abdus salam

international centre for theoretical physics

SMR 1595-5

Joint DEMOCRITOS - ICTP School on CONTINUUM QUANTUM MONTE CARLO METHODS 12-23 January 2004

VARIATIONAL MONTE CARLO FOR ATOMS AND MOLECULES

Claudia FILIPPI

Instituut-Lorentz, Universiteit Leiden, The Netherlands

Variational Monte Carlo for atoms and molecules

Claudia Filippi

Instituut-Lorentz, Universiteit Leiden, The Netherlands

1. Metropolis algorithm

- Choice of proposal matrix

2. Trial wave function

- Spin projection
- Cusp conditions
- Jastrow factor
- Static correlation

3. Optimization of wave function

- Variance minimization
- Energy minimization

4. Correlated sampling

- Computation of potential energy difference

Electronic structure calculations

First-principle description
Molecules, solids \rightarrow Collection of ions + electrons

Only input: $Z_{\alpha}, \mathrm{N}_{\alpha}$

Work in the Born-Oppenheimer approximation
\rightarrow Separate nuclear and electronic degrees of freedom

Solve Schrödinger equation for electrons in ionic field

$$
\mathcal{H}=-\frac{1}{2} \sum_{i} \nabla_{i}^{2}+\sum_{i} v_{\mathrm{ext}}\left(\mathbf{r}_{i}\right)+\frac{1}{2} \sum_{i \neq j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

What do we want to compute?
Fermionic ground state and low-lying excited states
Evaluate expectation values $\frac{\left\langle\Psi_{n}\right| \mathcal{O}\left|\Psi_{n}\right\rangle}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle}$

Electronic structure: possible approaches
(a) Density functional theory methods

Finite and extended systems
Approximate treatment of exchange-correlation
(b) Quantum chemistry methods

Post Hartree-Fock wave function methods

Accurate on small systems
(c) Quantum Monte Carlo techniques

Fully-correlated calculations
Stochastic solution of the Schrödinger equation Most accurate benchmarks for medium-large systems: $1^{\text {st }}-2^{\text {nd }}-$ row clusters with $N_{\text {atom }}=20-50$ and solids, where QC methods are difficult to apply

Quantum Monte Carlo

- Variational Monte Carlo

Monte Carlo as a way of evaluating integrals
Consider many-body wave function $\psi\left(\mathrm{r}_{1}, \ldots, \mathrm{r}_{N}\right)$
Compute expectation value of \mathcal{O} operator $(\mathcal{H}, n \ldots)$

$$
\langle\mathcal{O}\rangle_{\mathrm{VMC}}=\frac{\langle\Psi| \mathcal{O}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

Why should we use Monte Carlo integration?

\Rightarrow Freedom in functional form of ψ

- Projection Monte Carlo Methods
- Diffusion Monte Carlo
(Grimm \& Storer, Anderson, Ceperley, 1971-1980)
- Domain Green Function Monte Carlo (Kalos, 1974)
- Other variants, e.g. Reptation MC (Baroni, Moroni, 1998)

Expectation values in Monte Carlo methods

Probability distribution ρ (continuous or discrete) Monte Carlo to compute expectation values as

$$
\frac{\int \mathrm{d} \mathbf{R} O(\mathbf{R}) \rho(\mathbf{R})}{\int \mathrm{d} \mathbf{R} \rho(\mathbf{R})} \approx \frac{1}{M} \sum_{i=1}^{M} O\left(\mathbf{R}_{i}\right)
$$

Configurations \mathbf{R}_{i} are distributed as $\rho(\mathbf{R}) / \int \mathrm{d} \mathbf{R} \rho(\mathbf{R})$
In variational Monte Carlo
$\langle\mathcal{O}\rangle_{\mathrm{VMC}}=\frac{\langle\Psi| \mathcal{O}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\int \mathrm{d} \mathbf{R}^{3 \mathrm{~N}}\left(\frac{\mathcal{O} \Psi}{\Psi}\right)_{\mathbf{R}} \sqrt{\frac{|\Psi(\mathrm{R})|^{2}}{\int \mathrm{dR}^{3 \mathrm{~N}}|\Psi(\mathrm{R})|^{2}}}$
$\mathbf{R}=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right), \quad \rho(\mathbf{R})=|\Psi(\mathbf{R})|^{2}, \quad O(\mathbf{R})=\left(\frac{\mathcal{O} \psi}{\psi}\right)_{\mathbf{R}}$

$$
\langle\mathcal{O}\rangle_{\mathrm{VMC}} \approx \frac{1}{M} \sum_{i=1}^{M}\left(\frac{\mathcal{O} \psi}{\psi}\right)_{\mathbf{R}_{i}}
$$

We need a means to sample ρ

Metropolis Algorithm

Aim:
 Obtain a set of $\left\{\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots, \mathbf{R}_{M}\right\}$ distributed as a given $\rho(\mathbf{R})$
 Let us generate a Markov chain:

- Start from arbitrary initial state \mathbf{R}_{i}
- Use stochastic transition matrix $M\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)$

$$
M\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right) \geq 0 \quad \sum_{\mathbf{R}_{\mathrm{f}}} M\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=1 .
$$

as probability of making transition $\mathbf{R}_{\mathbf{i}} \rightarrow \mathbf{R}_{\mathrm{f}}$

- Evolve the system by repeated application of M

To sample ρ

M must satisfy stationarity condition:

$\sum_{i} M\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right) \rho\left(\mathbf{R}_{\mathbf{i}}\right)=\rho\left(\mathbf{R}_{\mathrm{f}}\right)=\sum_{i} M\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right) \quad \forall \mathbf{R}_{\mathrm{f}}$
\Rightarrow If we start with ρ, we continue to sample ρ
Stationarity + stochastic property of $M+$ ergodicity \Rightarrow Any initial distribution evolves to ρ

How do we construct M in practice?
M must satisfy stationarity condition:

$$
\sum_{i} M\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)=\sum_{i} M\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right) \quad \forall \mathbf{R}_{\mathrm{f}}
$$

- Impose detailed balance condition

$$
M\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right) \rho\left(\mathbf{R}_{\mathbf{i}}\right)=M\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)
$$

Sufficient but not necessary condition

- Write M as proposal $T \times$ acceptance A

$$
M\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right)=A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right) T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right)
$$

M and T are stochastic matrices but A is not

Detailed balance is now:
$A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right) T\left(\mathbf{R}_{\mathbf{f}} \mid \mathbf{R}_{\mathbf{i}}\right) \rho\left(\mathbf{R}_{\mathbf{i}}\right)=A\left(\mathbf{R}_{\mathbf{i}} \mid \mathbf{R}_{\mathrm{f}}\right) T\left(\mathbf{R}_{\mathbf{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)$
or

$$
\frac{A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)}{A\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}=\frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)}
$$

Choice of acceptance matrix A

For a given choice of T, infinite choices of A satisfy

$$
\frac{A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)}{A\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}=\frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)}
$$

Any function $A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right)=F\left(\frac{T\left(\mathbf{R}_{\mathbf{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right) \rho\left(\mathbf{R}_{\mathbf{i}}\right)}\right)$
with $F(x) / F(1 / x)=x$ will do

Choice by Metropolis et al. maximizes the acceptance

$$
A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=\min \left\{1, \frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)}\right\}
$$

Note: $\rho(\mathbf{R})$ does not have to be normalized

Original Metropolis method

Symmetric proposal matrix $T\left(\mathbf{R}_{\mathbf{i}} \mid \mathbf{R}_{\mathrm{f}}\right)=T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right)$

$$
A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=\min \left\{1, \frac{\rho\left(\mathbf{R}_{\mathrm{f}}\right)}{\rho\left(\mathbf{R}_{\mathrm{i}}\right)}\right\}
$$

Aim: $\begin{array}{r}\text { Obtain } \\ \text { dis }\end{array}$

1. Pick a starting \mathbf{R} and evaluate $\rho(\mathbf{R})$
2. Choose \mathbf{R}^{\prime} at random
3. If $\rho\left(\mathbf{R}^{\prime}\right) \geq \rho(\mathbf{R})$, move accepted
\rightarrow put \mathbf{R}^{\prime} in the set
4. If $\rho\left(\mathbf{R}^{\prime}\right)<\rho(\mathbf{R})$, move accepted with $p=\frac{\rho\left(\mathbf{R}^{\prime}\right)}{\rho(\mathbf{R})}$

To do this, pick a random number $\chi \in[0,1]$:
a) If $\chi<p$, move accepted \rightarrow put \mathbf{R}^{\prime} in the set
b) If $\chi>p$, move rejected
\rightarrow put another entry of R in the set

Choice of proposal matrix T

Metropolis method \rightarrow Points sequentially correlated
Aim \rightarrow Achieve fastest evolution of the system
\Rightarrow High acceptance + large proposed moves
\Rightarrow Find optimal T with high acceptance + large moves

Original Metropolis method $T\left(\mathbf{R}_{\boldsymbol{i}} \mid \mathbf{R}_{\mathrm{f}}\right)=T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)$
In general

$$
A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=\min \left\{1, \frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)}\right\}
$$

Use freedom in the choice of T to make

$$
\frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right) \rho\left(\mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \rho\left(\mathbf{R}_{\mathrm{i}}\right)} \approx 1 \Rightarrow A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \approx 1
$$

and reduce autocorrelation time of desired observable

Note: we need to be able to sample T directly

Choice of proposal matrix T
C. Umrigar, Phys. Rev. Lett. 71, 408 (1993)

Rewrite proposal matrix T as

$$
T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=\frac{S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)}{\int \mathrm{d} \mathbf{R}_{\mathrm{f}} S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)}=\frac{S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)}{I\left(\mathbf{R}_{\mathrm{i}}\right)}
$$

with $I\left(\mathbf{R}_{\mathbf{i}}\right)=\int \mathrm{d} \mathbf{R}_{\mathrm{f}} S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \Rightarrow \int \mathrm{d} \mathbf{R}_{\mathrm{f}} T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right)=1$

$$
\Rightarrow \quad \frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)} \frac{\rho\left(\mathbf{R}_{\mathrm{f}}\right)}{\rho\left(\mathbf{R}_{\mathrm{i}}\right)}=\frac{I\left(\mathbf{R}_{\mathrm{i}}\right)}{I\left(\mathbf{R}_{\mathrm{f}}\right)} \frac{S\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}{S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)} \frac{\rho\left(\mathbf{R}_{\mathrm{f}}\right)}{\rho\left(\mathbf{R}_{\mathrm{i}}\right)}
$$

- If $I\left(\mathbf{R}_{\mathbf{i}}\right)=I\left(\mathbf{R}_{\mathrm{f}}\right)$ for all \mathbf{R}_{f} accessible from $\mathbf{R}_{\mathbf{i}}$

$$
\begin{aligned}
S\left(\mathbf{R}_{f} \mid \mathbf{R}_{\mathrm{i}}\right) \sim \rho\left(\mathbf{R}_{\mathrm{f}}\right) & \Rightarrow \frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)} \frac{\rho\left(\mathbf{R}_{\mathrm{f}}\right)}{\rho\left(\mathbf{R}_{\mathrm{i}}\right)} \approx 1 \\
& \Leftrightarrow \frac{A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right)}{A\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)} \approx 1
\end{aligned}
$$

Usually, not possible to find approximation to ρ over all domain of ρ which can be sampled directly

Choice of proposal matrix T

- Usually, we choose $S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \neq 0$ for $\mathbf{R}_{\mathrm{f}} \in D\left(\mathbf{R}_{\mathfrak{i}}\right)$
with $D\left(\mathbf{R}_{\mathrm{i}}\right)$ a domain of volume $\Omega\left(\mathbf{R}_{\mathrm{i}}\right)$ around \mathbf{R}_{i}
\Rightarrow Proposed moves are in domain $D\left(\mathbf{R}_{\mathbf{i}}\right)$

Now, $I\left(\mathbf{R}_{\mathrm{f}}\right) \neq I\left(\mathbf{R}_{\mathrm{i}}\right)$ and
$I\left(\mathbf{R}_{\mathrm{i}}\right)=\int \mathrm{d} \mathbf{R}_{\mathrm{f}} S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \approx S\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{i}}\right) \Omega\left(\mathbf{R}_{\mathrm{i}}\right) \Rightarrow$
$\frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)} \frac{\rho\left(\mathbf{R}_{\mathrm{f}}\right)}{\rho\left(\mathbf{R}_{\mathrm{i}}\right)} \approx \frac{\Omega\left(\mathbf{R}_{\mathrm{i}}\right)}{\Omega\left(\mathbf{R}_{\mathrm{f}}\right)} \frac{S\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{i}}\right)}{S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{f}}\right)} \frac{S\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}{S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)} \frac{\rho\left(\mathbf{R}_{\mathrm{f}}\right)}{\rho\left(\mathbf{R}_{\mathrm{i}}\right)}$

Choosing $S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=g\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) / \sqrt{\Omega\left(\mathbf{R}_{\mathrm{f}}\right)}$ and

$$
\begin{aligned}
g\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \sim \sqrt{\rho\left(\mathbf{R}_{\mathrm{f}}\right)} & \Rightarrow \frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)} \frac{\rho\left(\mathbf{R}_{\mathrm{f}}\right)}{\rho\left(\mathbf{R}_{\mathrm{i}}\right)} \approx 1 \\
& \Leftrightarrow \frac{A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)}{A\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)} \approx 1
\end{aligned}
$$

Choice of proposal matrix T

- If Δ is the linear dimension of domain $D\left(\mathbf{R}_{\mathbf{i}}\right)$

$$
\begin{aligned}
& \quad \frac{A\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)}{A\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}=\frac{T\left(\mathbf{R}_{\mathrm{i}} \mid \mathbf{R}_{\mathrm{f}}\right)}{T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)} \frac{\rho\left(\mathbf{R}_{\mathrm{f}}\right)}{\rho\left(\mathbf{R}_{\mathrm{i}}\right)} \approx 1-\mathcal{O}\left(\Delta^{m}\right) \\
& m=1 \quad S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \text { symmetric } \\
& m=1 \quad S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right) \sim \rho\left(\mathbf{R}_{\mathrm{f}}\right) \\
& m=2,3 \quad \nabla \ln g\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=\nabla \ln \sqrt{\rho\left(\mathbf{R}_{\mathrm{f}}\right)} \quad \text { at } \quad \mathbf{R}_{\mathrm{f}}=\mathbf{R}_{\mathrm{i}}
\end{aligned}
$$

Metropolis algorithm in electronic structure theory

Calculate quantum mechanical expectation values
For example, the total energy is given by

$$
\begin{aligned}
\langle\mathcal{H}\rangle_{\mathrm{VMC}} & =\frac{\langle\Psi| \mathcal{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \\
& =\int \mathrm{d} \mathbf{R}^{3 \mathrm{~N}}\left(\frac{\mathcal{H} \Psi}{\Psi}\right)_{\mathbf{R}} \frac{|\Psi(\mathbf{R})|^{2}}{\int \mathrm{~d} \mathbf{R}^{3 \mathrm{~N}}|\Psi(\mathbf{R})|^{2}} \\
& =\frac{1}{M} \sum_{i=1}^{M}\left(\frac{\mathcal{H} \Psi}{\Psi}\right)_{\mathbf{R}_{i}} \\
& =\frac{1}{M} \sum_{i=1}^{M} E_{\mathrm{L}}\left(\mathbf{R}_{i}\right)
\end{aligned}
$$

Note: If $\Psi \rightarrow$ eigenfunction, $E_{L}(\mathbf{R})$ does not fluctuate
\Rightarrow Importance of optimizing trial wave function

* This afternoon

1. Simple Metropolis $(m=1)$
$S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)$ is constant in a box centered in \mathbf{R}_{i}
In each of the $3 N$ dimensions, sample uniformely

$$
d x=x_{\mathrm{f}}-x_{\mathrm{i}} \in\left[-\frac{\Delta}{2}, \frac{\Delta}{2}\right]
$$

2. Directed Metropolis $(m=2)$
$S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right)$ is a linear approximation to $\Psi\left(\mathbf{R}_{\mathrm{f}}\right)$ at \mathbf{R}_{i}
$S\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathbf{i}}\right)=\prod_{k=1}^{3 N}\left\{1+\left(x_{k, \mathrm{f}}-x_{k, \mathrm{i}}\right) \times \min \left[\left|\mathbf{V}_{k}\left(\mathbf{R}_{\mathbf{i}}\right)\right|, \frac{2}{\Delta}\right]\right.$ $\left.\times \operatorname{sign}\left[\mathrm{V}_{k}\left(\mathbf{R}_{\mathbf{i}}\right)\right]\right\}$
with $\quad x_{k, \mathrm{f}}-x_{k, \mathrm{i}} \in\left[-\frac{\Delta}{2}, \frac{\Delta}{2}\right]$ and $\mathrm{V}\left(\mathbf{R}_{\mathrm{i}}\right)=\frac{\nabla \Psi\left(\mathbf{R}_{\mathrm{i}}\right)}{\Psi\left(\mathbf{R}_{\mathrm{i}}\right)}$
3. Motivated by diffusion Monte Carlo $(m=2)$

$$
\begin{aligned}
& T\left(\mathbf{R}_{\mathrm{f}} \mid \mathbf{R}_{\mathrm{i}}\right)=\frac{1}{(2 \pi \tau)^{3 N / 2}} \exp \left[-\frac{\left(\mathbf{R}_{\mathrm{f}}-\mathbf{R}_{\mathrm{i}}-\overline{\mathbf{V}}\left(\mathbf{R}_{\mathrm{i}}\right) \tau\right)^{2}}{2 \tau}\right] \\
& \text { Limit } V \text { as } \overline{\mathbf{V}}=\frac{\sqrt{1+2 a V^{2} \tau}-1}{a V^{2} \tau} \mathbf{V}
\end{aligned}
$$

Autocorrelation time

Run of N Monte Carlo steps $=N_{b}$ blocks $\times N_{s}$ steps
We have N measurements of E_{L}
$\bar{E}=$ average of E_{L}
$\sigma=$ rms fluctuations of individual E_{L}
$\sigma_{b}=\mathrm{rms}$ fluctuations of block averages of E_{L}
Effectively, $N / T_{\text {corr }}$ independent measurements of E_{L}
Define $T_{\text {corr }}$ as
$\operatorname{err}(\bar{E})=\frac{\sigma}{\sqrt{N_{b} \times N_{s}}} \sqrt{T_{\text {corr }}}=\frac{\sigma_{b}}{\sqrt{N_{b}}}$
$\Rightarrow \quad T_{\text {corr }}=N_{s}\left(\frac{\sigma_{b}}{\sigma}\right)^{2} \quad$ where we chose $N_{s} \gg T_{\text {corr }}$

Autocorrelation time and acceptance versus step size

Example: Be, 4 determinants + simple Jastrow factor

$$
E_{\mathrm{VMC}}=-14.9581(3) \mathrm{H}, \sigma_{\mathrm{VMC}}=0.35 \mathrm{H}
$$

1. Simple Metropolis

Δ	$T_{\text {corr }}$	\bar{A}
1.00	41	0.17
0.75	21	0.28
0.50	17	0.46
0.20	45	0.75

2. Directed Metropolis

Δ	$T_{\text {corr }}$	\bar{A}
1.20	21	0.38
1.00	11	0.52
0.75	6	0.72
0.50	8	0.88
0.20	34	0.99

3. Drift-diffusion transition

τ	$T_{\text {corr }}$	\bar{A}
0.100	13	0.42
0.050	7	0.66
0.020	8	0.87
0.010	14	0.94

Shortcomings of Metropolis algorithms 1-2-3

- No distinction between core and valance electrons
\Rightarrow Core electrons set the length scales
- Use of cartesian coordinates
\Rightarrow Derivative discontinuity of Ψ at nuclei
- All-electron versus single-electron move

Better algorithms can achieve $T_{\text {corr }}=1-2$

Trial wave function

Traditional quantum chemistry

$$
\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)=\Psi\left(\mathrm{r}_{1}, \sigma_{1}, \ldots, \mathrm{r}_{N}, \sigma_{N}\right) \quad \text { with } \quad \sigma_{i}= \pm 1
$$

$$
\Psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right) \longrightarrow \quad D_{\mathrm{HF}}=\left|\begin{array}{ccc}
\psi_{1}\left(\mathrm{x}_{1}\right) & \ldots & \psi_{1}\left(\mathrm{x}_{N}\right) \\
\vdots & & \vdots \\
\psi_{N}\left(\mathrm{x}_{1}\right) & \ldots & \psi_{N}\left(\mathrm{x}_{N}\right)
\end{array}\right|
$$

$c_{0} D_{\mathrm{HF}}+c_{1} D_{1}+c_{2} D_{2}+\ldots$ millions of determinants

$$
\begin{array}{ccc}
\psi_{1}\left(\mathrm{x}_{1}\right) & \ldots & \psi_{1}\left(\mathrm{x}_{N}\right) \\
\vdots & & \vdots \\
\psi_{N+1}\left(\mathrm{x}_{1}\right) & \ldots & \psi_{N+1}\left(\mathrm{x}_{N}\right)
\end{array}
$$

with spin-orbitals $\psi_{i}(\mathrm{x})=\phi_{i}(\mathbf{r}) \chi_{s_{i}}(\sigma), s_{i}=\uparrow, \downarrow$
Variational principle: minimize $\langle\Psi| \mathcal{H}|\Psi\rangle$
Analytical integral \rightarrow Gaussian basis

Quantum Monte Carlo wave function

Jastrow-Slater wave functions

$$
\left.\begin{array}{rll}
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\sum_{k} d_{k} D_{k}^{\uparrow} D_{k}^{\downarrow} & \times \mathcal{J} \\
\text { Determinantal part } & \downarrow \\
& \text { Jastrow factor } \\
& \left.\begin{array}{l}
\text { e-N } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}\right\}-\mathrm{e}-\mathrm{N}
\end{array}\right\} \text { correlation }
$$

- $\sum_{k} d_{k} D_{k}^{\uparrow} D_{k}^{\downarrow} \longrightarrow$ Few Slater determinants
\uparrow, \downarrow-spin determinants of single-particle orbitals:
- Slater functions for all-electron calculations

$$
\phi(\mathrm{r})=\sum_{\alpha k} c_{k_{\alpha}} N_{k_{\alpha}} r_{\alpha}^{n_{k_{\alpha}}-1} e^{-\zeta_{k_{\alpha}} r_{\alpha}} \mathrm{Y}_{l_{k_{\alpha}} m_{k_{\alpha}}}\left(\hat{r}_{\alpha}\right)
$$

- Gaussians for pseudopotential calculations
- $\mathcal{J} \longrightarrow$ Electron-electron correlation (e-e distance $r_{i j}$)

Why can we factorize $D^{\uparrow} D^{\downarrow}$?

Wave function in terms of space + spin variables:

$$
\Psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)=\Psi\left(\mathrm{r}_{1}, \sigma_{1}, \ldots, \mathrm{r}_{N}, \sigma_{N}\right) \text { with } \sigma_{i}= \pm 1
$$

Consider $N=N_{\uparrow}+N_{\downarrow}$ and $S_{z}=\left(N_{\uparrow}-N_{\downarrow}\right) / 2$ and
$\zeta_{1}\left(\sigma_{1}, \ldots, \sigma_{N}\right)=\chi_{\uparrow}\left(\sigma_{1}\right) \ldots \chi_{\uparrow}\left(\sigma_{N_{\uparrow}}\right) \chi_{\downarrow}\left(\sigma_{N_{\uparrow}+1}\right) \ldots \chi_{\downarrow}\left(\sigma_{N}\right)$
$\zeta_{i}\left(\sigma_{1}, \ldots, \sigma_{N}\right)$ generated by permuting indices in ζ_{1} form a complete orthonormal set in spin space

$$
\sum_{\sigma_{1} \ldots \sigma_{N}} \zeta_{i}\left(\sigma_{1}, \ldots, \sigma_{N}\right) \zeta_{j}\left(\sigma_{1}, \ldots, \sigma_{N}\right)=\delta_{i j}
$$

$$
\Rightarrow \quad \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)=\sum_{i=1}^{K} F_{i}\left(\mathrm{r}_{1}, \ldots, \mathrm{r}_{N}\right) \zeta_{i}\left(\sigma_{1}, \ldots, \sigma_{N}\right)
$$

where F_{i} antisymmetric for interchange of like-spin F_{i} equal to \pm permutation of F_{1}

$$
\Psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)=\mathcal{A}\left\{F_{1}\left(\mathrm{r}_{1}, \ldots, \mathrm{r}_{N}\right) \zeta_{1}\left(\sigma_{1}, \ldots, \sigma_{N}\right)\right\}
$$

Why can we factorize $D^{\uparrow} D^{\downarrow}$?

Note that if \mathcal{O} is a spin-independent operator

$$
\langle\Psi| \mathcal{O}|\Psi\rangle=\left\langle F_{1}\right| \mathcal{O}\left|F_{1}\right\rangle
$$

since ζ_{i} form an orthonormal set

More convenient to use F_{1} instead of Ψ
To obtain F_{1}, assign the spin-variables of particles:

$$
\begin{array}{cccccccc}
\text { Particle } & 1 & 2 & \ldots & N_{\uparrow} & N_{\uparrow+1} & \ldots & N \\
\sigma & 1 & 1 & \ldots & 1 & -1 & \ldots & -1
\end{array}
$$

$F_{1}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\psi\left(\mathbf{r}_{1}, 1, \ldots, \mathbf{r}_{N_{\uparrow}}, 1, \mathbf{r}_{N_{\uparrow}+1},-1, \ldots, \mathbf{r}_{N},-1\right)$

Spin-assigned $\psi=D$

Determinant D of spin-orbitals $\psi_{i}(\mathrm{x})=\phi_{i}(\mathrm{r}) \chi_{s_{i}}(\sigma)$
Example: Be atom, $1 s^{2} 2 s^{2} \Rightarrow N_{\uparrow}=N_{\downarrow}=2, S_{z}=0$
Spin-orbitals $\phi_{1 s} \chi_{\uparrow}, \phi_{2 s} \chi_{\uparrow}, \phi_{1 s} \chi_{\downarrow}, \phi_{2 s} \chi_{\downarrow}$

$$
D=\frac{1}{\sqrt{4!}} \left\lvert\, \begin{array}{llll}
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \ldots & \phi_{1 s}\left(\mathbf{r}_{4}\right) \chi_{\uparrow}\left(\sigma_{4}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \ldots & \phi_{2 s}\left(\mathbf{r}_{4}\right) \chi_{\uparrow}\left(\sigma_{4}\right) \\
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \ldots & \phi_{1 s}\left(\mathbf{r}_{4}\right) \chi_{\downarrow}\left(\sigma_{4}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \ldots & \phi_{2 s}\left(\mathbf{r}_{4}\right) \chi_{\downarrow}\left(\sigma_{4}\right)
\end{array}\right.
$$

$F_{1}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}\right)=D\left(\mathbf{r}_{1},+1, \mathbf{r}_{2},+1, \mathbf{r}_{3},-1, \mathbf{r}_{4},-1\right)$
$F_{1}=\frac{1}{\sqrt{4!}}\left|\begin{array}{cccc}\phi_{1 s}\left(\mathbf{r}_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) & 0 & 0 \\ \phi_{2 s}\left(\mathbf{r}_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) & 0 & 0 \\ 0 & 0 & \phi_{1 s}\left(\mathbf{r}_{3}\right) & \phi_{1 s}\left(\mathbf{r}_{4}\right) \\ 0 & 0 & \phi_{2 s}\left(\mathbf{r}_{3}\right) & \phi_{2 s}\left(\mathbf{r}_{4}\right)\end{array}\right|$
$D \rightarrow\left|\begin{array}{ll}\phi_{1 s}\left(\mathbf{r}_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \\ \phi_{2 s}\left(\mathbf{r}_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right)\end{array}\right| \times\left|\begin{array}{ll}\phi_{1 s}\left(\mathbf{r}_{3}\right) & \phi_{1 s}\left(\mathbf{r}_{4}\right) \\ \phi_{2 s}\left(\mathbf{r}_{3}\right) & \phi_{2 s}\left(\mathbf{r}_{4}\right)\end{array}\right|=D^{\uparrow} \times D^{\downarrow}$

Spin-assigned $\Psi=\sum_{k} d_{k} D_{k}$
Care with order of spin-orbitals in determinants
e.g. First all \uparrow spin-orbitals, then all \downarrow spin-orbitals

Example: He atom, singlet excited state $1 s^{1} 2 s^{1}$
Spin-orbitals $\phi_{1 s} \chi_{\uparrow}, \phi_{1 s} \chi_{\downarrow}, \phi_{2 s} \chi_{\uparrow}, \phi_{2 s} \chi_{\downarrow}$

$$
\begin{aligned}
\Psi & =\left|\begin{array}{ll}
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \chi_{\uparrow}\left(\sigma_{2}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) \chi_{\downarrow}\left(\sigma_{2}\right)
\end{array}\right| \\
& -\left|\begin{array}{ll}
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \chi_{\downarrow}\left(\sigma_{2}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) \chi_{\uparrow}\left(\sigma_{2}\right)
\end{array}\right| \\
& =\left|\begin{array}{ll}
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \chi_{\uparrow}\left(\sigma_{2}\right) \\
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) \chi_{\downarrow}\left(\sigma_{2}\right)
\end{array}\right| \\
& +\left|\begin{array}{ll}
\phi_{2 s}\left(\mathbf{r}_{1}\right) \chi_{\uparrow}\left(\sigma_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right) \chi_{\uparrow}\left(\sigma_{2}\right) \\
\phi_{1 s}\left(\mathbf{r}_{1}\right) \chi_{\downarrow}\left(\sigma_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \chi_{\downarrow}\left(\sigma_{2}\right)
\end{array}\right|
\end{aligned}
$$

Assign spins: Particle 12

$$
\begin{array}{lll}
\sigma & 1 & -1
\end{array}
$$

$$
F_{1}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\phi_{1 s}\left(\mathbf{r}_{1}\right) \phi_{2 s}\left(\mathbf{r}_{2}\right)+\phi_{2 s}\left(\mathbf{r}_{1}\right) \phi_{1 s}\left(\mathbf{r}_{2}\right)
$$

Spin-assigned QMC wave functions

$\sigma=+1$ for first N_{\uparrow} particles, $\sigma=-1$ for the others
$\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=F_{1}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$

$$
=\mathcal{J} \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N_{\uparrow}+1}, \ldots, \mathbf{r}_{N}\right)
$$

where $\mathcal{J}=\mathcal{J}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$ is the Jastrow factor

Spacial symmetry

$\sum_{k} d_{k} D_{k}$ constructed to have proper spacial symmetry
Often, $\mathcal{J}=\mathcal{J}\left(\left\{r_{i j}\right\},\left\{r_{i \alpha}\right\}\right), \quad i, j=$ electrons, $\alpha=$ nucleus
$\Rightarrow \mathcal{J}$ invariant under rotations
$\Rightarrow \mathcal{J}$ does not affect spacial symmetry of Ψ
Spin symmetry
$\sum_{k} d_{k} D_{k}$ constructed to be eigenstate of S^{2}, S_{z}
\mathcal{J} symmetric for interchange of like-spin particles $\Rightarrow \Psi$ eigenstate of S_{z}
\mathcal{J} symmetric for interchange of spacial variables
$\Rightarrow \psi$ eigenstate of S^{2}

Cusp conditions

At interparticle coalescence points, potential diverges:
Electron-nucleus $-\frac{Z}{r_{i \alpha}}$
Electron-electron $\frac{1}{r_{i j}}$
Local energy $\frac{\mathcal{H} \psi}{\psi}=-\frac{1}{2} \sum_{i} \frac{\nabla_{i}^{2} \psi}{\psi}+V$ must be finite
\Rightarrow Kinetic energy must have opposite divergence
$\Rightarrow \Psi$ must satisfy Kato's cusp conditions:

$$
\left|\frac{\partial \widehat{\Psi}}{\partial r_{i j}}\right|_{r_{i j}=0}=\mu_{i j} q_{i} q_{j} \Psi\left(r_{i j}=0\right)
$$

for two particles of masses m_{i}, m_{j} and charges q_{i}, q_{j}

Note: all other interparticle distances are >0,
$\hat{\psi}$ is a spherical average, and $\mu_{i j}=\frac{m_{i} m_{j}}{m_{i}+m_{j}}$

Cusp conditions: example

Consider $r_{i j} \rightarrow 0$ and all other particles well separated
The local energy close to $r=r_{i j}=0$ is:

$$
-\frac{1}{2 \mu_{i j}} \frac{\nabla^{2} \psi}{\psi}+V(r)=\text { finite }
$$

Assume $\Psi\left(r=r_{i j}=0\right) \neq 0$

$$
-\frac{1}{2 \mu_{i j}} \frac{\psi^{\prime \prime}}{\psi}-\frac{1}{\mu_{i j}} \frac{1}{r} \frac{\psi^{\prime}}{\psi}+V(r)=\text { finite }
$$

The condition for E_{L} to be finite at $r=0$ is

$$
\frac{\Psi^{\prime}}{\Psi}=\mu_{i j} r V(r)
$$

- Electron-nucleus: $V=-\frac{Z}{r}, \mu=\left.1 \Rightarrow \frac{\Psi^{\prime}}{\psi}\right|_{r=0}=-Z$
- Electron-electron: $V=\frac{1}{r}, \quad \mu=\left.\frac{1}{2} \Rightarrow \frac{\psi^{\prime}}{\psi}\right|_{r=0}=1 / 2$

Generalized cusp conditions

R. T. Pack and W. Byers Brown, J. Chem. Phys. 45, 556 (1966)

What about two electrons in a triplet state?
Or more generally two like-spin electrons $(D \rightarrow 0)$?
Or a highly excited state (egg. $2 p^{2}$ state of Helium)?

$$
\psi\left(r=r_{i j}=0\right)=0 ?!?
$$

Wave function near $\mathbf{r}=\mathbf{r}_{i j}=0$ can be written as:

$$
\Psi=\sum_{l=l_{0}}^{\infty} \sum_{m=-l}^{l} f_{l m}(r) r^{l} Y_{l m}(\theta, \phi)
$$

Expanding $f_{l m}(r)=\sum_{k=0}^{\infty} f_{l m}^{(k)} r^{k}$

$$
f_{l m}(r)=f_{l m}^{(0)}\left[1+\frac{\gamma}{(l+1)} r+O\left(r^{2}\right)\right]
$$

where $\gamma=q_{i} q_{j} \mu_{i j}$

- Electron-electron singlet: $l_{0}=0 \Rightarrow \Psi \sim\left(1+\frac{1}{2} r\right)$
- Electron-electron triplet: $l_{0}=1 \Rightarrow$

$$
\Psi \sim\left(1+\frac{1}{4} r\right) r
$$

Cusp conditions and QMC wave functions

$\sigma=+1$ for first N_{\uparrow} electrons, $\sigma=-1$ for the others
$\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\mathcal{J} \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N_{\uparrow}+1}, \ldots, \mathbf{r}_{N}\right)$
Electron-electron cusp conditions

- Anti-parallel spins: $r_{i j} \rightarrow 0$ for $i \leq N_{\uparrow}, j \geq N_{\uparrow}+1$ Usually, determinantal part $\neq 0$
$\left.\Rightarrow \mathcal{J}\left(r_{i j}\right) \sim\left(1+\frac{1}{2} r_{i j}\right) \Leftrightarrow \frac{\mathcal{J}^{\prime}}{\mathcal{J}}\right|_{r_{i j}=0}=\frac{1}{2}$
- Parallel spins: $r_{i j} \rightarrow 0$ for $i, j \leq N_{\uparrow}$ or $i, j \geq N_{\uparrow}+1$

Determinantal part $\rightarrow 0$

$$
\left.\Rightarrow \mathcal{J}\left(r_{i j}\right) \sim\left(1+\frac{1}{4} r_{i j}\right) \Leftrightarrow \frac{\mathcal{J}^{\prime}}{\mathcal{J}}\right|_{r_{i j}=0}=\frac{1}{4}
$$

$\Rightarrow \mathcal{J}$ not symmetric for interchange of $\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}$
$\Rightarrow \Psi$ is not an eigenstate of S^{2}
For optimized Ψ, spin contamination is small Huang, Filippi, Umrigar, J. Chem. Phys. 108, 8838 (1998)

Cusp conditions and QMC wave functions

$\sigma=+1$ for first N_{\uparrow} electrons, $\sigma=-1$ for the others
$\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\mathcal{J} \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N_{\uparrow}}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N_{\uparrow}+1}, \ldots, \mathbf{r}_{N}\right)$

Electron-nucleus cusp conditions

Usually, imposed through the determinantal part
Assume nucleus at the origin and $\Psi\left(r_{i}=0\right) \neq 0$
If each orbital satisfies the cusp conditions

$$
\begin{aligned}
\left.\frac{\partial \widehat{\phi}_{j}}{\partial r}\right|_{r=0} & =-Z \widehat{\phi}_{j}(r=0) \\
\left.\Rightarrow \frac{\partial \sum_{k} d_{k} \hat{D}_{k}}{\partial r}\right|_{r=0} & =-Z \sum_{k} d_{k} \hat{D}_{k}(r=0)
\end{aligned}
$$

Note: Slater basis best suited for all-electron systems No electron-nucleus cusp with pseudopotential

Cusp conditions in Be atom
Be atom, $1 s^{2} 2 s^{2} \Rightarrow N_{\uparrow}=N_{\downarrow}=2, S_{z}=0$
Spin-assigned $\Psi\left(\mathbf{r}_{1}^{+}, \mathrm{r}_{2}^{+}, \mathrm{r}_{3}^{-}, \mathrm{r}_{4}^{-}\right)=\mathcal{J} D$

- Factorized determinant
$D=D^{\uparrow} \times D^{\downarrow}=\left|\begin{array}{ll}\phi_{1 s}\left(\mathbf{r}_{1}\right) & \phi_{1 s}\left(\mathbf{r}_{2}\right) \\ \phi_{2 s}\left(\mathbf{r}_{1}\right) & \phi_{2 s}\left(\mathbf{r}_{2}\right)\end{array}\right| \times\left|\begin{array}{ll}\phi_{1 s}\left(\mathbf{r}_{3}\right) & \phi_{1 s}\left(\mathbf{r}_{4}\right) \\ \phi_{2 s}\left(\mathbf{r}_{3}\right) & \phi_{2 s}\left(\mathbf{r}_{4}\right)\end{array}\right|$

If $\phi_{1 s}(\mathbf{r})=c_{1} \mathrm{e}^{-\zeta_{1} r}+c_{2} \mathrm{e}^{-\zeta_{2} r}+c_{3} r \mathrm{e}^{-\zeta_{3} r}+c_{4} r \mathrm{e}^{-\zeta_{4} r}$
$\left.\frac{\partial \phi_{1 s}}{\partial r}\right|_{r=0}=-Z \phi_{1 s}(0) \Rightarrow c_{1}=\frac{c_{2}\left(Z-\zeta_{2}\right)+c_{3}+c_{4}}{\zeta_{1}-Z}$

- Simple Jastrow factor

$$
\begin{aligned}
\mathcal{J}= & \prod_{i j=13,14,23,24} \exp \left\{\frac{1}{2} \frac{r_{i j}}{1+b r_{i j}}\right\} \times \\
& \times \prod_{i j=12,34} \exp \left\{\frac{1}{4} \frac{r_{i j}}{1+b r_{i j}}\right\}
\end{aligned}
$$

Jastrow factor for atoms and molecules

Simple Jastrow factor

$\mathcal{J}\left(r_{i j}\right)=\prod_{i<j} \exp \left\{b_{0} \frac{r_{i j}}{1+b r_{i j}}\right\}$ with $b_{0}=\frac{1}{2}$ or $\frac{1}{4}$

Boys and Handy's form

$\mathcal{J}\left(r_{i}, r_{j}, r_{i j}\right)=\prod_{\alpha, i<j} \exp \left\{\sum c_{m n k}^{\alpha}\left(\bar{r}_{i \alpha}^{m} \bar{r}_{j \alpha}^{n}+\bar{r}_{i \alpha}^{n} \bar{r}_{j \alpha}^{m}\right) \bar{r}_{i j}^{k}\right\}$
with $\quad \bar{r}_{i \alpha}=\frac{a r_{i \alpha}}{1+a r_{i \alpha}} \quad$ and $\quad \bar{r}_{i j}=\frac{d r_{i j}}{1+d r_{i j}}$
Cusp conditions imposed by requiring:
$m=n=0$ if $k=1$ for electron-electron cusps
No $n=1$ or $m=1, D$ satisfies electron-nucleus cusps

More general form

Lift constraints and allow all values of n, m, k
Cusp conditions \Rightarrow linear dependencies among $c_{m n k}^{\alpha}$
Other scaling functions are possible: $\left(1-\mathrm{e}^{-a r}\right) / a \ldots$

Some comments on Jastrow factor

- $\mathcal{J}>0$ and becomes constant for large r_{i}, r_{j} and $r_{i j}$ (ratio of polynomials or use of scaled variables)
- Preferable to separate e-n, e-e and e-e-n terms as
$\prod_{\alpha, i} \exp \left\{A\left(r_{i \alpha}\right)\right\} \prod_{i<j} \exp \left\{B\left(r_{i j}\right)\right\} \prod_{\alpha, i<j} \exp \left\{C\left(r_{i \alpha}, r_{j \alpha}, r_{i j}\right)\right\}$

Electron-electron terms

- Introduced to impose the cusp conditions and to keep electrons apart, e.g. simple $\mathcal{J}\left(r_{i j}\right)$ looks like

- No significant improvement in using $\mathcal{J}\left(r_{i j}\right)$ more general than simple \mathcal{J} but not a function of r_{i}, r_{j} Electron-nucleus terms
- Omissible if the determinantal part is constructed with a sufficiently large basis and then reoptimized
- The e-n terms should be included if the determinantal part (often DFT or HF) is not reoptimized: the e-e terms alter the single-particle density (reduced/increased in high/low density regions)

Electron-electron-nucleus terms

- If the order of the polynomial in the e-e-n terms is infinite, the wave function can exactly describe a two-electron atom or ion in an S state

For these systems, a $5^{\text {th }}$-order polynomial recovers more than 99.99% of the correlation energy

- Is this wave function adequate for multi-electron systems? The e-e-n terms are the most important ones: due to the exclusion principle, it is rare for 3 or more electrons to be close, since at least 2 electrons must necessarily have the same spin
- Ratio of polynomials or higher-order polynomial? For instance, for $1^{\text {st }}$-row diatomics, ratio of two $4^{\text {th }}$-order polynomials and a $5^{\text {th }}$-order polynomial about the same quality

Jastrow factor with e-e, e-e-n and e-e-e-n terms

$$
\begin{array}{llll}
\mathcal{J} & E_{\mathrm{VMC}} & E_{\mathrm{VMC}}^{\mathrm{corr}}(\%) & \sigma_{\mathrm{VMC}}
\end{array}
$$

Li
E_{HF}

$$
-7.43273
$$

$$
0
$$

$$
\begin{array}{clll}
\text { e-e } & -7.47427(4) & 91.6 & 0.24 \\
+ \text { e-e-n } & -7.47788(1) & 99.6 & 0.037 \\
+ \text { e-e-e-n } & -7.47797(1) & 99.8 & 0.028 \\
& -7.47806 & 100 &
\end{array}
$$

$E_{\text {exact }}$
Be
E_{HF}
$E_{\text {exact }}$
-14.57302
0

e-e	$-14.66088(5)$	93.1	0.35
+ e-e-n	$-14.66662(1)$	99.2	0.089
+ e-e-e-n	$-14.66681(1)$	99.4	0.078
	-14.66736	100	

Ne
E_{HF}
$E_{\text {exact }}$

$$
\begin{array}{clcl}
& -128.5471 & 0 & \\
\text { e-e } & -128.713(2) & 42.5 & 1.9 \\
+ \text { e-e-n } & -128.9008(1) & 90.6 & 0.90 \\
+ \text { e-e-e-n } & -128.9029(3) & 91.1 & 0.88 \\
& -128.9376 & 100 &
\end{array}
$$

Huang, Umrigar, Nightingale, J. Chem. Phys. 107, 3007 (1997)

Dynamic and static correlation

There are two types of correlation:

- Dynamic correlation

Due to inter-electron repulsion and always present Described by Jastrow factor

- Static correlation

Due to near-degeneracy of occupied and unoccupied orbitals and not always present

Described by a linear combination of determinants
Example: Be atom and $2 s-2 p$ near-degeneracy
HF ground state configuration

$$
1 s^{2} 2 s^{2}
$$

Additional important configuration $1 s^{2} 2 p^{2}$
Ground state has ${ }^{1} S$ symmetry $\Rightarrow 4$ determinants:

$$
\begin{array}{rl}
D=\left(1 s^{\uparrow}, 2 s^{\uparrow}, 1 s^{\downarrow}, 2 s^{\downarrow}\right)+c & *\left\{\left(1 s^{\uparrow}, 2 p_{x}^{\uparrow}, 1 s^{\downarrow}, 2 p_{x}^{\downarrow}\right)\right. \\
+ & \left(1 s^{\uparrow}, 2 p_{y}^{\uparrow}, 1 s^{\downarrow}, 2 p_{y}^{\downarrow}\right) \\
& \left.+\left(1 s^{\uparrow}, 2 p_{z}^{\uparrow}, 1 s^{\downarrow}, 2 p_{z}^{\downarrow}\right)\right\}
\end{array}
$$

$$
\begin{array}{ccl}
1 s^{2} 2 s^{2} & \times \mathcal{J}\left(r_{i j}\right) & \rightarrow E_{\mathrm{VMC}}^{\mathrm{Corr}}=61 \% \\
1 s^{2} 2 s^{2} \oplus 1 s^{2} 2 p^{2} & \times \mathcal{J}\left(r_{i j}\right) & \rightarrow E_{\mathrm{VMC}}^{\mathrm{corr}}=93 \%
\end{array}
$$

Static correlation

Example: $1^{\text {st }}$-row dimers (all-electron calculations) MO orbitals with atomic $s-p$ Slater basis Active MO's: $2 \sigma_{g}, 2 \sigma_{u}, 3 \sigma_{g}, 3 \sigma_{u}, 1 \pi_{u}, 1 \pi_{g}$ $5^{\text {th }}$-order polynomial \mathcal{J} (e-n, e-e, e-e-n)

Filippi and Umrigar, J. Chem. Phys. 105, 213 (1996)

Determinant versus Jastrow factor
Determinantal part yields the nodes of wave function
\Rightarrow Quality of the fixed-node DMC solution
(see tomorrow diffusion Monte Carlo)

Why bother with the Jastrow factor?

Implications of using a good Jastrow factor for DMC

- Efficiency: Smaller $\sigma \Rightarrow$ gain in CPU time (also smaller time-step error)
- Expectation values other than energy Mixed estimator
- Pseudopotentials: Localization error Jastrow factor does affect fixed-node energy

Why should $\Psi=\mathcal{J} D$ work?

Full wave function \longrightarrow ψ

Full Hamiltonian \mathcal{H}
\longrightarrow
Effective Hamiltonian $\mathcal{H}_{\text {eff }}$

$$
\mathcal{H} \Psi=E \Psi
$$

\longrightarrow

$$
\begin{aligned}
\mathcal{H} \mathcal{J} \Phi & =\mathrm{E} \mathcal{J} \Phi \\
\frac{\mathcal{H} \mathcal{J}}{\mathcal{J}} \Phi & =\mathrm{E} \Phi \\
\mathcal{H}_{\text {eff }} \Phi & =\mathrm{E} \Phi
\end{aligned}
$$

$\mathcal{H}_{\text {eff }}$ weaker Hamiltonian than \mathcal{H}
$\Rightarrow \Phi \approx$ non-interacting wave function D
\Rightarrow Quantum Monte Carlo wave function $\Psi=\mathcal{J} D$

Optimization of trial wave function

Start from $\Psi_{T}\left(\mathbf{R},\left\{\alpha_{0}\right\}\right)$ with parameters $\left\{\alpha_{0}\right\}$
Generate $N_{\text {conf }}$ walkers distributed as $\left|\Psi_{T}\left(\mathbf{R},\left\{\alpha_{0}\right\}\right)\right|^{2}$ How do we find a better set of parameters $\{\alpha\}$?

First thought: Minimize the energy
$E[\alpha]=\frac{1}{N_{\text {conf }}} \sum_{i=1}^{N_{\text {conf }}} \frac{\mathcal{H} \Psi\left(\mathbf{R}_{i},\{\alpha\}\right)}{\Psi\left(\mathbf{R}_{i},\{\alpha\}\right)}=\frac{1}{N_{\text {conf }}} \sum_{i=1}^{N_{\text {conf }}} E_{\mathrm{L}}\left(\mathbf{R}_{i},\{\alpha\}\right)$
Straightforward minimization of $E[\alpha]$ does not work:
$N_{\text {conf }}$ is a relatively small number of configurations
$\Rightarrow E[\alpha]$ unbounded from below
\Rightarrow Usually, one finds lower $E[\alpha]$ on the given set of \mathbf{R}_{i} but a higher energy in a new VMC run

Better method: Minimize variance of local energy
Coldwell, Int. J. Quantum Chem. Symp. 11, 215 (1977) Umrigar, Wilson, Wilkins, Phys. Rev. Lett. 60, 1719 (1988)

Generate $N_{\text {conf }}$ walkers distributed as $\left|\Psi\left(\mathbf{R},\left\{\alpha_{0}\right\}\right)\right|^{2}$ Minimize the variance of the local energy $\sigma^{2}[\alpha]$:

$$
\sigma^{2}[\alpha]=\sum_{i=1}^{N_{\text {conf }}}\left(\frac{\mathcal{H} \Psi\left(\mathbf{R}_{i},\{\alpha\}\right)}{\Psi\left(\mathbf{R}_{i},\{\alpha\}\right)}-\bar{E}\right)^{2} w_{i}
$$

where

$$
w_{i}=\left|\frac{\Psi\left(\mathbf{R}_{i},\{\alpha\}\right)}{\Psi\left(\mathbf{R}_{i},\left\{\alpha_{0}\right\}\right)}\right|^{2} / \sum_{i=1}^{N_{\mathrm{conf}}}\left|\frac{\Psi\left(\mathbf{R}_{i},\{\alpha\}\right)}{\Psi\left(\mathbf{R}_{i},\left\{\alpha_{0}\right\}\right)}\right|^{2}
$$

and \bar{E} is the average energy

- Why do we introduce the weights w_{i} ?

1) To provide correct reweight as ψ changes
2) To allow nodes to move during optimization

Note: w_{i} needs to be limited to a maximum value (few \mathbf{R}_{i} may gain large w_{i} and dominate minimization)

- \bar{E} substituted with E guess

Eguess chosen a bit less than current energy estimate \Leftrightarrow Minimize a combination of variance and energy

Some advantages:

- σ^{2} has a known lower bound: $\sigma^{2}=0$
- All eigenstates have zero variance
\Rightarrow It is possible to optimize excited states
(also a higher lying state of a given symmetry)
- Cusp conditions or other constraints easily added
\Rightarrow Minimize $\quad \chi^{2}=\sigma^{2}+$ penalty functions
- Efficient procedures to optimize a sum of squares:
- It is helpful to know not only the gradient but also the Hessian of the quantity being optimized. If one minimizes a sum of squares, it is possible to calculate an approximate second derivative matrix using only the first derivatives
- Efficient methods, e.g. Levenberg-Marquard
- $N_{\text {conf }}=2000-3000$ sufficient for 50-100 parameters for large dimensional spaces ($\sim 800 \mathrm{dim}$)

Why do we need so few $N_{\text {conf }}$?

- In the optimization, the configurations are fixed \Leftrightarrow Correlated sampling: The difference $\sigma[\{\alpha\}]^{2}-$ $\sigma\left[\left\{\alpha_{0}\right\}\right]^{2}$ is better determined than separate σ^{\prime} s
- We are performing a fit not an integral

Some disadvantages:

- It is variance not energy minimization!

For a given functional form, different parameter sets $\{\alpha\}$ can give comparable σ but different E_{VMC} (in particular if one optimizes determinantal part)

- It is a non-linear optimization
\Rightarrow It is possible to get stuck in local minima
- Easy optimization of the Jastrow factor More tricky for the determinantal component

Operationally

1. Start from initial wave function $\Psi\left(\mathbf{R},\left\{\alpha_{0}\right\}\right)$, e.g.

- HF or MCSCF-determinant + simple Jastrow (set b to a reasonable value, $b \approx 0.5-1$)
- For simple systems, guess LCAO and basis exponents. With some experience, it will work!

2. Do a VMC run to sample $\left|\Psi\left(\mathbf{R},\left\{\alpha_{0}\right\}\right)\right|^{2}$

- Generate $N_{\text {conf }}$ walkers $\left\{\mathbf{R}_{i}\right\}$
- Set Eguess a bit lower than E_{VMC}

At $1^{\text {st }}$ iteration, try $E_{\text {guess }} \approx E_{\mathrm{VMC}}-0.1 * \sigma_{\mathrm{VMC}}$ or use $E_{\text {corr }} \approx 0.4-1.2 \mathrm{eV} / \mathrm{elec}$ for $Z<18$
3. Optimize $\sigma^{2}[\alpha] \Rightarrow$ new set of parameters $\left\{\alpha_{1}\right\}$
4. Do a VMC run to sample $\left|\Psi\left(\mathbf{R},\left\{\alpha_{1}\right\}\right)\right|^{2}$
a) If $E_{\mathrm{VMC}}\left[\left\{\alpha_{1}\right\}\right]$ is lower than $E_{\mathrm{VMC}}\left[\left\{\alpha_{0}\right\}\right]$

- Generate new $N_{\text {conf }}$ walkers $\left\{\mathbf{R}_{i}\right\}$
- Set $E_{\text {guess }}$ to new E_{VMC}
- Iterate 3-4
b) If $E_{\mathrm{VMC}}\left[\left\{\alpha_{1}\right\}\right]$ is higher than $E_{\mathrm{VMC}}\left[\left\{\alpha_{0}\right\}\right]$
- Bad starting wave function?
- Too many parameters varied at once?
- Eguess too low?
\Rightarrow Do not update parameters
- Go back to step 1 and/or 3

5. Perform long VMC run with optimal final $\{\alpha\}$

Quality of wave function $\Leftrightarrow E_{\mathrm{VMC}}$ and σ_{VMC} What about diffusion Monte Carlo?
$\Psi(\mathbf{R},\{\alpha\}) \Rightarrow$ improved σ_{DMC} and (usually) E_{DMC}

Note: Eguess usually converged in 2 iterations For simplicity, one can set $w_{i}=1$ in σ^{2}

* This afternoon

Optimization by variance minimization

Be atom

$1 s^{2} 2 s^{2}+$ simple Jastrow factor

1. Vary b parameter in Jastrow factor
2. Vary LCAO in Slater basis of $1 s, 2 s$ orbitals Number of degrees of freedom in $1 s$?
$N_{\text {LCAO }}^{1 s}{ }^{-1}$ (cusp), -1 (norm), -1 (pivot)
Number of degrees of freedom in $2 s$?
$N_{\text {LCAO }}^{2 s}{ }^{-1}$ (cusp), -1 (norm), -1 (pivot)
3. Vary exponents of Slater basis
$\underline{1 s^{2} 2 s^{2} \oplus 1 s^{2} 2 p^{2}+\text { simple Jastrow factor }}$
4. Start from 1-det wave function
5. Vary b parameter in Jastrow factor
6. Vary coefficient in front of $1 s^{2} 2 p^{2}$
7. Vary LCAO in Slater basis of $1 s, 2 s, 2 p$ orbitals Number of degrees of freedom in $1 s$?
$N_{\text {LCAO }}^{1 s}{ }^{-1}$ (cusp), -1 (norm)
Number of degrees of freedom in $2 s$?
$N_{\text {LCAO }}^{2 s}{ }^{-1}$ (cusp), -1 (norm), -1 (pivot)
Number of degrees of freedom in $2 p$?
$N_{\text {LCAO }}^{2 p}{ }^{-1}$ (norm)
8. Vary exponents of Slater basis

Note: Relationship among p_{x}, p_{y} and p_{z}
Homonuclear diatomic molecule B_{2}
$\underline{1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 1 \pi_{u x} 1 \pi_{u y}+\text { simple Jastrow factor }}$

1. Vary b parameter in Jastrow factor
2. Vary LCAO in Slater basis on nuclei A and B

Care with symmetry \Rightarrow linear dependencies
$\sigma_{g}=c_{1} * s^{A}+c_{2} * p_{z}^{A}+c_{1} * s^{B}-c_{2} * p_{z}^{B}$
$\sigma_{u}=c_{1} * s^{A}+c_{2} * p_{z}^{A}-c_{1} * s^{B}+c_{2} * p_{z}^{B}$
$\pi_{u}=c_{1} * p_{x}^{A}+c_{1} * p_{x}^{B}$
$\pi_{g}=c_{1} * p_{x}^{A}-c_{1} * p_{x}^{B}$
Cusp conditions only on σ orbitals
Pivoting among orbitals of same symmetry
3. Vary exponents of Slater basis

Multi-determinant + simple Jastrow factor
Effect of d-basis?

Energy minimization?

Subject of on-going research:

- Energy fluctuation potential method
- Stochastic reconfiguration
- Computation of derivatives and Hessian

Energy fluctuation potential method
Fahy, Filippi, Schautz, Prendergast, see references
Consider infinitesimal variations of ψ

$$
\Psi=\mathcal{J} \Phi \rightarrow \Psi^{\prime}=\Psi+\sum_{k>0} \delta_{k} \frac{\partial \Psi}{\partial \alpha_{k}}=\psi\left(1+\sum_{k>0} \delta_{k} O_{k}\right)
$$

with $O_{k}=\frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_{k}}$
The energy is stationary if these derivatives are zero

$$
\begin{aligned}
\left.\frac{\partial E}{\partial \delta_{k}}\right|_{\delta=0} & =\left.\frac{\partial}{\partial \delta_{k}} \frac{\left\langle\Psi^{\prime}\right| \mathcal{H}\left|\Psi^{\prime}\right\rangle}{\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle}\right|_{\delta=0} \\
& =\left\langle\left(E_{\mathrm{L}}-\bar{E}\right)\left(O_{k}-\bar{O}_{k}\right)\right\rangle_{\Psi^{2}}
\end{aligned}
$$

Energy fluctuation potential method

Energy stationary if $\left\langle\left(E_{\mathrm{L}}-\bar{E}\right)\left(O_{k}-\bar{O}_{k}\right)\right\rangle_{\Psi^{2}}=0$
\Leftrightarrow The fluctuations of E_{L} and O_{k} are uncorrelated
$\Leftrightarrow E_{\mathrm{L}}$ cannot be made 'more constant' by adding some combination of the functions O_{k}

Reformulate problem as a least-squares fit of E_{L}

$$
\chi^{2}=\left\langle\left(E_{\mathrm{L}}-E_{0}-\sum_{k>0} V_{k} O_{k}\right)^{2}\right\rangle_{\Psi^{2}}
$$

Equivalently, solve set of linear equations

$$
\left\langle\left(E_{\mathrm{L}}-\bar{E}\right)\left(O_{m}-\bar{O}_{m}\right)\right\rangle_{\Psi^{2}}=\sum_{k>0} V_{k}\left\langle\left(O_{k}-\bar{O}_{k}\right)\left(O_{m}-\bar{O}_{m}\right)\right\rangle_{\Psi^{2}}
$$

Energy stationary $\Leftrightarrow V_{k}=0$
How do we use $V_{k} \neq 0$?
If one optimizes the determinantal part Φ, interpret fitting the fluctuations of $E_{\mathrm{L}}=\frac{\mathcal{H} \psi}{\psi}$ with $\sum_{k} V_{k} O_{k}$ as fitting the fluctuations of $\frac{\mathcal{H}_{\text {eff }} \Phi}{\Phi}$ where $\mathcal{H}_{\text {eff }}=\frac{\mathcal{H} \mathcal{J}}{\mathcal{J}}$
\Rightarrow Use V_{k} to construct $\mathcal{H}_{\text {eff }}^{\prime}$ which approximates $\frac{\mathcal{H} \mathcal{J}}{\mathcal{J}}$ and use the solution of $\mathcal{H}_{\text {eff }}^{\prime}$ as new Φ

Energy fluctuation potential method

Example: Ground state of $\mathrm{CH}_{2} \mathrm{O}$, 1-det wave function Pseudopotentials $\rightarrow 12$ electrons

Optimization of orbitals with EFP method:
\rightarrow optimization of 315 LCAO parameters
VMC DMC

RHF orbitals $-22.763(3)-22.8454(6)$
Optimized $\quad-22.784(2) \quad-22.8494(6)$

Customary practice for optimizing wave function

Constructing wave function is a bit of an art Jastrow-Slater wave function

$$
\left.\begin{array}{cll}
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\sum_{k} d_{k} D_{k}^{\uparrow} D_{k}^{\downarrow} \times & \mathcal{J} \\
\text { Determinantal part } & \downarrow \\
& \text { Jastrow factor } \\
& \text { e-N } \\
& \text { e-e } \\
& \text { e-e-N }
\end{array}\right\} \text { correlation }
$$

- Jastrow factor optimized in variance minimization
- Orbitals $+d_{k}$ coefficients in determinantal part from

1. Hartree-Fock
2. Density functional theory (LDA, GGA, ...)
3. Multi-configuration self-consistent-field
4. Optimized in variance minimization d_{k} coefficients (easy) + orbitals (small systems)
5. Energy minimization (active subject of research)

Correlated sampling in VMC

Two operators $\mathcal{O}, \mathcal{O}^{\prime}$ and two wave functions Ψ, Ψ^{\prime}

$$
\overline{\mathcal{O}}^{\prime}-\overline{\mathcal{O}}=\frac{\left\langle\Psi^{\prime}\right| \mathcal{O}^{\prime}\left|\Psi^{\prime}\right\rangle}{\left\langle\Psi^{\prime} \mid \Psi^{\prime}\right\rangle}-\frac{\langle\Psi| \mathcal{O}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

Correlated sampling is a technique to calculate differences more accurately than the separate quantities

Example: Map out potential energy surface \Rightarrow Compute energy differences

DFT/QC methods \Rightarrow smoothly varying error

Problem in QMC: statistical error

Energy of a dimer versus bond length

Independent Monte Carlo runs

Correlated sampling

\Rightarrow Forces cannot be computed from independent runs

Correlated sampling: e.g. potential energy surface

Primary geometry $\mathcal{H} \quad \Psi \quad E$
Secondary geometry $\mathcal{H}_{\mathrm{s}} \quad \Psi_{\mathrm{s}} \quad E_{\mathrm{s}}$

$$
E_{\mathrm{s}}-E=\frac{\left\langle\Psi_{\mathrm{s}}\right| \mathcal{H}_{\mathrm{s}}\left|\Psi_{\mathrm{s}}\right\rangle}{\left\langle\Psi_{\mathrm{s}} \mid \Psi_{\mathrm{s}}\right\rangle}-\frac{\langle\Psi| \mathcal{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

Do NOT perform independent MC runs
Generate MC configurations only from ψ^{2} where ψ is the reference situation

$$
\begin{aligned}
E_{\mathrm{s}}-E & =\frac{1}{N_{\mathrm{conf}}} \sum_{i=1}^{N_{\mathrm{conf}}}\left\{\frac{\mathcal{H}_{\mathrm{s}} \Psi_{\mathrm{s}}\left(\mathbf{R}_{i}\right)}{\Psi_{\mathrm{s}}\left(\mathbf{R}_{i}\right)} w_{i}-\frac{\mathcal{H} \Psi\left(\mathbf{R}_{i}\right)}{\Psi\left(\mathbf{R}_{i}\right)}\right\} \\
w_{i} & =\frac{\left|\Psi_{\mathrm{s}}\left(\mathbf{R}_{i}\right) / \Psi\left(\mathbf{R}_{i}\right)\right|^{2}}{\frac{1}{N_{\mathrm{conf}}} \sum_{j=1}^{N_{\mathrm{conf}}}\left|\Psi_{\mathrm{s}}\left(\mathbf{R}_{j}\right) / \Psi\left(\mathbf{R}_{j}\right)\right|^{2}}
\end{aligned}
$$

Efficient if • w_{i} not too different from 1

- \mathcal{H} and \mathcal{H}_{s} closely related

Efficiency gain from correlated sampling

Example: $\mathrm{B}_{2}, 1$ determinant + simple Jastrow factor E_{0} at expt. equilibrium bond length $R_{\text {exp }}^{\mathrm{eq}}=3.005 \mathrm{a}$.u. E at stretched bond length by $\Delta R=-0.2, \ldots, 0.2$ Compute $E-E_{0}$ from independent runs $\rightarrow \Delta E_{\text {ind }}$ from correlated sampling $\rightarrow \Delta E_{\text {corr }}$

Efficiency gain $=\frac{\sigma^{2}\left(\Delta E_{\text {ind }}\right)}{\sigma^{2}\left(\Delta E_{\mathrm{corr}}\right)}$

Note: We used space-warp coordinate transformation

* This afternoon

Compute bond length of B_{2}

1. Construct reference trial wave function
$\Psi=\underbrace{\sum_{i} d_{i} D_{i}} \times \mathcal{J} \longleftarrow$ simple Jastrow factor sum of determinants

Optimize Ψ by variance minimization
Choose experimental equilibrium bond length $R_{\text {exp }}^{\text {ea }}$
$\mathrm{B}_{2}: 1$ det + simple Jastrow, $E \underset{\text { VMC }}{\text { corr }}=28 \%$

2. Secondary geometry wave functions

$\mathbf{R}_{\alpha} \quad \psi$
$\mathbf{R}_{\alpha}^{\mathrm{s}} \Psi_{\mathrm{s}} \Rightarrow$ What do we use for Ψ_{s} ?

Simple choice: Recenter the wave function at new nuclear positions and keep the same parameters

$$
\Psi_{\mathrm{S}}\left(\mathbf{R}, \mathbf{R}_{\alpha}^{\mathrm{S}}\right)=\psi\left(\mathbf{R}, \mathbf{R}_{\alpha}^{\mathrm{S}}, \mathbf{p}\right)
$$

Better choice: $\psi_{\mathrm{s}}\left(\mathbf{R}, \mathbf{R}_{\alpha}^{\mathrm{s}}\right)=\psi\left(\mathbf{R}, \mathbf{R}_{\alpha}^{\mathrm{s}}, \mathbf{p}_{\mathrm{s}}\right)$ with reoptimized parameters (smaller fluctuations in ΔE)
3. Space-warp coordinate transformation

Primary geometry $\quad \mathcal{H} \quad \Psi \quad \mathbf{R}_{\alpha}$
Secondary geometry $\quad \mathcal{H}_{\mathrm{s}} \quad \Psi_{\mathrm{s}} \underset{\uparrow}{\mathbf{R}_{\alpha}^{\mathrm{s}}}$
nuclear positions
We sample MC configurations from Ψ^{2}

Electrons close to a nucleus move almost rigidly with the nucleus

Primary geometry $\quad \mathcal{H} \quad \psi \quad \mathbf{R}_{\alpha} \quad \mathbf{R}=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$
Secondary geometry $\mathcal{H}_{\mathrm{s}} \quad \Psi_{\mathrm{s}} \quad \mathbf{R}_{\alpha}^{\mathrm{s}} \quad \mathbf{R}^{s}=\left(\mathbf{r}_{1}^{s}, \ldots, \mathbf{r}_{N}^{s}\right)$

How do we map primary to secondary walker?

$$
\begin{aligned}
\mathbf{r}_{i}^{\mathrm{s}} & =\mathbf{r}_{i}+\sum_{\alpha=1}^{N_{\text {atom }}}\left(\mathbf{r}_{\alpha}^{\mathrm{s}}-\mathbf{r}_{\alpha}\right) \omega_{\alpha}\left(\mathbf{r}_{i}\right) \\
\omega_{\alpha}\left(\mathbf{r}_{i}\right) & =\frac{F\left(\left|\mathbf{r}_{i}-\mathbf{r}_{\alpha}\right|\right)}{\sum_{\beta=1}^{N_{\text {atom }}} F\left(\left|\mathbf{r}_{i}-\mathbf{r}_{\beta}\right|\right)}
\end{aligned}
$$

e.g. with $F(r)=r^{-\kappa}$ and $\kappa=4$

Energy difference with space-warp transformation

$$
E_{\mathrm{S}}-E=\frac{1}{N_{\mathrm{conf}}} \sum_{i=1}^{N_{\mathrm{conf}}}\left\{\frac{\mathcal{H}_{\mathrm{s}} \Psi_{\mathrm{s}}\left(\mathbf{R}_{i}^{\mathrm{S}}\right)}{\Psi_{\mathrm{s}}\left(\mathbf{R}_{i}^{\mathrm{s}}\right)} w_{i}-\frac{\mathcal{H} \Psi\left(\mathbf{R}_{i}\right)}{\Psi\left(\mathbf{R}_{i}\right)}\right\}
$$

stretched coordinates
primary coordinates

$$
w_{i}=\frac{\left|\Psi_{\mathrm{s}}\left(\mathbf{R}_{i}^{\mathrm{s}}\right) / \Psi\left(\mathbf{R}_{i}\right)\right|^{2} \mid J\left(\mathbf{R}_{\mathbf{i}}\right)}{\frac{1}{N_{\text {conf }}} \sum_{j=1}^{N_{\text {conf }}}\left|\Psi_{\mathrm{s}}\left(\mathbf{R}_{j}^{\mathrm{s}}\right) / \Psi\left(\mathbf{R}_{j}\right)\right|^{2} J\left(\mathbf{R}_{\mathbf{j}}\right)}
$$

$J(\mathbf{R})$ Jacobian of transformation $\mathbf{R} \longrightarrow \mathbf{R}^{\mathbf{S}}$

Example: Bond length of B_{2}

- Multi-determinants + e-e-n Jastrow function
$-E_{\mathrm{VMC}}^{\mathrm{corr}}=83 \%$ at $\mathrm{R}_{\text {exp }}^{\text {eq }}=3.005$ a.u.
- Root-mean-square fluctuations of $\frac{\Delta E}{\Delta R}$

- Error in bond length
(a.u.) RHF LDA GGA VMC DMC $\Delta R_{e} 0.0860 .025$
0.042 0.018(2)
0.002(2)

4. Compute forces and bond length for B_{2}

Interatomic forces and geometry optimization
One possible route: correlated sampling
What about Hellman-Feynman theorem?
$\mathcal{H}(\lambda), \lambda$ parameter (nuclear coordinates)

$$
\begin{aligned}
E(\lambda) & =\frac{\langle\Psi(\lambda)| \mathcal{H}(\lambda)|\Psi(\lambda)\rangle}{\langle\Psi(\lambda) \mid \Psi(\lambda)\rangle} \\
\frac{d E(\lambda)}{d \lambda} & =\frac{\langle\Psi(\lambda)| \frac{d \mathcal{H}(\lambda)}{d \lambda}|\Psi(\lambda)\rangle}{\langle\Psi(\lambda) \mid \Psi(\lambda)\rangle}
\end{aligned}
$$

True if a) $\Psi(\lambda)$ is an eigenstate or b) $\Psi_{\alpha}(\lambda)$ minimizes the energy wrt α

Problems with Hellman-Feynman forces in QMC

- Ψ_{T} does not minimize the VMC energy: Hellman-Feynman \Rightarrow systematic error in VMC
- Ψ_{T} does not minimize the DMC energy: Hellman-Feynman \Rightarrow systematic error in DMC
- Large fluctuations: infinite for all electrons! \rightarrow Reduced variance method by Caffarel

Customary practice: use DFT or QC geometries

References

- Early applications of variational Monte Carlo: W.L. McMillan, Phys. Rev. 138, A4422 (1965). D. Ceperley, G.V. Chester, M.H. Kalos, Phys. Rev. B 16, 3081 (1977).
- VMC and choice of transition matrix:
C.J. Umrigar, Phys. Rev. Lett. 71, 408 (1993).
C.J. Umrigar in "Quantum Monte Carlo methods in Physics and Chemistry", edited by M.P. Nightingale and C.J. Umrigar (Nato Science Series, 1999).
- Cusp conditions:
R. T. Pack and W. Byers Brown, J. Chem. Phys. 45, 556 (1966).
- Spin-assigned wave function, spin contamination: C-J. Huang, C. Filippi, C.J. Umrigar, J. Chem. Phys. 108, 8838 (1998).
- Jastrow factor and role of e-e-e-n terms:

C-J. Huang, C.J. Umrigar, M.P. Nightingale, J. Chem. Phys. 107, 3007 (1997).

- Variance minimization:
R.L. Coldwell, Int. J. Quantum Chem. Symp. 11, 215 (1977).
C.J. Umrigar, K.G. Wilson, J.W. Wilkins, Phys. Rev. Lett. 60, 1719 (1988).
C. Filippi and C.J. Umrigar, J. Chem. Phys. 105, 213 (1996).
- Fluctuation potential method:
C. Filippi, S. Fahy, J. Chem. Phys. 112, 3523 (2000).
F. Schautz, S. Fahy, J. Chem. Phys. 116, 3533 (2002).
D. Prendergast, D. Bevan, S. Fahy, Phys. Rev. B 66, 155104 (2002)
- Correlated sampling for interatomic forces:
C. Filippi, C.J. Umrigar, Phys. Rev. B 61, R16291 (2000).
- Hellman-Feynman forces in QMC:
R. Assaraf, M. Caffarel, Phys. Rev. Lett. 83, 4682 (1999); J. Chem. Phys. 113, 4028 (2000).

