October - 14 November 2003

Object Oriented Programming
Principles

Olexiy TYKHOMYROV
Department of Experimental Physics
Dnepropetrovsk National University

Proulok Naukovij, 13
49050 GSP 50 Dnepropetrovsk

UKRAINE

 These lecture notes are intended only for distribution to participants

Object Oriented Programming Principles

O.Ye. Tykhomyrov†∗

† Dnipropetrovsk National University
Department of Experimental Physics

Lecture given at the:
Second Workshop on

Distributed Laboratory Instrumentation Systems
Trieste, 20 October — 14 November 2003

LNS

∗tiger@ff.dsu.dp.ua

Abstract

These notes concentrate on Object-Oriented Programming (OOP) and are
intended to be independent of any specific language. If it is necessary of
use some language for illustration purposes, JAVA is used. Introduction OOP
terms like Encapsulation, Inheritance and Polymorphism are done through
real world examples and programming. Some ideas of distributed objects are
also provided. The notes end with an introduction to Object-Oriented Design
(OOD).

Keywords: JAVA, Object-Oriented Programming.
PACS numbers: 64.60.Ak, 64.60.Cn, 64.60.Ht, 05.40.+j

Contents

1 Introduction 1
1.1 Acknowledgements . 1
1.2 History notes . 1
1.3 Functional and OOP Paradigms 3

2 An Object-Oriented World 4
2.1 Encapsulation Example . 4
2.2 Inheritance Example . 5
2.3 Polymorphism Example . 5
2.4 A Word of OOP Vocabulary 6

3 The Characteristics of an OOP 7
3.1 What is An Object? . 7
3.2 Abstraction . 7
3.3 Sample Class Definition . 8

4 Encapsulation 9
4.1 Instance and Class Variables 12
4.2 Instance and Class Methods 12

4.2.1 Sample Program . 13
4.3 Messages . 17
4.4 Constructors, Destructors, and Garbage Collection 18

5 Inheritance 19
5.1 Single and Multiple Inheritance 21
5.2 The ISA Relationship . 21

6 Polymorphism 22
6.1 Overloading Methods as a Form of Polymorphism 22
6.2 Overloading of Operators . 22
6.3 Overriding Methods as a Form of Polymorphism 22

7 Exception Handling 24
7.1 Exception Hierarchy . 24
7.2 Advantages of Using Exception Handling 25

8 Distributed Objects with CORBA and RMI 26
8.1 CORBA Versus RMI . 26

9 Intro to Object-Oriented Design 27

10 A few final remarks of OOP 30

References 31

1

1 Introduction

1.1 Acknowledgements

These notes were written as a compilation of ideas and examples from a variety of
authors, but Ulrich Raich was the very first enthusiast who did the notes about
JAVA for the Real-Time College in Dakar, and lots of ideas and examples were
taken from those notes. Catharinus Verkerk suggested lots of improvements
and ideas about planning the lessons. Lot of materials from the notes of Prof.
Richard Baldwin and Paul Ramos were used.

1.2 History notes

These lecture notes are designed to provide the basic knowledge on OOP, that
stands for Object Oriented Programming.

During Real-Time Colleges X-Window System and Motif have been used
to build Graphical User Interface, GUI for short. GUI programming is always
a tricky business and needs a steep learning before some results can be ob-
tained. JAVA allows to make much more than just programming and building
nice-looking GUI. JAVA is cool, JAVA is free, JAVA may be run on almost all hard-
ware. So why do not teach JAVA?

Why OOP? JAVA is an OOP language. It means that to write a program in
JAVA, you must posses some basic knowledge of OOP. You may write a pro-
gram that may be compiled with C++, that is also an OOP language, without
understanding OOP paradigm; but this is impossible with JAVA. It is pure OOP
language.

Object Oriented Programming, or OOP for short, (we will use this abbreviate
also for Object Oriented Program(s)) is the latest fashion in computer science.
OOP is so cool, that some people want to re-write all programs and operating
systems using an OOP language, say C++ for example. Everyone from this school
of thought is talking about OOP and JAVA but. . . does anybody really know what
it all exactly means?

When first computers came into the market, computer hardware was terribly
expensive: a Digital minicomputer in the early seventies cost several hundred
thousands dollars but was extremely limited compare to a 1000 dollar PC you
can buy nowadays in any supermarket.

Since a computer cost much more than cost of labor, programming has been
done in a way to maximise use of the precious hardware resources and so the
programs were hardware oriented. Those days it was extremely important to fit
the code into the small amount of available core memory, where each bit was
hand wired. Disk space was around 5Mbyte and it had to keep also an operating
system. A program should have used the central processor of the computer
very carefully, so each piece of code was written to minimise CPU time as well.
Naturally many programs were written in assembler, the most hardware oriented
language. For scientific computation FORTRAN was used, the language designed
exactly for such kind of things: FORTRAN means Formula Translation.

2 Object Oriented Programming Principles

As computers became more elaborate. more powerful and hardware resources
got cheaper, the amount of software to be provided grew catastrophically and
soon exploded. The demand could not be fulfilled by the methods used in those
times and the first software crisis had appeared. People learned that writing
large programs without thinking of modularisation and structuring was simply
not feasible. “Spaghetti programming”, the path a program would take which
resembled a pot of spaghetti, was the result.

One of the super-programmers Donald Knuth estimated the mean quantity of
“GO TO” statements in FORTRAN programs and obtained about 13%. So the en-
emy of all programmes was identified and banned. A new language was invented
similar to ALGOL1 in order to implement structured programming. PASCAL, the
name of that new language, is still used for teaching and as a general purpose
programming language. Its newest version, DELPHI, is so far from the PASCAL,
that the other name for the language occurred.

The main distinguishing features (grown from ALGOL) are, each program was
subdivided into blocks with one entry and one exit: functions, procedures but
also if-then-else clauses, for, repeat-until and do-while loops. Functional entities
needed to be identified and the problems to solve were subdivided into functions
and procedures, where each subroutine implemented one of these functional
units. Each subroutine had a well defined interface, i.e. (parameters to be
passed of a given type) and it was even possible to have several programmers
working on the same project, each one implementing a few procedures, and then
stick them together to form a working program, which sometimes worked. To
run a program (written in FORTRAN or PASCAL) a translator was used to pro-
duce machine-dependent code of a target computer, so the resulted binary code
would only run on the single type of machine and unfortunately incompatible
between compilers. To run the program on the other target machine at lease
some adaptation and modification of the source code should have been done.

Computers became more and more powerful, and memory and disk space
became more cheaper, but software was still incredibly complex, huge and non-
portable. It was the new software crisis, and in addition Internet changed the
view of computing within a few years and most of todays computers are included
in some network or another. Writing programs for a single type of CPU became
too costly (now the cost lies on the software and not on the hardware side any
more) and we needed a language whose “binary code” could run on any machine,
even better: if it can be downloaded over the Internet and executed on any ma-
chine without the user being aware of the download process. Just as PASCAL was
the miracle language that could solve all problems and solve them forever, JAVA
and OOP is supposed to do the same for all future problems, so you recognise
how important OOP is.

In these notes we concentrate on Object-Oriented Programming (OOP). Notes
are intended to be independent of any specific language. As a practical matter, it
is necessary to use some language for illustration purposes, and rather than to
conjure up some artificial language, examples in this lesson are provided using

1ALGOL means Algorithmic Language

3

the JAVA language.
Some languages such as C do not readily support OOP. Other languages such

as C++ support OOP, but don’t require you to use the object-oriented features of
the language.

JAVA requires you to program by means of OOP techniques. In particular,
it is not possible to write even the simplest program in JAVA without taking an
object-oriented approach. You may do an excellent program, or you may do a
poor program, but your JAVA program must use objects.

Although JAVA has some very complex and sophisticated features such as
multi-threading, it is not difficult to learn. To program in JAVA, you have to
know these two items:

1. Learning to productively utilise the large set of class libraries containing
dozens of classes and hundreds of methods which are provided as part of
the JAVA Development Kit to supplement the language;

2. Learning how to design and program in the object-oriented paradigm.

The first of these challenges can be met on a gradual basis. In other words,
it is not necessary to know the entire class library to produce useful JAVA pro-
grams. Learning new tools and JAVA abilities give you more to produce more
powerful programs.

The second challenge cannot be met on a gradual basis. It is not possible
to create even the simplest JAVA program without programming in the object-
oriented paradigm.

1.3 Functional and OOP Paradigms

To solve a problem we usually think about it first generally, on abstraction level.
We try to calculate resources, (money, e.g): we decompose the problem. In case of
limitation the human may use some tricks: if we do not have enough wallpaper,
we may not cover some hidden places: furniture, pictures, etc. can help. It
means we try to organise the solution from the available resources according to a
plan. These three elements of solving any problem, abstraction, decomposition
and organisation together calls a paradigm. Previous programmers experience
was based on functional paradigm.

Imagine that we are going to reach Trieste by car so we start to think how to
do that. According to an old paradigm of programming we should have thought
of the problem in terms of functions acting on data :

On abstraction level: think of the problem in terms of a process that solves it,
i.e. how to drive a care, how to collect necessary things, etc.

On decomposition level: think how to break all this processing down into small
manageable processing units, or functions; e.g. how to move a car from one
point to another. We recognise driving in the town differs from driving in the
highway. We think how to do stopping/starting the car etc. So we create
functions;

4 Object Oriented Programming Principles

On organisation level: set up our functions so they call each other according
to the rules. We set up sequences of function calls, passing different argu-
ments to the functions, etc.

This is the clue: previous approaches to programming tend to separate data
from the methods used to manipulate that data, or at least don’t strongly en-
courage them to be considered in concert. This is not typical way of thinking:
we have to define a set of data structures and then define set of functions acting
upon these data structures.

In a real situation we think first about the way in general, and only having
chosen the way we start to think how to get through the traffic in each of the
cities and villages along the way. Then we think about details, where is the best
place to stop for eating, sleeping etc, and after that we may think how to arrange
the scheduler for this journey, to be in an particular restaurant at a particular
time. This is an example of object-oriented thinking: we think in terms of objects
interacting:

On abstraction level we think in terms of independent agents (objects) working
together: the car, ourselves, things to take etc.;

On decomposition level we define the kinds of objects on which to split the
global task;

On organisation level we create the appropriate number of objects of each kind.

2 An Object-Oriented World

In OOP paradigm, from the programmers point of view, an object-oriented lan-
guage must support three very important explicit characteristics. We use these
concepts extensively to model the real-world problems when we are trying to
solve with our object-oriented programs. These three concepts are:

• encapsulation,
• inheritance,
• polymorphism.

The implicit characteristic is abstraction. We use it to specify new abstract
data types, or ADT for short.

2.1 Encapsulation Example

If we have decided to use a car for journey to Trieste, consider the steering
mechanism of a car as an example of encapsulation.

Since a car was invented, the steering mechanism has not changed function-
ality. It presents the same interface to the users: everybody knows how to use
this mechanism through its interface: if we turn the steering wheel clockwise, the
car will turn to the right, if we turn it counterclockwise, our car will turn to the

5

left. Therefore in object-oriented paradigm this mechanism is an object. We can
use it without having any idea about implementation — everything is hidden for
us under the hood, only a few of us have more details: they even know that im-
plementation of this mechanism is different for cars from different firms. The
interface is naturally standard: in case of changing the mechanism by means of
rental trailer we have some difficulties in using.

In turn, the steering mechanism object contains a lot of other more detailed
embedded objects, each of which has it is own state, behaviour, interface and
implementation. Those interfaces are not exposed to a driver, but to the other
parts of the steering mechanism that use them.

A common approach in OOP is to hide the implementation and expose
the interface through encapsulation.

2.2 Inheritance Example

Another clue point of OOP is inheritance. Let’s form an analogy with a person
who bought an old house. Having bought it, the person does not normally de-
molish old house and re-build it from scratch, but rather he will usually make
improvements on it. In OOP terms it means the person derives from the existing
house, or saying in other words, he extends it, so he is to build subclasses of the
house that already exists. The new house inherits from the existing one.

Creating new improved objects using new definitions that extend existing
definitions is very common practice. This is one of the mottos of OOP, that
encourages the reuse of existing elements of programs.

Do not reinvent the wheel! Reuse the code, do not reinvent!

2.3 Polymorphism Example

The Greek word polymorphism means one name, many forms and is, maybe,
the most difficult term to explain, especially in real-world terminology. Let us
look at a car again and say that polymorphism is somewhat akin to the auto-
matic transmission in your car. Suppose, it has three functions: Neutral, Drive,
Reverse.

We know for sure, that there is only one method refers to as Reverse. When-
ever we select Neutral, the engine of a car is disconnected from the transmission
mechanism.

While we are driving a car to move forward, we select Drive. Depending on
various set of conditions at runtime, the automatic transmission system mech-
anism decides which version of the Drive function to apply in every concrete
situation. The specific version of the function will be used depending on the
current situation. This is an analogue to so-called runtime polymorphism.

Therefore, the car exhibits polymorphic behaviour when going in the forward
direction, but exhibits non-polymorphic behaviour when going backwards.

6 Object Oriented Programming Principles

Polymorphism is used to customise the behaviour of an instance of a
type (an object) based on existing conditions.

We can summarise our examples:

We live in the object-oriented world. The object-oriented programming
paradigm attempts to express computer programs in such ways that
model how we understand the world.

An introductory description of OOP can be based on the following guideline:

The solution to the problem should resemble the problem, and observers
of the solution should be able to recognise the problem without neces-
sarily knowing about it in advance.

A good example of this guideline from the computing world is the use of OOP
to develop a stack class from which stack objects can be instantiated. If a stack
is implemented as a class, instantiated as an object, and documented appropri-
ately, programmers familiar with stacks, queues, and other similar data struc-
tures will recognise it as a stack without other prior knowledge.

2.4 A Word of OOP Vocabulary

The style of programming in pre-OOP languages and in OOP ones are different
as well as their vocabularies. Here you are an example: there is no procedure
anymore, there are class methods.

Yet another example: an object-oriented programmer may define an abstract
data type by encapsulating its implementation and its interface into a class.

One or more instances of the class can then be instantiated.
An instance of a class is known as an object.
Every object has state and behaviour.
The state is determined by the current values that are stored in the instance

variables.
The behaviour is determined by the instance methods of the class from which

the object was instantiated.
Inherited abstract data types are derived classes or subclasses of base classes

or superclasses. We extend superclasses to create subclasses.
Within the program the programmer instantiates objects and sends messages

to the objects by invoking the class’s methods (or member functions). Instantiate
an object means create instance of a class.

An object oriented program defines abstract data types, encapsulates those
abstract data types into classes, instantiates objects, and sends messages to the
objects.

To make these words even more confusing, almost every item or action used
in the OOP vocabulary has evolved to be described by several different terms,
often depending on the author(s) who wrote the particular book your are happy
to be reading. For instance, we can cause an object to change its state by sending
it a message, invoking its methods, or calling its member functions.

7

3 The Characteristics of an OOP

Having explained the main ideas of an object-oriented program, let’s have a look
at the question in details.

3.1 What is An Object?

Let’s consider the three general questions.

• What are the objects in OOP?
• What should be the objects in the design of an object-oriented program?
• What is it about OOP that sets it apart from and possibly makes it better

than traditional procedural programming?

Simply stated, and taking a very liberal view:

An object is an instance of a data type.

The following JAVA code fragment declares two objects.
The first object is an instance of a simple integer variable named tired. Some

computer scientists would not agree that this is an object. They think an object
should not be intrinsic to the language itself. This may be correct in general, but
we are talking very liberally.

The second object is an instance of an abstract data type where the object is
named man and the abstract data type is named Person.

...
int tired; // an instance of an int type
Person man; // an instance of abstract data type

// identified as Person
...}

As you know, or can surmise, the integer data type comes from types which
are intrinsic in the language and named primitive types.

It is supposed that the abstract data type named Person you have invented
and declared somewhere. From the language point of view, this is a new data
type.

3.2 Abstraction

Abstraction is the specification of an abstract data type and includes a specifi-
cation of the type’s data representation and behaviour. It shows, what kind of
data can be held in the new type of data, and all ways of manipulation of that
data. An abstract data type is not intrinsic to the language, so compiler knows
nothing about how to manipulate it until it is specified by the programmer in an
appropriate manner.

8 Object Oriented Programming Principles

JAVA programmers define the data representation and the behaviour of a new
type (present the specification to the compiler) using the keyword class. It
means, the keyword class is used to convert the specification of a new type
into something that the compiler can understand and work with.

Once the new type is defined, one or more objects of that type can be put into
existing state, from abstraction to reality. In other words, object of such kind can
be instantiated.

Once instantiated, the object is said to have state and behaviour. The state
of an object is determined by the current values of its data (instance variables)
and the behaviour of an object is determined by its methods (member functions
or instance methods).

The most popular example is a button, as an element of a GUI. If a button is
viewed as an object, we can visualised its state and behaviour easily. It has a
number of different states like size, position, caption, etc. Each of these states
is determined by data stored in the instance variables of the button object at any
given point in time. The combination of one or more instance variables for the
particular state of the object named a property of the object.

Similarly, when you click it with a mouse, that usually causes some action
defined for the button.

Each individual button object has instance variables, the values of which
define the state of the button at any given time, from one side, and has certain
fundamental behaviour to respond to a click etc to use with some action.

3.3 Sample Class Definition

Now let’s create a real example: we will try to create the program for modelling
a human being. The Human class will describe it as triggering between two
common states: working, and resting. The class should inform its current state,
fit for work or be sleeping or celebrating. As instance variables of the class we
will use integer value tired and two strings, one will hold name and another one
origin .

The corresponding line looks like this:

class Human {
// code of the class

...
}

The key word in the definition is class, and its name is Human.
The behaviour of the new type is defined by three instance methods. One can

be used to store a data in an object of the new type, it is named setPerson. The
other one is named getHumanInfo can be used to retrieve a stored data from the
object. The last one is named Work and implements the changing of the object

9

tired, that is the member of a class Human. The code is not shown, we shall see
it later.

The corresponding lines look like these:

// instance method to store data
void setPerson (int state, String na, String orig) {
...

}
// instance method to display info of a human

String getHumanInfo() {
...

}
// instance method Work

String Work() {
...

}

This new type we can expand by incorporating other behaviours by means of
setting up additional methods.

Having defined the new type, we may create instances of this type, i.e. ob-
jects, and deal with those objects similar we would deal with any other variables
created from the primitive data types.

4 Encapsulation

The first of the three major principles of an object-oriented program is encap-
sulation. On an abstract level we think in terms of independent agents working
together. Then we encapsulate the representation of the data and behaviour into
a class, thereby defining its implementation and interface .

According to good object-oriented programming practice, an encapsulated de-
sign usually hides its implementation from the class user and reveals only its
interface. A seed of clemantite was created in such manner. Realisation of all
its behaviour are hidden from us, we know only how to grow it, we know the
interface.

God did not provide detail documentation on how seeds are implemented,
but from the experience of human beings we know their interface and have the
class documentation about it’s interface. In technique, an ordinary user does
not usually need to know how the steering mechanism of a car is implemented,
and do not know implementation details. A designer of class should have doc-
umentation about implementation to develop and possibly change the user-level
documentation.

By the way, JAVA has a special mechanism to produce documentation that
will be described in the next lectures.

10 Object Oriented Programming Principles

To control access the members of a class, JAVA uses the keywords public,
private, and protected. It is easy to surmise what does the first two mean. The
last word, protected, is used to provide inherited classes with special access
privileges to the members of their base classes.

Usually for a good designed class user cannot modify the values in the in-
stance variables without going through the interface.

Do you remember the fragments of the code? Now let’s have a look at the full
source.

1 class Human {
2
3 int tired; // instance variables
4 String name; // of the class
5 String origin; //
6
7 // instance method to store data
8 void setPerson (int state, String na, String orig) {
9 tired = state;

10 name = na;
11 origin = orig;
12 } // end method setPerson
13
14 // instance method to display info of a human
15 String getHumanInfo() {
16 String info;
17 info = ("My name is " +
18 name + " and I am " +
19 origin + " ");
20 if (tired > 1)
21 info = info +
22 ("I am very tired.");
23 else
24 info = info +
25 ("and I am ready to work.");
26 return info;
27 } // end method showHumanInfo
28
29 void drinking(){
30 System.out.println(
31 "I like drink with friends");
32 }//end drinking()
33
34 // instance method Work
35 String Work() {
36 if (tired < 2) {
37 tired ++;

11

38 return
39 ("Ouff... working again...");
40 }
41 else
42 return
43 ("Sorry can’t work, being too exhausted.");
44 } // end method Work
45
46 String rest() {
47 if (tired < 1)
48 return
49 ("Not very tired, so going to a party.");
50 else {
51 tired --;
52 return
53 ("Sleeping, hhhharrarrrdrrhhhh...");
54 }
55 }
56 } // end class Human definition
57
58 // Driver program
59
60 class ex1 { // defining the controlling class
61 public static void main(String[] args) { // define main
62
63 Human obj = new Human ();
64 obj.setPerson(0, "Olexiy", "Ukrainian"); //store data
65 // Get info about Olexiy
66 System.out.println (obj.getHumanInfo());
67 } //end main
68 } //end ex1 class

In general, to be visible to a user, the class consists of the public methods.
In our program all methods as well as classes are public by default. The class
user stores, reads and modifies values by invoking those methods. In the pro-
gram above we used method setPerson to input information about me, and than
getHumanInfo to get information about me.

The program we are examining has no hidden the implementation. From the
OOP point of view, this is not a well-designed program, but it is too simple!

Note, in our program we used methods setPerson and getHumanInfo. There
is a special note about names of the methods started with set and get:

Methods whose names begin with set and get have a special meaning
in JAVA. In particular, the introspection capability of the JAVA Beans API
considers these names to represent design patterns for manipulating the
properties of an object.

An object-oriented design is not a good design by default. In an attempt to
produce good designs, there are some general agreements on certain design

12 Object Oriented Programming Principles

standards for classes. For instance, the data members (instance variables) are
usually private. The interface usually consists only of methods and includes few
if any data members. This is, of course, a way of hiding the implementation.

However, there is one exception to this general rule: the data members which
are going to be used as symbolic constants are made public and defined to dis-
allow modifying their values.

The methods in the interface should control access to, or provide a pathway
to, the private instance variables. The interface should be generic as possible,
in that it is not bound to any particular implementation. It means, from the
practical point of view, that the arguments of the method should have the same
meaning. If for some reasons changing implementation is needed, it should be
done in a such way to avoid changing the interface.

In our program we have only instance variables and instance methods. Let
us have a look at class variables and class methods.

4.1 Instance and Class Variables

In our program we have only instance variables and instance methods. We have
to discuss about class variables and class methods. What are they? Why we
need them?

Instance variables are defined such that each instance of the class, or object
has its own set of variables. These variables are fully independent and stored
in their own memory space. To get access to an instance variable the joining
operator is used, in JAVA it is a simple period called dot operator. E.g., in our
program we can access the name of the object obj as obj.name.

It is possible to surmise:

Class variables are shared among all objects of the class. They are very
similar to global variables. Only one copy of a class variable exists in
memory and all objects of the class can access them.

A very important characteristic of class variables is, that they can also be
accessed even if no object of the type was instantiated. You can access them
with dot operator, joining class name and the variable.

4.2 Instance and Class Methods

The methods of a class come in two varieties:

1. Instance methods;
2. Class methods.

Knowing the situation with instance and class variables, you can guess easily:
methods designated static are class methods, and non-static are instance ones.

An instance method can only be invoked with an object of the class, so it is
bound to an object. If we invoke an instance method on a particular object, the

13

method will access the instance variables belonging to the object on which it was
invoked. It is very important to know, that the methods of a class have direct
access to the member variables of the same class, paying no attention to their
control access like public, private, protected.

Class methods can only access other class members (class variables or other
class methods). They cannot access instance variables or instance methods.

The most important thing about class methods is that they can be accessed
using the name of the class without a requirement to instantiate an object of
the class. As with class variables, class methods can be accessed by joining
the name of the class to the name of the method using the appropriate joining
operator.

4.2.1 Sample Program

Much of what we have been discussing can probably be better understood when
seen in the context of an actual program. The program will produce the following
output on the standard output device:

This cat has child(ren): 100
This cat has legs: 4

This cat has child(ren): 1220
This cat has legs: 4

Before we take a look at the listing of the program, lets examine some of the
interesting code fragments that make up the program.

The first interesting code fragment shows the declaration of two member vari-
ables of the class. One is a class variable named child and the other is an
instance variable named legs.

int child; // declare an instance variable ’child’
static int legs; // declare a class variable ’legs’

These are typical variable declaration statements in JAVA: consisting of the
name of the type followed by the name of the variable. The important thing to
note in the context of this discussion is the use of the static keyword in the
declaration of the class variable.

The next code fragment shows the definitions of two methods (with the bod-
ies of the methods deleted for brevity). One of these methods is a class method
named classMethod and the other is an instance method named instanceMethod.

void { instanceMethod() { // define an instance method
........ // body of method deleted for brevity
} //end instanceMethod()

static void classMethod() { //define} a class method
........ //body of method deleted for brevity
} //end classMethod()

14 Object Oriented Programming Principles

These are typical method or member function definitions in JAVA, consisting
of the name of the return type (void means nothing is returned) followed by the
name of the method, followed by the formal argument list (is empty in this case).
The body of the method is then enclosed within a matching pair of curly braces
{ }.

Now you can guess easily: the important thing to note is the use of the static
keyword in the definition of the class method.

The next code fragment is a single statement taken from the body of one of the
methods. This statement causes output to be displayed on the standard output
device.

This single statement incorporates classes, class variables, instance methods,
and overloaded operators, and illustrates some of the syntactical complexity in
an object-oriented program.

System.out.println("This cat has legs: "
+ legs);

This statement has three elements joined with periods.
The first element is the word System which is the name of one of the classes in

the standard JAVA class library. As background information, the System class
is loaded automatically whenever a JAVA application is started.

The name of the System class is joined to the word out using a period. The
word out is the name of a member variable of the System class.

The member variable named out is a public class variable. This makes it
possible to access the variable using the name of the class and the name of the
variable joined by the period.

Note that the class variable named out is also joined to the word println
using the period as the joining operator. The variable out is not only a class
variable, it is also a reference variable (as opposed to a primitive variable) and it
contains a reference to an object of the PrintStream class.

The PrintStream class has an instance method named println(). In fact,
there are ten overloaded versions of the println() method in the PrintStream
class. The behaviour of the version used here is to cause its string argument to
be displayed on the standard output device.

Now consider the string argument to the println method as shown below:

("This cat has child(ren): "
+ child)

In JAVA, as in C, literal strings are enclosed in quotation marks. The plus
sign is overloaded in JAVA in this way to being used as an arithmetic addition
operator, and also to concatenate strings. Even more, the behaviour of the over-
loaded plus operator also includes the ability to coerce its right operand into a
string representation if it isn’t already a string. In this case, the right operand is
not a string, but rather is the instance variable named instanceVariable. Thus

15

the behaviour of the overloaded plus operator is to first convert the value of in-
stanceVariable to a string representation and then to concatenate it to the left
operand.

Now let’s take another look at the same two methods as before, this time
preserving the bodies of the methods for further examination.

// instance method
void instanceMethod () {

System.out.println("This cat has child(ren): "
+ child);

} // end instanceMethod
static void classMethod () {

System.out.println("This cat has legs: "
+ legs);

} // end classMethod

Here we see the code in the body of the methods accessing the member vari-
ables of the class. Recall that one of the member variables is an instance variable
named child and the other member variable is a class variable named legs.

The instance method named child is able to access and display both the
instance variable and the class variable while the class method named class-
Method is only allowed to access and display the class variable. Class methods
cannot access instance variables.

class ex2 { // defining the controlling class
public static void main(String[] args) { // define main

........... // code
} //end main

} //end ex2 class

Now consider the contents of the main method as shown below. JAVA appli-
cations (but not applets) require a main method or function as the controlling
method of the application. In our simple application, we will use code in the ex2
method to instantiate an object and to access both the instance method and the
class method.

Recall that in order to access an instance method, it is necessary to access
it via an object of the class. The next code fragment is the code in the main
method, that instantiates an object named mour of the class named cat .

cat mour = new cat();

This is a typical JAVA statement for instantiating an object.
The new operator requests the operating system provide memory “from the

heap” to store one copy of an object of type cat .
If the required memory is successfully allocated, the address of that block of

memory will be assigned to the reference variable named mour. If unsuccessful,
the JAVA runtime system will throw an exception. This is a type of exception

16 Object Oriented Programming Principles

which can either be ignored, or can be caught and processed by the program. If
ignored, it will cause the runtime system to shut down the program. Exception
handling is discussed later.

Once we have access to an object of the class (or more correctly access to
a reference variable which refers to an object of the class), we can use that
reference variable to access the public member variables and to invoke the public
methods of the class. This is illustrated in the following code fragment.

The two statements in the following code fragment use the reference variable
named mour along with the period to access the instance variable and the in-
stance method of the object. Recall that the instance variables and the instance
methods can be accessed only via an object of the class.

// access instance variable via objects:
mour.child=100;
//access instance method via the object
mour.instanceMethod();

Equally important is the fact that the class variable and the class method
can be accessed without the requirement to use an object of the class. The two
statements in the following code fragment simply use the name of the class to
access the class variable and the class method of the class.

// access class variable via the class
mour.legs = 4;
// access class method via the class
mour.classMethod();

Class variables and class methods can be accessed either via an object of the
class, or via the name of the class alone. Note, we do not put another value for
class variable “leg”: this value is shared between two object of the class cat :
meowand mour .

Finally, we put it all together in the JAVA application.

1 /* Copyright 2001, O.Ye. Tykhomyrov
2 The second example, ex2.java
3 Illustrates instance and class variables along with
4 instance and class methods.
5 */
6
7 class cat {
8 int child; // instance variables ’child’
9 static int legs; // class variable ’legs’

10
11 // instance method
12 void instanceMethod () {
13 System.out.println("This cat has child(ren): "

17

14 + child);
15 } // end instanceMethod
16 static void classMethod () {
17 System.out.println("This cat has legs: "
18 + legs);
19 } // end classMethod
20 }
21 // Driver program
22
23 class ex2 { // defining the controlling class
24 public static void main(String[] args) { // define main
25
26 // instantiate an object of the class cat
27 cat mour = new cat();
28 cat meow = new cat();
29 // access instance variable via objects:
30 mour.child=100;
31 meow.child=1220;
32 // access class variable via the class
33 mour.legs = 4;
34
35 System.out.println("---------------");
36 // access instance method via the object
37 mour.instanceMethod();
38 // access class method via the class
39 mour.classMethod();
40 System.out.println("---------------");
41 meow.instanceMethod();
42 meow.classMethod();
43 } //end main
44 } //end ex2 class

4.3 Messages

Methods are sometimes called member functions.

A message is simply the invocation of a method or member function.

The program sends a message to an object telling it to invoke the method and
sometimes provides parameters for the method to use.

Someone recently wrote that an object-oriented program consists simply of a
bunch of objects laying around sending messages to one another. This might be
a slight exaggeration, but is not too far from the truth.

18 Object Oriented Programming Principles

4.4 Constructors, Destructors, and Garbage Collection

The allocation, reclamation, and reuse of dynamic memory from the heap is
an important aspect of most object-oriented programs, and some non-object-
oriented programs as well.

Any particular language or language platform, like JAVA virtual machine,
should do some operation in memory:

• to allocate memory when it is needed by the program,
• to reclaim that memory when it is no longer needed, and
• to reuse it as appropriate.

Failure to deal with this important issue results in a condition often referred
to as ”memory leakage.”

Constructors are used to instantiate and possibly initialise an object:

// instantiate an object of the class cat
cat mour = new cat();

Constructors can be overloaded just like other methods in JAVA. Over-
loading will be discussed later. Briefly, method overloading means that two
or more methods can share the same name. Compiler determines version
depends on the list of actual parameters.

In this particular statement, the new operator is used to allocate dynamic
memory from the heap, and also as the constructor to construct the object
in that memory space. The address of the memory containing the object is
returned and assigned to the reference variable named mour . If the memory
cannot be allocated, an exception will be thrown.

In JAVA you do not define a constructor when you define a new class, a
default constructor that takes no parameters is defined on your behalf.

You can also define your own constructor with no argument needed. Defin-
ing a constructor is similar to defining a method, but must have the same
name as the class, do not have a return type and must not have return
statements.

The following code fragment shows the important parts of a JAVA program,
similar to the previous one which has been modified to use a parameterised
constructor.

...
String name;

// Parameterised constructor
cat (String n) {

name=n;}

19

...
System.out.println("This cat named " +

name +
" has child(ren): "
+ child);

...
cat mour = new cat("Pirat");

...

Destructors A destructor is a special method typically used to perform cleanup
after an object is no longer needed by the program. C++ supports destruc-
tors, but JAVA does not support destructors.

JAVA supports another mechanism for returning memory to the operating
system when it is no longer needed by an object.

Garbage Collection The garbage collector is a part of the runtime system that
runs in a low-priority thread reclaiming memory that is no longer needed
by objects used by the program. An object becomes eligible for garbage
collection in JAVA when there are no longer any reference variables that
reference the object.

5 Inheritance

The first major characteristic of an object-oriented program is encapsulation.
The second one is inheritance. Let’s now have a look at it.

Having bought an old house to live, the person may try to reconstruct it in
order to have it extended into another one, more modern and more comfortable
without ruining the old version in general. Thus after reconstruction the house
will be a subclass the house that already existed. The new house inherits from
the existing one.

The same with the OO program: a class can normally inherit the attributes
and characteristics of another class. This mechanism can be blocked by using
different ways, though.

The original class is often called the base class or the superclass, and the
new class is often called the derived class or the subclass. Inheritance is often
referred to as extending the base class or superclass.

Inheritance is hierarchical. In other words, a class may be the subclass of
one class and the superclass of another class.

The derived class inherits the data representation and behaviour of the base
class except where the derived class modifies the behaviour by overriding meth-
ods. The derived class can also add new data representation and behaviour that
is unique to its own purpose.

A program can usually instantiate objects of a base class as well as of a class
which is derived from the base class. It is also possible to block instantiation of

20 Object Oriented Programming Principles

the base class in some cases by defining it as an abstract base class. If the base
class is an abstract base class — one that exists only to be derived from – the
program may not instantiate objects of the base class but can instantiate objects
of classes derived from the base class.

The JAVA inheritance mechanism allows to build an orderly hierarchy of classes.
When several of your abstract data types have characteristics in common,

you can design their commonalities into a single base class and separate their
unique characteristics into unique derived classes. This is one of the purposes
of inheritance.

Remember, we have created a class Human, but not all humans are the same,
but different: we have different race, sex, culture, religion etc. Nonetheless we
have some very common features: two legs, two arms, one head. We all can
work, sleep, etc. Developed class Human has methods to indicate a human
state concerning possibility of working. This is the common parameter therefore
of the Human class we have built.

From this base class, we may derive a Gentleman class and a Lady class.
They certainly have different rest: the Lady prefers to drink tea with her neigh-
bours but the Gentleman largely his pint of beer in his favourite pub.

Objects of the classes will then be able to deal with all Human parameters as
well as new ones.

You may have noticed that in this hierarchical class structure, inheritance
causes the structure to grow in a direction from most general to less general.
This is typical.

Here you are an example. In the next fragment of the code one line of the code
is essential: it describes the Lady and Gentleman subclasses:

class Lady extends Human {
...
}
class Gentleman extends Human {
...
}

The keyword extends shows the Lady and Gentleman classes are subclasses
of the Human class.

Now we might have a look at the next fragment of the code, that was replaced
. . . .

// a new method
public void drinking(){

System.out.println
("Drinking tea with my neighbors");

}

In this part of the program we declared a new method, drinking. Of course,
the very similar method the Gentleman has, but about beer!

21

Yet another sensitive fragment of the code shows manipulating with method
declared in the base class, Human. The keyword super is used to access that
method following by period, or dot operator.

// changing mathod getHumanInfo
public String getHumanInfo() {

String info;
info=super.getHumanInfo();
info=info+"and I am a lady.";
return info;

}

The last fragment of the code shows how to use new classes. Nothing new,
isn’t it?

...
Gentleman me = new Gentleman();
Lady anne = new Lady();
me.setPerson (0, "Olexiy", "Ukrainian"); //store data
you.setPerson(0, "Anne", "Russian"); //store data
System.out.println(me.getHumanInfo());
System.out.println(you.getHumanInfo());
...

5.1 Single and Multiple Inheritance

Some object-oriented languages like C++ allow for so-called multiple inheritance.
This means that a new class can be derived from more than one base class. This
has advantages in some cases, but can lead to difficulties in other cases. JAVA
does not support multiple inheritance but provides a special mechanism called
an interface to provide the same result. It is mentioned simply to inform you that
OOP language may, or may not provide mechanisms to achieve the same end
result.

5.2 The ISA Relationship

You may hear sometimes people speak of the ISA relationship. The source of this
terminology is more fundamental than you may at first suspect.

Object-oriented designers often strive to use inheritance to model relation-
ships where a derived class “is a kind of” the base class. For example, a lady ”is
a kind of” human. A wife “is a kind of” lady etc.

This relationship is called the ISA relationship.

22 Object Oriented Programming Principles

6 Polymorphism

The last required characteristic of an object-oriented language is polymorphism.
The word polymorphism is Greek by origin. It means something like “one

thing, many forms”. In OOP polymorphism represents the idea of “one interface,
multiple methods” and means that functions or operators not implicitly recog-
nised by the compiler. JAVA does not support operator overloading, but does
support the overloading and overriding of methods.

6.1 Overloading Methods as a Form of Polymorphism

The best-known example of polymorphism is the ability to replace the three C
functions,

• abs()
• labs()
• fabs()

by a single JAVA function called ABS() .
C requires three different functions which depends on the data types. In JAVA

only one name of the function is needed for any data types, int , long , float .
It is said in this situation that function or method is overloaded. This situation
is recognised by a compiler, and polymorphism of this kind is called compile-
time polymorphism. Some authors say also about early binding or static binding
in this case. They usually do not consider function overloading to be a “true”
polymorphism.

6.2 Overloading of Operators

Polymorphism of this kind is available in many non-OOP languages. In C, for
instance, we use “+”, plus operator to add any kind of data. This form of poly-
morphic behaviour has been intrinsic to the language and could not be modified
or controlled by the programmer.

C++ provides the opportunity, and (with one or two exceptions) the respon-
sibility for the programmer to define the behaviour of almost any operator that
may be applied to an object of a new class.

JAVA does not support operator overloading although in many cases over-
loaded operators will provide a much cleaner and more intuitive syntax.

6.3 Overriding Methods as a Form of Polymorphism

The words override and overload write and sound differently from each other
and have difference in meaning. Overriding a method is an entirely different
thing from overloading a method.

The overloading methods and overloading operators is not the end of the story.
If a derived class customises the behaviour of methods defined in the base class,

23

usually to meet the special requirements of the derived class, we say about run-
time polymorphism.

JAVA supports the notion of overriding a method in a base class to cause it
to behave differently relative to objects of the derived class. In other words, a
method named drinking() that is defined in the base class and is overridden in
the derived class would behave differently depending on whether it is invoked by
an object of the base class or by an object of the derived class.

In JAVA reference variable of a base-class type can be used to reference an
object of any class derived from that base class.

If an overridden method is invoked using that reference variable, the system
will be able to determine, at runtime, which version of the method to use based
on the true type of the object, and not on the type reference variable used to
invoke the method. This fact is illustrated in the following JAVA program.

The first, an overridden method named drinking() as a base-class reference
to a base-class object is invoked, then, as the second, the overridden method
named drinking() is invoked on a derived-class reference to a derived-class ob-
ject.

In the first case, the base-class version of drinking() is actually invoked. In
the second case, the derived-class version of drinking() is invoked. This is trivial.

Then as the third, is invoked the overridden method named drinking() on a
base-class reference which refers to a derived-class object. When this is done, it is
the version of the method defined in the derived class and not the version defined
in the base class that is actually invoked. This is the essence of runtime
polymorphism.

1 // This program illustrates the run-time polymorphism.
2 // Output of the program should be as followed:
3 // My name is null and I am null and I am ready to work.
4 // I like drink with friends
5 // My name is Olexiy and I am Ukrainian and I am ready to work.
6 // and I am a Gentleman.
7 // I like drinking beer in my favorite pub
8 // My name is Olexiy and I am Ukrainian and I am ready to work.
9 // and I am a Gentleman.

10 // I like drinking beer in my favorite pub
11
12 class ex4 {
13 public static void main(String args[]) {
14 // Human class ref to Human class object
15 Human obj = new Human();
16 // Gentleman class ref to Gentleman class object
17 Gentleman me = new Gentleman();
18 // set information about me:
19 me.setPerson (0, "Olexiy", "Ukrainian");
20
21 // Display informatio about obj:

24 Object Oriented Programming Principles

22 System.out.println(obj.getHumanInfo());
23 // invoke method named drinking:
24 obj.drinking();
25
26 // Display information about me:
27 System.out.println (me.getHumanInfo());
28 // invoke method named drinking:
29 me.drinking();
30
31 // Human class ref to Gentleman class object
32 obj = me;
33
34 // Display information about obj:
35 System.out.println (obj.getHumanInfo());
36 // invoke method named drinking:
37 obj.drinking();
38 }
39 }

Inheritance and method overriding are used in almost all JAVA programming.
Even the well-known “Hello World” JAVA applet requires that the Applet class be
extended and the paint() method be overridden.

7 Exception Handling

Although exception handling may not be considered as an OOP principle, JAVA
operates and requires it. Therefore, it is useful to speak about it a little in a
general sense.

We will attempt to look at the following topics briefly:
• What is an exception?
• How do we throw and catch exceptions?
• What do we do with an exception once we have caught it?
• How do we make use of the exception class hierarchy provided by the de-

velopment environment?
• Will we have advantages with exception handling?

7.1 Exception Hierarchy

Exception can be defined by the following sentence:

An exception is an event that occurs during the execution of a program
that disrupts the normal flow of instructions.

Exception-handling capability makes it possible to monitor exceptional con-
ditions within a program, and to transfer control to special exception-handling
code designed by a programmer whenever an exceptional condition is detected.

25

First, we try to execute the statements contained within a block surrounded
by braces.

Then, if an exceptional condition is detected within that block, a program-
mer’s code or the runtime system itself throws an exception object of a specific
type. In JAVA that exception is an object derived, either directly, or indirectly,
from the class Throwable.

The Throwable class in JAVA has two subclasses:

Error indicates that a non-recoverable error has occurred that should not be
caught. Errors usually cause the JAVA interpreter to display a message and
exit.

Exception indicates an abnormal condition that must be properly handled to
prevent program termination.

Of all possible exceptions that JAVA can throw automatically, there is a subset
for which catching and processing is optional. The compiler allows you to ignore
the exceptions of this subset. If an actually ignoring exception occurs, it will be
caught by the runtime system, and the program will be terminated.

The remaining exceptions, that can automatically be thrown in Java, must be
recognised by program’s code in order to compile your program.

Recognised means the program’s code catch and either process the exception
object using another piece of the code, or your code can pass it up to the next
level in the method-invocation hierarchy for handling there.

JAVA program can then optionally execute a block of code designated by finally
which is normally used to perform some type of cleanup which is needed whether
or not an exception occurs.

If a method passes an exception up to the next level in the invocation hier-
archy, this must be declared along with the method signature using the throws
keyword.

If your code catches and processes an exception, the processing code can be
as elaborate, or as simple as you want to make it. The fact is, simply ignoring it
after you catch it will satisfy the compiler. This may, or may not be a good idea,
depending on the type of the exception.

All exception objects inherit the methods of the Throwable JAVA class.

7.2 Advantages of Using Exception Handling

Exception handling provides the following advantages over “traditional” error
management techniques:

separating Error Handling Code from “regular” one provides a way to sepa-
rate the details of what to do when something out-of-the-ordinary happens
from the normal logical flow of the program code;

propagating Errors Up the Call Stack lets the corrective action to be taken at
a higher level. This allows the corrective action to be taken in the method
that calling that one where an error occurs;

26 Object Oriented Programming Principles

grouping Error Types and Error Differentiation allows to create similar hier-
archical structure for exception handling so groups they in logical way.

8 Distributed Objects with CORBA and RMI

As we can build a house buying needed pieces from different vendors, it is pos-
sible to make software that works through the net using software written in
different languages and running on different platforms. CORBA helps us to do
that.

CORBA is the acronym for Common Object Request Broker Architecture.
CORBA is open, vendor-independent specification for an architecture and in-
frastructure that computer applications use to work together over networks. It
allows a CORBA-based program from any vendor on almost any operating sys-
tem, programming language, and network, to interoperate with a CORBA-based
program from the same or another vendor, on almost any other computer, oper-
ating system, programming language, and network.

CORBA is useful in many situations. Because CORBA helps integrating
machines from many vendors with different computation power, it is the com-
mon choice for large (and even not-large) enterprises. One of its most important
strengths is the ability to handle large amount of clients which results in wide de-
ployment on web servers. CORBA works for many of the world’s largest websites.
Specialised versions of CORBA can run real-time systems, and small embedded
systems.

CORBA provides this way in general. JAVA has a similar feature called RMI
to do more or less the same as CORBA.

RMI gives your objects the ability to communicate and exchange data over
a network. So it becomes quite easy to setup a client/server architecture for a
large distributed system. RMI stands for Remote Method Invocation.

Communication via RMI and CORBA is most likely not very fast, so it is not
applicable for time critical tasks, but for remote monitoring where the response
time is not that critical, it would be a nice solution.

CORBA applications are composed of objects, individual units of running
software that combine functionality and data, and that frequently (but not al-
ways) represent something in the real world.

So, the main idea of both CORBA and RMI is the physical independence of
an object’s implementation and interface while keeping the logical uniformity.

8.1 CORBA Versus RMI

Although RMI and CORBA do the same job, these things are not compatible!
With RMI the user application as well as remote object implementation must be
implemented in JAVA. The interface definition is just a regular JAVA interface.

• RMI provides a lightweight, JAVA-specific mechanism for objects to inter-
act across the network and the tools to make it work together. The tools,

27

classes, etc. are included within JAVA virtual machine.
• CORBA is a specification and an architecture for the integration of net-

worked objects. Different vendors follow the CORBA specification to pro-
vide tools, libraries, etc. for multiple languages and platforms.

• The CORBA specification ensures interoperability.
• CORBA implementation for JAVA is provided by Sun Microsystems.
• CORBA and RMI are not compatible.

9 Intro to Object-Oriented Design

Object-oriented design (OOD) is a technology in its own right, often treated as
being separate and apart from OOP, but better to think about OOP as about the
implementation of OOD procedure.

Many books have been written describing a variety of methods for accom-
plishing OOD and here we are not going to discuss and cover all topics of that.
As a physicist, I think about programming as a way to help us in some particular
problems, not as a theory in general. Standard way, however, to show how to
create an OO program is to explain, how to make first pass to identify classes,
data members and methods to build the OO program.

One common technique is to create a narrative description of the solution
to the problem, then use nouns and the verbs to identify the classes , data
members , and methods needed in the design.

Consider the following narrative description of the solution to an object-oriented
design problem. We will use this description to design a simple object-oriented
program. The nouns will give us hints about the classes and the data members
that will be needed, and the verbs will give us an idea of the methods that will be
needed.

Design a digital Counter which has two bits with the following abilities:

1. Initialising the Counter means to set its values into 00;

2. Incrementing the Counter by one;

3. Displaying the Counter means to show its contents.

For each bit the followings abilities should be provided:

1. to set the value of the bit to a 0;

2. to get the value stored in the bit;

3. to add a 1 to the value stored in the bit and return the carry according
to the truth-table that follows:
0 + 0 = 0, c = 0
0 + 1 = 1, c = 0

28 Object Oriented Programming Principles

1 + 0 = 1, c = 0
1 + 1 = 0, c = 1

A test program should instantiate a Counter object and exercise the Counter by
incrementing it 4 times and displaying the result.

The output from the test program should be:
00
01
10
11

The program may look like this:

1 /* Counter designing */
2
3 class Bit{
4 int value;
5 void set(){//method to set the value of the bit to 0
6 value = 0;
7 }//end set()
8
9 int get(){//method to get the value stored in the bit

10 return value;
11 }//end get()
12
13 //method to implement binary addition
14 // we provide the table here:
15 int add(int inValue){
16 int carry = 0;
17 if((value == 0) && (inValue == 0)){ //0+0=0,c=0
18 carry = 0;
19 }else if((value == 0) && (inValue == 1)){//0+1=1,c=0
20 value = 1;
21 carry = 0;
22 }else if((value == 1) && (inValue == 0)){//1+0=1,c=0
23 carry = 0;
24 }else if((value == 1) && (inValue == 1)){//1+1=0,c=1
25 value = 0;
26 carry = 1;
27 }//end if statement
28
29 return carry;
30 }//end add()
31 }//end class Bit
32

29

33 class Counter{
34 Bit fstbit = new Bit(); //instantiate two bit objects
35 Bit scndbit= new Bit();
36
37 //method to initialize the bit objects to 0
38 void initialize(){
39 fstbit.set();
40 scndbit.set();
41 }//end initialize()
42
43 //method to add 1 to lsb and have it ripple up
44 // through all three bits of the counter
45 void increment(){
46 scndbit.add(fstbit.add(1));
47 }//end increment()
48
49 //method to display the value of each bit in the counter
50 void show(){
51 System.out.println("" + scndbit.get() + fstbit.get());
52 }//end show()
53
54 }//end class Counter
55
56 //controlling class required by Java application
57 class ex5 {
58 public static void main(String[] args){
59 //instantiate a counter object
60 Counter myCounter = new Counter();
61 myCounter.initialize();//initialize the counter object
62 myCounter.show(); //display contents of counter object
63 //increment and display counter object
64 for(int cnt = 0; cnt < 3; cnt++){
65 myCounter.increment();//increment it
66 myCounter.show();//display it
67 }//end for loop
68 }//end main()
69
70 }
71

The program includes a class named Bit with a data member named value
as well as methods to set the instance variable, get the instance variable, and
add a 1 to the value of the instance variable returning the carry from the binary
addition. These items you can find as nouns or verbs in the description.

Also as you can see, the design resulted in a class named Counter which had
three embedded Bit objects as instance variables or data members. This class
has a method named initialise that is used to initialise the two-bit counter to 00.

30 Object Oriented Programming Principles

This class also has a method named increment which adds one to the least-
significant bit, adds the carry from the least significant bit to the middle bit, and
adds the carry from the middle bit to the most-significant bit. This is the typical
ripple pattern for a binary counter.

This class also has a show method that displays the values stored in each of
the two Bit objects in the order from most-significant to least-significant.

This program also contains a class named ex5 which is not represented by
a noun in the narrative description. This is because all applications in JAVA
require a controlling class, and in this case the controlling class is named ex5.

10 A few final remarks of OOP

OOP requires a new style of program design. Common behaviour and properties
must be identified and described in several class hierarchies. Once the class
hierarchies are defined, most of the work is done. New instances of these objects
are created and their methods called.

The advantages of OOP are:
• code re-used and uniqueness by inheritance and encapsulation;

• maintainability: changes in a superclass are seen by all subclasses;

• Independence of code by encapsulation. Only the object’s interface is seen
by the outside world, not the implementation details;

• high degree of organisation and modularity of the code. This is especially
important for large projects;

• makes you think before coding.
The disadvantages:

• Compiled programs are usually larger because the inheritance mechanism
must be implemented at runtime.

• Compiled programs are usually slower because inherited code must be
looked up when called by sub-classes.

31

References

[1] Bruno R. Preiss (2000). Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.ISBN: 0-471-34613-6, University of Waterloo

[2] Peter Coad Object Oriented Design (Yourdon Press Computing Series).

[3] Mary Campione, Kathy Walrath. The Java Tutorial: Object-Oriented Program-
ming for the Internet (2nd Edition)

[4] The Java tutorial. A practical guide for programmers. Sun Microsystems.
Available online at http://java.sun.com

http://java.sun.com

	Introduction
	Acknowledgements
	History notes
	Functional and OOP Paradigms

	An Object-Oriented World
	Encapsulation Example
	Inheritance Example
	Polymorphism Example
	A Word of OOP Vocabulary

	The Characteristics of an OOP
	What is An Object?
	Abstraction
	Sample Class Definition

	Encapsulation
	Instance and Class Variables
	Instance and Class Methods
	Sample Program

	Messages
	Constructors, Destructors, and Garbage Collection

	Inheritance
	Single and Multiple Inheritance
	The ISA Relationship

	Polymorphism
	Overloading Methods as a Form of Polymorphism
	Overloading of Operators
	Overriding Methods as a Form of Polymorphism

	Exception Handling
	Exception Hierarchy
	Advantages of Using Exception Handling

	Distributed Objects with CORBA and RMI
	CORBA Versus RMI

	Intro to Object-Oriented Design
	A few final remarks of OOP
	References

