united nations educational, scientific and cultural organization

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1595 - 7

Joint DEMOCRITOS - ICTP School on CONTINUUM QUANTUM MONTE CARLO METHODS 12 - 23 January 2004

SUMMARY AND PROBLEMS WITH VARIATIONAL METHODS

David M. CEPERLEY

Beckman Institute for Advanced Studies & Technology University of Illinois at Urbana-Champaign - N.C.S.A. II-61801 Urbana, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Froebinius Theorem

When can we consider the wavefunction as a probability? First how about the Green's function?

 $G(R_0 \to R; 0) = \boldsymbol{d}(R_0 - R) \ge 0$

Trotter's theorem implies it continues to

be positive at all times.

$$G(R_0 \to R;t) \ge 0$$

But if we start with a non-negative function it will stay non-negative, and can be interpreted as a p.d.f.

Not true for all Hamiltonians (require off-diagonal matrix elements to be non-positive.) (not pseudopotentials, not magnetic fields.)

Only true for the bosonic ground state.

Evaluation of kinetic density matrix $\langle r | e^{-t\hat{r}} | r \rangle = \sum_{a} f_{a}^{*}(r) f_{a}(r) e^{-tT_{a}}$ In PBC eigenfunctions of $\hat{T} = \frac{1}{\sqrt{\Omega}} e^{-ik\hat{r}}$ and eigenvalues are Ik^{2} $\langle r | e^{-t\hat{r}} | r \rangle = \sum_{k} \frac{1}{\Omega} e^{-ik\hat{r}} e^{ik\hat{r}} e^{-tLk^{2}}$ convert to an integral $\langle r | e^{-t\hat{r}} | r \rangle = \frac{1}{(2p)^{3}} \int dk e^{ik(\hat{r}'-\hat{r})-tLk^{2}} = (4pIt)^{-3/2} e^{-(r-r)^{2}/4Lt}$ Danger: makes assumption about boundaries and statistics. This is a diffusion process.

Basic DMC algorithm • Construct an ensemble (population P(0)) sampled from the trial wavefunction. {R₁,R_{2,...},R_P} • Go through ensemble and diffuse each one (timestep t) $R'_k = R_k + \sqrt{2Itz(t)}$ uprn • number of copies = $e^{-t(V(R)-E_T)} + u$ floor function • Trial energy E_T adjusted to keep population fixed. $E_0 = \lim_{t \to \infty} \frac{\int dRHf(R,t)}{\int dRf(R,t)} \approx \langle V(R) \rangle_{f(\infty)}$ • Problems: • Branching is uncontrolled • What do we do about fermi statistics?

Population Bias

- Having the right trial energy guarantees that population will on the average be stable, but fluctuations will always cause the population to either grow too large or too small.
- · Various ways to control the population
- Suppose P₀ is the desired population and P(t) is the current population. How much do we have to adjust E_T to make P(t+T)=P₀?

$$P(t+T) = e^{-T(-dE_T)}P(t) = P_0$$
$$dE_T = \frac{\ln(P(t) / P_0)}{T}$$
$$E_T = E_{T0} + k \ln(P / P_0)$$

•There will be a (small) bias in the energy caused by a limited population.

Brownian Dynamics

Consider a big molecule in a solvent. In the high viscosity limit the "master equation" (Smoluchowski or Fokker-Planck eq.) is:

$$\frac{\partial \mathbf{r}(R,t)}{\partial t} = D\nabla^2 \mathbf{r}(R,t) - \mathbf{b} D\nabla [F(R) \mathbf{r}(R,t)]$$

$$R(t+\mathbf{t}) = R(t) + \mathbf{t} \mathbf{b} DF(R(t)) + \mathbf{h}(t)$$

$$\langle \mathbf{h}(t) \rangle = 0 \quad \langle \mathbf{h}(t)^2 \rangle = 2\mathbf{t} D$$

$$G(R \to R') = c \exp\left(-\frac{(R'-R-\mathbf{b} D\mathbf{t} F(R))^2}{2D\mathbf{t}}\right)$$

Also the equation for Diffusion Quantum Monte Carlo without branching. Borrow rejection technique developed for that.

- To the pure diffusion algorithm we have added a drift step that pushes the random walk in directions of increasing trial function: $R' = R + 2I t \nabla \ln y_T(R)$
- Branching is now controlled by the local energy

$$E_L(R) - E_T = \mathbf{y}^{-1}(R)H\mathbf{y}(R) - E_T$$

- Because of zero variance principle, fluctuations are controlled.
- Cusp condition can limit infinities coming from singular potentials.
- We still determine E_T by keeping asymptotic population stable. $\int dR f(R, t) H_V(R)$

$$E_{0} = \lim_{t \to \infty} \frac{\int dRf(R, t) H \mathbf{y}_{T}(R)}{\int dRf(R, t)} \approx \left\langle E_{\mathbf{y}}(R) \right\rangle_{f(\infty)}$$

 Must have accurate "time" evolution. Adding accept/reject step is a major improvement.
 How do we deal with fermi statistics?

• Importanced sampled Green's function:

$$G(R \to R') = \frac{\mathbf{y}(R')}{\mathbf{y}(R')} \left\langle R \left| e^{-tH} \right| R' \right\rangle$$

• Exact property of DMC Green's function

$$\left|\Psi(R)\right|^{2}G(R \to R') = \left|\Psi(R')\right|^{2}G(R' \to R)$$

• We enforce detailed balance to decrease time step errors.

$$A(s \to s') = \min\left[1, \frac{G(s' \to s)|\mathbf{y}(s')|^2}{G(s \to s')|\mathbf{y}(s)|^2}\right]$$

- VMC satisfies detailed balance.
- Typically we choose time step to have 99% acceptance ratio.
- Method gives exact result if either time step is zero or trial function is exact.

WIXCO	lestimators
 Problem is that PMC samples the wrong distribution. 	$\langle A \rangle_{M} = \frac{\int dR \mathbf{y}^{*}(R) A \mathbf{f}(R)}{\int dR \mathbf{y}^{*}(R) \mathbf{f}(R)}$
 OK for the energy Linear extrapolation helps correct this systematic error 	$\left\langle A \right\rangle_{o} \equiv \frac{\int dR f^{*}(R) A f(R)}{\int dR f^{*}(R) f(R)}$ $\left\langle A \right\rangle_{V} \equiv \frac{\int dR \mathbf{y}^{*}(R) A \mathbf{y}(R)}{\int dR \mathbf{y}^{*}(R) \mathbf{y}(R)}$ $\left\langle A \right\rangle_{0} \simeq 2 \left\langle A \right\rangle_{M} - \left\langle A \right\rangle_{V} + O\left(\left(\mathbf{f} - \mathbf{y}\right)^{2}\right)$
 Other solutions: Maximum overlap Forward walking Reptation/path integrals 	$\langle A \rangle_0 \simeq \frac{\langle A \rangle_M^2}{\langle A \rangle_V} + O((\mathbf{f} - \mathbf{y})^2) \text{ for the density}$ $\langle A \rangle_M \simeq \frac{\langle A \rangle_M^2}{\langle A \rangle_V} + O((\mathbf{f} - \mathbf{y})^2) \text{ for the density}$ $\langle A \rangle_M \simeq \langle A \rangle_V \Rightarrow \int dR (\mathbf{f} - \mathbf{y})^2 \text{ minimized wrt } A$

Green's Function Monte Carlo

Kalos, Levesque, Verlet Phys. Rev. A9, 2178 (1974).

- · It is possible to make a zero time-step-error method
- Works with the integral formulation of DMC

$$G(R,R') = \left\langle R \left| \left[1 + t \left(H - E_T \right) \right]^{-1} \right| R' \right\rangle = \int_0^\infty \frac{db}{t} e^{-b \left(\frac{1}{t} + H - E_T \right)}$$

- Sample time-step from Poisson distribution
- Express operator in a series expansion and sample the terms stochastically.

$$G(R, R') = H(R, R') + \int dR'' G(R, R'') K(R'', R')$$

• Recent Revival: "Continuous time Monte Carlo" for lattice models.

Variational-Projector Approach (Transient Estimate) $\Psi(b) = e^{\frac{b}{2}H}\Psi$ $Z(b) = \langle \Psi(b)\Psi(b) \rangle = \langle \Psi e^{-bH}\Psi \rangle = \int dR_0 ... dR_p \Psi(R_0) \langle R_0 e^{-tH}R_1 \rangle ... \langle R_{p-1} e^{-tH}R_p \rangle \Psi(R_p)$ $E(b) = \frac{\langle \Psi(b)H\Psi(b) \rangle}{\langle \Psi(b)\Psi(b) \rangle} = \langle E_L(R_0) \rangle_b \qquad t = \frac{b}{p}$ $-\frac{dE(b)}{db} = s^2(b) = \frac{\langle \Psi(b)(H - E(b))^2 \Psi(b) \rangle}{\langle \Psi(b)\Psi(b) \rangle} = \langle E_L(R_0)E_L(R_p) \rangle_b - E(b)^2 > 0$ • $\Psi(\beta)$ converges to the exact ground state • E is an upper bound converging to the exact answer monotonically because σ its derivative is positive. $Z(b) = \int dR_0 ... dR_p |\Psi(R_0)| \langle R_0 e^{-tH}R_1 \rangle ... \langle R_{p-1} e^{-tH}R_p \rangle |\Psi(R_p)| s(R_0) s(R_p)$ $= \langle s(R_0) s(R_p) \rangle$

General statement of the "fermion problem"

- Given a system with N fermions and a known Hamiltonian and a property O. (usually the energy).
- How much time T will it take to estimate O to an accuracy e? How does T scale with N and e?
- If you can map the quantum system onto an equivalent problem in classical statistical mechanics then:

 $T \propto N^{a} e^{-2}$ With 0 < a < 4

This would be a "solved" quantum problem!

•All approximations must be controlled!

•Algebraic scaling in N!

e.g. properties of Boltzmann or Bose systems in equilibrium.

Solved Problems" 1-D problem. (simply forbid exchanges) Bosons and Boltzmanons at any temperature

- Some lattice models: Heisenberg model, 1/2 filled Hubbard model on bipartite lattice (Hirsch)
- Spin symmetric systems with purely attractive interactions: u<0 Hubbard model, nuclear Gaussian model.
- Harmonic oscillators or systems with many symmetries.
- Any problem with $\langle i|H|j \rangle \leq 0$
- Fermions in special boxes
- Other lattice models
- Kalos and coworkers have invented a pairing method but it is not clear whether it is approximation free and stable.

Fixed-node method	
 Initial distribution is a pdf. It comes from a VMC simulation. f(R,0) = y_T(R) ² Drift term pushes walks away 	
from the nodes. • Impose the condition: • This is the fixed-node BC $f(R) = 0$ when $y_T(R) = 0$.	
• Will give an upper bound to the exact energy, the best upper bound $E_{FN} \ge E_0$ bound consistent with the FNBC. $E_{FN} = E_0$ if $f_0(R)y(R) \ge 0$ all R	
 •f(R,t) has a discontinuous gradient at the nodal location. •Accurate method because Bose correlations are done exactly. •Scales well, like the VMC method, as N³. Classical complexity. •Can be generalized from the continuum to lattice finite temperature, magnetic fields, 	
•One needs trial functions with accurate nodes.	

Proof of fixed-node theorem

• Suppose we solve S.E. in a subvolume V determined by the nodes of an antisymetric trial function.

 $\hat{H} \boldsymbol{f}_{FN} = E_{FN} \boldsymbol{f}_{FN}$ inside V

Extend the solution to all space with the permutation operator.

$$\hat{\boldsymbol{f}}_{FN}(R) \equiv \frac{1}{N!} \sum_{P} \left(-1\right)^{P} \boldsymbol{f}_{FN}\left(PR\right)$$

Inside a given sub-volume only permutations of a given sign (\pm) contribute. Hence the extend solution is non-zero.

Evaluate the variational energy the extended trial function.

$$E_{0} \leq \frac{\sum_{PP'} (-1)^{P+P'} \int dR f_{FN}^{*} (PR) \hat{H} f_{FN} (P'R)}{\sum_{PP'} (-1)^{P+P'} \int dR f_{FN}^{*} (PR) f_{FN} (P'R)} = E_{FN} \leq E_{VMC}$$

Edges of volumes do not contribute to the integral

since the extend solution vanishes there.

Nodal Properties If we know the sign of the exact wavefunction (the nodes), we can solve the fermion problem with the fixed-node method. If $\phi(R)$ is real, nodes are $\phi(R) = 0$ where R is the 3N dimensional vector. • Nodes are a 3N-1 dimensional surface. (Do not confuse with single particle orbital nodes!) • Coincidence points $\mathbf{r}_i = \mathbf{r}_i$ are 3N-3 dimensional hyper-planes In 1 spatial dimension these "points" exhaust the nodes: fermion problem is easy to solve in 1D with the "no crossing rule." Coincidence points (and other symmetries) only constrain • nodes in higher dimensions, they do not determine them. The nodal surfaces define nodal volumes. How many nodal • volumes are there? Conjecture: there are typically only 2 different volumes (+ and -) except in 1D. (but only demonstrated for free particles.)

