united nations educational, scientific and cultural organization

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1595 - 28

Joint DEMOCRITOS - ICTP School on CONTINUUM QUANTUM MONTE CARLO METHODS 12 - 23 January 2004

EXCHANGE IN QUANTUM CRYSTALS:

MAGNETISM AND MELTING OF THE LOW DENSITY 2D WIGNER CRYSTAL

David M. CEPERLEY

Beckman Institute for Advanced Studies & Technology University of Illinois at Urbana-Champaign - N.C.S.A. II-61801 Urbana, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Aspects of PIMC Method for J State space is path space • J is computed as a ratio of and permutation space rates not as a difference • We bias distribution so the between two numbers system spends roughly the • As sampling is improved the same time in the two states error of J goes to zero. (I and P). (zero variance principle) • Note that $\beta_0 < \beta < < 1/J$ Computational effort can be We only need one value of β concentrated around the to get rate since effect of β_0 exchange. O(N) method. can be determined by confining exchange in center of world line.

WKB theory		
 Calculate the ratio f_p by taking the most probable path, that which minimizes the action: S_p = ∫_Z^{PZ} dx√V(R(x)) J_p= A_pωB_p^{1/2} exp(-B_p) 	$\begin{array}{c cccc} P & b_{p}^{*} & A_{p} \\ \hline 2 & 1.66 & 5.6 \\ \hline 3 & 1.52 & 1.5 \\ \hline 4 & 1.67 & 2.9 \\ \hline 5 & 1.91 & 2.8 \\ \end{array}$	
$B_p = D_p r_s^{1/2}$ $\omega = 1/r_s^{3/2}$ is the attempt frequency.	6 1.77 2.0	
 At low density, exchange rate with the smallest b_p will dominate. <i>C</i> Roger (<i>PRB 30, 6432, 1984</i>) showed that P=3 dominates, implying that as r_s→∞ system is ferromagnetic. <i>K</i> However experiments will not be in the low density limit. 	hakravarty, cond-mat/9805383 oelker, cond-mat/0107151 atano, PRB 62, 2573 (2000).	

Vacancy-Interstitial Model	
 Form a vacancy-interstitial pair One of the pair diffuses. The pair is attracted by crystal stress fields Bound state implies eventual recombination. 	
5. Result is a spin exchange.	
 Explains similarity of J's since they have a common prefactor. Common density dependence of step #1 Explains universality of spin Hamiltonian at melting as due to crystal field. Relation of melting to exchanges 	

