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Variational Monte Carlo
for atoms and molecules
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1. Metropolis algorithm

— Choice of proposal matrix

2. Trial wave function
— Spin projection
— Cusp conditions
— Jastrow factor
— Static correlation
3. Optimization of wave function
— Variance minimization
— Energy minimization
4. Correlated sampling

— Computation of potential energy difference



Electronic structure calculations

First-principle description

Molecules, solids — Collection of ions -+ electrons

!
Only input: Z,, Ng

Work in the Born-Oppenheimer approximation

— Separate nuclear and electronic degrees of freedom

Solve Schrodinger equation for electrons in ionic field

— __ZVQ T Z’Uext(rz) T 5 Z

- !

What do we want to compute?

Fermionic ground state and low-lying excited states

(Wn|O[Wn)

Evaluate expectation values
(Wn|Whp)




Electronic structure: possible approaches

(2)

(b)

(c)

Density functional theory methods

Finite and extended systems
Approximate treatment of exchange-correlation

Quantum chemistry methods
Post Hartree-Fock wave function methods

/ l \

CI MCSCF cC ...

Accurate on small systems

Quantum Monte Carlo techniques

Fully-correlated calculations
Stochastic solution of the Schrodinger equation
Most accurate benchmarks for medium-large sys-

tems: 15t-2Nd_row clusters with Nitom=20-50 and
solids, where QC methods are difficult to apply



Quantum Monte Carlo

e Variational Monte Carlo

Monte Carlo as a way of evaluating integrals
Consider many-body wave function W(rq,...,ry)

Compute expectation value of O operator (H, n...)

(V|O|W)
(VW)

(O)vmc =

Why should we use Monte Carlo integration?

= Freedom in functional form of W

e Projection Monte Carlo Methods

— Diffusion Monte Carlo
(Grimm & Storer, Anderson, Ceperley, 1971-1980)

— Domain Green Function Monte Carlo
(Kalos, 1974)

— Other variants, e.g. Reptation MC
(Baroni, Moroni, 1998)



Expectation values in Monte Carlo methods

Probability distribution p (continuous or discrete)

Monte Carlo to compute expectation values as

/ RORI(R) 4

M

Z O(R;)
/ dR p(R) M =

Configurations R, are distributed as p(R)//dRp(R)

In variational Monte Carlo

(O)vmc = hd 1l /dR3N (

(W] W)

ow

W

)z

(W(R)[?

/dR3N|\U(R)|2

R = (ry,...,ry), p(R) :|W(R)|2’ OR) = (O—W)R
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We need a means to sample p
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Metropolis Algorithm

>

Obtain a set of {R1,Ro,.... R/}
distributed as a given p(R)

Let us generate a Markov chain:

e Start from arbitrary initial state R;

e Use stochastic transition matrix M (R¢|R;)

M(R¢|R;) > 0 > M@®R¢|Ry) = 1.
Ry

as probability of making transition Rj — Rr

e Evolve the system by repeated application of M

To sample p

M must satisfy stationarity condition:

> MR¢|R)) p(R)) = p(Rf) = > M(Rj|Rf) p(Rf) VRg
i i
= If we start with p, we continue to sample p

Stationarity + stochastic property of M -+ ergodicity

= Any initial distribution evolves to p



How do we construct M in practice?

M must satisfy stationarity condition:

ZM(RHRO p(Rj) = ZM(Ri|Rf) p(Rf) V Rg

e Impose |detailed balance| condition

M (R¢|Ry) p(Ri) = M(Ri|R¢f) p(Rs)

Sufficient but not necessary condition

e Write M as |proposal T' x acceptance A
M (Rf|R;) = ARf|R)) T(Rf|R;)
M and T are stochastic matrices but A is not

Detailed balance is now:

ARs|R;) T(Rf|Rj) p(Rj) = AR;|Rr) T(Ri|Rf) p(Rs)

or

AR¢|Ri) _ T(Rj|Rr) p(Ry)
ARiRs)  T(Re|Rj) p(R;)




Choice of acceptance matrix A

For a given choice of T, infinite choices of A satisfy

A(Rs[Ri) _ T(Ri|Rf) p(Re)
AR;Rr) T(Rf|Rj) p(Ry)

Any function A(R¢|R;) = F (T(Ri|Rf) P(Rf)>

T(Rt|Ri) p(Rj)
with F(x)/F(1/x) = = will do

Choice by Metropolis et al. maximizes the acceptance

A(Ry|R;) = min {1 T(RiRr) P<Rf>}

'T(Rf|Ry) p(R))

Note: p(R) does not have to be normalized



Original Metropolis method

Symmetric proposal matrix T(R;j|Rf) = T(R¢|R})

>

A(Rf|Rj) = min {1 p(Rf)}

" p(Ry)

Obtain a set of {R1,Ro,.... Ry}
distributed as a given p(R)

Operationally

w N

. If p(R") < p(R), move accepted with p =

. Pick a starting R and evaluate p(R)
. Choose R’ at random

. If p(R") > p(R), move accepted

— put R’ in the set

p(R')
p(R)
To do this, pick a random number x € [0, 1]:

a) If x < p, move accepted
— put R’ in the set

b) If x > p , move rejected

— put another entry of R in the set




Choice of proposal matrix T (1)

Metropolis method — Points sequentially correlated

Aim | — Achieve fastest evolution of the system

= High acceptance <+ large proposed moves

= Find optimal 1" with high acceptance 4 large moves

Original Metropolis method T (Rj|Rf) = T (R¢|R))

In general

A(R¢|R;) = min {1 T(Ri|Rf) P(Rf)}

"T(Rs|R;) p(Ry)

Use freedom in the choice of T' to make

T(Rj|R¢) p(Rg)

TRe[R) p(R) b= ARAR) 21

and reduce autocorrelation time of desired observable

Note: we need to be able to sample T’ directly



Choice of proposal matrix T (2)

C. Umrigar, Phys. Rev. Lett. 71, 408 (1993)

Rewrite proposal matrix 1’ as

S(Rf|Ri)  _ S(Rf|R))
/de S(Rf|R|) I(Ri)

T(R¢[R)) =

with T(R.) =/de S(R¢|R;) = /deT(Rf|Ri) —1

T(Ri|Rf) p(Rr) _ I(Ry) S(Rj|Rr) p(Rr)
T(Re|Ry) p(Ri)  I(Re) S(R¢|Ry) p(R)

o If | I(R;) = I(Rf)| for all R¢ accessible from R;

T(R;|Rf) p(Ry) -
T(Rf|Rj) p(Rj)

1

S(R¢|Rj) ~ p(Rf) =

ARsRY)
A(R;|Rs)

Usually, not possible to find approximation to p
over all domain of p which can be sampled directly




Choice of proposal matrix T

(3)

e Usually, we choose | S(Rf|R;) # 0 for Rf € D(R;)

with D(R;) a domain of volume Q2(R;) around R;

= Proposed moves are in domain D(R;)

Now, I(Rf) #= I(R;) and

I(R) = [dRs S(Re|R) ~ S(R{IRDQ(R;) =

T(Ri|Rs) p(Re)

QR;) SRR S(Ri|Rf) p(Rs)

T(Rf|R;) p(Ry)

Choosing S(R¢|R;j) = g(R¢|R}) /\/Q(Rf) and

g(R¢|Rj) ~ /p(Rf) =

T(Ri|Rf) p(Rr) _

T(Re[R) p(R))

A(R¢f|Rj)

A(Ri[Rs)

1

~ QR SRR SRR p(R)

1



Choice of proposal matrix T (4)

e If A is the linear dimension of domain D(R;)

ARsRi) _ T(Rj|Rr) p(Rr)
ARiRs)  T(R¢|R;) p(Ry)

~1—-0(Aa™)

m =1 S(R¢|Rj) symmetric

m=1  S(Rf|R;) ~ p(Rs)

m=2,3 Vmg(Rf‘Ri):VMVp(Rf) at Rf = R;



Metropolis algorithm in electronic structure theory

Calculate quantum mechanical expectation values

For example, the total energy is given by

(WIH|W)
(VW)

. 2
- (),
(),

7

(H)vme =

=

1

<= El-

B

B (R;)
1

2

Note: If W — eigenfunction, E;(R) does not fluctuate

= Importance of optimizing trial wave function



x | T his afternoon

1. Simple Metropolis (m = 1)

S(R¢|Rj) is constant in a box centered in R,
In each of the 3N dimensions, sample uniformely
A A
dr = xf — xj € [——,—]
2 2

2. Directed Metropolis (m = 2)

S(R¢|Rj) is a linear approximation to W(Rs) at R;

3N ] 5
S(ReR) = [ {1+ Gong = i) xmin [[V(R)I
k=1 -

< sian[V(Ry)] |

VWV (R))
V(R;)

A A
272

with Tpf— Tki€ { ] and V(R,) =

3. Motivated by diffusion Monte Carlo (m = 2)

1 (Rf — Rj — V(R{7)?
T(R:<R;) = e —
( f| ) (27T7‘)3N/2 XD[ o>
_ 14+2aV2r—1
Limit V as V:\/ t2aViT -1y

aV2r



Autocorrelation time

Run of N Monte Carlo steps = N, blocks x N steps

We have N measurements of E|

E = average of E_
o = rms fluctuations of individual E|
o, = rms fluctuations of block averages of E|

Effectively, N/Tcorr independent measurements of E|

Define Tcorr as

— o o
err(E) — \/Nb N Vcorr = —]Iifb
S V

2
= |Tcorr = Ns (Ob) where we chose Ng > Tcorr
o}




Autocorrelation time and acceptance versus step size

Example: Be, 4 determinants 4+ simple Jastrow factor

Eypme = —14.9581(3) H, oypmec = 0.35 H

1. Simple Metropolis

A Teorr A

1.00 41 O0.17
0.76 21 0.28
0.50 17 0.46
0.20 45 0.75

2. Directed Metropolis

A Teorr A

1.20 21 0.338
1.00 11 0.52
0.75 6 0.72
0.50 3 0.88
0.20 34 0.99

3. Drift-diffusion transition
T Tcorr A

0.100 13 0.42
0.050 7 0.66
0.020 3 0.87
0.010 14 0.94



Shortcomings of Metropolis algorithms 1-2-3

e No distinction between core and valance electrons

= Core electrons set the length scales

e Use of cartesian coordinates
= Derivative discontinuity of W at nuclei

e All-electron versus single-electron move

Better algorithms can achieve Tcorr =1 — 2



Trial wave function

Traditional quantum chemistry

\U(Xl,...,XN) = \U(I‘l,(fl,...,I'N,UN) with o; — +1

Hartree-Fock

Y1 (.Xl) R V! (?CN)

W(x1,...,XNy) — Dpp =

\ /

coDHE + c1 D1 4+ co Do 4 ... millions of determinants

\

”@DN(.Xl) - ”QDN(.XN)

Y1 (.Xl) . wl(?CN)

YUN41(X1) . Yng1(XN)

with spin-orbitals ;(x) = ¢;(r)xs;(0), s; =T, |
Variational principle: minimize (W|H|W)

Analytical integral — Gaussian basis



Quantum Monte Carlo wave function

Jastrow-Slater wave functions

\U(I'l, ce ,I'N) = deDleDllg X J
k

/ \

Determinantal part Jastrow factor
e-N
e-e correlation
e-e-N

o deDllD,i — |Few | Slater determinants
k

T, l-spin determinants of single-particle orbitals:

- Slater functions for all-electron calculations

np,—1 _ Y
o(r) = z}; . Np.rat e ChoTa Ylkamka(ro‘)
o

- Gaussians for pseudopotential calculations

e J — Electron-electron correlation (e-e distance r;;)



Why can we factorize DID1? (1)

Wave function in terms of space + spin variables:

\U(Xl,...,XN) = \U(I‘l,O‘l,...,I'N,O'N) with o; — +1

Consider N = Ny + N and S, = (NT — Nl)/Q and

Gi(on, - son) = x1(o1) - xp(on)x (on41) - x| (oN)

¢i(o1,...,0N) generated by permuting indices in

form a complete orthonormal set in spin space

Y. CGilor, .. on)¢(or, . on) = 65

01...0N

K
= W(x1,...,xy) =) Fi(ry,...,rn)¢(o1,...,0N)
i=1

where F; antisymmetric for interchange of like-spin

F; equal to £ permutation of Fj

W(x1,...,xN) = A{Fi(r1,...,rn)C1(01,...,0N)}




Why can we factorize DTD!? (2)

Note that if O is a spin-independent operator

(W|O|W) = (F1|O|F1)

since ¢; form an orthonormal set

More convenient to use Fj instead of W

To obtain Fy, assign the spin-variables of particles:

Particle 1 2 ... Ny Nyyq1 ... N
o 11 ... 1 -1 ... =1

Fl(rla"'arN) — w(rlala"'arNTa 17rNT—|—17_17"'7rN7_1)




Spin-assigned W = D

Determinant D of spin-orbitals ¢;(x) = ¢;(r)xs;(o)

Example: Be atom, 1s22s° = Ny =N =2, 5, =0

Spin-orbitals ¢15x1, ¢2s X1, P1sX |+ P25 X|

P1:(r1)xr(o1) - P1:(re)x1(o4)
1 | P2s(r1)xr(o1) ... @2s(ra)x1(04)
Var| ¢15(r1)x (01) ... ¢15(ra)x|(ca)
$2s(r1)x (1) ... ¢2s(ra)x (o4)

D =

Fi(ry,ro,r3,14) = D(r1,+1,1rp,+1,r3,—1,14,—1)

P15(r1) @15(r2) 0 0
P P2s(r1) ¢os(r2) O 0
P VA 0 0 $15(r3) P1s5(rg)
0 0 P2s(r3) Pos(ryg)
P15(r1) ¢15(r2) P15(r3) P15(rg) N
b= X =Dl xD

P2s(r1) Pos(r2) P2s(r3) Pos(rg)



Spin-assigned W = > ;. d;. D,

Care with order of spin-orbitals in determinants

e.g. First all T spin-orbitals, then all | spin-orbitals

Example: He atom, singlet excited state 1s12s!

Spin-orbitals ¢15x1, @15X |, P2sX1r P25X]

Vv =

_|_

Assign spins:

$15(r1)x1(o1)
$2s(r1)x) (1)

$15(r1)x) (1)
$2s(r1)x1(o1)
¢15(r1)xq1(o1)
$2s(r1)x) (1)
$25(r1)x1(o1)
$15(r1)x(o1)

Particle 1
o 1

$15(r2)x1(02)
P2s(r2)x| (02)

$15(r2)x|(02)
$2s(r2)x1(02)

¢15(r2)x1(02)
P2s(r2)x| (02)

P2s(r2)x1(02)
$15(r2)x(02)

2

—1

F1(r1,r9) = ¢15(r1) Pos(r2) + dos(ry)d15(ra2)




Spin-assighed QMC wave functions

o = —+1 for first NT particles, o = —1 for the others

W(ry,...,ry) = Fi(r1,...,rN)

Y Dler - N )DHEN 410 )
k

where 7 = J(ry,...,ry) is the Jastrow factor

Spacial symmetry

> rdp. D constructed to have proper spacial symmetry
Often, J = J({rij}» {riat), i,j=electrons, a=nucleus

= J invariant under rotations

= J does not affect spacial symmetry of W

Spin symmetry

S 1 dy Dj. constructed to be eigenstate of S2, S,
J symmetric for interchange of like-spin particles

= W eigenstate of S,

J symmetric for interchange of spacial variables

— W eigenstate of 52



Cusp conditions

At interparticle coalescence points, potential diverges:

Z
Electron-nucleus _
T
1
Electron-electron —
T’L]
HW 1 . V2V
local ener — = —— L VI must be finite
W 2; N7 -+

= Kinetic energy must have opposite divergence

= W must satisfy Kato’s cusp conditions:

= i5q; ;W (ri; = 0)

for two particles of masses m;, m; and charges g¢;, g¢;

Note: all other interparticle distances are > 0O,
~ . . mzmj
W is a spherical average, and p;; =

mi—l—mj



Cusp conditions: example

Consider r;; — 0 and all other particles well separated

The local energy close to r = Tij = O is:

1 V2w

— + V(r) = finite
Q,UJZ‘J' %

Assume |[W(r =r;; =0) #0

1 w1 1w
— ————— 4+ V(r) = finite
2pi5 W pggr W

‘The condition for E| to be finite at r=20is

w/
v = M V)

Z U
e Electron-nucleus: V=— pu=1= | — = -7
r L\ .
r=0
w/
Cv 1 _
e Electron-electron: V=—, u=35=|— =1/2
T hd r=0




Generalized cusp conditions

R. T. Pack and W. Byers Brown, J. Chem. Phys. 45, 556 (1966)

What about two electrons in a triplet state?
Or more generally two like-spin electrons (D — 0)7

Or a highly excited state (e.g. 2p? state of Helium)?

V(r=r;y;=0)=0 717

Wave function near r =r;; = 0 can be written as:

o0 [
W= fin()r Y, (6,¢)

I=lp m=—1

Expanding f,,,(r) = >_ flgq]? K
k=0

) — £(0) LA 2
flm() flm 1+(l—|—1) + O(r )]

where v = q; q;

e Electron-electron singlet:lp =0 = |W ~ (1 -+ r)

1
e Electron-electron triplet: Ip =1 = |W ~ (1 + 4r> r




Cusp conditions and QMC wave functions (1)

o= -+1 for first NT electrons, o = —1 for the others

W(ry,...,ry) =J ) dy D;l(l‘la o I‘NT)Di(I‘NTJrl, .. TN)
k

Electron-electron cusp conditions

e Anti-parallel spins: rij — 0 for : < NT' 97 > NT +1

Usually, determinantal part #= 0

j/

1 1
= .,7(?“@]) ~ (1 + 57“@]) <~ 5

7;5=0

e Parallel spins: r;; — 0 for ¢,5 < Ny or 4,5 > Ny + 1

Determinantal part — O

1 T’ 1
= J(rij) ~ (1 + Z?“ij) <7 . Ta
17
= J not symmetric for interchange of rq,...,ry

= W is not an eigenstate of 52

For optimized W, spin contamination is small

Huang, Filippi, Umrigar, J. Chem. Phys. 108, 8838 (1998)



Cusp conditions and QMC wave functions (2)

o = —+1 for first NT electrons, o = —1 for the others

W(ry,...,ty) =T ) dy D;l(l‘la S I'NT)D]lf(rNT+1a oy TN)
k

Electron-nucleus cusp conditions

Usually, imposed through the determinantal part
Assume nucleus at the origin and W(r; =0) =0

If each orbital satisfies the cusp conditions

0, .
Wil = —zdr=0)
or r=0
o 22 DR 2N By =0)
ar r=0 k

Note: Slater basis best suited for all-electron systems

No electron-nucleus cusp with pseudopotential



Cusp conditions in Be atom

Be atom, 152252 = Ny =N =2, S, =0

Spin-assigned w(rf,rj,rg,r;) =JD

e Factorized determinant

¢1s(r1) ¢1s(r2)

D=Dx Dl = P15(r3) @P15(ra)
— T T hos(r1) pos(ra)

X
¢28(r3) Pos(ry)
If p14(r) =c1e 1" + cpe 2" fcare 3" 4 cqre 4T

8gbls
or

— Z61.(0) = ¢ = c2(Z —¢2) +ca+cy
r=0 Cl—Z

e Simple Jastrow factor

1

-
T = I1 exp{— Y } X
ij=13,14,23,24 21+ bry;

1 rij
X eXx —
H p{41—|—b?“ij}

ij=12,34




Jastrow factor for atoms and molecules

Simple Jastrow factor

T'ij : 1 1
i) = expib with bg = — or —
7o =1I p{to g4} with b= or 3

Boys and Handy’s form

a,1<J
, ar; B dr;.
with Tioy =— ] —|— ZLO; and rij = ] —|— cll]?“
Qo 1]

Cusp conditions imposed by requiring:
m=n=0Iif k=1 for electron-electron cusps

Non=1orm =1, D satisfies electron-nucleus cusps

More general form

Lift constraints and allow all values of n, m, k

Cusp conditions = linear dependencies amongd cgimk

Other scaling functions are possible: (1 —e *")/a ...



Some comments on Jastrow factor

e 7 > 0 and becomes constant for large r;, T and
ri; (ratio of polynomials or use of scaled variables)

e Preferable to separate e-n, e-e and e-e-n terms as

H exp {A(Tioé)} H exp {B(Tij)} H exp {C(Tiaa Tjos Tij)}

o, 1< a,1<j

Electron-electron terms

e Introduced to impose the cusp conditions and to
keep electrons apart, e.g. simple J(r;;) looks like

A

= ’I“ij
0

e No significant improvement in using J(r;;) more

general than simple 7 but not a function of r;, r;

Electron-nucleus terms

e Omissible if the determinantal part is constructed
with a sufficiently large basis and then reoptimized



The e-n terms should be included if the determi-
nantal part (often DFT or HF) is not reoptimized:
the e-e terms alter the single-particle density (re-
duced/increased in high/low density regions)

Electron-electron-nucleus terms

If the order of the polynomial in the e-e-n terms
is infinite, the wave function can exactly describe
a two-electron atom or ion in an S state

For these systems, a 5th_order polynomial recovers
more than 99.99% of the correlation energy

Is this wave function adequate for multi-electron
systems? The e-e-n terms are the most important
ones: due to the exclusion principle, it is rare for
3 or more electrons to be close, since at least 2
electrons must necessarily have the same spin

Ratio of polynomials or higher-order polynomial?
For instance, for 1St-row diatomics, ratio of two
4t_order polynomials and a 5t-order polynomial
about the same quality



Jastrow factor with e-e, e-e-n and e-e-e-n terms

Li

Eexa ct

J 12ViVle
-7.43273
e-e -7.47427(4)

+e-e-n  -7.47788(1)
+ e-e-e-n -7.47797(1)
-7.47806

-14.57302
e-e -14.66088(5)
+ e-e-n  -14.66662(1)
+ e-e-e-n -14.66681(1)
-14.66736

-128.5471
e-e -128.713(2)
+e-e-n  -128.9008(1)
+ e-e-e-n -128.9029(3)
-128.9376

E

vmc (%) ovmc
0
91.6 0.24
99.6  0.037
99.8  0.028
100
0
93.1 0.35
99.2  0.089
99.4  0.078
100
0
42.5 1.9
90.6 0.90
91.1 0.88
100

Huang, Umrigar, Nightingale, J. Chem. Phys. 107, 3007 (1997)



Dynamic and static correlation

There are two types of correlation:

e Dynamic correlation

Due to inter-electron repulsion and always present

Described by Jastrow factor

e Static correlation

Due to near-degeneracy of occupied and unoccu-
pied orbitals and not always present

Described by a linear combination of determinants

Example: Be atom and 2s-2p near-degeneracy

HF ground state configuration 152252

Additional important configuration 1s22p2

Ground state has 1§ symmetry = 4 determinants:

D= (1s',2s", 15}, 251) + e x { (157, 2p], 15!, 2p1)
+ (1s',2p], 15, 2p})

+ (1s!,2pl, 154, 2p1) |

182282 X j(?“zj) — E{:/(I)\;IrC =61%

152252 @ 1522p? X T (ri;) — ESic = 93%




Static correlation

Example: 1St-row dimers (all-electron calculations)

MO orbitals with atomic s-p Slater basis

5t_order polynomial J (e-n, e-e, e-e-n)

[ | |
100 —
multi-determinant
i DMC
> .
o 1 determinant
() | _
= 90
()
(-
O - multi-determinant .
S VMC
o)
= 80 —
O
(&)
(o]
o~ - 1 determinant y
70+ —
| |

I
Li, Be, B, C, N, O, F,

Filippi and Umrigar, J. Chem. Phys. 105, 213 (1996)



Determinant versus Jastrow factor

Determinantal part vields the nodes of wave function
= Quality of the fixed-node DMC solution

(see tomorrow diffusion Monte Carlo)

Why bother with the Jastrow factor?

Implications of using a good Jastrow factor for DMC

e Efficiency: Smaller o = gain in CPU time

(also smaller time-step error)

e EXxpectation values other than energy

Mixed estimator

e Pseudopotentials: Localization error
Jastrow factor does affect fixed-node energy



Why should W = 7D work?

Full wave function SN
\Uj

l

Full Hamiltonian —
H

HWY = EWV —

Factorized wave function
JPb

l

Effective Hamiltonian

Her
HJP=EJ®P
J

Herr Weaker Hamiltonian than H

= ® =~ non-interacting wave function D

= Quantum Monte Carlo wave function WV = 7D



Optimization of trial wave function

Start from W (R, {ag}) with parameters {ag}
Generate N.onr Walkers distributed as |W (R, {ag})|?

How do we find a better set of parameters {«a}?

First thought: | Minimize the energy

N N,
1 conf HW R', o 1 conf
SURYRAod) 1N g (R, (e
Neconf i=1 V(R;, {a}) Neonf i=1

Fla] =

Straightforward minimization of E[«] does not work:

Necons 1S a relatively small number of configurations
= FE[a] unbounded from below
= Usually, one finds lower E[a] on the given set of R;

but a higher energy in a new VMC run

Better method: |Minimize variance of local energy

Coldwell, Int. J. Quantum Chem. Symp. 11, 215 (1977)
Umrigar, Wilson, Wilkins, Phys. Rev. Lett. 60, 1719 (1988)



Variance minimization (1)

Generate N.onr walkers distributed as |[W(R, {ag})|?

Minimize the variance of the local energy 02[a]:

Neonf _ o _ 2
0_2[04] — Z (HW(RW { }) —E) w;

= VW, {a])
where
W, = ‘ V(R;, (o)) |° /Ninf V(R;, (o)) |°
V@R, {aoh)] 1 & VR, {ao)

and FE is the average energy

e \Why do we introduce the weights w;?

1) To provide correct reweight as W changes

2) To allow nodes to move during optimization

Note: w; needs to be limited to a maximum value

(few R; may gain large w; and dominate minimization)

e [/ substituted with Eguess

Eguess chosen a bit less than current energy estimate

< Minimize a combination of variance and energy



Variance minimization (2)

Some advantages:

e o2 has a known lower bound: ¢2 =0

e All eigenstates have zero variance
= It is possible to optimize excited states
(also a higher lying state of a given symmetry)

e Cusp conditions or other constraints easily added

= Minimize x?2 = o2 4 penalty functions
e Efficient procedures to optimize a sum of squares:

- It is helpful to know not only the gradient but
also the Hessian of the quantity being opti-
mized. If one minimizes a sum of squares, it
is possible to calculate an approximate second
derivative matrix using only the first derivatives

- Efficient methods, e.g. Levenberg-Marquard

e Nconf =2000-3000 sufficient for 50-100 parame-
ters for large dimensional spaces (~ 800 dim)



Variance minimization (3)

Why do we need so few Nggnfr?

- In the optimization, the configurations are fixed
& Correlated sampling: The difference 0[{04}]2—

o[{ap}]? is better determined than separate o's

- We are performing a fit not an integral

Some disadvantages:

e It is variance not energy minimization!

For a given functional form, different parameter
sets {«} can give comparable o but different Ey/vc

(in particular if one optimizes determinantal part)

e It is a non-linear optimization

= It is possible to get stuck in local minima

e Easy optimization of the Jastrow factor

More tricky for the determinantal component



Variance minimization (4)

Operationally

1. Start from initial wave function W(R, {ag}), e.g.

- HF or MCSCF-determinant 4+ simple Jastrow
(set b to a reasonable value, b~ 0.5 —1)

- For simple systems, guess LCAO and basis ex-
ponents. With some experience, it will work!

2. Do a VMC run to sample |W(R, {ag})|?
- Generate Ngonr Walkers {R;}
- Set Eguess a bit lower than Ey/pc
At 15t iteration, try Eguess ~ Exymc —0.1xoymc
or use Ecorr ~ 0.4 — 1.2 eV/elec for Z < 18

3. Optimize o2[a] = new set of parameters {a7}

4. Do a VMC run to sample |W(R, {a1})]?

a) If Exymcl{a1}] is lower than Eymcl{ao}]

- Generate new Nconr Walkers {R;}
- Set Eguess to new Enx/nmc

- Iterate 3-4 Continue ...



b) If Exymcl{a1}] is higher than Eymcl{ao}]

- Bad starting wave function?
- Too many parameters varied at once?

- Eguess too low?

= Do not update parameters
- Go back to step 1 and/or 3

5. Perform long VMC run with optimal final {«a}
Quality of wave function & Ey/pc and oymc
What about diffusion Monte Carlo?

V (R, {a}) = improved oppc and (usually) Eppmc

Note: Eguess usually converged in 2 iterations

For simplicity, one can set w; = 1 in o2



x | T his afternoon

Optimization by variance minimization

Be atom

152252 4+ simple Jastrow factor

1.
2.

3.

Vary b parameter in Jastrow factor

Vary LCAO in Slater basis of 1s, 2s orbitals
Number of degrees of freedom in 1s?
Nl& o -1 (cusp), -1 (norm), -1 (pivot)
Number of degrees of freedom in 2s7
NZ&ao -1 (cusp), -1 (norm), -1 (pivot)

Vary exponents of Slater basis

152252 @ 1s22p2 + simple Jastrow factor

PO e

. Start from 1-det wave function

Vary b parameter in Jastrow factor
Vary coefficient in front of 1s22p?

Vary LCAOQO in Slater basis of 1s, 2s, 2p orbitals
Number of degrees of freedom in 1s7
Ntéao -1 (cusp), -1 (norm)

Number of degrees of freedom in 2s?



NEZ& Ao -1 (cusp), -1 (norm), -1 (pivot)
Number of degrees of freedom in 2p?
2
N ¢ao -1 (norm)
5. Vary exponents of Slater basis

Note: Relationship among pz, py and p;

Homonuclear diatomic molecule Bs

lo2 105 207 207 1mug 1myy + simple Jastrow factor

1. Vary b parameter in Jastrow factor

2. Vary LCAO in Slater basis on nuclei A and B
Care with symmetry = linear dependencies

B o pl

O'g:C]_*SA—I—CQ>|<p?+C]_*S
Uu=cl>ksA—|—62>|<p?—cl>ksB—|—CQ>kp§

Ty = C1 *pf—l—cl *pr

7Tg — C1 *p?—cl *pf

Cusp conditions only on o orbitals
Pivoting among orbitals of same symmetry

3. Vary exponents of Slater basis

Multi-determinant + simple Jastrow factor

Effect of d-basis?




Energy minimization?

Subject of on-going research:
- Energy fluctuation potential method

- Stochastic reconfiguration

- Computation of derivatives and Hessian

Energy fluctuation potential method

Fahy, Filippi, Schautz, Prendergast, see references

Consider infinitesimal variations of W

oV
V=Jb >V =w4 ) §—— (1+25k0k>
k>0 8ak k>0
1 oW

with O = NPE.
XL

The energy is stationary if these derivatives are zero

OE o (W/|H|W')
905|5—0 88, (W/|W)

0=0

= |[((EL— E) (O — Op))y2




Energy fluctuation potential method

Energy stationary if ((E_ — E) (O — O))y2=0

< The fluctuations of E| and O; are uncorrelated

& | E cannot be made 'more constant’ by adding
some combination of the functions Oy

Reformulate problem as a least-squares fit of E

X° = ((EL — Eqg— Y V;;0p)?) 2
k>0

Equivalently, solve set of linear equations

((BEL — E)Y(Om —Om))y2 = ) Vi{(O — Op)(Om — Om))y,2
k>0

Energy stationary & V. =0

How do we use V. #= 07

If one optimizes the determinantal part &, interpret

HWY
fitting the fluctuations of E| = TR with 7. V.O; as
b H
fitting the fluctuations of Refr® | here Heff = n

J

: : H
= Use V.. to construct H/eff which approximates 7‘7

and use the solution of Hgff as new &



Energy fluctuation potential method

Example: Ground state of CH,O, 1-det wave function

Pseudopotentials — 12 electrons

Optimization of orbitals with EFP method:

— optimization of 315 LCAO parameters

VMC DMC
RHF orbitals -22.763(3) -22.8454(6)
Optimized  -22.784(2) -22.8494(6)



Customary practice for optimizing wave function

Constructing wave function is a bit of an |art

Jastrow-Slater wave function

\U(I'l, ce ,I'N) = deDleDllg X J
k

/ \

Determinantal part Jastrow factor
e-N
e-e correlation
e-e-N

e Jastrow factor optimized in variance minimization

e Orbitals + d;. coefficients in determinantal part from

1.

2
3.
4

Hartree-Fock

. Density functional theory (LDA, GGA, ...)

Multi-configuration self-consistent-field

. Optimized in variance minimization

d;. coefficients (easy) + orbitals (small systems)

Energy minimization (active subject of research)



Correlated sampling in VMC

Two operators @, @' and two wave functions W, W/

55— (VIO (o)
(W)

Correlated sampling is a technique to calculate differ-
ences more accurately than the separate quantities

Example: Map out potential energy surface

= | Compute energy differences

DFT/QC methods = smoothly varying error

Problem in QMC: statistical error




Energy of a dimer versus bond length

Independent Monte Carlo runs Correlated sampling

= Forces cannot be computed from independent runs



Correlated sampling: e.g. potential energy surface

Primary geometry H Vv FE
Secondary geometry Hs Ws FEg
(Ws|Hs|Ws)  (W[H|W)

e A 7 S (VR

Do NOT perform independent MC runs

Generate MC configurations only from W2
where W is the reference situation

1 Nt (Hewe(Ry) O HW(RY)
PP Noonr ;{ ve®) T W(RY) }
. Ws(Ry)/W(R,)|?

Ws(R)/W(R,)[

1 Nconf
Nconf Z
=1

Efficient if e w; not too different from 1

e H and Hs closely related



Efficiency gain from correlated sampling

Example: By, 1 determinant 4 simple Jastrow factor

Eq at expt. equilibrium bond length Rey, = 3.005 a.u.
E at stretched bond length by AR=-0.2,...,0.2

Compute E — Eg from independent runs — AFEiqqg

from correlated sampling — A Ecorr

2
. . o (AFE;
Efficiency gain = 2< ind)
c4(AEcorr)
1e+05¢
= |
S 1e+045_ i —E
®)) - | -
>
@)
-
() |
6 1e+03:— i =
E C | 7
LL
1e+02:— i =
- | | | | ! ]
-0.2 -0.1 0 0.1 0.2 0.3
AR (a.u.)

Note: We used space-warp coordinate transformation



x | T his afternoon

Compute bond length of By

1. Construct reference trial wave function

vV = Z d; D; X J <« simple Jastrow factor

1
|

sum of determinants

Optimize W by variance minimization
Choose experimental equilibrium bond length Reg,,
Bo: 1 det + simple Jastrow, ER) - =28%

2. Secondary geometry wave functions

Ry W
R2, Ws = What do we use for Wg?

Simple choice: Recenter the wave function at new
nuclear positions and keep the same parameters

WS(Ra R(S)z) — W(Ra R(S)w p)

Better choice: Ws(R,R2) = W(R, R, ps) with re-
optimized parameters (smaller fluctuationsin AE)



3. Space-warp coordinate transformation

Primary geometry H Vv R,

Secondary geometry Hs Ws R3
1

nuclear positions

We sample MC configurations from W2

Primary geometry

Secondary geometry

Warped secondary
eometry

M

ot d 1

- M \'s” . . * \'s* -

= ':;:-.":' o = ..;'.' " o o
DR .

Electrons close to a nucleus move

almost rigidly with the nucleus

Primary geometry H Vv Ry R =(rq,...,ryN)

Secondary geometry Hs Ws R3 S =(r§,...,r%)



How do we map primary to secondary walker?

Natom
rf = I+ Z (r}, — ra) wa(r;)
a=1
F(lr; —ral)
Woz(ri> Natom| - a|
>, F(lr; —rg|)
B=1

e.g. with F(r) =r""and Kk =4

Energy difference with space-warp transformation

N,
1 o (HsWs(RS W (R,
conf ;=1 S( z) W(Rz‘)
stretched coordinates primary coordinates
2
Ws(R$)/W(R)|™ J(Ry)
w; =— N
1 conf S 2
> |ws®)/ VR TR
Nconf j=1

J(R) Jacobian of transformation R — R®



Example: Bond length of By

— Multi-determinants 4+ e-e-n Jastrow function
— ERN- =83% at Rggp = 3.005 a.u.

— Root-mean-square fluctuations of ﬁ
AR

~

®]

VMC rms fluctuations of AE/AR for Bs

&)}

® no—warp, recentered ¥ 1
® warp, recentered ¥
® warp, reoptimized ¥

TVMC (a.u.)

~

2 t L G ® ®

° o0

——9o 90— 0 o o o

-0.3 ~0.2 ~0.1 0.0 0.1 0.2 0.3
AR (a.u.)

— Error in bond length
(a.u.) RHF LDA GGA VMC DMC
AR. 0.086 0.025 0.042 0.018(2) 0.002(2)

4. Compute forces and bond length for Bo




Interatomic forces and geometry optimization

One possible route: correlated sampling

What about Hellman-Feynman theorem?

H(N\), X parameter (nuclear coordinates)

(W) [HA)[ W)

B = o)
de(y (W) R w)
dx (W) [W(N))

True if a) W(\) is an eigenstate
or b) W,(A) minimizes the energy wrt o

Problems with Hellman-Feynman forces in QMC

e W+ does not minimize the VMC energy:
Hellman-Feynman = systematic error in VMC

e Wt does not minimize the DMC energy:
Hellman-Feynman = systematic error in DMC

e Large fluctuations: infinite for all electrons!
— Reduced variance method by Caffarel

Customary practice: use DFT or QC geometries
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