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Abstract -

Saxitoxin (STX) and its derivatives are highly toxic natural compounds produced by dinoflagellatcs commonly present in
marine phytoplankton. During algal blooms (“red tides”), shellfish accumulate saxitoxins leading to paralytic shellfish poison-
ing (PSP) in human consumers. PSP is a consequence of the high-affinity block of voltage-dependent Na channels in neuronal
and muscle cells. PSP poses a significant public health threat and an enormous economic challenge to the shellfish industry
worldwide. The standard screening method for marine toxins is the mouse mortality bioassay that is ethically problematic,
costly and time-consuming. We report here an alternative, functional assay based on electrical recordings in cultured cells
stably expressing a PSP target molecule, the STX-sensitive skeletal muscle Na channel. STX-equivalent concentration in the
extracts was calibrated by comparison with purified STX, yielding a highly significant correlation (R = 0.95; N = 30) between
clectrophysiological determinations and the values obtained by conventional methods. This simple. economical, and repro-
ducible assay obviates the need to sacrifice millions of animals in mandatory paralytic shelilfish toxin screening programs.
© 200! Elsevier Science Lid. All rights reserved.
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1. Introduction

Harmfut algal blooms are natural phenomena triggered by
complex environmental stresses including human pollution
(Smayda, 1997a,b). Some 300 phytoplankton species produce
“red tides” but only 60--70 species are actually harmful
(Sournia, 1995). Dinoflagellates, in particular, produce potent
non-peptide neurotoxins (Hall et al., 1990; Yasumoto and
Murata, 1993). Among these, saxitoxins (Hail et al., 1990;
Shimizu, 1996), brevetoxins (Baden, 1989) and ciguatoxins
(Lewis, 1995) have the sodium channel protein as their sole
molecular target and bind with high affinity to specific sites on
the o subunit (Ritchie and Rogart, 1977; Barchi and Weigele,

* Corresponding author. Fax: +56-2-732-9668.
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1979). Fatal paralytic shellfish poisoning {PSP) intoxication
represents the most serious threat of marine origin worldwide
(Hallegraeff, 1995), with prominent public heaith and
economic impact in Asia, Europe, North America (Anderson,
1989, 1997) and South America (Uribe et al., 1999). As a
consequence, most seafood-exporting countries have estab-
lished mandatory PSP toxin screening programs. The method
most widely employed is the semi-quantitative mouse mortal-
ity bioassay (Horwitz, 1990). While reliable for regulatory
purposes, this assay is costly and time-consuming. Its major
limitation, however, is the controversial use of live animals.
The assay measures the time to death after intraperitoneal
injection of seafood extract, 2 procedure that has received
such ethical criicism that it can no longer be carried out in
some European countries (Cembella et al., 1995). Analytical
HPLC methods require oxidation of STX analogues for fluor-
escent detection (Oshima et al., 1993) and the availability of
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scarce sets of analogues as internal standards. Acidic extracts
from naturaily contaminated PSP shellfish samples may
conain over 20 different analogues of STX in variable pro-
portions (Oshima et al., 1993; Lagos et al., 1996). Analytical
methods provide the moiar composition of toxic extracts. a
quantity that has to be transformed into intraperitoneal toxicity
values. This calculation relies on scales of relative toxicity
obtained by the mouse bioassay carried out with pure STX
analogues (Hall et al., 1990). Recently, the application of
radioassays (Doucette et al., 1997) has been further hampered
by nigid constraints on the international transfer of STX
and radiolabelled derivatives owing to biological warfare
conventions.! These considerations motivated our develop-
ment of a molecularly based electrophysiological assay for
the detection and quantification of PSP toxins. These data
have been presented in preliminary form (Vélez et al., 1999;
Sudrez-Isla et al.. 2000).

2. Materials and methods
2.1. Materials

Standard saxitoxin dihydrochloride was kindly provided
by Dr Sherwood Hall (US Food and Drug Administration.
Office of Seafood). Aliquots from batches No. 086-252B
and 087-181A were used in this study. Saxitoxin diacetate
was purchased from Sigma-Aldrich Chemical Corp.
(St. Louis, MO) and all reagents used were of analytical
grade.

2.2. Shellfish sumples

A set of 41 acidic extracts of PSP toxic shellfish samples
was used in displacement assays of tritiated saxitoxin. The
extracts were obtained from mussels (Mynilus edulis), ribbed
mussels (Aulvacoma ater) and clams (Venus antiqua anti-
qua). A second set of 30 acidic extracts of mussels and /ocos
(a Chilean abalone-like gastropod; Concholepas concho-
lepas) was used in the electrophysiological experiments.
All toxic shellfish samples were obtained during official
monitoring cruises from areas closed to commercial fishing.
The extracts were kindly provided by the Servicio de Sajud
Magallanes, Punta Arenas, Chile.

2.3. Mouse bioassay

Mouse bioassays were performed at the Laboratory of
Marine Toxins, University of Chile, with the sets of PSP
toxic samples provided by the Servicio de Salud Magai-
lanes. Bioassays were performed with CF-1 mice of
20 £ 2 g reared in a local facility from parents provided

' STX was included by the Organization for the Prohibition of
Chemical Weapons in the list of toxic compounds qualified as
potential chemical weapons. As of August 1, 1997, STX cannot
be re-exported even among treaty signing countries.

by the Instituto de Salud Piblica. Chile, following the
standard procedure of the Association of Official Analytical
Chemists (Horwitz, 1990). A correction factor (relationship
between STX concentration and time of death). was
obtained by injecting aliquots of standard STX
dihydrochloride (U.S.F.D.A. Batch No 086-252B. Office
of Seafood) intraperitoneally into three groups of ten micc
each over four different days. The final correction factor was
0.234.

2.4. Radioassay

Membranes were isolated by homogenization and differ-
ential centrifugation from chick cerebellum (Sierralta et ai..
1996). Binding assays were run in duplicate with 100~
200 ug protein per vial in Trs HCI buffer, pH 7.4, in the
presence of choline chloride, calcium and KCl. Free
[’HISTX (Amersham, UK) was separated on GFC filters
(Millipore, Bedford, MA). Scatchard analysis of reference
[*H)STX displacement curves gave: Kp (nM) = 0.80 = 0.41
and B, (pmol/mg protcin)= 1.68 = 0.01 (n=3). The
extrapolated Kp for STX obtained by the infinite dilution
method was 0.47 nM. Overall apparent K obtained with
chick cerebellar membranes was 0.87 = 0.07 (mean =
S.EM.) (=8.3% coefficient of variation) for 38 reference
curves obtained in the range of 0.5-50 nM cold STX using
eight different batches of [PHISTX in a period of 22 months.
Toxicity evaluations of natural PSP extracts were performed
in wriplicate on dilutions of untreated acid extracts (dilution
range was 1:125-1:12500).

2.5. Electrophysiological recordings

HEK 293 cells stably expressing STX-sensitive rat skele-
tal muscle Na channels (u1) (Yamagishi et al., 1997) were
patch clamped in the whole~cell configuration. Na currents
were recorded under control conditions and after perfusion
with several dilutions of extracts of shellfish sampies. The
control external solution was (mM): 70 NaCl, 70 TEAC] (or
70 TMACQC), 5 KCl, 3 CaCl,, 1 MgCl,, 10 glucose, 10 Hepes,
pH 7.4. The patch pipette (1-2 Mohms) contained (nM) 140
CsF, 5 NaCl, 1 MgCl,, 10 EGTA, 10 Hepes, pH 7.2.
Peak sodium currents were elicited every 2 or 3s by
10-ms depolarizing pulses from a holding voltage of
—100to —~ 10 mV. A P/4 protocol was used to subtract linear
capacitative and leak currents. To ensure appropriate
voltage control, cells expressing no more than 4 nA of
peak sodium current were used. The cells were continuously
perfused at 1 ml/min at 21-22°C. Signais from an Axopatch
200-B patch clamp amplifier (Axon Instruments, Foster
City, CA) were low-pass filtered at 10 kHz, acquired at
S0 kHz and analyzed using pCLAMP software (Axon
Instruments, Foster City, CA).

The half-blocking concentration (ICs) for STX from the
reference curves was determined by a least-squares fit
(Levenberg—Marquardt algorithm) of the data to the
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Fig. 1. Correlation between PSP toxicity levels determined by the
mouse mortality assay and toxin binding assessed by the STX
displacement binding radioassay. The displacement of [*H|STX
by namral PSP extracts was performed with toxic samples provided
by the Servicio de Salud Magallanes (40-10 000 pug STX/100 g). A
significant correlation (R =0.972 for 41 samples) was found
between the toxicity levels determined by mouse bicassay and
displacement of labeled toxin. The doned lines indicate the safety
limit of 30 wg STX/100 g.

function I/ly = I{1 + ([STXVICs)"}, where [ and / are,
respectively. the currents in the presence and absence of
STX and n is the Hill coefficient obtained from the fit.
The fit was performed by a subroutine included in the
OriGIN 6.0 plotting and analysis program (OriginLab
Corporation, Northampton, MA). Calibration curves were
generated with increasing concentrations (0.01-100 nM)
of STX-diacetate (Sigma Chemical Corp.) or STX-dihy-
drochloride (US Food and Drug Administration, Office of
Scafood: batch 087-181A).

3. Resulits
3.1. [*HJSTX displacement assay

The samples of toxic extracts used in this study were
collected from fjords of the Magallanes region in Chile
(49--55°S). Naturally contaminated shellfish extracts from
that region contain up to 10 STX analogues in variable
molar ratios (HPLC analysis with fluorescent detection;
Oshima et al., 1993) including a high proportion of the
extremely potent gonyautoxins [ to 4 and neo-STX
{Lagos et al., 1996). To establish whether the intraperitoneal
toxicity of natural PSP extracts from this region as measured
by mouse bioassay was due to these saxitoxins, a [’H]STX
displacement assay (Doucette et al., 1997; Barchi and
Weigele, 1979) was performed. Displacement assays
provide a measure of the capacity of toxin mixtures to
displace radiolabelled STX from the common binding site
on the channel protein (Ritchie and Rogant, 1977; Barchi
and Weigele, 1979; Backx et al., 1992: Lipkind and

Fozzard. 1994). However. biological toxicity is the end
resuit of a complex interaction of bicavailability factors
and access of the saxitoxins to therr target molecule. To
determine the relationship between STX displacement and
in vivo toxicity. we compared various sheilfish extracts for
their ability to displace [*H]STX binding (Ritchie and
Rogart, 1977; Barchi and Weigele. {979) with léthal toxi-
city in mice. Fig. | shows a good correlation between STX
binding and toxicity evaluated by these two conventional
tests (R =0.97. ¥ =41). These data suggest that the
binding of mixed PSP toxins present in different ratios
and amounts elicits biotoxicity proportional to the capacity
of the toxic mixture to displace ["HJSTX from its binding
site.

3.2, A functional assay using paich-clamp current
recordings

Displacement of 2 radiolabeled ligand does not directly
assay how saxitoxins impair Na channel function. To deter-
mine how the biotoxicity of PSP extracts reflects blockage
of sodium channels, we established a functional assay using
patch-clamp current recordings in HEK 293 cells stably
expressing the STX-sensitive rat skeletal muscle Na channel
(1) (Yamagishi et al., 1997). The cells displayed robust Na
currents (Fig. 2a) and their small size (diameter 14 = 5 um)
enabled us o avoid voilage-clamp inhomogeneities during
runs that lasted on average more than 90 min. As shown in
Fig. 2b. bath-applied STX blocked peak sodium currents
(/na) 1n a concentration-dependent manner. After perfusing
the cells with a solution containing STX, [y, decreased
with a time constant that depended on the frequency of
stimulation (Conti et al., 1996) and reached a new steady-
state level determined by the STX concentration. Steady-
state values of Iy, were measured at least 2 min after
solution exchange. *

3.3. Concentration dependence of STX block of sodium
current

Fig. 2b displays the concentration-dependent decrease of
In, amplitude in the presence of 0.3, 1.0 and 3.0 nM standard
STX. Fig. 3 shows full dose-response curves obtained with
saxitoxin from two suppliers. Sigmoidal fits to the experi-
mental data indicated an /Cs of 1.17 £ 0.05 aM (12 cells: |
Hill coefficient n=0.967) for STX-diacetate (Sigma
Chemical Co., St. Louis, MO) (filled circles) and
1.46 = 0.05 nM (five cells; Hill coefficient n == 0.825) for
standard ST X-dihydrochloride provided by the US Food and
Drug Administration (open circles). This slight difference
underlies the need to generate calibration curves for each
batch of standard.

3.4. Evaluation of PSP toxicity with the electrophysiological
assay

We next used the electrophysiological assay to evajuate
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Fig. 2. (a) A family of currents recorded from HEK 293 cells stably expressing the skeletal muscle Na channel « subunit in response to voltage
pulses from —4010 +30 mV from a holding potential of — 100 mV. The peak /y, was clicited at a test potential of — 10 mV and puises of 10 ms
duration were applied every 2 or 3 s. (b) Dose-response of bath-applied STX on sodium currents in HEK 293 cells. Each point represents peak
sodium current at ~ 10 mV. The concentration-dependent decrease of sodium current amplitude was measured at 0.3. 1.0 and 3.0 nM standard

STX. after a steady state level was reached.

PSP toxicity in naturally contaminated samples. Fig. 4
demonstrates the effect of application and washout of
i aM STX after stabilization of the electrical recording.
Diluted PSP sampies were then applied sequentially. inter-
spersed with purified STX (I nM). The regulatory limit of
80 pg of STX equivalent per 100 g tissue is comparable to a
solution of 1910 aM STX-diacetate or 2149 nM for STX-
dihydrochloride. Thus, it was necessary to dilute toxic
samples approximately 1000-fold (~1 nM final concentra-
tion) to fall within the dynamic range of Iy, blockage. The
transformation factor of wet tissue weight to volume was
1.00 = 0.02 (n = 36) as determined in tests with five differ-
ent shellfish species. The dilution factor of three orders of
magnitude reduced significantly variations in pH and diva-
lent cation concentration, factors that are known to modify
STX binding (Doyle et al., 1993). In addition. matrix effects
that could interfere with the assay were minimized.

To compare toxicity evaluations by mouse bioassay and
the electrophysiological assay, 30 samples of PSP extracts
ranging from 35 to 800 pg STX eq/100 g were used. Fig. 5
demonstrates a robust correlation between the two assays
(R = 0.946).

3.5. Pructical detection limit

The practical detection limit was determined by the addi-
tion of decreasing STX concentrations. Exposure to 0.1 nM
STX produced a small but reproducibly detectable current
inhibition (Fig. 6). Average values of peak /y, before and
during exposure to STX were significantly different, and the
observed deflection yielded a signal-to-noise ratio >3:1.

Even though smaller toxin-induced current reduction
could be detected, 0.1 nM STX represents a robust practical
detection limit. This is equivalent to 0.042 pg STX/100 g.
or 19100 times below the regulatory limit and 8550 times
below the mouse test detection limit (based on STX-
diacetate).

Normalized 'N.-.

'mmm

0.01 0.1 1 10 100
[STX] nM

Fig. 3. Reference inhibition curves for STX. Open circles: STX-
dihydrochloride (US Food and Drug Administraton, Office of
Seafood: batch 087-181A). ICsy = 1.46 = 0.05 oM (mean = S.D.;
five experiments; N = 0.825), Hill coefficient). Filled circles: STX-
diacetate (Sigma Chemical Corp.). ICsy = 1.17 = 0.05aM: 12
experiments; N = 0.967). The points represent the fractional inhi-
bition of peak /y, and the error bars indicate standard deviations.
Solid and dotted curves represent least square-fits to the data
obtained as described in Section 2.
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Fig. 4. Na channe} inhibidon by extracts from contaminated shell-
fish. Each point represents peak [y, at — 0 mV. The open bars
represent bath application of standard STX; other bars indicate
application of toxic PSP exwacts. Extracts werc first tested at
1000-fold dilution and then diluted to produce fractional inhibition
of Iy, near 0.5. Dilution factors are shown in the figure. in this
example, five samples were tested within SO min.

3.6. Reproducibiliry

The percent Na cument inhibition within different
expenments and cells with different maximal /[y, (0.8~
4.0 nA) was very reproducible, consistent with the clonal
ongin of the expressed channels. The percent current inhibi-
tion was 36.40 = 2,36 for 0.7 aM STX (mean = SD; n = 3)
and 52.28 = 3.76 (n = 12) for 1.0 nM STX (diacetate salt,
Sigma Chem. Corp.).

4. Discussion

Accumulation of phycotoxins by filter-feeding shellfish is
a well-known global phenomenon and has become a contin-
uous threat to public health worldwide (Hallegraef, 1993,
1995). These phycotoxins include diartheic shelifish poison-
ing (DSP) toxins, amnesic shellfish poisoning (ASP) toxins,
neurotoxic shellfish poisoning (NSP) toxins, and PSP toxins
known as saxitoxins (Strichartz and Castle, 1990).

Saxitoxin-producing dinoflagellates cause great econom-
ical losses around the world owing to closure of shellfish
harvesting grounds during algal blooms and the negative
impact on seafood marketing resulting from such events
{Hallegraef, 1993, 1995). Since harmful algal blooms are
complex events and cannot be predicted, the only way to
avoid the human heaith threat is to detect the toxin levels
before shellfish reach human consumers. Thus, there is 2
need for efficient saxitoxin detection methods. Most of the
available methods for toxin detection are expensive, require
costly analytical standards, use large numbers of laboratory
animals or are based on radiolabelled compounds that have
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Fig. 5. Correlation between PSP toxicity levels determined by the
mouse bioassay and inhibition of Na current electrophysiologically
determined. Na channel blockade was determined in dilutions of
shellfish exwacts from 1:800 to 1:8000. A significant correlation
(R = 0.95 for 30 samples) was found between the toxicity levels
determined by mouse bioassay and inhibition of cxpressed Na
current.

been catalogued as chemical weapons by international
treaties. Therefore, there are additional economical and
social effects because of the need for expensive or ethically
questionable monitoring programs to ensure product safety.

We tested here the feasibility of a simple, economical and
ethically acceptable functional assay based on electro-
physiological recordings in cultured cells stably expressing
a PSP target molecule, the STX-sensitive skeletal Na chan-
nel (Yamagishi et al., 1997; Catterall. 1980, 1992). The

1.0 nM STX

F 1:4255

4
-
L

sodium current (nA)
[
I

[
X

minutes

Fig. 6. Determination of the practical detection limit. In this experi-
ment, two bath applications of 0.1 and 1.0 nM standard STX
preceded exposure to a diluted toxic sample. Addition of 0.1-nM
STX produced reproducibly detectable current inhibition. Average
vaiues of peak [y, before and after STX were significantly different
and the observed deflection is equivalent to a signal to noise ratio
>3:1. Smaller inhibitions could still be detected, but 0.1 aM STX
was selected as the practical detection limit.
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assay is straightforward and. while .it requires personnel
trained in electrophysiology, it is actually less laborious
than the empirical mortality bioassay. Standard culture
methods are sufficient to maintain the cell line used to
express the toxin receptor channel (HEK 293 cells). The
small size and simple geometry of these cells avoid artifacts
resulting from poor voltage control (Marty and Neher.
1995). Moreover, these cells are easy to patch and current
recordings can last as long as 2 h allowing several samples
t0 be tested in the same cell. A trained technician can
analyze 8~10 samples per work shift (8 h). The reproduci-
bility of our electrophysiological assay is demonstrated by
the small standard errors (<4%) obtained with the same
sample measured in different cells. The high correlation
found between measurements of PSP toxicity levels by the
inhibiton of Na current in HEK cells compared to those
obtained with the standard bioassay prove the reliability of
the electrophysiological test. Furthermore, this assay is three
orders of magnitude more sensitive than thc mouse bioassay
(40 vs. 0.04 ug STX/100 g. respectively). Thus, this func-
tional electrophysiological assay is a promising tool to
complement and rcplace evenwally the conventional
mouse bioassay in regulatory screening of shellfish samples
for PSP contamination. Indeed, given the assay’s high sensi-
tivity, nawral ecological variations in subtoxic PSP levels
can be tracked, providing an early detection of harmful algal
blooms. Given its circurnvention of animal testing and
compliance with biological warfare treaties, the electrophy-
siological assay has obvious ethical advantages avoiding the
usc of experimental animals and radioactive STX or STX
analogues as internal standards. These results are of
immediate utility and provide the basis for simplified
biosensors based on recombinant Na channels that can be
tailored to specific toxins of the Na channel. other than
saxitoxins. In 1986, the Royal Society (London), defined a
biosensor as: “a device that recognizes an analyte in an
appropriate sample and interprets its concentration as an
electrical signal via a suitable combination of a biological
recognition system and an electrochemical transducer”. In
this sense, ion chaanels fulfili this definition without the
need of ancillary proteins as they are molecular devices
that combine a recognition site (i.e. the toxin binding site)
and conductive moieties in the same macromolecule. Saxi-
toxin binding results in blockade of the conduction pore,
interrupting the conduction of ions and the electrical current.
Therefore, sodium channels appear as logical candidates to
develop biosensors for natural toxins that target the macro-
molecule, a strategy that is currently being developed in
other laboratories (Sackmann, [995; Nikolelis et al., 1996;
Kasianowicz et al., 1996; Cornell et al., 1997; Costello et al.,
1998, 1999, 2000; Branton and Golovchenko, 1999; Bayley,
1999; Gu et al., 1999, 2000). In conclusion, we report a
highly sensitive functional assay that directly monitors
and quantifies the interaction of saxitoxins with their natural
receptor by measuring the fractional Na current inhibition
by PSP toxic extracts.
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