united nations educational, scientific and cultural organization

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1595 - 5

Joint DEMOCRITOS - ICTP School on CONTINUUM QUANTUM MONTE CARLO METHODS 12 - 23 January 2004

VARIATIONAL MONTE CARLO FOR ATOMS AND MOLECULES

Claudia FILIPPI Instituut-Lorentz, Universiteit Leiden, The Netherlands

These are preliminary lecture notes, intended only for distribution to participants.

strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

Variational Monte Carlo for atoms and molecules

Claudia Filippi

Instituut-Lorentz, Universiteit Leiden, The Netherlands

- 1. Metropolis algorithm
 - Choice of proposal matrix
- 2. Trial wave function
 - Spin projection
 - Cusp conditions
 - Jastrow factor
 - Static correlation
- 3. Optimization of wave function
 - Variance minimization
 - Energy minimization
- 4. Correlated sampling
 - Computation of potential energy difference

Electronic structure calculations

First-principle description

Molecules, solids \rightarrow Collection of ions + electrons \downarrow Only input: Z_{α} , N_{α}

Work in the Born-Oppenheimer approximation

 \rightarrow Separate nuclear and electronic degrees of freedom

Solve Schrödinger equation for electrons in ionic field

$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i} v_{\text{ext}}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}\right|}$$

What do we want to compute?

Fermionic ground state and low-lying excited states

Evaluate expectation values

 $rac{\langle \Psi_n | \mathcal{O} | \Psi_n
angle}{\langle \Psi_n | \Psi_n
angle}$

Electronic structure: possible approaches

- (a) Density functional theory methods
 Finite and extended systems
 <u>Approximate</u> treatment of exchange-correlation
- (b) Quantum chemistry methods Post Hartree-Fock wave function methods $\downarrow \qquad \downarrow \qquad \downarrow$ CI MCSCF CC ...

Accurate on small systems

(c) Quantum Monte Carlo techniques

Fully-correlated calculations

Stochastic solution of the Schrödinger equation

Most accurate benchmarks for medium-large systems: $1^{st}-2^{nd}$ -row clusters with $N_{atom}=20-50$ and solids, where QC methods are difficult to apply

Quantum Monte Carlo

• Variational Monte Carlo

Monte Carlo as a way of evaluating integrals

Consider many-body wave function $\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)$

Compute expectation value of O operator (H, n ...)

$$\langle \mathcal{O} \rangle_{\mathsf{VMC}} = \frac{\langle \Psi | \mathcal{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

Why should we use Monte Carlo integration?

$$\Rightarrow$$
 Freedom in functional form of Ψ

- Projection Monte Carlo Methods
- Diffusion Monte Carlo
 (Grimm & Storer, Anderson, Ceperley, 1971-1980)
- Domain Green Function Monte Carlo (Kalos, 1974)
- Other variants, e.g. Reptation MC (Baroni, Moroni, 1998)

Expectation values in Monte Carlo methods

Probability distribution ρ (continuous or discrete) Monte Carlo to compute expectation values as

$$\frac{\int d\mathbf{R} O(\mathbf{R}) \rho(\mathbf{R})}{\int d\mathbf{R} \rho(\mathbf{R})} \approx \frac{1}{M} \sum_{i=1}^{M} O(\mathbf{R}_i)$$

Configurations \mathbf{R}_i are distributed as $ho(\mathbf{R}) / \int d\mathbf{R} \,
ho(\mathbf{R})$ In variational Monte Carlo

$$\langle \mathcal{O} \rangle_{\mathsf{VMC}} = \frac{\langle \Psi | \mathcal{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \int d\mathbf{R}^{\mathsf{3N}} \left(\frac{\mathcal{O}\Psi}{\Psi} \right)_{\mathbf{R}} \frac{|\Psi(\mathbf{R})|^2}{\int d\mathbf{R}^{\mathsf{3N}} |\Psi(\mathbf{R})|^2}$$

 $\mathbf{R} = (\mathbf{r}_1, \dots, \mathbf{r}_N), \ \ \rho(\mathbf{R}) = |\Psi(\mathbf{R})|^2, \ \ O(\mathbf{R}) = \left(\frac{\mathcal{O}\Psi}{\Psi}\right)_{\mathbf{R}}$

$$\langle \mathcal{O} \rangle_{\text{VMC}} \approx \frac{1}{M} \sum_{i=1}^{M} \left(\frac{\mathcal{O}\Psi}{\Psi} \right)_{\mathbf{R}_{i}}$$

We need a means to sample ρ

Metropolis Algorithm

<u>Aim</u>:

Obtain a set of
$$\{\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_M\}$$

distributed as a given $\rho(\mathbf{R})$

Let us generate a Markov chain:

- Start from arbitrary initial state \mathbf{R}_i
- Use stochastic transition matrix $M(\mathbf{R}_{f}|\mathbf{R}_{i})$

$$M(\mathbf{R}_{f}|\mathbf{R}_{i}) \geq 0$$
 $\sum_{\mathbf{R}_{f}} M(\mathbf{R}_{f}|\mathbf{R}_{i}) = 1.$

as probability of making transition $\mathbf{R}_{i} \rightarrow \mathbf{R}_{f}$

 \bullet Evolve the system by repeated application of M

To sample ρ

M must satisfy stationarity condition:

 $\sum_{i} M(\mathbf{R}_{f}|\mathbf{R}_{i}) \rho(\mathbf{R}_{i}) = \rho(\mathbf{R}_{f}) = \sum_{i} M(\mathbf{R}_{i}|\mathbf{R}_{f}) \rho(\mathbf{R}_{f}) \quad \forall \mathbf{R}_{f}$ $\Rightarrow \text{ If we start with } \rho, \text{ we continue to sample } \rho$ Stationarity + stochastic property of M + ergodicity $\Rightarrow \text{ Any initial distribution evolves to } \rho$

How do we construct M in practice?

M must satisfy stationarity condition:

 $\sum_{i} M(\mathbf{R}_{f}|\mathbf{R}_{i}) \ \rho(\mathbf{R}_{i}) = \sum_{i} M(\mathbf{R}_{i}|\mathbf{R}_{f}) \ \rho(\mathbf{R}_{f}) \quad \forall \ \mathbf{R}_{f}$

• Impose detailed balance condition

 $M(\mathbf{R}_{f}|\mathbf{R}_{i}) \ \rho(\mathbf{R}_{i}) = M(\mathbf{R}_{i}|\mathbf{R}_{f}) \ \rho(\mathbf{R}_{f})$

<u>Sufficient</u> but not necessary condition

• Write M as proposal $T \times$ acceptance A

 $M(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{i}}) = A(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{i}}) T(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{i}})$

M and T are stochastic matrices but A is not

Detailed balance is now:

 $A(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{i}}) T(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{i}}) \rho(\mathbf{R}_{\mathsf{i}}) = A(\mathbf{R}_{\mathsf{i}}|\mathbf{R}_{\mathsf{f}}) T(\mathbf{R}_{\mathsf{i}}|\mathbf{R}_{\mathsf{f}}) \rho(\mathbf{R}_{\mathsf{f}})$

or

$$\frac{A(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{j}})}{A(\mathbf{R}_{\mathsf{j}}|\mathbf{R}_{\mathsf{f}})} = \frac{T(\mathbf{R}_{\mathsf{j}}|\mathbf{R}_{\mathsf{f}}) \ \rho(\mathbf{R}_{\mathsf{f}})}{T(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{j}}) \ \rho(\mathbf{R}_{\mathsf{j}})}$$

Choice of acceptance matrix A

For a given choice of T, infinite choices of A satisfy

$$\frac{A(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{i}})}{A(\mathbf{R}_{\mathsf{i}}|\mathbf{R}_{\mathsf{f}})} = \frac{T(\mathbf{R}_{\mathsf{i}}|\mathbf{R}_{\mathsf{f}}) \ \rho(\mathbf{R}_{\mathsf{f}})}{T(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{i}}) \ \rho(\mathbf{R}_{\mathsf{i}})}$$

Any function $A(\mathbf{R}_{f}|\mathbf{R}_{i}) = F\left(\frac{T(\mathbf{R}_{i}|\mathbf{R}_{f}) \ \rho(\mathbf{R}_{f})}{T(\mathbf{R}_{f}|\mathbf{R}_{i}) \ \rho(\mathbf{R}_{i})}\right)$

with F(x)/F(1/x) = x will do

Choice by Metropolis et al. maximizes the acceptance

$$A(\mathbf{R}_{f}|\mathbf{R}_{i}) = \min\left\{1, \frac{T(\mathbf{R}_{i}|\mathbf{R}_{f}) \ \rho(\mathbf{R}_{f})}{T(\mathbf{R}_{f}|\mathbf{R}_{i}) \ \rho(\mathbf{R}_{i})}\right\}$$

<u>Note</u>: $\rho(\mathbf{R})$ does not have to be normalized

Original Metropolis method

Symmetric proposal matrix $T(\mathbf{R}_{i}|\mathbf{R}_{f}) = T(\mathbf{R}_{f}|\mathbf{R}_{i})$ $A(\mathbf{R}_{f}|\mathbf{R}_{i}) = \min\left\{1, \frac{\rho(\mathbf{R}_{f})}{\rho(\mathbf{R}_{i})}\right\}$

Aim:Obtain a set of $\{\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_M\}$ distributed as a given $\rho(\mathbf{R})$

Operationally

- 1. Pick a starting R and evaluate $\rho(R)$
- 2. Choose \mathbf{R}' at random
- 3. If $\rho(\mathbf{R}') \ge \rho(\mathbf{R})$, move accepted \rightarrow put \mathbf{R}' in the set
- 4. If $\rho(\mathbf{R}') < \rho(\mathbf{R})$, move accepted with $p = \frac{\rho(\mathbf{R}')}{\rho(\mathbf{R})}$

To do this, pick a random number $\chi \in [0, 1]$:

a) If $\chi < p$, move accepted

ightarrow put $\mathbf{R'}$ in the set

- b) If $\chi > p$, move rejected
 - \rightarrow put another entry of ${\bf R}$ in the set

Metropolis method \rightarrow Points sequentially correlated $\boxed{\text{Aim}} \rightarrow \text{Achieve fastest evolution of the system}$ \Rightarrow High acceptance + large proposed moves \Rightarrow Find optimal T with high acceptance + large moves Original Metropolis method $T(\mathbf{R}_{i}|\mathbf{R}_{f}) = T(\mathbf{R}_{f}|\mathbf{R}_{i})$ In general

$$A(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{j}}) = \min\left\{1, \frac{T(\mathbf{R}_{\mathsf{j}}|\mathbf{R}_{\mathsf{f}}) \ \rho(\mathbf{R}_{\mathsf{f}})}{T(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{j}}) \ \rho(\mathbf{R}_{\mathsf{j}})}\right\}$$

Use $\underline{freedom}$ in the choice of T to make

$$\frac{T(\mathbf{R}_{\mathsf{j}}|\mathbf{R}_{\mathsf{f}}) \ \rho(\mathbf{R}_{\mathsf{f}})}{T(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{i}}) \ \rho(\mathbf{R}_{\mathsf{i}})} \approx 1 \ \Rightarrow \ A(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{i}}) \approx 1$$

and reduce autocorrelation time of desired observable

<u>Note</u>: we need to be able to sample T directly

Choice of proposal matrix T

C. Umrigar, Phys. Rev. Lett. 71, 408 (1993)

Rewrite proposal matrix \boldsymbol{T} as

$$T(\mathbf{R}_{f}|\mathbf{R}_{i}) = \frac{S(\mathbf{R}_{f}|\mathbf{R}_{i})}{\int d\mathbf{R}_{f} S(\mathbf{R}_{f}|\mathbf{R}_{i})} = \frac{S(\mathbf{R}_{f}|\mathbf{R}_{i})}{I(\mathbf{R}_{i})}$$
with $I(\mathbf{R}_{i}) = \int d\mathbf{R}_{f} S(\mathbf{R}_{f}|\mathbf{R}_{i}) \Rightarrow \int d\mathbf{R}_{f} T(\mathbf{R}_{f}|\mathbf{R}_{i}) = 1$

$$\Rightarrow \frac{T(\mathbf{R}_{i}|\mathbf{R}_{f})\rho(\mathbf{R}_{f})}{T(\mathbf{R}_{f}|\mathbf{R}_{i})\rho(\mathbf{R}_{i})} = \frac{I(\mathbf{R}_{i})}{I(\mathbf{R}_{f})}\frac{S(\mathbf{R}_{i}|\mathbf{R}_{f})\rho(\mathbf{R}_{f})}{S(\mathbf{R}_{f}|\mathbf{R}_{i})\rho(\mathbf{R}_{i})}$$
• If $\overline{I(\mathbf{R}_{i}) = I(\mathbf{R}_{f})}$ for all \mathbf{R}_{f} accessible from \mathbf{R}_{i}

$$S(\mathbf{R}_{f}|\mathbf{R}_{i}) \sim \rho(\mathbf{R}_{f}) \Rightarrow \frac{T(\mathbf{R}_{i}|\mathbf{R}_{f})\rho(\mathbf{R}_{f})}{T(\mathbf{R}_{f}|\mathbf{R}_{i})\rho(\mathbf{R}_{i})} \approx 1$$

$$\Rightarrow \frac{A(\mathbf{R}_{f}|\mathbf{R}_{i})}{A(\mathbf{R}_{i}|\mathbf{R}_{f})} \approx 1$$

Usually, <u>not possible</u> to find approximation to ρ over all domain of ρ which can be sampled directly

• Usually, we choose $S(\mathbf{R}_{f}|\mathbf{R}_{i}) \neq 0$ for $\mathbf{R}_{f} \in D(\mathbf{R}_{i})$ with $D(\mathbf{R}_{i})$ a domain of volume $\Omega(\mathbf{R}_{i})$ around \mathbf{R}_{i} \Rightarrow Proposed moves are in domain $D(\mathbf{R}_{i})$

Now,
$$I(\mathbf{R}_{f}) \neq I(\mathbf{R}_{i})$$
 and

$$I(\mathbf{R}_{i}) = \int d\mathbf{R}_{f} S(\mathbf{R}_{f} | \mathbf{R}_{i}) \approx S(\mathbf{R}_{i} | \mathbf{R}_{i}) \Omega(\mathbf{R}_{i}) \Rightarrow$$

$$\frac{T(\mathbf{R}_{i} | \mathbf{R}_{f})}{T(\mathbf{R}_{f} | \mathbf{R}_{i})} \frac{\rho(\mathbf{R}_{f})}{\rho(\mathbf{R}_{i})} \approx \frac{\Omega(\mathbf{R}_{i})}{\Omega(\mathbf{R}_{f})} \frac{S(\mathbf{R}_{i} | \mathbf{R}_{i})}{S(\mathbf{R}_{f} | \mathbf{R}_{i})} \frac{S(\mathbf{R}_{i} | \mathbf{R}_{f})}{\rho(\mathbf{R}_{i})} \frac{\rho(\mathbf{R}_{f})}{\rho(\mathbf{R}_{i})}$$
Choosing $S(\mathbf{R}_{f} | \mathbf{R}_{i}) = g(\mathbf{R}_{f} | \mathbf{R}_{i}) / \sqrt{\Omega(\mathbf{R}_{f})}$ and

$$g(\mathbf{R}_{f} | \mathbf{R}_{i}) \sim \sqrt{\rho(\mathbf{R}_{f})} \Rightarrow \frac{T(\mathbf{R}_{i} | \mathbf{R}_{f})}{T(\mathbf{R}_{f} | \mathbf{R}_{i})} \frac{\rho(\mathbf{R}_{f})}{\rho(\mathbf{R}_{i})} \approx 1$$

$$\Leftrightarrow \frac{A(\mathbf{R}_{f} | \mathbf{R}_{i})}{A(\mathbf{R}_{i} | \mathbf{R}_{f})} \approx 1$$

Choice of proposal matrix T

• If Δ is the linear dimension of domain $D(\mathbf{R}_{i})$

$$\frac{A(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{j}})}{A(\mathbf{R}_{\mathsf{j}}|\mathbf{R}_{\mathsf{f}})} = \frac{T(\mathbf{R}_{\mathsf{j}}|\mathbf{R}_{\mathsf{f}})}{T(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{j}})} \frac{\rho(\mathbf{R}_{\mathsf{f}})}{\rho(\mathbf{R}_{\mathsf{j}})} \approx 1 - \mathcal{O}(\Delta^{m})$$

- m = 1 $S(\mathbf{R}_{f}|\mathbf{R}_{i})$ symmetric
- m = 1 $S(\mathbf{R}_{f}|\mathbf{R}_{i}) \sim \rho(\mathbf{R}_{f})$

m = 2,3 $\nabla \ln g(\mathbf{R}_{f}|\mathbf{R}_{i}) = \nabla \ln \sqrt{\rho(\mathbf{R}_{f})}$ at $\mathbf{R}_{f} = \mathbf{R}_{i}$

Metropolis algorithm in electronic structure theory

Calculate quantum mechanical expectation values For example, the total energy is given by

$$\langle \mathcal{H} \rangle_{\text{VMC}} = \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

$$= \int d\mathbf{R}^{3N} \left(\frac{\mathcal{H} \Psi}{\Psi} \right)_{\mathbf{R}} \frac{|\Psi(\mathbf{R})|^2}{\int d\mathbf{R}^{3N} |\Psi(\mathbf{R})|^2}$$

$$= \frac{1}{M} \sum_{i=1}^M \left(\frac{\mathcal{H} \Psi}{\Psi} \right)_{\mathbf{R}_i}$$

$$= \frac{1}{M} \sum_{i=1}^M E_{\mathsf{L}}(\mathbf{R}_i)$$

<u>Note</u>: If $\Psi \rightarrow$ eigenfunction, $E_L(\mathbf{R})$ does not fluctuate \Rightarrow Importance of optimizing trial wave function

★ This afternoon

1. Simple Metropolis (m = 1)

 $S(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{i}})$ is constant in a box centered in \mathbf{R}_{i}

In each of the 3N dimensions, sample uniformely

$$dx = x_{f} - x_{i} \in \left[-\frac{\Delta}{2}, \frac{\Delta}{2}\right]$$

2. Directed Metropolis (m = 2)

 $S(\mathbf{R}_{f}|\mathbf{R}_{i}) \text{ is a linear approximation to } \Psi(\mathbf{R}_{f}) \text{ at } \mathbf{R}_{i}$ $S(\mathbf{R}_{f}|\mathbf{R}_{i}) = \prod_{k=1}^{3N} \left\{ 1 + (x_{k,f} - x_{k,i}) \times \min\left[|\mathbf{V}_{k}(\mathbf{R}_{i})|, \frac{2}{\Delta} \right] \times \operatorname{sign}[\mathbf{V}_{k}(\mathbf{R}_{i})] \right\}$

with
$$x_{k,f} - x_{k,i} \in \left[-\frac{\Delta}{2}, \frac{\Delta}{2}\right]$$
 and $V(\mathbf{R}_i) = \frac{\nabla \Psi(\mathbf{R}_i)}{\Psi(\mathbf{R}_i)}$

3. Motivated by diffusion Monte Carlo (m = 2)

$$T(\mathbf{R}_{\mathsf{f}}|\mathbf{R}_{\mathsf{j}}) = \frac{1}{(2\pi\tau)^{3N/2}} \exp\left[-\frac{(\mathbf{R}_{\mathsf{f}} - \mathbf{R}_{\mathsf{j}} - \bar{\mathbf{V}}(\mathbf{R}_{\mathsf{j}})\tau)^{2}}{2\tau}\right]$$

Limit V as $\bar{\mathbf{V}} = \frac{\sqrt{1 + 2aV^{2}\tau} - 1}{aV^{2}\tau}\mathbf{V}$

Autocorrelation time

Run of N Monte Carlo steps = N_b blocks $\times N_s$ steps We have N measurements of E_{L}

- \overline{E} = average of $E_{\rm L}$
- σ = rms fluctuations of individual $E_{\rm L}$
- σ_b = rms fluctuations of block averages of $E_{\rm L}$

Effectively, N/T_{corr} independent measurements of E_{L}

Define T_{corr} as

$$\operatorname{err}(\bar{E}) = \frac{\sigma}{\sqrt{N_b \times N_s}} \sqrt{T_{\text{corr}}} = \frac{\sigma_b}{\sqrt{N_b}}$$
$$T_{\text{corr}} = N_s \left(\frac{\sigma_b}{\sigma}\right)^2 \quad \text{where we chose } N_s \gg T_{\text{corr}}$$

Autocorrelation time and acceptance versus step size

Example: Be, 4 determinants + simple Jastrow factor $E_{VMC} = -14.9581(3)$ H, $\sigma_{VMC} = 0.35$ H

1. Simple Metropolis

Δ	T_{COrr}	$ar{A}$
1.00	41	0.17
0.75	21	0.28
0.50	17	0.46
0.20	45	0.75

2. Directed Metropolis

Δ	T_{corr}	$ar{A}$
1.20	21	0.38
1.00	11	0.52
0.75	6	0.72
0.50	8	0.88
0.20	34	0.99

3. Drift-diffusion transition

au	T_{corr}	$ar{A}$
0.100	13	0.42
0.050	7	0.66
0.020	8	0.87
0.010	14	0.94

Shortcomings of Metropolis algorithms 1-2-3

- No distinction between core and valance electrons
 ⇒ Core electrons set the length scales
- Use of cartesian coordinates \Rightarrow Derivative discontinuity of Ψ at nuclei
- All-electron versus single-electron move

Better algorithms can achieve $T_{\text{corr}} = 1 - 2$

Trial wave function

Traditional quantum chemistry

 $\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \Psi(\mathbf{r}_1,\sigma_1,\ldots,\mathbf{r}_N,\sigma_N)$ with $\sigma_i = \pm 1$

Hartree-Fock

$$\Psi(\mathbf{x}_{1},\ldots,\mathbf{x}_{N}) \longrightarrow D_{\mathsf{HF}} = \begin{vmatrix} \psi_{1}(\mathbf{x}_{1}) & \ldots & \psi_{1}(\mathbf{x}_{N}) \\ \vdots & & \vdots \\ \psi_{N}(\mathbf{x}_{1}) & \ldots & \psi_{N}(\mathbf{x}_{N}) \end{vmatrix}$$

 $c_0 D_{HF} + c_1 D_1 + c_2 D_2 + \ldots$ millions of determinants

$$\left| \begin{array}{ccc} \psi_1(\mathbf{x}_1) & \dots & \psi_1(\mathbf{x}_N) \\ \vdots & & \vdots \\ \psi_{N+1}(\mathbf{x}_1) & \dots & \psi_{N+1}(\mathbf{x}_N) \end{array} \right|$$

with spin-orbitals $\psi_i(\mathbf{x}) = \phi_i(\mathbf{r})\chi_{s_i}(\sigma)$, $s_i = \uparrow, \downarrow$

Variational principle: minimize $\langle \Psi | \mathcal{H} | \Psi \rangle$

Analytical integral \rightarrow Gaussian basis

Quantum Monte Carlo wave function

Jastrow-Slater wave functions

• $\sum_{k} d_k D_k^{\uparrow} D_k^{\downarrow} \longrightarrow$ Few Slater determinants

 \uparrow , $\downarrow\text{-spin}$ determinants of single-particle orbitals:

- Slater functions for all-electron calculations

$$\phi(\mathbf{r}) = \sum_{\alpha k} c_{k\alpha} N_{k\alpha} r_{\alpha}^{n_{k\alpha}-1} e^{-\zeta_{k\alpha} r_{\alpha}} \Upsilon_{l_{k\alpha} m_{k\alpha}}(\hat{\mathbf{r}}_{\alpha})$$

- Gaussians for pseudopotential calculations
- $\mathcal{J} \longrightarrow \mathsf{Electron-electron}$ correlation (e-e distance r_{ij})

Why can we factorize $D^{\uparrow}D^{\downarrow}$?

Wave function in terms of space + spin variables: $\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \Psi(\mathbf{r}_1,\sigma_1,\ldots,\mathbf{r}_N,\sigma_N)$ with $\sigma_i = \pm 1$ Consider $N = N_{\uparrow} + N_{\downarrow}$ and $S_z = (N_{\uparrow} - N_{\downarrow})/2$ and $\zeta_1(\sigma_1,\ldots,\sigma_N) = \chi_{\uparrow}(\sigma_1)\ldots\chi_{\uparrow}(\sigma_{N_{\uparrow}})\chi_{\downarrow}(\sigma_{N_{\uparrow}+1})\ldots\chi_{\downarrow}(\sigma_N)$ $\zeta_i(\sigma_1,\ldots,\sigma_N)$ generated by permuting indices in ζ_1 form a complete orthonormal set in spin space $\sum_{\sigma_1...\sigma_N} \zeta_i(\sigma_1,\ldots,\sigma_N) \zeta_j(\sigma_1,\ldots,\sigma_N) = \delta_{ij}$ K

(1)

$$\Rightarrow \quad \Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{i=1}^{n} F_i(\mathbf{r}_1,\ldots,\mathbf{r}_N)\zeta_i(\sigma_1,\ldots,\sigma_N)$$

where F_i antisymmetric for interchange of like-spin F_i equal to \pm permutation of F_1

 $\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \mathcal{A}\left\{F_1(\mathbf{r}_1,\ldots,\mathbf{r}_N)\zeta_1(\sigma_1,\ldots,\sigma_N)\right\}$

Why can we factorize $D^{\uparrow}D^{\downarrow}$?

Note that if $\ensuremath{\mathcal{O}}$ is a spin-independent operator

$$\langle \Psi | \mathcal{O} | \Psi \rangle = \langle F_1 | \mathcal{O} | F_1 \rangle$$

since ζ_i form an orthonormal set

More convenient to use F_1 instead of Ψ

To obtain F_1 , assign the spin-variables of particles:

Particle 1 2 ...
$$N_{\uparrow}$$
 $N_{\uparrow+1}$... N
 σ 1 1 ... 1 -1 ... -1

 $F_1(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \Psi(\mathbf{r}_1,1,\ldots,\mathbf{r}_{N_{\uparrow}},1,\mathbf{r}_{N_{\uparrow}+1},-1,\ldots,\mathbf{r}_N,-1)$

(2)

Spin-assigned $\Psi = D$

Determinant D of spin-orbitals $\psi_i(\mathbf{x}) = \phi_i(\mathbf{r})\chi_{s_i}(\sigma)$ <u>Example</u>: Be atom, $1s^2 2s^2 \Rightarrow N_{\uparrow} = N_{\downarrow} = 2$, $S_z = 0$

Spin-orbitals $\phi_{1s} \chi_{\uparrow}$, $\phi_{2s} \chi_{\uparrow}$, $\phi_{1s} \chi_{\downarrow}$, $\phi_{2s} \chi_{\downarrow}$

$$D = \frac{1}{\sqrt{4!}} \begin{vmatrix} \phi_{1s} \chi_{\uparrow}, & \phi_{2s} \chi_{\uparrow}, & \phi_{1s} \chi_{\downarrow}, & \phi_{2s} \chi_{\downarrow} \\ \phi_{1s}(\mathbf{r}_{1})\chi_{\uparrow}(\sigma_{1}) & \dots & \phi_{1s}(\mathbf{r}_{4})\chi_{\uparrow}(\sigma_{4}) \\ \phi_{2s}(\mathbf{r}_{1})\chi_{\uparrow}(\sigma_{1}) & \dots & \phi_{2s}(\mathbf{r}_{4})\chi_{\uparrow}(\sigma_{4}) \\ \phi_{1s}(\mathbf{r}_{1})\chi_{\downarrow}(\sigma_{1}) & \dots & \phi_{1s}(\mathbf{r}_{4})\chi_{\downarrow}(\sigma_{4}) \\ \phi_{2s}(\mathbf{r}_{1})\chi_{\downarrow}(\sigma_{1}) & \dots & \phi_{2s}(\mathbf{r}_{4})\chi_{\downarrow}(\sigma_{4}) \end{vmatrix}$$

 $F_1(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = D(\mathbf{r}_1, +1, \mathbf{r}_2, +1, \mathbf{r}_3, -1, \mathbf{r}_4, -1)$

$$F_{1} = \frac{1}{\sqrt{4!}} \begin{vmatrix} \phi_{1s}(\mathbf{r}_{1}) & \phi_{1s}(\mathbf{r}_{2}) & 0 & 0 \\ \phi_{2s}(\mathbf{r}_{1}) & \phi_{2s}(\mathbf{r}_{2}) & 0 & 0 \\ 0 & 0 & \phi_{1s}(\mathbf{r}_{3}) & \phi_{1s}(\mathbf{r}_{4}) \\ 0 & 0 & \phi_{2s}(\mathbf{r}_{3}) & \phi_{2s}(\mathbf{r}_{4}) \end{vmatrix}$$

 $D \rightarrow \begin{vmatrix} \phi_{1s}(\mathbf{r}_1) & \phi_{1s}(\mathbf{r}_2) \\ \phi_{2s}(\mathbf{r}_1) & \phi_{2s}(\mathbf{r}_2) \end{vmatrix} \times \begin{vmatrix} \phi_{1s}(\mathbf{r}_3) & \phi_{1s}(\mathbf{r}_4) \\ \phi_{2s}(\mathbf{r}_3) & \phi_{2s}(\mathbf{r}_4) \end{vmatrix} = D^{\uparrow} \times D^{\downarrow}$

Spin-assigned $\Psi = \sum_k d_k D_k$

Care with order of spin-orbitals in determinants e.g. First all \uparrow spin-orbitals, then all \downarrow spin-orbitals <u>Example</u>: He atom, singlet excited state $1s^{1}2s^{1}$ Spin-orbitals $\phi_{1s}\chi_{\uparrow}$, $\phi_{1s}\chi_{\downarrow}$, $\phi_{2s}\chi_{\uparrow}$, $\phi_{2s}\chi_{\downarrow}$

$$\Psi = \begin{vmatrix} \phi_{1s}(\mathbf{r}_{1})\chi_{\uparrow}(\sigma_{1}) & \phi_{1s}(\mathbf{r}_{2})\chi_{\uparrow}(\sigma_{2}) \\ \phi_{2s}(\mathbf{r}_{1})\chi_{\downarrow}(\sigma_{1}) & \phi_{2s}(\mathbf{r}_{2})\chi_{\downarrow}(\sigma_{2}) \end{vmatrix}$$
$$= \begin{vmatrix} \phi_{1s}(\mathbf{r}_{1})\chi_{\downarrow}(\sigma_{1}) & \phi_{1s}(\mathbf{r}_{2})\chi_{\downarrow}(\sigma_{2}) \\ \phi_{2s}(\mathbf{r}_{1})\chi_{\uparrow}(\sigma_{1}) & \phi_{2s}(\mathbf{r}_{2})\chi_{\uparrow}(\sigma_{2}) \end{vmatrix}$$
$$= \begin{vmatrix} \phi_{1s}(\mathbf{r}_{1})\chi_{\uparrow}(\sigma_{1}) & \phi_{1s}(\mathbf{r}_{2})\chi_{\uparrow}(\sigma_{2}) \\ \phi_{2s}(\mathbf{r}_{1})\chi_{\downarrow}(\sigma_{1}) & \phi_{2s}(\mathbf{r}_{2})\chi_{\downarrow}(\sigma_{2}) \end{vmatrix}$$
$$+ \begin{vmatrix} \phi_{2s}(\mathbf{r}_{1})\chi_{\uparrow}(\sigma_{1}) & \phi_{2s}(\mathbf{r}_{2})\chi_{\downarrow}(\sigma_{2}) \\ \phi_{1s}(\mathbf{r}_{1})\chi_{\downarrow}(\sigma_{1}) & \phi_{1s}(\mathbf{r}_{2})\chi_{\downarrow}(\sigma_{2}) \end{vmatrix}$$
Assign spins: Particle 1 2
$$\sigma \qquad 1 -1$$

 $F_1(\mathbf{r}_1, \mathbf{r}_2) = \phi_{1s}(\mathbf{r}_1)\phi_{2s}(\mathbf{r}_2) + \phi_{2s}(\mathbf{r}_1)\phi_{1s}(\mathbf{r}_2)$

Spin-assigned QMC wave functions

 $\sigma = +1$ for first N_{\uparrow} particles, $\sigma = -1$ for the others $\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) = F_1(\mathbf{r}_1, \dots, \mathbf{r}_N)$ $= \mathcal{J} \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1, \dots, \mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1}, \dots, \mathbf{r}_N)$

where $\mathcal{J} = \mathcal{J}(\mathbf{r}_1, \dots, \mathbf{r}_N)$ is the Jastrow factor

Spacial symmetry

 $\sum_k d_k D_k$ constructed to have proper spacial symmetry Often, $\mathcal{J} = \mathcal{J}(\{r_{ij}\}, \{r_{i\alpha}\}), i, j = \text{electrons}, \alpha = \text{nucleus}$ $\Rightarrow \mathcal{J}$ invariant under rotations $\Rightarrow \mathcal{J}$ does not affect spacial symmetry of Ψ

Spin symmetry

 $\sum_k d_k D_k$ constructed to be eigenstate of S^2 , S_z

- ${\mathcal J}$ symmetric for interchange of like-spin particles
- $\Rightarrow \Psi$ eigenstate of S_z

 ${\mathcal J}$ symmetric for interchange of spacial variables $\Rightarrow \Psi$ eigenstate of S^2

Cusp conditions

At interparticle coalescence points, potential diverges:

 \Rightarrow Kinetic energy must have opposite divergence

 $\Rightarrow \Psi$ must satisfy Kato's cusp conditions:

$$\left|\frac{\partial \widehat{\Psi}}{\partial r_{ij}}\right|_{r_{ij}=0} = \mu_{ij}q_i q_j \Psi(r_{ij}=0)$$

for two particles of masses m_i , m_j and charges q_i , q_j

Note: all other interparticle distances are > 0, $\hat{\Psi}$ is a spherical average, and $\mu_{ij} = \frac{m_i m_j}{m_i + m_j}$

Cusp conditions: example

Consider $r_{ij} \rightarrow 0$ and all other particles well separated The local energy close to $r = r_{ij} = 0$ is:

$$-\frac{1}{2\mu_{ij}}\frac{\nabla^2\Psi}{\Psi} + V(r) = \text{finite}$$

Assume $|\Psi(r=r_{ij}=0)\neq 0|$

$$-\frac{1}{2\mu_{ij}}\frac{\Psi''}{\Psi} - \frac{1}{\mu_{ij}}\frac{1}{r}\frac{\Psi'}{\Psi} + V(r) = \text{finite}$$

The condition for $E_{\rm I}$ to be finite at r=0 is

$$\frac{\Psi'}{\Psi} = \mu_{ij} \, r \, V(r)$$

• Electron-nucleus: $V = -\frac{Z}{r}, \mu = 1 \Rightarrow \left| \frac{\Psi'}{\Psi} \right|_{r=0} = -Z$

• Electron-electron: $V = \frac{1}{r}$, $\mu = \frac{1}{2} \Rightarrow \left| \frac{\Psi'}{\Psi} \right|_{r=0} = 1/2$

Generalized cusp conditions

R. T. Pack and W. Byers Brown, J. Chem. Phys. **45**, 556 (1966) What about two electrons in a triplet state? Or more generally two like-spin electrons $(D \rightarrow 0)$? Or a highly excited state (e.g. $2p^2$ state of Helium)?

$$\Psi(r = r_{ij} = 0) = 0$$
 ?!?

Wave function near $\mathbf{r} = \mathbf{r}_{ij} = 0$ can be written as:

$$\Psi = \sum_{l=l_0}^{\infty} \sum_{m=-l}^{l} f_{lm}(r) r^l Y_{lm}(\theta, \phi)$$

Expanding $f_{lm}(r) = \sum_{k=0}^{\infty} f_{lm}^{(k)} r^k$

$$f_{lm}(r) = f_{lm}^{(0)} \left[1 + \frac{\gamma}{(l+1)} r + O(r^2) \right]$$

where $\gamma = q_i q_j \mu_{ij}$

• Electron-electron singlet: $l_0 = 0 \Rightarrow |\Psi|$

• Electron-electron triplet: $l_0 = 1 \Rightarrow$

$$\Psi \sim \left(1 + \frac{1}{2}r\right)$$
$$\Psi \sim \left(1 + \frac{1}{4}r\right)r$$

Cusp conditions and QMC wave functions (1)

 $\sigma = +1$ for first N_{\uparrow} electrons, $\sigma = -1$ for the others $\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) = \mathcal{J} \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1, \dots, \mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1}, \dots, \mathbf{r}_N)$ Electron-electron cusp conditions

• <u>Anti-parallel spins</u>: $r_{ij} \rightarrow 0$ for $i \leq N_{\uparrow}$, $j \geq N_{\uparrow} + 1$ Usually, determinantal part $\neq 0$

$$\Rightarrow \quad \mathcal{J}(r_{ij}) \sim \left(1 + \frac{1}{2}r_{ij}\right) \quad \Leftrightarrow \quad \left| \frac{\mathcal{J}'}{\mathcal{J}} \right|_{r_{ij}=0} = \frac{1}{2}$$

• <u>Parallel spins</u>: $r_{ij} \rightarrow 0$ for $i, j \le N_{\uparrow}$ or $i, j \ge N_{\uparrow} + 1$ Determinantal part $\rightarrow 0$

$$\Rightarrow \quad \mathcal{J}(r_{ij}) \sim \left(1 + \frac{1}{4}r_{ij}\right) \quad \Leftrightarrow \quad \left| \begin{array}{c} \frac{\mathcal{J}'}{\mathcal{J}} \right|_{r_{ij}=0} = \frac{1}{4}$$

⇒ \mathcal{J} not symmetric for interchange of $\mathbf{r}_1, \ldots, \mathbf{r}_N$ ⇒ $\underline{\Psi}$ is not an eigenstate of S^2 For optimized Ψ , spin contamination is small Huang, Filippi, Umrigar, J. Chem. Phys. **108**, 8838 (1998) Cusp conditions and QMC wave functions (2)

 $\sigma=+1$ for first N_{\uparrow} electrons, $\sigma=-1$ for the others

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \mathcal{J}\sum_k d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N)$$

Electron-nucleus cusp conditions

Usually, imposed through the determinantal part Assume nucleus at the origin and $\Psi(r_i = 0) \neq 0$ If each orbital satisfies the cusp conditions

$$\frac{\partial \hat{\phi}_j}{\partial r}\Big|_{r=0} = -Z\hat{\phi}_j(r=0)$$

$$\Rightarrow \left.\frac{\partial \sum_k d_k \hat{D}_k}{\partial r}\right|_{r=0} = -Z\sum_k d_k \hat{D}_k(r=0)$$

<u>Note</u>: Slater basis best suited for all-electron systems No electron-nucleus cusp with pseudopotential Cusp conditions in Be atom

Be atom, $1s^2 2s^2 \Rightarrow N_{\uparrow} = N_{\downarrow} = 2$, $S_z = 0$ Spin-assigned $\Psi(\mathbf{r}_1^+, \mathbf{r}_2^+, \mathbf{r}_3^-, \mathbf{r}_4^-) = \mathcal{J}D$

Factorized determinant

$$D = D^{\uparrow} \times D^{\downarrow} = \begin{vmatrix} \phi_{1s}(\mathbf{r}_1) & \phi_{1s}(\mathbf{r}_2) \\ \phi_{2s}(\mathbf{r}_1) & \phi_{2s}(\mathbf{r}_2) \end{vmatrix} \times \begin{vmatrix} \phi_{1s}(\mathbf{r}_3) & \phi_{1s}(\mathbf{r}_4) \\ \phi_{2s}(\mathbf{r}_3) & \phi_{2s}(\mathbf{r}_4) \end{vmatrix}$$

If
$$\phi_{1s}(\mathbf{r}) = c_1 e^{-\zeta_1 r} + c_2 e^{-\zeta_2 r} + c_3 r e^{-\zeta_3 r} + c_4 r e^{-\zeta_4 r}$$

$$\frac{\partial \phi_{1s}}{\partial r}\Big|_{r=0} = -Z\phi_{1s}(0) \Rightarrow c_1 = \frac{c_2(Z - \zeta_2) + c_3 + c_4}{\zeta_1 - Z}$$

• Simple Jastrow factor

$$\mathcal{J} = \prod_{ij=13, 14, 23, 24} \exp\left\{\frac{1}{2} \frac{r_{ij}}{1+br_{ij}}\right\} \times \prod_{ij=12, 34} \exp\left\{\frac{1}{4} \frac{r_{ij}}{1+br_{ij}}\right\}$$

Jastrow factor for atoms and molecules

Simple Jastrow factor

$$\mathcal{J}(r_{ij}) = \prod_{i < j} \exp\left\{b_0 \frac{r_{ij}}{1 + b r_{ij}}\right\} \text{ with } b_0 = \frac{1}{2} \text{ or } \frac{1}{4}$$

Boys and Handy's form

$$\mathcal{J}(r_i, r_j, r_{ij}) = \prod_{\alpha, i < j} \exp\left\{\sum c_{mnk}^{\alpha} \left(\bar{r}_{i\alpha}^m \bar{r}_{j\alpha}^n + \bar{r}_{i\alpha}^n \bar{r}_{j\alpha}^m\right) \bar{r}_{ij}^k\right\}$$

with $\bar{r}_{i\alpha} = \frac{a r_{i\alpha}}{1 + a r_{i\alpha}}$ and $\bar{r}_{ij} = \frac{d r_{ij}}{1 + d r_{ij}}$
Cusp conditions imposed by requiring:

m = n = 0 if k = 1 for electron-electron cusps

No n = 1 or m = 1, D satisfies electron-nucleus cusps

More general form

Lift constraints and allow all values of n, m, kCusp conditions \Rightarrow linear dependencies among c_{mnk}^{α} Other scaling functions are possible: $(1 - e^{-ar})/a \dots$

Some comments on Jastrow factor

- $\mathcal{J} > 0$ and becomes constant for large r_i , r_j and r_{ij} (ratio of polynomials or use of scaled variables)
- Preferable to separate e-n, e-e and e-e-n terms as $\prod_{\alpha,i} \exp\left\{A(r_{i\alpha})\right\} \prod_{i < j} \exp\left\{B(r_{ij})\right\} \prod_{\alpha,i < j} \exp\left\{C(r_{i\alpha}, r_{j\alpha}, r_{ij})\right\}$

Electron-electron terms

• Introduced to impose the cusp conditions and to keep electrons apart, e.g. simple $\mathcal{J}(r_{ij})$ looks like

• No significant improvement in using $\mathcal{J}(r_{ij})$ more general than simple \mathcal{J} but not a function of r_i , r_j

Electron-nucleus terms

• Omissible if the determinantal part is constructed with a sufficiently large basis and then reoptimized

 The e-n terms should be included if the determinantal part (often DFT or HF) is not reoptimized: the e-e terms alter the single-particle density (reduced/increased in high/low density regions)

Electron-electron-nucleus terms

• If the order of the polynomial in the e-e-n terms is infinite, the wave function can exactly describe a two-electron atom or ion in an S state

For these systems, a 5th-order polynomial recovers more than 99.99% of the correlation energy

- Is this wave function adequate for multi-electron systems? The e-e-n terms are the most important ones: due to the exclusion principle, it is rare for 3 or more electrons to be close, since at least 2 electrons must necessarily have the same spin
- Ratio of polynomials or higher-order polynomial? For instance, for 1st-row diatomics, ratio of two 4th-order polynomials and a 5th-order polynomial about the same quality

Jastrow factor with e-e, e-e-n and e-e-e-n terms				
Li	${\cal J}$	$E_{\sf VMC}$	$E_{\rm VMC}^{\rm corr}$ (%)	$\sigma_{\sf VMC}$
E_{HF}		-7.43273	0	
	e-e	-7.47427(4)	91.6	0.24
	+e-e-n	-7.47788(1)	99.6	0.037
	+e-e-e-n	-7.47797(1)	99.8	0.028
Eexact		-7.47806	100	
Be				
E_{HF}		-14.57302	0	
	e-e	-14.66088(5)	93.1	0.35
	+e-e-n	-14.66662(1)	99.2	0.089
	+e-e-e-n	-14.66681(1)	99.4	0.078
E _{exact}		-14.66736	100	
Ne				
E_{HF}		-128.5471	0	
	e-e	-128.713(2)	42.5	1.9
	+ e-e-n	-128.9008(1)	90.6	0.90
	+e-e-e-n	-128.9029(3)	91.1	0.88
E _{exact}		-128.9376	100	

Huang, Umrigar, Nightingale, J. Chem. Phys. 107, 3007 (1997)

Dynamic and static correlation

There are two types of correlation:

• Dynamic correlation

Due to inter-electron repulsion and always present Described by Jastrow factor

• Static correlation

Due to near-degeneracy of occupied and unoccupied orbitals and not always present

Described by a linear combination of determinants

Example: Be atom and 2s-2p near-degeneracy

HF ground state configuration $1s^2 2s^2$

Additional important configuration $1s^22p^2$

Ground state has ${}^{1}S$ symmetry \Rightarrow 4 determinants:

$$\begin{split} D &= (1s^{\uparrow}, 2s^{\uparrow}, 1s^{\downarrow}, 2s^{\downarrow}) + c * \left\{ (1s^{\uparrow}, 2p_x^{\uparrow}, 1s^{\downarrow}, 2p_x^{\downarrow}) \\ &+ (1s^{\uparrow}, 2p_y^{\uparrow}, 1s^{\downarrow}, 2p_y^{\downarrow}) \\ &+ (1s^{\uparrow}, 2p_z^{\uparrow}, 1s^{\downarrow}, 2p_z^{\downarrow}) \right\} \end{split}$$

$$1s^{2}2s^{2} \times \mathcal{J}(r_{ij}) \rightarrow E_{\mathsf{VMC}}^{\mathsf{corr}} = 61\%$$
$$1s^{2}2s^{2} \oplus 1s^{2}2p^{2} \times \mathcal{J}(r_{ij}) \rightarrow E_{\mathsf{VMC}}^{\mathsf{corr}} = 93\%$$

Static correlation

Example: 1st-row dimers (all-electron calculations) MO orbitals with atomic *s*-*p* Slater basis Active MO's: $2\sigma_g$, $2\sigma_u$, $3\sigma_g$, $3\sigma_u$, $1\pi_u$, $1\pi_g$ 5th-order polynomial \mathcal{J} (e-n, e-e, e-e-n)

Filippi and Umrigar, J. Chem. Phys. 105, 213 (1996)

Determinant versus Jastrow factor

Determinantal part yields the nodes of wave function

 \Rightarrow Quality of the fixed-node DMC solution

(see tomorrow diffusion Monte Carlo)

Why bother with the Jastrow factor?

Implications of using a good Jastrow factor for DMC

- Efficiency: Smaller σ ⇒ gain in CPU time (also smaller time-step error)
- Expectation values other than energy Mixed estimator
- Pseudopotentials: Localization error
 Jastrow factor does affect fixed-node energy

Why should $\Psi = \mathcal{J}D$ work?

 \mathcal{H}_{eff} weaker Hamiltonian than $\mathcal H$

 $\Rightarrow \Phi \approx$ non-interacting wave function D

 \Rightarrow Quantum Monte Carlo wave function $\Psi = \mathcal{J}D$

Optimization of trial wave function

Start from $\Psi_T(\mathbf{R}, \{\alpha_0\})$ with parameters $\{\alpha_0\}$ Generate N_{conf} walkers distributed as $|\Psi_T(\mathbf{R}, \{\alpha_0\})|^2$ How do we find a better set of parameters $\{\alpha\}$?

First thought: Minimize the energy

$$E[\alpha] = \frac{1}{N_{\text{conf}}} \sum_{i=1}^{N_{\text{conf}}} \frac{\mathcal{H}\Psi(\mathbf{R}_i, \{\alpha\})}{\Psi(\mathbf{R}_i, \{\alpha\})} = \frac{1}{N_{\text{conf}}} \sum_{i=1}^{N_{\text{conf}}} E_{\mathsf{L}}(\mathbf{R}_i, \{\alpha\})$$

Straightforward minimization of $E[\alpha]$ does not work:

 $N_{\rm conf}$ is a relatively small number of configurations

- $\Rightarrow E[\alpha]$ unbounded from below
- \Rightarrow Usually, one finds lower $E[\alpha]$ on the given set of \mathbf{R}_i but a higher energy in a new VMC run

Better method: Minimize variance of local energy

Coldwell, Int. J. Quantum Chem. Symp. **11**, 215 (1977) Umrigar, Wilson, Wilkins, Phys. Rev. Lett. **60**, 1719 (1988)

Generate N_{conf} walkers distributed as $|\Psi(\mathbf{R}, \{\alpha_0\})|^2$ Minimize the variance of the local energy $\sigma^2[\alpha]$:

$$\sigma^{2}[\alpha] = \sum_{i=1}^{N_{\text{conf}}} \left(\frac{\mathcal{H}\Psi(\mathbf{R}_{i}, \{\alpha\})}{\Psi(\mathbf{R}_{i}, \{\alpha\})} - \bar{E} \right)^{2} w_{i}$$

where

$$w_{i} = \left| \frac{\Psi(\mathbf{R}_{i}, \{\alpha\})}{\Psi(\mathbf{R}_{i}, \{\alpha_{0}\})} \right|^{2} / \sum_{i=1}^{N_{\text{conf}}} \left| \frac{\Psi(\mathbf{R}_{i}, \{\alpha\})}{\Psi(\mathbf{R}_{i}, \{\alpha_{0}\})} \right|^{2}$$

and $ar{E}$ is the average energy

Why do we introduce the weights w_i? 1) To provide correct reweight as Ψ changes 2) To allow nodes to move during optimization <u>Note</u>: w_i needs to be limited to a maximum value (few R_i may gain large w_i and dominate minimization)

• \overline{E} substituted with E_{guess}

 E_{guess} chosen a bit less than current energy estimate \Leftrightarrow Minimize a combination of variance and energy

Some advantages:

- σ^2 has a known lower bound: $\sigma^2 = 0$
- All eigenstates have zero variance
 - ⇒ It is possible to optimize excited states (also a higher lying state of a given symmetry)
- Cusp conditions or other constraints easily added

 \Rightarrow Minimize $\chi^2 = \sigma^2 + \text{penalty functions}$

- Efficient procedures to optimize a sum of squares:
 - It is helpful to know not only the gradient but also the Hessian of the quantity being optimized. If one minimizes a sum of squares, it is possible to calculate an approximate second derivative matrix using only the first derivatives
 - Efficient methods, e.g. Levenberg-Marquard
- $N_{\rm conf}$ =2000-3000 sufficient for 50-100 parameters for large dimensional spaces (\sim 800 dim)

Why do we need so few N_{conf} ?

- In the optimization, the configurations are fixed \Leftrightarrow Correlated sampling: The difference $\sigma[\{\alpha\}]^2 - \sigma[\{\alpha_0\}]^2$ is better determined than separate σ 's
- We are performing a fit not an integral

Some disadvantages:

• It is variance <u>not</u> energy minimization!

For a given functional form, different parameter sets { α } can give comparable σ but different E_{VMC} (in particular if one optimizes determinantal part)

- It is a non-linear optimization
 ⇒ It is possible to get stuck in local minima
- Easy optimization of the Jastrow factor
 More tricky for the determinantal component

Operationally

- 1. Start from initial wave function $\Psi(\mathbf{R}, \{\alpha_0\})$, e.g.
 - HF or MCSCF-determinant + simple Jastrow (set b to a reasonable value, $b \approx 0.5 1$)
 - For simple systems, guess LCAO and basis exponents. With some experience, it will work!
- 2. Do a VMC run to sample $|\Psi(\mathbf{R}, \{\alpha_0\})|^2$
 - Generate N_{conf} walkers $\{\mathbf{R}_i\}$
 - Set E_{guess} a bit lower than E_{VMC}
 - At 1st iteration, try $E_{guess} \approx E_{VMC} 0.1 * \sigma_{VMC}$

or use $E_{\text{corr}} \approx 0.4 - 1.2 \text{ eV/elec}$ for Z < 18

- 3. Optimize $\sigma^2[\alpha] \Rightarrow$ new set of parameters $\{\alpha_1\}$
- 4. Do a VMC run to sample $|\Psi(\mathbf{R}, \{\alpha_1\})|^2$
 - a) If $E_{VMC}[\{\alpha_1\}]$ is lower than $E_{VMC}[\{\alpha_0\}]$
 - Generate new N_{conf} walkers $\{\mathbf{R}_i\}$
 - Set E_{guess} to new E_{VMC}
 - Iterate 3-4

Continue ...

b) If $E_{VMC}[\{\alpha_1\}]$ is higher than $E_{VMC}[\{\alpha_0\}]$

- Bad starting wave function?
- Too many parameters varied at once?
- Eguess too low?
- \Rightarrow Do not update parameters
 - Go back to step 1 and/or 3
- 5. Perform long VMC run with optimal final $\{\alpha\}$ Quality of wave function $\Leftrightarrow E_{VMC}$ and σ_{VMC} What about diffusion Monte Carlo? $\Psi(\mathbf{R}, \{\alpha\}) \Rightarrow \text{improved } \sigma_{DMC} \text{ and (usually) } E_{DMC}$
- <u>Note</u>: E_{guess} usually converged in 2 iterations For simplicity, one can set $w_i = 1$ in σ^2

★ This afternoon

Optimization by variance minimization

• Be atom

 $1s^22s^2$ + simple Jastrow factor

- 1. Vary b parameter in Jastrow factor
- Vary LCAO in Slater basis of 1s, 2s orbitals Number of degrees of freedom in 1s?
 N^{1s}_{LCAO} -1 (cusp), -1 (norm), -1 (pivot)
 Number of degrees of freedom in 2s?
 N^{2s}_{LCAO} -1 (cusp), -1 (norm), -1 (pivot)
- 3. Vary exponents of Slater basis

 $1s^22s^2 \oplus 1s^22p^2$ + simple Jastrow factor

- 1. Start from 1-det wave function
- 2. Vary *b* parameter in Jastrow factor
- 3. Vary coefficient in front of $1s^22p^2$
- 4. Vary LCAO in Slater basis of 1s, 2s, 2p orbitals Number of degrees of freedom in 1s?
 N^{1s}_{LCAO} -1 (cusp), -1 (norm)
 Number of degrees of freedom in 2s?

 $N_{\rm LCAO}^{2s}$ -1 (cusp), -1 (norm), -1 (pivot) Number of degrees of freedom in 2p? $N_{\rm LCAO}^{2p}$ -1 (norm)

5. Vary exponents of Slater basis <u>Note</u>: Relationship among p_x , p_y and p_z

• Homonuclear diatomic molecule B₂

 $1\sigma_g^2 1\sigma_u^2 2\sigma_g^2 2\sigma_u^2 1\pi_{ux} 1\pi_{uy}$ + simple Jastrow factor

- 1. Vary b parameter in Jastrow factor
- 2. Vary LCAO in Slater basis on nuclei A and BCare with symmetry \Rightarrow linear dependencies $\sigma_g = c_1 * s^A + c_2 * p_z^A + c_1 * s^B - c_2 * p_z^B$ $\sigma_u = c_1 * s^A + c_2 * p_z^A - c_1 * s^B + c_2 * p_z^B$ $\pi_u = c_1 * p_x^A + c_1 * p_x^B$ $\pi_g = c_1 * p_x^A - c_1 * p_x^B$ Cusp conditions only on σ orbitals

Pivoting among orbitals of same symmetry

3. Vary exponents of Slater basis

Multi-determinant + simple Jastrow factor Effect of *d*-basis?

Energy minimization?

• • •

Subject of on-going research:

- Energy fluctuation potential method
- Stochastic reconfiguration
- Computation of derivatives and Hessian

Energy fluctuation potential method

Fahy, Filippi, Schautz, Prendergast, see references

Consider infinitesimal variations of Ψ

$$\begin{split} \Psi &= \mathcal{J} \Phi \to \Psi' = \Psi + \sum_{k>0} \delta_k \frac{\partial \Psi}{\partial \alpha_k} = \Psi \left(1 + \sum_{k>0} \delta_k O_k \right) \\ \text{with} \quad O_k &= \frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_k} \end{split}$$

The energy is stationary if these derivatives are zero

$$\frac{\partial E}{\partial \delta_k}\Big|_{\delta=0} = \frac{\partial}{\partial \delta_k} \frac{\langle \Psi' | \mathcal{H} | \Psi' \rangle}{\langle \Psi' | \Psi' \rangle}\Big|_{\delta=0}$$
$$= \frac{\langle (E_{\mathsf{L}} - \bar{E}) (O_k - \bar{O}_k) \rangle_{\Psi^2}}{\langle \Psi' | \Psi' \rangle}$$

Energy fluctuation potential method

Energy stationary if $\langle (E_{L} - \bar{E}) (O_{k} - \bar{O}_{k}) \rangle_{\Psi^{2}} = 0$

- \Leftrightarrow The fluctuations of E_{L} and O_k are uncorrelated
- $\Leftrightarrow \begin{array}{|c|c|c|c|c|} E_{\mathsf{L}} \text{ cannot be made 'more constant' by adding} \\ & \text{some combination of the functions } O_k \end{array}$

Reformulate problem as a least-squares fit of $E_{\rm L}$

$$\chi^2 = \langle (E_{\mathsf{L}} - E_0 - \sum_{k>0} V_k O_k)^2 \rangle_{\Psi^2}$$

Equivalently, solve set of linear equations

 $\langle (E_{\mathsf{L}} - \bar{E})(O_m - \bar{O}_m) \rangle_{\Psi^2} = \sum_{k>0} V_k \langle (O_k - \bar{O}_k)(O_m - \bar{O}_m) \rangle_{\Psi^2}$

Energy stationary $\Leftrightarrow V_k = 0$

How do we use $V_k \neq 0$?

If one optimizes the determinantal part Φ , interpret fitting the fluctuations of $E_{\rm L} = \frac{\mathcal{H}\Psi}{\Psi}$ with $\sum_k V_k O_k$ as fitting the fluctuations of $\frac{\mathcal{H}_{\rm eff}\Phi}{\Phi}$ where $\mathcal{H}_{\rm eff} = \frac{\mathcal{H}\mathcal{J}}{\mathcal{J}}$ \Rightarrow Use V_k to construct $\mathcal{H}'_{\rm eff}$ which approximates $\frac{\mathcal{H}\mathcal{J}}{\mathcal{J}}$ and use the solution of $\mathcal{H}'_{\rm eff}$ as new Φ Energy fluctuation potential method

<u>Example</u>: Ground state of CH_2O , 1-det wave function Pseudopotentials \rightarrow 12 electrons

Optimization of orbitals with EFP method:

 \rightarrow optimization of 315 LCAO parameters

	VMC	DMC
RHF orbitals	-22.763(3)	-22.8454(6)
Optimized	-22.784(2)	-22.8494(6)

Customary practice for optimizing wave function

Constructing wave function is a bit of an art

Jastrow-Slater wave function

- Jastrow factor optimized in variance minimization
- Orbitals $+ d_k$ coefficients in determinantal part from
 - 1. Hartree-Fock
 - 2. Density functional theory (LDA, GGA, ...)
 - 3. Multi-configuration self-consistent-field
 - 4. Optimized in variance minimization d_k coefficients (easy) + orbitals (small systems)
 - 5. Energy minimization (active subject of research)

Correlated sampling in VMC

Two operators \mathcal{O} , \mathcal{O}' and two wave functions Ψ , Ψ'

$$\bar{\mathcal{O}}' - \bar{\mathcal{O}} = \frac{\langle \Psi' | \mathcal{O}' | \Psi' \rangle}{\langle \Psi' | \Psi' \rangle} - \frac{\langle \Psi | \mathcal{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

Correlated sampling is a technique to calculate differences more accurately than the separate quantities

Example: Map out potential energy surface

 \Rightarrow Compute energy differences

DFT/QC methods \Rightarrow smoothly varying error

Problem in QMC: statistical error

Energy of a dimer versus bond length

 \Rightarrow Forces cannot be computed from independent runs

Correlated sampling: e.g. potential energy surface

Primary geometry $\mathcal{H} = \Psi$ ESecondary geometry \mathcal{H}_{s} Ψ_{s} E_{s}

$$E_{\rm S} - E = \frac{\langle \Psi_{\rm S} | \mathcal{H}_{\rm S} | \Psi_{\rm S} \rangle}{\langle \Psi_{\rm S} | \Psi_{\rm S} \rangle} - \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

Do **NOT** perform independent MC runs Generate MC configurations only from Ψ^2 where Ψ is the reference situation

$$E_{\rm S} - E = \frac{1}{N_{\rm conf}} \sum_{i=1}^{N_{\rm conf}} \left\{ \frac{\mathcal{H}_{\rm S} \Psi_{\rm S}(\mathbf{R}_i)}{\Psi_{\rm S}(\mathbf{R}_i)} w_i - \frac{\mathcal{H} \Psi(\mathbf{R}_i)}{\Psi(\mathbf{R}_i)} \right\}$$
$$w_i = \frac{|\Psi_{\rm S}(\mathbf{R}_i)/\Psi(\mathbf{R}_i)|^2}{\frac{1}{N_{\rm conf}} \sum_{j=1}^{N_{\rm conf}} |\Psi_{\rm S}(\mathbf{R}_j)/\Psi(\mathbf{R}_j)|^2}$$

Efficient if • w_i not too different from 1 • \mathcal{H} and \mathcal{H}_{S} closely related

Efficiency gain from correlated sampling

Example: B₂, 1 determinant + simple Jastrow factor E_0 at expt. equilibrium bond length $R_{exp}^{eq} = 3.005$ a.u. E at stretched bond length by $\Delta R = -0.2, \dots, 0.2$ Compute $E - E_0$ from independent runs $\rightarrow \Delta E_{ind}$ from correlated sampling $\rightarrow \Delta E_{corr}$

Efficiency gain = $\frac{\sigma^2(\Delta E_{\text{ind}})}{\sigma^2(\Delta E_{\text{corr}})}$

Note: We used space-warp coordinate transformation

★ This afternoon

Compute bond length of B_2

1. <u>Construct reference trial wave function</u>

 $\Psi = \underbrace{\sum_{i} d_{i} D_{i}}_{\text{sum of determinants}} \times \mathcal{J} \quad \leftarrow \text{ simple Jastrow factor}$

Optimize Ψ by variance minimization Choose experimental equilibrium bond length R_{exp}^{eq} B₂: 1 det + simple Jastrow, $E_{VMC}^{corr} = 28\%$

- 2. Secondary geometry wave functions
 - \mathbf{R}_{α} Ψ
 - \mathbf{R}^{s}_{α} $\Psi_{s} \Rightarrow$ What do we use for Ψ_{s} ?

Simple choice: Recenter the wave function at new nuclear positions and keep the same parameters

$$\Psi_{\mathsf{S}}(\mathbf{R},\mathbf{R}^{\mathsf{S}}_{\alpha}) = \Psi(\mathbf{R},\mathbf{R}^{\mathsf{S}}_{\alpha},\mathbf{p})$$

Better choice: $\Psi_{s}(\mathbf{R}, \mathbf{R}_{\alpha}^{s}) = \Psi(\mathbf{R}, \mathbf{R}_{\alpha}^{s}, \mathbf{p}_{s})$ with reoptimized parameters (smaller fluctuations in ΔE)

3. Space-warp coordinate transformation

We sample MC configurations from Ψ^2

Primary geometry $\mathcal{H} \quad \Psi \quad \mathbf{R}_{\alpha} \quad \mathbf{R} = (\mathbf{r}_{1}, \dots, \mathbf{r}_{N})$ Secondary geometry $\mathcal{H}_{s} \quad \Psi_{s} \quad \mathbf{R}_{\alpha}^{s} \quad \mathbf{R}^{s} = (\mathbf{r}_{1}^{s}, \dots, \mathbf{r}_{N}^{s})$ How do we map primary to secondary walker?

$$\mathbf{r}_{i}^{\mathsf{S}} = \mathbf{r}_{i} + \sum_{\alpha=1}^{N_{\mathsf{atom}}} (\mathbf{r}_{\alpha}^{\mathsf{S}} - \mathbf{r}_{\alpha}) \,\omega_{\alpha}(\mathbf{r}_{i})$$
$$\omega_{\alpha}(\mathbf{r}_{i}) = \frac{F(|\mathbf{r}_{i} - \mathbf{r}_{\alpha}|)}{\sum_{\beta=1}^{N_{\mathsf{atom}}} F(|\mathbf{r}_{i} - \mathbf{r}_{\beta}|)}$$

e.g. with $F(r) = r^{-\kappa}$ and $\kappa = 4$

Energy difference with space-warp transformation

$$E_{\rm S} - E = \frac{1}{N_{\rm conf}} \sum_{i=1}^{N_{\rm conf}} \left\{ \frac{\mathcal{H}_{\rm S} \Psi_{\rm S}(\mathbf{R}_{i}^{\rm S})}{\Psi_{\rm S}(\mathbf{R}_{i}^{\rm S})} w_{i} - \frac{\mathcal{H} \Psi(\mathbf{R}_{i})}{\Psi(\mathbf{R}_{i})} \right\}$$

$$\stackrel{\text{stretched coordinates}}{\stackrel{\text{primary coordinates}}{\stackrel{\text{primary coordinates}}}}$$

$$w_{i} = \frac{\left| \Psi_{\rm S}(\mathbf{R}_{i}^{\rm S})/\Psi(\mathbf{R}_{i}) \right|^{2} J(\mathbf{R}_{i})}{\frac{1}{N_{\rm conf}} \sum_{j=1}^{N_{\rm conf}} \left| \Psi_{\rm S}(\mathbf{R}_{j}^{\rm S})/\Psi(\mathbf{R}_{j}) \right|^{2} J(\mathbf{R}_{j})}$$

 $J(\mathbf{R})$ Jacobian of transformation $\mathbf{R} \longrightarrow \mathbf{R}^{\mathsf{S}}$

Example: Bond length of B₂

- Multi-determinants + e-e-n Jastrow function
- $E_{VMC}^{corr} = 83\%$ at $R_{exp}^{eq} = 3.005$ a.u.
- Root-mean-square fluctuations of $\frac{\Delta E}{\Delta R}$

- Error in bond length (a.u.) RHF LDA GGA VMC DMC ΔR_e 0.086 0.025 0.042 0.018(2) 0.002(2)

4. Compute forces and bond length for B_2

Interatomic forces and geometry optimization

One possible route: correlated sampling What about <u>Hellman-Feynman theorem</u>? $\mathcal{H}(\lambda)$, λ parameter (nuclear coordinates)

$$E(\lambda) = \frac{\langle \Psi(\lambda) | \mathcal{H}(\lambda) | \Psi(\lambda) \rangle}{\langle \Psi(\lambda) | \Psi(\lambda) \rangle}$$
$$\frac{\mathrm{d}E(\lambda)}{\mathrm{d}\lambda} = \frac{\langle \Psi(\lambda) | \frac{\mathrm{d}\mathcal{H}(\lambda)}{\mathrm{d}\lambda} | \Psi(\lambda) \rangle}{\langle \Psi(\lambda) | \Psi(\lambda) \rangle}$$

True if a) $\Psi(\lambda)$ is an eigenstate or b) $\Psi_{\alpha}(\lambda)$ minimizes the energy wrt α

Problems with Hellman-Feynman forces in QMC

- Ψ_T does not minimize the VMC energy: Hellman-Feynman \Rightarrow systematic error in VMC
- Ψ_T does not minimize the DMC energy: Hellman-Feynman \Rightarrow systematic error in DMC
- Large fluctuations: infinite for all electrons!
 → Reduced variance method by Caffarel

Customary practice: use DFT or QC geometries

References

- Early applications of variational Monte Carlo: W.L. McMillan, Phys. Rev. 138, A4422 (1965).
 D. Ceperley, G.V. Chester, M.H. Kalos, Phys. Rev. B 16, 3081 (1977).
- VMC and choice of transition matrix:
 C.J. Umrigar, Phys. Rev. Lett. **71**, 408 (1993).
 C.J. Umrigar in "Quantum Monte Carlo methods in Physics and Chemistry", edited by M.P. Nightingale and C.J. Umrigar (Nato Science Series, 1999).
- Cusp conditions:
 R. T. Pack and W. Byers Brown, J. Chem. Phys. 45, 556 (1966).
- Spin-assigned wave function, spin contamination: C-J. Huang, C. Filippi, C.J. Umrigar, J. Chem. Phys. 108, 8838 (1998).
- Jastrow factor and role of e-e-e-n terms: C-J. Huang, C.J. Umrigar, M.P. Nightingale, J. Chem. Phys. 107, 3007 (1997).

R.L. Coldwell, Int. J. Quantum Chem. Symp. **11**, 215 (1977).

C.J. Umrigar, K.G. Wilson, J.W. Wilkins, Phys. Rev. Lett. **60**, 1719 (1988).

C. Filippi and C.J. Umrigar, J. Chem. Phys. **105**, 213 (1996).

• Fluctuation potential method:

C. Filippi, S. Fahy, J. Chem. Phys. **112**, 3523 (2000).

F. Schautz, S. Fahy, J. Chem. Phys. **116**, 3533 (2002).

D. Prendergast, D. Bevan, S. Fahy, Phys. Rev. B 66, 155104 (2002)

- Correlated sampling for interatomic forces:
 C. Filippi, C.J. Umrigar, Phys. Rev. B 61, R16291 (2000).
- Hellman-Feynman forces in QMC:

R. Assaraf, M. Caffarel, Phys. Rev. Lett. **83**, 4682 (1999); J. Chem. Phys. **113**, 4028 (2000).