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Quantum Dynamics
• What can we do about “real-time” quantum dynamics?

• Clearly very important!! This is what experiments usually 
probe.

• Feynman argued that full many-body quantum dynamics is 
exponentially difficult on a classical computer.  Amount of 
memory needed to store and time needed to update, the 
wavefunction--which can be completely arbitrary-- grows very 
fast.

• Judge by the progress on quantum scattering calculations:
– 1950-1970 2 particle problems
– 1970-1990 3 particle problems
– 1990-2010 4 particle problems
– ….
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QMC-Equilibrium responses
• Feynman’s argument does not apply to the sort of 

things measurable in experiment:

– Linear response functions 
– Specific cross sections
– Low temperature dynamics
– Specific excited states

Where is the limit of what is possible on a classical 
computer?

• We will focus on:

1. Construction of real time response from imaginary 
time correlations 

2. T=0 excited states
3. scattering calculations.
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Effective mass
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• Effective mass is gotten from the 
diffusion constant at low 
temperature

• At short time KE dominates and 
m=m*

• At large times, neighboring atoms 
block the diffusion increasing the 
mass by a factor of 2.

• Lower curve is for Boltzmannons-
they have to return to start 
position so they move less.

• Diffusion in imaginary time has 
something to do with excitations!
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Imaginary time correlations
• With PIMC (and DMC) we can calculate imaginary time 

dynamics:

(DMC corresponds to β→∞)
• If we could determine this analytically we could just 

substitute imaginary values of τ for real values.
• Dynamic structure function is the response to a density 

perturbation is (e.g. density-density response)

• Sk(ω) is measured by neutron scattering. We need to 
invert the “Laplace transform” to get Sk(ω) .
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Little structure or 
information in F(q,t)

shown are different q 
values.

but much in S(q,w). 
Sharp peaks at the 
excitations 
(essentially infinitely 
narrow lines in the 
superfluid)
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Bayes’ theorem
• What is the most probable value of Sk(ω) given both:

– the PIMC data,  Fk(t)  and
– prior knowledge of Sk(ω): e.g. Sk(ω) ≥0

• Bayes’ theorem (also used by Laplace)

• Likelihood function follows from central limit theorem:

• But what to choose for the prior Pp(S)?  Typical choice is 
the “entropy.”
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Now two routes to making the inversion:

1. Sample Sk(ω). AvEnt Using MCMC, make moves in 
Sk(ω) space. Take averages and also get idea of the 
allowed fluctuations. Model can be defined self 
consistently

2. Find most probable Sk(ω). MaxEnt Maximize function. 
Ok if the p.d.f. is highly peaked. Estimate errors by the 
curvature at the maximum. Fast to do numerically but 
makes more assumptions. (coself code)

How do we choose α?  Choose it from its own prior function so 
the strength of the likelihood function and the prior function 
are balanced. Its prior function is: P(α)=1/ α.

Determine MC errors by blocking and rotate to direction of 
independent data. 

8

Example: Liquid 4He
Boninsegni and DMC JLTP 104, 339 (1996). 

• Calculate Fk(τ) using PIMC (UPI code).

• AvEnt works beautifully in normal phase.

• Gives peaks too broad in the superfluid phase. Failure of 
the entropic prior.

• It makes the assumption that energy modes are 
uncoupled. This is false! Energy levels repel each other 
so that if there is energy at one level, energy levels are 
pushed away from nearby values.

• Would require incredible precision to get sharp features.

• But good method for determining the excitation energy. 
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Comparison in normal liquid He 
phase

• MaxEnt works well 
in normal phase 
(T=4K)

• Modes are 
quantum but 
independent of 
each other so that 
max-ent prior is 
reasonable.

10

Comparison in Superfluid
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Excitation energies

Improvements?

• Better PIMC data, more 
time values, smaller 
errors.

• Work in effective 
hamiltonian space, not 
energy space.

• Get more information, for 
example, 
– multiphonon

correlation functions 
– Incorporate exchange 

values
– Analytic information 

about response 
properties

Reasonable excitation energies 
from  MAXENT

Phonons                  rotons

12

How about T=0K?
• Do reptation so we don’t have mixed estimator problem

• Consider Feynman-Cohen trial function for liquid helium 
excitations.

• Reduces to ground state at k=0. In an atom or solid, 
simply make an excited state trial function.

• Has momentum k, so orthogonal to other excitations.
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Fixed-node method
• Initial distribution is a pdf.  

It comes from a VMC simulation.
• Drift term pushes walks away 

from the nodes.
• Impose the condition:
• This is the fixed-node BC

• Will give an upper bound to the 
exact energy, the best upper 
bound consistent with the FNBC 
as long as we are looking for the 
ground state of a given 
symmetry (and symmetry has a 
1D representation).
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•f(R,t) has a discontinuous gradient at the nodal location.
•Accurate method because Bose correlations are done exactly. 
•One needs trial functions with accurate nodes for excited state.
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Fixed-node approach to excited 
states

For ground state of a given symmetry, tiling theorem applies to 
all the pockets of a trial function.

• all pockets are related by symmetry => all energies the same
• What can go wrong if it is not orthogonal?  Pockets will be 

different.
• Consider a H atom in a 2s state.

• You get 2 different energies and they are only identical for the
correct node position.

• Problem: no orthogonality to ground state is imposed.
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Fixed-node calculation of excited 
states

• Fixed-node hamiltonian messes up matrix elements.

• Unless you know excited state nodes are correct, you 
must use bosonic trial function and transient estimate 
method =>  Sign problem for all excited states.
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Linear Basis approach
Assume trial function is a linear combination of known 

functions: a basis  fn(R).

( ) ( )

[ ]

1

*

,
*

,

;

( )

overlap matrix

Hamiltonian matrix 

 in an orthonormal basis       

2 0

    generalized eigenvalue problem

m

n n
n

n m nm
n m

V
n m nm

n m

nm n m

nm n m

nm nm

v

R a f R

a a H
E

a a N

N f f

H f Hf H

N N

dE H E N
d
H E Nλ λ λ

ψ

δ

=

=

=

= =

= =

=

= − = ⇒

=

∑

∑
∑

a

a

a a
a
a a



9

18

Properties of solution to GEP

• For a basis of size m, there exist “m” eigenvalues and 
orthonormal eigenfunctions:

• McDonald’s theorem: the n th eigenvalue in a basis is 
an upper bound to the n th “exact eigenvalue.

• We can always lower all the energies by augmenting 
the basis 

• When basis is complete, we get exact answers!
• Orthogonality taken into account in the solution.
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VMC Calculation of excited-state energies 
Correlation Function MC: J. Chem. Phys. 89, 6316 (1988). 

• Construct a basis of trial functions spanning excited states in 
question.

• Using VMC calculate all the matrix elements as a function of 
imaginary time. Must use a bosonic sampling function.

• Find lowest energy in this basis
• Solve the generalized eigenvalue problem: 

• Then           is the best upper bound spanned by the basis 
functions.

• Zero variance applies also to excited states.
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Fermi Liquid parameters
• Do by correlated sampling:  Do one long MC random walk with 

a guiding function (something overlapping with all states in 
question).

• Generate energies of each individual excited state by using a 
weight function 

• “Optimal Guiding function” is
• Determine  particle hole excitation energies by replacing 

columns:fewer finite size effects this way.  Replace columns in
slater matrix 

• Case where states are orthogonal by symmetry is easier, but 
non-orthogonal case can also be treated.

• Back flow needed for some excited state since Slater Jastrow
has no coupling between unlike spins.
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Diffusion Monte Carlo method

• The time-evolved basis approaches the exact eigenfunctions:

• Using bosonic DMC (no nodes) calculate the N and H as a 
function of imaginary time. Note, H=dN/dt.

• Use same guiding function for importance sampling.
• Solve the generalized eigenvalue problem:

• Then           approaches the exact λth energy exponentially 
fast and from above.
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Typical results

• Look for plateau in energy.
• Error bars grows exponentially in time (sign problem).
• Best results are for lower energy states
• Can use symmetry to reduce matrix size.

23

Remarks on CFMC
• Zero variance principle applies.
• Can treat a large basis and hence get a whole spectrum 

at once.
• Sign problem is still there.  In practice “t” cannot be too 

large.
• If nodes in the DMC are present, excited state energies 

will be wrong.
• Maybe MaxEnt methods can do better. But problems 

working in energy space. Much better in effective 
Hamiltonian space.

• Used for
– Vibration excitations
– Molecular excitations
– Lattice models.
– Positronium-positonium scattering (Shumway-DMC)
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Exciton-Exciton scattering

Shumway and DC, Phys. Rev. B 63, 165209-165215 (2001).

• 4-quantum particles
• Boundary conditions and 

energy determine phase shifts
• Use excited state method to 

get exact energies inside 
boundaries. ( )
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Basic 2-body scattering equations

See text books for details
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