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Magnetism and Melting of the
Low Density 2D Wigner Crystal

! B. Bernu (University of Paris)
o L. Candido (University of Goiania, Brazil)
P. Phillips, DMC (UIUC)

< In MOSFETs and above liquid helium, one can make a low
density 2D electron gas. r,=a/ag

e For ry > 40, electrons form 2D Wigner crystal in a triangular
lattice. (unfortunately disorder dominates.)

e What are defects?

= What is its magnetic order?

= How to go from the microscopic potential to a spin | = — Zf— 1) JpP
Hamiltonian. L

1. Calculate exchange frequencies using PIMC.
2. Solve exchange Hamiltonian by exact diagonalization of spin
Hamiltonian

= How can we understand the properties near melting?
= Relation between magnetism and melting?

2D Electron Phase Diagram at low density.
2,1 —Patential energy dominates.
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Melting line

Regime of strong quantum effects
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Fermion sign problem
prevents us from
definitive calculations in
the liquid near freezing!

r=35 T=0 melting

scale does not take into account m* or e




Point defects in the 2d Wigner crystal

= Add and subtract an electron
keeping density fixed. (keep same
background density) vacancy interstitial

E, =[eN£1r)- gN,r)[(N+1) Ch

o

= Box rectangular to allow perfect

triangular lattice (55,56,57 oo
electrons) o o o a
« Calculate total energy using PIMC C o o ¢ a ° ©o o

= Hexagonal lattice

= Tethers to keep defects from
moving around.

= Restricted paths using a localized
picture of the nodes and a
ferromagnetic spin arrangement.

 Very weak temperature
dependence.

Energy of Defect

Interstitials have a lower energy
than vacancies! P

Cockayne-Elser determined ex
harmonic energy

AE_[Ay] w1\

Anharmonic terms reduce the g ; ,/' . .

defect energy for r, ~100 S a® .

The creation energy for an op 4 . A

interstitial vanishes for r,—35 100,

(for a ferromagnetic crystal) i ‘_:_‘ ~

This is very close to the melting =, e -

density r,~39 = in e m

Interstitials and vacancies may % TRy s

be responsible for melting at T=0 w 4

in 2D. L”,I- R
an @ 2 4 4§ 18




2D SUPERSOLID?

Most defects are paired
interstitials which could obey
bose statistics £

Are there enough to Bose
condense?

Density of pairs is thermally
activated

o) ) e'EZD/kBT
*2D "0

BKT transition T, when:

k,T.=1.82r

Supersolid transition does not
happen in the density regime
where the crystal is stable.

Estimated melting line

Thouless theory of magnetic order

= At low temperature there are very
few defects, phonons, etc.

= The many body wavefunction has
N! peaks, corresponding to possible
electron relabelings.

P 8
¢ L]
= Expand exact wavefunction in ® ZAE L
terms of localized wavefunctions. B & a
= System remains in one peak, then - ﬂ
tunnels to another. = P & &

= Dominant tunneling rates are few -
particle cyclic exchanges.

= Exchange frequencies (Jp)
determine the magnetic order.

= The resulting Hamiltonian is:

H = o= 8 6 979,P

Unimportant at |low temperatures

O..

-
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Double well example

+ Consider a particle in a
double well potential

e The ground state is
symmetric.The first excited /\
state is anti-symmetric 2) N \/
< We can expand in left and
right localized states: |L> .

B_ 1 g i
|R>{)—\/§é5>_|A>H

» J= Y(E,-K) is the
frequency with which the

system oscillates
to right.

from left <L(t) | |_(o)> = cos(Jt)e =

Two particle example X
Now consider two electrons in a double
well
= The ground state is symmetric=-anti > %
symmetric spin state (singlet) I\\ 1
= The first excited state is anti-

symmetric = symmetric spin state

(triplet)

* J,is the frequency with which the

spin oscillates.

= The system gets spin ordered in the
antisymmetric spin state when the

o ~
Hspin :_a(_l)p‘JpP
p

temperature goes below J,.
= We can replace continuum problem

with a spins on a lattic

Hspin =2 ‘]2 Oy Gb

= For more spins

e

Odd exchanges J; Js... =ferromagnetism

Fven exchanges 1, ], antiferromagnetism




N! wells in configuration space

Infinite barriers
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Path Integral Method to
determine exchange frequency

= We make a path extending from Z to PZ and evaluate
the change in the action. Z=perfect lattice.

< \We estimate the ratio:

b
f.(0) =) = tanha b - b,)) s
Q(b) P
Q. (b) =<z ‘e‘bH ‘ PZ>
Jp is the imaginary time tunneling rate.
Bo is the width in imaginary time of the “inst

Imaginary time b
ton.”

= We can calculate the Q’s using Path Integral MC by
mapping paths from exchange to non-exchange
(Bennett’s method) and estimate the slope to get J.
= Note that we use distinguishable particle statistics.
(see Ceperley & Jacucci: PRL 58, 1648, 1987)




Symmetric double well in imaginary time

« Consider a single particle inside
of a double sphere

e Localization is caused by
kinetic energy not potential, as
happens in solid helium.

< Exchange happens rarely but < >

very fast (an instanton is I-_

confined in imaginary time).
- Frequency in imaginary time s ==

(used in Path Intgerals) is b —= _
proportional to that in real [ - [
time.

Use Bisection method to do mapping
RA | :

1. Select time slices

2. Select desired
exchange.

3. Sample midpoints <

4. Bisect again, until
lowest level

5. Determine change in
action caused by
exchange.

Then:

Jp~<%e'D‘°P>

Lattice sites




Aspects of PIMC Method for J

State space is path space - Jis computed as a ratio of
and permutation space rates not as a difference
We bias distribution so the between two numbers
system spends roughly the = As sampling is improved the
same time in the two states

error of J goes to zero.
(I and P). . .
(zero variance principle)
Note that by<b << 1/J .
e Computational effort can be
We only need one value of b concentrated around the

to get rate since effect of b, exchange. O(N) method.
can be determined by

confining exchange in
center of world line.

Solid 3He

We have calculated (Ceperley & Jacucci PRL 58, 1648, 1987)
exchange frequencies in bcc and hcp 3He for 2 thru 6 particle
exchanges.

PIMC gives convincing support for the empirical multiple
exchange model.

Exchanges of 2,3,4,5 and 6 particles are important (Roger,
Delrieu and Hetherington) because of Metro effect.

Large cancellation of effects of various exchanges =
frustrated broken symmetry ground state (u2d2).

Agrees with experiment measurements on magnetic
susceptibility, specific heat, magnetic field effects, ....
System of 2d 3He on graphite is more difficult because of
exchange outside the layers. It has a ferromagnetic-

antiferromagnetic transition as a function of coverage and is
rather similar to 2D Wigner crystal.




Dependence of J on density

2 and 3 particle
exchange have
about the same Q-8
frequency and

partly cancel. 10-7
4 particle 1[-8
exchange is of the
same order.
Higher ring
exchanges,
though smaller 10~
cannot be
neglected
Ground state is
frustrated
because of
competition of

multiple Breakdown of Thouless model because of
exchanges. melting of “boltzmannon WC”. Need to
antisymmetrize to keep stable.

1 Q=10

10-12

& & Lo 12 14

WKB theory

Calculate the ratio f, by taking the most b lnx la
probable path, that which minimizes the P Y
action: 2 11.66 |5.6
PZ
St: = c‘)dx ﬂ? (R(X)) 3 |1.52 (1.5
Z 4 |1.67 |2.9
= 1/2 -
%= ApByt/% exp(By) 5 |1.01 |28
Bp—bpr5
66— +—+F—2-6

w = 1/r3/2 s the attempt frequency.

At low density, exchange rate with the

smallest priII dominate. Chakravarty, cond-mat/9805383
Roger (PRB 30, 6432, 1984) showed that \,ygker  cond-mat/0107151
P=3 dominates, implying that as r® ¥ '

system is ferromagnetic. Katano, PRB 62, 2573 (2000).

However experiments will not be in the
low density limit.




Exchange frequencies

) %
« Plotted are ratios to nigj{" F e Fd s R

WKB calculation

= 2-body prefactor is | &
double since there are "
2 types of exchanges

e Smaller effects for
higher exchanges

= Ratios increase at high
density because of
more quantum
fluctuations--perhaps
diverging at melting.

= Our calculations |
become difficult near gl o by byl
melting because fermi 0 1 o)
statistics are needed tc 100/
stabilize the crystal. o

A, () (Ry")

S

2D Electron high T magnetic Phase Diagram

som—
clamscsl piasma

<The magnetic susceptibility m-i-' 1
and specific heat coefficients o e T T ey |

set temperature scale for 1o " T e el e 1
magnetic interactions. 1=t

-Exchange frequencies are T (Ry)'""’
1,000 times smaller than the
melting temperature (except
for r,=40).

«Justifies that defects and
phonons are not important
for magnetic ordering.

*We can determine high
temperature behavior with
simple calculations. c =

A Mzt 4
| 1
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=The magnetic susceptibility q=-3J, +6J, -9J,+15 J -2J
o2 I 5 "< Y6

changes sign at r,~120.

mK

+...




How to solve the Lattice Model?

If only 2 and 3 electron exchangesb Heisenberg model
We cannot neglect the other exchanges! (non
Heisenberg)

High temperature expansions of the free energy involve
lattice combinatorics:

Magnetic susceptibility q=3J, +6J;3-9J,+15 J5 -2Jg
Specific heat = (quadratic in the J's)
We see big cancellation of various exchanges.
At zero temperature: mean field theory + spin waves
but only in ordered phases!
But one can exactly diagonalize the Hamiltonian with up
to 36 sites by using all the symmetries.

Misguich, Bernu, Lhuillier, (PRL 81, 1098, 1998) mapped
out phase diagram (3 parameter model!)

For r, <120 inside anti- .
ferromagnetic phase region Lo

Magnetic Phase Diagram

(singlet ground state) I

Perhaps a transition at 0.4 |
rs=160 to ferromagnetic I B

(maximal spin)
AF is a “spin liquid”.

04 : i e 5
o : T
NOT a state with Neel - | i
order._ _ = g2 L '
All excitations are [
gapped. i g, /B
short range order 01 . %a ,%
Topological ground state L g 0, "/; e },Ja
degeneracy (4-fold) [t g,
Maybe RVB state. L o B P [

Spin parameters similar to 4 3 2 1
2d 3He Jett /]
2 £
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Frustrated Spin Model

Specific heat

Shows peak at local ordering
temperature

Energy versus spin spectrum

Ferro-magnetic Anti-ferromagnetic

i

e A

Frustrated

M=t

2D Electron high T magnetic Phase Diagram

-temperature scale for o RO =
magnetic interactions. e ey P |
1o I'# T | K
. graantumn coywial ) 1
T _.-" o e
TRY) T NP | mK
«Spin liquid at intermediate m..; o — TFerra
densities T ¥ ncognita
I .
o IH' K
- G G
Ferromagnetic phase at — |
very low density ; b = 3 1
180T,
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Mysteries

* Is melting transition second order because of point defects?
Relation to hexatic transition?

= Do exchange cycles explode at melting? Relation to energy of
point defects

= Why are exchange parameters for solid 3He so similar at
melting? (caused by similar vacancy-interstitial model?)

= Why are the magnetic properties of the liquid so similar?

T=0 fixed-node calculation: 'J:if - w:i-al — / /‘
Used high quality backflow wave q, 08w | T /
functions to compute energy vs spin X Sam T e
polarization. y OEM ervaial (RS

= pa1z — - Lo |
Energies are nearly identical > o8 / ot |

0.808

Magnetic susceptibility diverges P 28| a0 3 a0 as
Attaccalite et al. PRL 88,256601 (02). para | fero” | solid

Vacancy-Interstitial Model

1. Form a vacancy-interstitial pair 1 o 4 s 8 o8 8 @
One of the pair diffuses. B < S :_}_ @l
] e y o

A

3. The pair is attracted by crystal \\E.-} .
stress fields NEN

. - 2 7
4. Bound state implies eventual - PRI
recombination.

5. Result is a spin exchange.

]

o a -

« Explains similarity of J’'s since
they have a common prefactor.

e Common density dependence of
step #1

e Explains universality of spin
Hamiltonian at melting as due to
crystal field.

< Relation of melting to exchanges

12



=the J, increases with density but no
divergence in individual exchanges. B

eexponential growing number of large
loops contribute: o
4.1557T" S
nd/2 e
eneed to extrapolate exchange data but
without doing too many calculations.

«fit In(Jp) to number of patterns in the “J
calculated loops :

n — oot Nigep ~

_ L 35.'
Chi LI IV L O L L JA
-I”.:w — @'t o - . W,

Patterns with 2
and 3 links

Look at the convergence in the magnetic susceptibility vs N.

.-|..: " ].“:” — |_| - sladga |
f=-3%"|(-1) " gan 3 otinped |

=2 shape af n aifes

= 1ot - e 2links
- __3links
Ly r*:";ﬂ"
0% r,—40
o o




Or the convergence of the specific heat coefficient vs N:

. Cy(Ty 9 /dc N
lim —— ~ — (—
T Nkg 4\ T )

T2 =Y LiMJ;.
¥

e

s n e ---- 2 links model
ST __3links model

e e e T s 1
L L2 4
'

S ' .
1 £ H Y
H

Summary

< We can do accurate calculations of the exchange
frequencies in Wigner crystal.

e Magnetic order in 2D Wigner crystal is likely to be
density dependent and frustrated, probably an RVB-like
spin liquid.

 Remarkable similarity to 2D 3He.

e Thouless theory applicable up to melting

L Je,

e Do exchanges melt the solid?
e Is the vacancy-interstitial model of exchange is correct?

= Are the magnetic properties related to unusual
properties of the higher density 2DEG?
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