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Fermion Fermion Path IntegralsPath Integrals

1. Direct Fermion Path Integrals: “the sign problem”

2. Restricted Path Integrals
A. Restricted Path Identity
B. Para/ortho hydrogen example 
C. The reference point
D. Free particle nodes
E. Nodal Action
F. Momentum distribution
G. Superfluidity
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“Direct” Fermion Path Integrals
• Path integrals map quantum mechanics into a system of 

cross-linking closed “polymers.”

R0=PRM,  P permutation,
S(Ri, Ri+1) is “boltzmannon action” 

• Bosons are easy: simply sample P.
• Fermions: sample the “action” and carry (-1)P as a weight.
• Observable is even P - odd P.  scales exponentially in N and 
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Importance Sampling
Given the integral

How should we sample x to maximize the efficiency? 
Estimator

Transform the integral to:

The variance is:

Optimal sampling:
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Parameterize as:

Solution: 

Estimator: 

If f(x) is entirely positive or negative, estimator is 
constant. “zero variance principle.”

We can’t sample p*(x), but its form can guide us.
Importance sampling is a general technique: it works in 

many dimensions.
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Fermion variance
• Compute a fermion observable by sampling the boson 

probability and taking the sign as a weight

• The variance of O  for this choice can be separated into 
a bosonic and fermionic contribution.

• The fermion efficiency is

• Big problem once N becomes large OR temperature 
becomes low-precisely when fermi statistics matter.
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The Sign Problem

The expression for Fermi particles, such as He3, is also easily written down. 
However, in the case of liquid He3, the effect of the potential is very hard to 
evaluate quantitatively in an accurate manner.  The reason for this is that the 
contribution of a cycle to the sum over permutations is either p ositive or negative 
depending on whether the cycle has an odd or even number of atoms in its length L. 
At very low temperature, the contributions of cycles such as L=51 and L=52 are 
very nearly equal but opposite in sign, and therefore they very nearly cancel.  It is 
necessary to compute the difference between such terms, and this requires very 
careful calculation of each term separately.  It is very difficult to sum an alternating 
series of large terms which are decreasing slowly in magnitude when a precise 
analytic formula for each term is not available. Progress could be made in this 
problem if it were possible to arrange the mathematics describing a Fermi system in 
a way that corresponds to a sum of positive terms.  Some such schemes have been 
tried, but the resulting terms appear to be much too hard to evaluate even 
qualitatively.
The (explanation) of the superconducting state was first answered in a convincing 
way by Bardeen, Cooper, and Schrieffer. The path integral approach played no part 
in their analysis, and in fact has never proved useful for degenerate Fermi systems.

Feynman and Hibbs,1965.
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Fixed-Node method
• Get rid of negative walks by canceling them with positive 

walks. We can do this if we know where the density matrix 
changes sign. Restrict walks to those that stay on the 
same side of the node.  

• Fixed-node identity. Gives exact solution if we know the 
places where the density matrix changes sign: the nodes.

• Classical correspondence exists!! 
• Problem: fermion density matrix appears on both sides of 

the equation.  We need nodes to find the density matrix. 

• But still useful approach. (In classical world we don’t know 
V(R).)
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Proof of the fixed node method
1. The density matrix satisfies the Bloch 

equation with initial conditions.

2. One can use more general boundary 
conditions, not only initial conditions, 
because solution at the interior is uniquely 
determined by the exterior-just like the 
equivalent electrostatic problem. 

3. Suppose someone told us the surfaces where 
the density matrix vanishes (the nodes). Use 
them as boundary conditions.

4. Putting an infinite repulsive potential at the 
barrier will enforce the boundary condition.

5. Returning to PI’s, any walk trying to cross 
the nodes will be killed.

6. This means that we just restrict path 
integrals to stay in one region. 

( )2
0

( , ) 1
( , ) ( ) ( , )    ( ,0) 1 ( )

!
P

P

R t
R t V R R t R R PR

t N
ρ

λ ρ ρ ρ δ
∂

= ∇ − = − −
∂ ∑

R
PR0

R0

β

negposneg



5

DMC                     11

Ortho-para H2 example
In many-body systems it is hard to visualize statistics.

• The simplest example of the effect of statistics is the H2
molecule in electronic ground state.

• Protons are fermions-must be antisymmetric .
1. Spins symmetric (áá). spatial wf antisymmetric (ortho)   “fermions”
2. Spins antisymmetric  (âá- áâ). spatial wf symmetic (para) “bosons”
3. Non symmetrical case (HD)       “boltzmannons”

All 3 cases appear in nature!
• Go to relative coordinates:   r= r1-r2
• Assume the bond length is fixed |r|=a. Paths are on surface of 

sphere of radius a.
PIMC task is to integrate over such paths with given symmetries.
For a single molecule there is no potential term, a “ring polymer”

trapped on the surface of a sphere.
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Paths on a sphere

1. “boltzmannons”Ring 
polymers on sphere

O(r →r)

2. “bosons” 2 types of 
paths allowed.  

O(r → r)  + O(r → -r)

3. ”fermions” 2 types of 
paths allowed 

O(r → r)  - O(r → -r)    
Low efficiency as β→∞

1 0( )E Ee βζ − −=
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Restricted paths for ortho H2

• Fix origin of path: the reference point.
• Only allow points on path with a positive 

density matrix. paths staying in the 
northern hemisphere:   r(t).r(0)>0

• Clearly negative paths are thrown out.
• They have cancelled against positive 

paths which went south and then came 
back north to close.

• The symmetrical rule in “t”: r(t).r(t’)>0  is 
incorrect.

• Spherical symmetry is restored by 
averaging over the reference point: the 
north pole can be anywhere.

• Can do many H2 the same way. 
• Ortho H2 is much more orientable than 

either HD or para H2.
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Reference Point
• New feature compared with boson path integrals.

• Scalar averages can only be taken at the reference 
point.

• However partition function and all derivatives (energy) 
use information from the whole path.

• We lose time slice symmetry if nodes are time 
dependent.  But this is probably necessary to fix phase 
of density matrix.

• Reference point moves are expensive and ultimately 
cause RPIMC to get “stuck” for T<EF/10. 

• One can use a 2 reference points.  This restores time-
reversal symmetry and means we only need nodes for 
t<β/2.

• Unfortunately, more than 2 reference points brings back 
the “sign” problem. 
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RPIMC with approximate nodes
• In almost all cases, we do not know the “nodal” 

surfaces.

• We must make an an ansatz.
• This means we get a fermion density matrix (function 

with the right symmetry) which satisfies the Bloch 
equation at all points except at the node.

• That is: it has all the exact “bosonic” correlation
• However, there can be a derivative mismatch across the 

nodal surface.
• We expect that there is a free energy bound.  (proved 

at high temperature and at zero temperature) 
• Maybe one can find the best nodes using the variational 

principle.  (variational density matrix approach) 
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Free particle nodes
• For non-interacting (NI) particles the nodes are the 

finite temperature version of a Slater determinant:

• At high T, nodes are hyperplanes.

• At low T they try to minimize kinetic energy.
• There is “time dependence”. 
• Problem: no spin-coupling in nodes
• Militzer-Pollock chose g(r,r’;t) with Hartree eqs.
• Can also add backflow to nodes.
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Nodal action
• “Primitive Rule:” simply reject paths if they cross a node.
• Will lead to an error proportional to 
• Improved nodal action:solve for  a particle next to a 

planar node.  Use method familiar from electrostatics, the 
method of images:

• Determine nodal distance using “Newton estimate.”
• As paths approach within a thermal wavelength of the 

node, we get a repulsion, to account for the probability 
that a path could have crossed and recrossed within τ.
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Practical fermion issues
• Bosonic methods are applicable! Fermion code is built 

on top of bosonic code.
• Add a “gate” in multilevel Metropolis where:

– Sign of density matrix is checked
– Nodal action is computed and used

• Reference point moves are expensive: all slices must be 
checked for nodal violations.

• Permutations are still needed! However, 2 particle 
exchanges will always be rejected.  Only odd particle 
cyclic exchanges (3,5,…) allowed as updates.

• Determinantal updates
– Full determinant evaluation takes N3 operations
– However row/column updates take only N2.

• Use inverse of Slater matrix to compute derivative 
needed for the gradient in the nodal action.
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Momentum distribution
• For bosons the momentum distribution shows evidence 

of BEC.  

– Long exchange cycles⇒n(r) long range ⇒ n0 >0
• What is effect for fermions? Run logic in reverse.

– For NI fermions, n(k) has discontinuity at kF.
– Hence
– We must have cancellation of long-range positive 

and negative exchanges!
– Negative permutations allowed/required off-

diagonal.

• Algorithm recently tested by Militzer: cond-mat/0310401

• Exchanges are needed to get a Fermi-liquid.
• Long exchanges do not lead to a phase transition or 

superfluidity. 

( )2
( ) cos( ) /F Fn r k r k r∝

DMC                     21

Fermion superfluidity
• Liquid 3He becomes superfluid at very low temperatures 

(Tc ~ 1mK).

• With the exact nodal restriction this must also happen 
within RPIMC, because we can calculate the free energy.

• What happens to the paths at this phase transition?
• SPECULATION: there is a “Cooper” pairing of up and 

down spin exchanges, similar to a polymer blend

• Not tried in 3He  because of formidable practical 
difficulties (length, temperature scale) and lack of 
knowledge of nodal topology required.
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Exciton superfluidity
• What system is the most appropriate to 

observe superfluidity of fermions? 
(strongest pairing)

• Consider the simplest 1-band model of 
particles and holes in a semiconductor.

• Assume masses are isotropic and the 
same; only the charge is different.

• At low temperature a particle and hole 
can bind together to form an exciton
(like a hydrogen atom) which is a boson.

• If the exciton density is high enough, 
they can bose condense.: Tρ3/2<2.7

• Shumway-Ceperley (1999) observed 
this transition for excitons.

• What do the paths look like?
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Pairing Nodes
• Free fermion nodes does not allow pairing because 

nodes of two species are independent.
– Consider two pairs of fermions.  
– Possible exchanges are {I, PaPb} and {Pa , Pb}.
– The permutation PaPb represents an exciton

exchange but it is forbidden if nodes are 
independent since the path will cross 
“a” nodes or “b” nodes first.

• Instead we used paired nodes: A{A{ g(a1-b1)g(a2-
b2)…..} where  g(r) is a pairing function (we used a 
Gaussian).

• Nodes are time -independent ⇒ winding number 
formula for superfluid response.

• We can define 2 different responses. Let Wx be 
winding number of species x.
– movement of walls: <(Wa+Wb)2> 
– magnetic field: <(Wa-Wb)2>
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Excitonic Paths [rs=6  T<Tc]

Winding exchange (3,6) Pair exchange (2,2)
Blue=electron   lavendar=hole
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Path Integral Applications

• Superfluid 4He
• Solid 4He
• BEC in traps 
• Superfluidity on surfaces 

(H2 on silver)

• Helium droplets

• …….

• Homogenous 
electrons/plasma

• High Temperature 
hydrogen/helium (interior of 
planets)

• Liquid/solid 3He
• Electron-hole liquid
• BEC of fermions

• …….

Bosons Fermions
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Summary
• Restricted paths allow 

realistic calculations of 
many fermion systems

• Makes a nodal assumption 
which is only controlled for 
T>TF.

• Paths get stuck at low 
temperature T<10TF unless 
you make other 
assumptions (e.g. ground 
state nodes.)

• Generalization of method 
for bosonic PI

• Unifies theory of bose and 
fermi systems

• Proof that stable fermion
methods can exist.

DANGER: you can find in the 
literature solutions to the “fermion
sign problem” several times a year.

In all known cases these either:
–have a serious error
–are known not to work
–work only in special cases (1D, HO, 
lattice models,..)
–cannot scale at large N or low 
temperature.
–Have uncontrolled approximations.
–…… 

(these are the opinions of DMC )




