united nations educational, scientific and cultural organization

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1595 - 25

Joint DEMOCRITOS - ICTP School on CONTINUUM QUANTUM MONTE CARLO METHODS 12 - 23 January 2004

PATH INTEGRAL MONTE CARLO:

BOSONIC PATH INTEGRALS

David M. CEPERLEY

Beckman Institute for Advanced Studies & Technology University of Illinois at Urbana-Champaign - N.C.S.A. II-61801 Urbana, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

Quantum statistics

- For quantum many-body problems, not all states are allowed: allowed are totally symmetric or antisymmetric. Statistics are the origin of BEC, superfluidity, lambda transition.
- Use permutation operator to project out the correct states:

$$\widehat{P}f(R) = \sum_{p=1}^{N!} \frac{1}{N!} f(PR)$$
$$Z = \sum_{p=1}^{N!} \frac{1}{N!} \int dR_1 \dots dR_M e^{-\sum_{i=1}^{M} S(R_i, R_{i+1})}$$

- Means the path closes on itself with a permutation. R₁=PR_{M+1}
- Too many permutations to sum over; we must <u>sample</u> them.
- PIMC task: sample path { R₁, R₂,...R_M and P} with Metropolis Monte Carlo (MCMC) using "action", S, to accept/reject.

2

3 boson example

- Suppose the 2 particle action is exact.
- Make Jastrow approximation for spatial dependance
 (Feynman form)

$$\left\langle R \left| e^{-bH} \right| R' \right\rangle = e^{-\sum_{i} (r_{i} - r_{i})^{2}} \prod_{i < j} f\left(r_{ij}, r_{ij}'\right)$$
 units with $4bl = 1$
$$\mathbf{r}_{bose}(R) = \sum_{P} \left\langle R \left| e^{-bH} \right| PR \right\rangle \sim \left[\sum_{P} \left\langle R \left| e^{-bH_{0}} \right| PR \right\rangle \right] \prod_{i < j} f\left(r_{ij}, r_{ij}\right)$$
$$\mathbf{r}_{bose}(R) = \left| \Psi(R) \right|^{2} \left[1 + e^{-r_{12}^{2}} + e^{-r_{13}^{2}} + e^{-r_{23}^{2}} + 2e^{-r_{12}^{2} - r_{23}^{2} - r_{13}^{2}} \right]$$

- Spatial distribution gives an effective attraction (bose condensation).
- For 3 particles we can calculate the "permanent" but larger system require us to sample it.
- Anyway permutations are more physical.

4

How to calculate n(r) 1. Take diagonal paths and find probability of displacing one end. advantage: - simultaneous with other averages, - all time slices and particle contribute. disadvantage: unreliable for $r > \Lambda$. 2. Do simulation off the diagonal and measure end-end distribution. Will get condensate when free end hooks onto a long exchange. advantage: works for any r 1010 Disadvantage: x (Å) Offdiagonal simulation not good for other properties Normalization problem. 48

Quantum	Classical
Bose condensation	Delocalization of ends
Boson statistics	Joining of polymers
Exchange frequency	Free energy to link polymers
Free energy	Free energy
Imaginary velocity	Bond vector
Kinetic energy	Negative spring energy
Momentum distribution	FT of end -end distribution
Particle	Ring polymer
Potential energy	Iso-time potential
Superfluid state	Macroscopic polymer
Temperature	Polymer length

Dictionary of the Quantum-Classical Isomorphism

General scheme

- Input file is name.in "name" identifies run
- Code opens "name.out" or appends to it if it exists already
- Code goes thru input file, responding to each keyword
- Order matters
- Output files append information (or overwrite)

General keywords:

- SEED sets rng (to repeat a run)
- RESTART (NONE, PARTIAL or FULL) – PARTIAL Read name.rs for state
 - FULL: also space down to correct line and resume
- TIMER: stop excecution if time > xxx
- DEBUG: higher level of printouts.

60

File structure	
 Create project space with a link to upi, squarer, Upi version number pimc contains "global routines" common blocks fnlib contains independent routines (no common blocks) forsub contains library routines: blas, linpack, xxxrtl contains vendor specific routines Setup routines to construct input Analysis routines to read output sqdir: squarer directory for density matrix doc: some documentation uscript: some scripts makefile goes into directories 	
	61

Averages	
 Scalars are written to the .bsc file "report" or "dataspork" to examine the output qid.out file just has execution "notes" How do averages get there? Call setav reserves a global pointer, e.g. "jenergy" In some routine we add to avtemp(jenergy) and anorm(jenergy) during upi execution. Adding a new scalar is easy Library takes care of initialization(s), output, Many "vector" averages Histograms: g(r),density Tables: s(k,i,j), winding numbers,cycle lengths Efficiency measures: acceptance ratios, diffusion All these are handled separately. 	
	63

Density matrices used in PUPI
y matrix: generated by squarer, (see new simpler code on udes expansion for offdiagonal components. Action is in dmeval (calls dstnce and offd). Energy is evaluated in calls radial tables for variety of grid types. ticle propagator in periodic boundary conditions: fpdmg.f le set up in setfpdm.f Used for fermion and boson density
on density matrix. Ofill sets up the matrix, calls invert or calculate the determinant.
ar a plane (image method). Dleak.f (related computations al action, dnode.f)
e potential: (in k-space) (ewald.f) setup code generates sions. Uses fourier coefficents (rhok).
ty:
specified temperatures differing by powers of 2 in ure
vative
rivative
flexible with respect to grid type, analytic features
rmulas for all cases—how we compute changes with o a single variable and derivatives.
69

Potentials	
POT PAIR name1 name2 file.dm [n m]	
Potential between these types of particles is on file. File is output of squarer N and M control accuracy of expansion of action. USR(r,4,type1,type2,levels,expansion,derivative)	
Subroutine addpot initializes a new potential	
Does only the range in r as existing in table, with the grid etc hidden in the file.	d,
POT EWALD cutk file defines a k-space potential, cutoff=cutk, data on "file" ULR(k,type1,type2,levels, derivative)	
	70

CODE LEVELS					
Driver -> setsys		Does system setup			
incom		control driver, checkpointing output			
Permute, select, omov	/e	drivers for MC			
Weave, displace		constructs a move			
sampfr samcg codrift	ptable	sampling routines			
dmeval		routines for action, energy			
Dstnce offd ewald		details of action			
Tentry vsum deltar co	ossin	numerically intensive routines			
skadd,gradd,anal,wind	d,area	averages			
			72		

