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QMC for extended systems 

• Calculation of the Momentum distribution
• Trial Function beyond Slater-Jastrow: back flow and 3-body
• Quantum solids
• Ewald Sums for Charged systems
• Twist Averaged Boundary Conditions
• Some Results for the electron gas
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First Major QMC Calculation
• PhD thesis of W. McMillan (1964) University of Illinois.
• VMC calculation of ground state of liquid helium 4.
• Applied MC techniques from classical liquid theory.
• Ceperley, Chester and Kalos (1976) generalized to fermions.

•Zero temperature (single state) method

•Can be generalized to finite temperature by using 
“trial” density matrix instead of “trial” wavefunction.   
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Liquid helium
the prototypic quantum fluid

• Interatomic potential is known more 
accurately than any other atom because 
electronic excitations are so high. 

• A helium atom is an elementary particle. 
A weakly interacting hard sphere.

•Two isotopes: 
• 3He (fermion: antisymmetric trial function, spin 1/2) 

• 4He(boson: symmetric trial function, spin zero)

5

– Repulsion at short distances because of overlap of 
atomic cores.

– Attraction at long distance because of the dipole-
induced-dipole force.  Dispersion interaction is 
c6r-6  + c8 r-8 + ….

– He-He interaction is the most accurate. Use all 
available low density data (virial coefficients, quantum 
chemistry calculations, transport coefficients, ….) 
Good to better than 0.1K (work of Aziz over last 20 
years). 

– Three body interactions are small but not zero.

Helium interaction
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Helium phase diagram

•Because interaction is so weak 
helium does not crystallize at low 
temperatures. Quantum exchange 
effects are important
•Both isotopes are quantum fluids 
and become superfluids below a 
critical temperature.

•One of the goals of computer 
simulation is to understand these 
states, and see how they differ from 
classical liquids starting from non-
relativistic Hamiltonian:

µ 2
2

2

( )
2

2

i
i i

i

H V R
m

m
λ

= − ∇ +

≡

∑ h

h

7

Trial function for helium
• We want finite variance of the local 

energy.
• Whenever 2 atoms get close together 

wavefunction should vanish.
• The pseudopotential u(r) is similar to 

classical potential
• Local energy has the form:

G is the pseudoforce:

If v(r) diverges as εr-n how should u(r) 
diverge?  Assume:

U(r)=αr-m

Gives a cusp condition on u.
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Other quantum properties
• Kinetic energy
• Potential energy
• Pair correlation function
• Structure function
• Pressure (virial relation)

• Momentum distribution
– Non-classical showing effects of 

bose or fermi statistics
– Fourier transform is the single 

particle off-diagonal density matrix
• Compute with McMillan Method.
• Condensate fraction ~10%

Like properties from classical 
simulations
No upper bound property
Only first order in accuracy
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Derivation of momentum formula
• Suppose we want the probability nk that a given atom has momentum 

hk.
• Find wavefunction in momentum space by FT wrt all the coordinates 

and integrating out all but one electron

• Expanding out the square and performing the integrals we get.

Where:

(states occupied with the Boltzmann distribution.)
For a homogeneous system, n(r,s)=n(|r-s|)
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Calculation of n(r)
Naïve procedure

• Generate sample with VMC
• Take one particle at random and 

displace by a distance r.
• Find ratio of trial function for 

old and new position.
• O(1) work/1 distance

McMillan procedure

• Generate sample with VMC
• Determine change of trial 

function if each particle is 
destroyed.  ak

• Insert a new particle at a 
random position in the box and 
determine trial function for the 
insertion “b”

• For each k perform the average 
b/ak and add to n(|r-rk|).

• Repeat for O(N) insertions.
• O(N) work/O(N2) distances
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Pair Correlation Function, g(r)

Primary quantity in a liquid is the probability distribution of pairs of 
particles. Given a particle at the origin what is the density of
surrounding particles

g(r) = < Σi<j δ (ri-rj-r)> (2 Ω/N2)
Density-density correlation function

From g(r) you can calculate all pair quantities 
(potential, pressure, …)

A function gives more information than a number!
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g(r) in liquid and solid helium
• First peak is at inter-particle 

spacing. (shell around the 
particle)

• goes out to r<L/2 in periodic 
boundary conditions.

14

(The static) structure factor  S(k)
• The Fourier transform of the pair correlation function is the 

structure factor 
S(k) = <|ρk|2>/N (1) “direct”
S(k) = 1 + ρ dr exp(ikr) (g(r)-1) (2) “FT”

• problem with (2) is to extend  g(r) to infinity

• S(K) is measured in neutron and X-Ray scattering 
experiments. 

• Can provide a direct test of  the assumed potential.
• Used to see the state of a system: 

liquid, solid, glass, gas? (much better than g(r) )
• Order parameter in solid is ρG where G is a particular 

wavevector (reciprocal lattice vector).
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• In a perfect lattice S(k) will be non-
zero only on the reciprocal lattice 
vectors G: S(G) = N

• At non-zero temperature (or for a 
quantum system) this structure 
factor is reduced by the Debye-
Waller factor

S(G) = 1+ (N-1)exp(-G2u2/3)
• To tell a liquid from a crystal we see 

how S(G) scales as the system is 
enlarged. In a solid, S(k) will have 
peaks that scale with the number of 
atoms.

)   TS(0)/(kBT ρ=χ

• The compressibility is given by:
• We can use this is detect the liquid-gas transition since 

the compressibility should diverge as k approaches 0. 
(order parameter is density)

16

Crystal liquid
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Fermions: antisymmetric trial function
• At mean field level the

wavefunction is a Slater 
determinant. Orbitals for 
homogenous systems are a filled 
set of plane waves.

• We can compute this energy 
analytically (HF).

• To include correlation we 
multiply by a pseudopotential. We 
need MC to evaluate properties.

• New feature: how to compute the 
derivatives of a deteminant and 
sample the determinant. Use tricks 
from linear algebra.

• Reduces complexity to O(N2).
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Momentum Distribution
• Momentum distribution

– Non-classical showing effects 
of bose or fermi statistics

– Fourier transform is the single 
particle off-diagonal density 
matrix

• Compute with McMillan Method.

*
2 2 2

*
2

2

1
( , ') ... ( , ...) ( ', ...)

( , ...)
( ', ...)

Nn r r dr dr r r r r
Z

r r
r r

ψ ψ

ψ
ψ

=

=

∫



9

19

The electron gas
D. M. Ceperley, Phys. Rev. B 18, 3126 (1978)

• Standard model for 
electrons in metals

• Basis of DFT.
• Characterized by 2 

dimensionless 
parameters: 
– Density
– Temperature

• What is energy?
• When does it freeze?
• What is spin 

polarization?
• What are properties?
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Jastrow factor for the e-gas
• Look at local energy either in r space or k-space:
• r-space as 2 electrons get close gives cusp condition
• K-space, charge-sloshing or plasmon modes.

• Can combine 2 exact properties in the Gaskell form. Write EV in terms structure 
factor  making “random phase approximation.” (RPA).

• Optimization can hardly improve  this form for the e-gas in either 2 or 3 dimensions. 
RPA works better for trial function than for the energy.

• NEED EWALD SUMS because potential trial function is long range, it also decays 
as 1/r, but it is not a simple power.
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Long range properties important 

•Give rise to dielectric properties

•Energy is insensitive to uk at 
small k

•Those modes converge t~1/k2
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Periodic distances

• Minimum Image Convention:take the closest distance
|r|M = min ( r+nL)

Potential is cutoff  so that V(r)=0 for r>L/2 . 
• Image potential

VI =   Σ v(ri-rj+nL)

For long range potential this leads to the Ewald image 
potential. You need a back ground and convergence 
method.

22

Charged systems
How can we handle charged systems?

• Just treat like short-ranged potential: cutoff potential at r>L/2. 
Problems:
– Effect of discontinuity never disappears ( (1/r) (r2) gets bigger.
– Will not have correct dispersion because Poisson equation is not

satisfied
– Even a problem with dipolar forces.

• Image potential solves this:
VI =   Σ v(ri-rj+nL)

– But summation diverges. We need to resum. This gives the ewald
image potential.

– For one component system we have to add a background to make 
it neutral.

– Even the trial function is long ranged and needs to be resummed.
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Ewald summation method

• Key idea is to split potential into k-space part and real-
space part. We can do since FT is linear.

• Hence converges slowly at large r (in r-space)
• And at large k (in k-space)
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Classic Ewald

• Split up using Gaussian charge distribution

• If we make it large enough we can use the minimum image 
potential in r-space.

• Extra term for insulators: 
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How to do it
• r-space part same as short-ranged potential

• k-space part:
1. Compute exp(ik0 xi)=(cos (ik0 xi), sin (ik0 xi)),  k0=2π/L 

∀ i.

2. Compute powers exp(i2k0 xi)= exp(ik0 xi )*exp(ik0 xi) 
etc.  This way we get all values of exp(ik . ri) with just 
multiplications.

3. Sum over particles to get ρk all k.
4. Sum over k to get the potentials.
5. Forces can also be done by taking gradients.

• Constant terms to be added.
• Checks: perfect lattice: V=-1.4186487/a (cubic lattice).

O(N3/2)

O(N)

O(N3/2)

O(N3/2)
O(N1/2)

O(N3/2)
O(1)
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Short and long range potentials

• Potential in r-space 

• Potential in k-space
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Optimzed Ewald

• Division into Long-range and short-ranged function is 
convenient but is it optimal?  No

• Trial functions are also long-ranged but not simply 1/r. We 
need a general procedure.

• Natoli-Ceperley procedure.  What division leads to the 
highest accuracy for a given radius in r and k?

• Leads to a least squares problem.
• FITPN code does this division.

– Input is fourier transform of desired function on grid 
appropriate to the supercell

– Output is a spline of short ranged function and table of 
long ranged function.

28

Problems with Image potential
• Introduces a lattice structure which may not be appropriate.
• Example: a charge layer.

– We assume charge structure continues at large r.
– Actually nearby fluid will be anticorrelated.
– This means such structures will be penalized.

• One should always consider the effects of boundary conditions, 
particularly when electrostatic forces are around!



14

29

Comparison of Trial functions
• What do we choose for the trial function in VMC and DMC?

• Slater-Jastrow (SJ) with plane wave orbitals :

• For higher accuracy we need to go beyond this form.
• Need correlation effects in the nodes.

• Include backflow-three body.

Example of incorrect physics within SJ
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Generalized Feynman-Kacs formula

• Let’s calculate the average population resulting from DMC 
starting from a single point R0 after a time `t’.
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Wavefunctions beyond Jastrow
• Use method of residuals construct 

a sequence of increasingly better 
trial wave functions.  Justify from 
the Importance sampled DMC.

• Zeroth order is Hartree-Fock 
wavefunction

• First order is Slater-Jastrow pair 
wavefunction (RPA for electrons 
gives an analytic formula)

• Second order is 3-body backflow
wavefunction

• Three-body  form is like a squared 
force. It is a bosonic term that does 
not change the nodes.
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Backflow- 3B Wave functions

• Backflow means change the 
coordinates to quasi- coordinates. 

• Leads to a much improved energy 
and to improvement in nodal 
surfaces. Couples nodal surfaces 
together.

Kwon PRB 58, 6800 (1998).

{ } { }i j i ji iDet e Det e⇒k r k x
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3DEG
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Dependence of energy on wavefunction
3d Electron fluid at a density rs=10

Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998

• Wavefunctions

– Slater-Jastrow (SJ)
– three-body (3)
– backflow (BF)
– fixed-node (FN)

• Energy <φ |H| φ> converges to ground 
state

• Variance <φ [H-E]2 φ> to zero.

• Using 3B-BF gains a factor of 4.
• Using DMC gains a factor of 4.
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• Start with analytic Slater-Jastrow using Gaskell trial function
• Apply Bohm-Pines collective coordinate transformation and express 

Hamiltonian in new coordinates
• Diagonalize resulting Hamiltonian. 
• Long-range part has Harmonic oscillator form.
• Expand about k=0 to get backflow and 3-body forms.
• Significant long-range component to BF

OPTIMIZED BF                          ANALYTIC BF

• 3-body term is non-symmetric

Analytic backflow
Holzmann et al, Phys. Rev. E 68, 046707:1-15(2003).
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Results of Analytic tf

• Analytic form EVMC better for rs<20  but not for rs≥20.
• Optimized variance is smaller than analytic.
• Analytic nodes always better!  (as measured by EDMC)
• Form ideal for use at smaller rs since it will minimize optimization 

noise and lead to more systematic results vs N, rs and polarization.
• Saves human & machine optimization time.
• Also valuable for multi-component system of metallic hydrogen. 
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Wigner Crystal Trial Function
• Jastrow trial function does not 

“freeze” at appropriate density.
• Solution is to break spatial 

symmetry “by hand.”
• Introduce a bcc lattice 

{Zi}
• bcc has the lowest Madelung 

energy, but others may have 
lower zero point energy.

• Introduce localized one-body 
terms (Wannier functions).

• Make a Slater determinant 
possibly with spin ordering.

• More complicated trial 
functions and methods are also 
possible.

“C” is a variational parameter to be 
optimized.
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Twist averaged boundary conditions
• In periodic boundary conditions (Γ

point), the wavefunction is 
periodic⇒Large finite size effects for 
metals because of shell effects.

• Fermi liquid theory can be used to 
correct the properties. 

• In twist averaged BC we use an 
arbitrary phase θ as r →r+L

• If one integrates over all phases the 
momentum distribution changes from 
a lattice of k-vectors to a fermi sea.

• Smaller finite size effects
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Twist averaged MC

• Make twist vector dynamical by changing during the 
random walk.

• Within GCE, change the number of electrons
• Within TA-VMC

– Initialize twist vector.
– Run usual VMC (with warmup)
– Resample twist angle within cube
– (iterate)

• Or do in parallel.

( )    i= 1,2,3iπ θ π− < ≤
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Grand Canonical Ensemble QMC

• GCE at T=0K: choose N such that E(N)-µN is minimized. 
• According to Fermi liquid theory, interacting states are related to non-

interacting states and described by k. 
• Instead of N, we input the fermi wavevector(s) kF. Choose all states 

with k < kF (assuming spherical symmetry)
• N will depend on the twist angle θ. = number of points inside a 

randomly placed sphere.

• After we average over θ (TA) we get a sphere of filled states.
• Is there a problem with Ewald sums as the number of electrons varies?

No! average density is exactly that of the background. We only work 
with averaged quantities.

2
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rr r

40

Single particle size effects
• Exact single particle properties with TA within HF
• Implies momentum distribution is a continuous curve with a sharp

feature at kF. 
• With PBC only 5 points on curve

rs=4  N=33 polarized

• No size effect within single particle theory!
• Kinetic energy will have much smaller size effects.

)(
2

2
2

3 knk
m

kdT ∫=
h



20

42

Brief History of Ferromagnetism 
in electron gas

What is polarization state of fermi liquid at low density?

• Bloch 1929   got polarization from exchange interaction:
– rs > 5.4  3D
– rs > 2.0  2D

• Stoner 1939:  include electron screening: contact interaction
• Herring 1960
• Ceperley-Alder 1980    rs >20 is partially polarized
• Young-Fisk experiment on doped CaB6 1999 rs~25.
• Ortiz-Balone 1999 : ferromagnetism of e gas at rs>20. 
• Zong et al   Redo QMC with backflow nodes and TABC. 

↓↑

↓↑

+
−

=ζ
NN
NN
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3d electron gas
• rs<20 unpolarized
• 20<rs<100 partial
• 100<rs Wigner crystal

Ceperley, Alder ‘80T=0 calculations 
with FN-DMC

Energies are very close together at low density!

More recent calculations of Ortiz, Harris 
and Balone PRL 82, 5317 (99) confirm this 
result but get transition to crystal at
rs=65.
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Polarization of 3DEG

Polarization

transition

• We see second order partially 
polarized transition at rs=52

• Is the Stoner model (replace 
interaction with a contact potential) 
appropriate? Screening kills long 
range interaction.

• Wigner Crystal at rs=105

•Twist averaging makes calculation 
possible--much smaller size effects.
•Jastrow wavefunctions favor the 
ferromagnetic phase.
•Backflow 3-body wavefunctions
more paramagnetic

45

Phase Diagram

• Partially polarized 
phase at low density.

• But at lower energy 
and density than 
before.

• As accuracy gets 
higher, polarized 
phase shrinks

• Real systems have 
different units.
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Recent calculations in 2D

para        ferro           solid

T=0 fixed-node calculation:

Also used high quality backflow 
wavefunctions to compute energy 
vs spin polarization.

Energies of various phases are 
nearly identical

Attaccalite et al: 

PRL 88, 256601 (2002)

Tanatar,Ceperley ‘89
Rapisarda, Senatore ‘95
Kwon et al  ‘97

2d electron gas
•rs <25 unpolarized
•25< rs <35 polarized
•rs >35 Wigner crystal

47

Linear response for the egas
• Add a small periodic potential.

• Change trial function by replacing plane waves with solutions to the 
Schrodinger Eq. in an effective potential.

• Since we don’t care about the strength of potential use trial function to 
find the potential for which the trial function is optimal.

• Observe change in energy since density has mixed estimator problems. 
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Fermi Liquid parameters
• Do by correlated sampling:  Do one long MC random walk with a 

guiding function (something overlapping with all states in question).

• Generate energies of each individual excited state by using a weight 
function 

• “Optimal Guiding function” is
• Determine  particle hole excitation energies by replacing 

columns:fewer finite size effects this way.  Replace columns in slater
matrix 

• Case where states are orthogonal by symmetry is easier, but non-
orthogonal case can also be treated.

• Back flow needed for some excited states since Slater Jastrow has no 
coupling between unlike spins.
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