

the

abdus salam

international centre for theoretical physics

SMR 1550 - 3

WORKSHOP ON THE LISE OF DECEDTOR RINDING ASSAY (DRA)

WORKSHOP ON THE USE OF RECEPTOR BINDING ASSAY (RBA)

1 - 5 September 2003

Co-organized by the International Atomic Energy Agency (I.A.E.A.)

New Methods for Analysis of Marine Biotoxins

Patrick Holland

Cawthron Institute, Nelson, New Zealand

These are preliminary lecture notes, intended only for distribution to participants.

New methods for analysis of marine biotoxins

Requirements for validation and regulatory acceptance

Patrick Holland and Paul McNabb

Cawthron Institute, Nelson
NEW ZEALAND

New Methods for Marine biotoxins

- A new NZ programme
- New test methods
- LC-MS/MS method
 ASP/DSP toxins
- Validation
- Example Akaroa
- Issues & Summary

Marine biotoxin management in NZ

- Shellfish industry programme
 - export oriented
 - locally managed, 100% industry funded
 - regulated by NZ Food Standards Authority
 - audited by FDA and EC
- Public health programme
 - recreational and customary use
 - managed and funded by NZFSA

Why new test methods? - the 4 S's

Speed Results in hours, not days

Sensitivity Early warning; tracking;

no false negatives

Specificity No false positives; i.d. of toxins

Sustainability Ethical testing, no small

animals

N.Z. requirements for new methods

- Reliable to detect and quantify biotoxins
- Cost effective
- Validated and assessed "fit for purpose"
- Internationally accepted (market access)

Assay Technologies

Receptor Radio-ligand binding; Cyto-toxicity;

Fluorescent ligand binding, etc.

Antibody ELISA plate; Strip (Rapid-ALERT)

Enzyme Protein-phosphatase; Cholinesterase

Chromatographic

LC-UV, LC-FL, LC-MS, LC-MS/MS

LC-MS/MS method for ASP & DSP toxins

- Extraction of shellfish homogenate:2g + 18ml 90% methanol
- Hexane wash
- LC-MS: 2 x 150mm C18 column
 0.2 ml/min ACN gradient + buffer
 (46mM formic acid + 4mM NH₄Acetate)
 ESI + and -, MRM 13 channels
- Toxins detected 17 toxins in 6 classes
- Automated injection and data processing (ca 30 shellfish samples per day)

ASP & DSP Toxins by LC-MS/MS					
Domoic acid	DA	Quantitative			
Okadiac acid	OA	Quantitative			
Pectenotoxin-2	PTX2	Quantitative			
Yessotoxin	YTX	Quantitative			
Gymnodimine	GYM	Quantitative			
OA esters (by hydrolysis)	DTX3	Quantitative			
DTX1, DTX2 PTX1, PTX6, PTX-seco ac 45OH-YTX, homo-YTX, ca Azaspiracid-1, -2, -3 Spirolides		Semi-quantitative using RFs			

Method Validation - Within-lab

- N.Z. procedure described : www.maf.govt.nz/standards/seafood/guidelines
- Performance based
- Follows international protocols to fully characterize a method:
 CODEX, AOAC, IUPAC, Eurachem

CODEX Method Classification

Type I – Empirical method Results and limits defined by the method e.g. mouse bioassays

Type II – Reference method Key method for discrete substance(s) e.g. ASP toxins by HPLC-UVD

Type III – Alternate method
Also approved as meeting validation criteria

Type IV - Candidate method

CODEX Type II & III Methods

- Accuracy / recovery
- Applicability matrices, range
- LOD and LOQ
- Precision within-lab; inter-lab.
- Selectivity
- Linearity
- Practicality

ASP/DSP Method Validation

- Protocol 500 LC-MS runs, 1200 hours
 - recoveries 4 shellfish species x 2 levels
 - extractability
 - mouse bioassay comparisons
 - hydrolysis of OA/DTX1esters
 - uncertainty
- Approvals ISO 17025
 - NZFSA
- Inter-laboratory study completed (8 labs)

ASP/DSP Method: within-lab parameters

Limit of Detection	0.001 – 0.01 mg/kg	DA 0.02 mg/kg
Working Range	LoD – 2 mg/kg	
Precision - RSD _R	10 – 25% at 0.05 – 0.1 mg/kg	8 - 13% at 0.5 – 2 mg/kg
Accuracy	Bias < 10% for DA, OA and DTX-1	NRC CRMs

Inter-laboratory Studies

- Method precision under reproducibility conditions, RSD_R
- Comparison to analytical norms
 - AOAC : Horwitz bell curve
 - CODEX : $RSD_R < 23\%$ at < 0.18 mg/kg.
- Uncover operational problems
 - labs
 - instruments

Inter-lab Study of ASP/DSP Method

- Coordinated by Cawthron Institute, 2002
- 10 labs 8 labs returned triplicate data: Australia, Canada (2), Ireland, Japan, Netherlands, Norway, NZ.
- 5 standard solutions 5 200ng/mL :
 AZA1, DA, Gym, OA, PTX2, YTX
- 4 mussel extracts, toxins 0.03 3 mg/kg
- Precision analysis of data per ISO 5725 guide for inter-lab studies

Inter-lab Study - Results

- Excellent calibrations R² > 0.98
- Repeatability 8-12%, except PTX2
- Reproducibility:

Toxin	AZA1	DA	Gym	OA	DTX2	PTX2	YTX
mg/kg	0.42	1.67	0.06	0.04 - 0.28	1.59	0.04 - 0.11	1.7 - 2.9
RSD _R	34%	23%	42%	25% - 17%	12%	54% - 44%	22%- 15%
Horrat	1.9	1.6	1.7	0.9	0.8	1.9	1.3
CONTROL						O DITHEOL	

Cawthron Institute http://www.cawthron.org.nz

QA/QC – Performance Verification

- Calibration linearity
- Duplicate samples
- QC sample all analytes
- Blank sample
- Recovery fortified blank

Issues

- Analytical standards and CRM's
- Metabolites and toxicology
- Regulatory limits for each toxin class
- Pathway to international acceptance?
 CODEX, AOAC, EU/CEN
- Training: lab staff, regulators, clients
 methods and results more complex

Summary

- Full method validation is complex but essential for acceptance of new methods
- ASP/DSP method has realized benefits :
 - fast turnaround with precise results,
 - protected public health
 - cost reduction,
 - no use of animals,
 - more knowledge on marine biotoxins
- Need for better screening assays for PSP and NSP

