united nations educational, scientific and cultural organization

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1595 - 9

Joint DEMOCRITOS - ICTP School on CONTINUUM QUANTUM MONTE CARLO METHODS 12 - 23 January 2004

QMC FOR EXTENDED SYSTEMS

David M. CEPERLEY

Beckman Institute for Advanced Studies & Technology University of Illinois at Urbana-Champaign - N.C.S.A. II-61801 Urbana, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

QMC for extended systems

- Calculation of the Momentum distribution
- Trial Function beyond Slater-Jastrow: back flow and 3-body

- Quantum solids
- Ewald Sums for Charged systems
- Twist Averaged Boundary Conditions
- Some Results for the electron gas

Derivation of momentum formula

- Suppose we want the probability $\mathbf{n}_{\mathbf{k}}$ that a given atom has momentum hk.
- Find wavefunction in momentum space by FT wrt all the coordinates and integrating out all but one electron

$$\Pr(k_1, ...k_N) = \left| \int dR \ e^{-i(k_1r_1 + ... + k_Nr_N)} \Psi(R) \right|$$
$$n_k = \int dk_2 \dots dk_N \ \Pr(k, k_2, ...k_N)$$

• Expanding out the square and performing the integrals we get.

$$n_{k} = \int \frac{d^{r} r d^{r} s}{(2\mathbf{p})^{3} V} \exp(-ik(r-s))n(r,s) = \int \frac{d^{r} r}{(2\mathbf{p})^{3}} e^{-ikr} n(r)$$

Where:

$$n(r,s) = \frac{V}{Q} \int dr_2 \dots dr_N \mathbf{y}^* (r, r_2 \dots r_N) \mathbf{y} (s, r_2 \dots r_N)$$

(states occupied with the Boltzmann distribution.) For a homogeneous system, n(r,s)=n(|r-s|)

Periodic distances

• Minimum Image Convention:take the closest distance

 $|\mathbf{r}|_{\mathbf{M}} = \min(\mathbf{r} + \mathbf{n}\mathbf{L})$

Potential is cutoff so that V(r)=0 for r>L/2.

• Image potential

 $V_{I} = \Sigma v(r_{i}-r_{j}+nL)$

For long range potential this leads to the Ewald image potential. You need a back ground and convergence method.

Ewald summation method

• Key idea is to split potential into k-space part and realspace part. We can do since FT is linear.

$$V = \sum_{i < j,L} \mathbf{f}(\mathbf{r}_{i} - \mathbf{r}_{j} + \mathbf{n}L)$$

$$V = \sum_{k} \mathbf{f}_{k} \left(\left| \mathbf{r}_{k} \right|^{2} - N \right) \text{ where } \mathbf{r}_{k} = \sum_{i} e^{ik \cdot \tau_{i}}$$
and $\mathbf{j}_{k} = \frac{1}{\Omega} \int dr e^{i \cdot k \cdot r} \mathbf{f}(r)$
For $\mathbf{f}(\mathbf{r}) = e^{2}/\mathbf{r} \Rightarrow \mathbf{j}_{k} = \frac{4\mathbf{p}e^{2}}{k^{2}}$

- Hence converges slowly at large r (in r-space)
- And at large k (in k-space)

 k-space part: Compute exp(ik₀x_i)=(cos (ik₀x_i), sin (ik₀x_i)), k₀=2π/L ∀i. Compute powers exp(i2k₀x_i)= exp(ik₀x_i)*exp(ik₀x_i) etc. This way we get all values of exp(ik ⋅ r_i) with just multiplications. Sum over particles to get ρ_k all k. 	
 Compute exp(ik₀ x_i)=(cos (ik₀ x_i), sin (ik₀ x_i)), k₀=2π/L ∀ i. Compute powers exp(i2k₀ x_i)= exp(ik₀ x_i)*exp(ik₀ x_i) etc. This way we get all values of exp(ik · r_i) with just multiplications. Sum over particles to get ρ_k all k. 	
 Compute powers exp(i2k₀x_i)= exp(ik₀x_i)*exp(ik₀x_i) etc. This way we get all values of exp(ik · r_i) with just multiplications. Sum over particles to get ρ_k all k. 	O(N)
3. Sum over particles to get ρ_k all k.	O(N ^{3/2}
	O(N ^{3/2}
4. Sum over k to get the potentials.	O(N ^{1/2}
5. Forces can also be done by taking gradients.	O(N ^{3/2}
Constant terms to be added.	O (1)
Checks: perfect lattice: V=-1.4186487/a (cubic lattice).	

T.	wavefunction	E_v	σ	Enuc
1	SJ	1.0669 (6)	1.15 (2)	1.0619 (4)
	BF3-O	1.0613 (4)	0.028(1)	1.0601 (2)
	BF-A	1.0609 (2)	0.027 (1)	1.0598 (1)
5	SJ	-0.15558 (7)	0.0023(1)	-0.15734 (3)
	BF3-O	-0.15735 (5)	0.00057 (1)	-0.15798 (4)
	BF-A	-0.15761 (2)	0.00067 (1)	-0.15810 (1)
10	SJ	-0.10745 (2)	0.00039 (.5)	-0.10849 (2)
	BF3-O	-0.10835 (2)	0.00014 (.5)	-0.10882(2)
	BF-A	-0.10839 (2)	0.00018(1)	-0.10889 (2)
20	SJ	-0.06333 (1)	0.000064 (1)	-0.06388
	BF3-O	-0.06378 (2)	0.000027 (7)	-0.06403
	BF-A	-0.06361 (1)	0.000049(1)	-0.06408 (1)

- Analytic form E_{VMC} better for $r_s < 20$ but not for $r_s \ge 20$.
- Optimized variance is smaller than analytic.
- Analytic nodes always better! (as measured by E_{DMC})
- Form ideal for use at smaller r_s since it will minimize optimization noise and lead to more systematic results vs N, r_s and polarization.
- Saves human & machine optimization time.
- Also valuable for multi-component system of metallic hydrogen.

Fermi Liquid parameters

- Do by correlated sampling: Do one long MC random walk with a guiding function (something overlapping with all states in question).
- Generate energies of each individual excited state by using a weight function $f_a(R)$

$$w_{a}(R) = \frac{I_{a}(R)}{y_{G}(R)}$$
$$y_{G}^{2} = \sum_{a} |f_{a}(R)|^{2}$$

- "Optimal Guiding function" is
- Determine particle hole excitation energies by replacing columns:fewer finite size effects this way. Replace columns in slater matrix
- Case where states are orthogonal by symmetry is easier, but nonorthogonal case can also be treated.
- Back flow needed for some excited states since Slater Jastrow has no coupling between unlike spins.