Understanding the buoyancy-driven circulation

J. H. LaCasce

Norwegian Meteorological Institute Oslo, Norway

Modelling climate change

Use general circulation models (GCMs) e.g., double CO₂ and measure temperature change But models parameterize processes, like:

- Sub-grid scale dissipation
- Tracer mixing
- Air-sea coupling
- Boundary conditions

Which approach is right? Why do different models give different results?

Idealized models

Take a simplified system, and examine its dependencies (e.g. boundary conditions) thoroughly

- Improve the GCMs
- Write simplified climate models
- Understand the physics

Idealized models

1) Meridional overturning circulation

2) Wind-driven oceanic variability

Global heat transport

FIG. 7. The required total heat transport from the TOA radiation RT is compared with the derived estimate of the adjusted ocean heat transport OT (dashed) and implied atmospheric transport AT from NCEP reanalyses (PW).

Trenberth and Caron, 2001

Oceanic heat transport

FIG. 5. Implied zonal annual mean ocean heat transports based upon the surface fluxes for Feb 1985–Apr 1989 for the total, Atlantic, Indian, and Pacific basins for NCEP and ECMWF atmospheric fields (PW). The 1 std err bars are indicated by the dashed curves.

Trenberth and Caron, 2001

Mean vs. eddies

FIG. 1. Zonally integrated total time-mean northward heat transport (heavy line) and eddy portion of the total (thin line) for (a) the World Ocean, (b) the Indian Ocean, (c) the Pacific Ocean, and (d) the Atlantic Ocean.

Jayne and Marotzke, 2002

Model example

Te Raa and Dijkstra, 2002

Understanding the models

Questions:

- What drives the overturning (MOC)?
- How does MOC depend on mixing?
- On frictional parameterizations?
- On boundary conditions?

Models II

Marotzke, 1997

Geostrophy

Atmospheric and oceanic motion governed by the Navier-Stokes equations

But simplified dynamics possible at larger scales, where the Coriolis force approximately balances pressure gradients

Geostrophy

Scaling theory

e.g. Bryan and Cox, '67, Nilsson et al., 2003

Assume: 1) Geostrophic flow:

$$fu_0 = -\frac{1}{\rho}\frac{\partial}{\partial y}P, \quad fv_0 = \frac{1}{\rho}\frac{\partial}{\partial x}P$$

2) Hydrostatic balance

$$\frac{\partial}{\partial z}p = -\rho g$$

Scaling theory

3) Vertical advective-diffusive balance

$$w\frac{\partial}{\partial z}\rho = \kappa_v \frac{\partial^2}{\partial z^2}\rho$$

Yields:

$$h \propto \kappa_v^{1/3} \ \bigtriangleup
ho^{-1/3}$$

$$hUL \propto \kappa_v^{2/3} \ \bigtriangleup \rho^{1/3}$$

Scaling theory

Park and Bryan, 2000

Viscosity dependence

Huck et al., 1999

Understanding the buoyancy-driven circulation – p.16/39

Scaling

Scaling theory approximately correct when constant mixing over the whole basin

Numerical simulations suggest mixing is *intensified near the boundaries* and viscosity-dependent

Observations (Polzin, Ledwell) also suggest boundary-intensified mixing

 \rightarrow Scaling theory probably inadequate

Abyssal circulation

Stommel and Arons, 1960; Kawase, 1987

Equations

$$v sin\theta = \frac{1}{cos\theta} \frac{\partial p}{\partial \phi}$$
$$u sin\theta = -\frac{\partial p}{\partial \theta}$$
$$\frac{\partial (hu)}{\partial \phi} + \frac{\partial (hv cos\theta)}{\partial \theta} = -cos\theta w_0(\theta, \phi)$$

Abyssal flow

Stommel and Arons, 1960

y-driven circulation – p.20/3

Abyssal solutions

Good:

- Dynamically plausible
- Predicted Deep Western Boundary current
- Viscosity dependence in boundary layer

Less good:

- Must specify upwelling
- Buoyancy driving produces purely *baroclinic* flow

Implied flow

Longitude

Model example

Te Raa and Dijkstra, 2002

Linear model

Pedlosky, 1968, 1969; Salmon, 1986

Planetary Geostrophy

$$-fv = -\frac{\partial}{\partial x}\phi + \mathcal{D}_x$$

$$fu = -\frac{\partial}{\partial y}\phi + \mathcal{D}_y$$

$$0 = -\frac{\partial}{\partial z}\phi + T$$

$$\frac{\partial}{\partial x}u + \frac{\partial}{\partial y}v + \frac{\partial}{\partial z}w = 0$$

$$u\frac{\partial}{\partial x}T + v\frac{\partial}{\partial y}T + w\frac{\partial}{\partial z}T = \kappa_H \nabla^2 T + \kappa_V \frac{\partial^2}{\partial z^2}T$$

Linear PG

 $T(x, y, z) = \mathcal{T}_0(z) + \theta(x, y, z)$

 $\rightarrow |T_0| \gg |\theta|$

Temperature equation becomes:

$$Sw = \kappa_H \nabla^2 \theta + \kappa_V \frac{\partial^2}{\partial z^2} \theta$$

where $S \propto \frac{\partial}{\partial z} T_0$

Characteristics

 Flow driven by vertical mixing
 Flow confined to surface boundary layer about 500 m thick
 Baroclinic velocities

4) Viscosity, lateral diffusion important only at west, North, South walls

5) Upwelling/downwelling occurs mostly near lateral boundaries

Diffusive viscosity

Understanding the buoyancy-driven circulation – p.28/39

Rayleigh viscosity

Understanding the buoyancy-driven circulation – p.29/39

Boundary mixing

Understanding the buoyancy-driven circulation – p.30/39

Comparison to models

• Similarities

Boundary-intensified vertical velocities
Western boundary current with large w
w sensitive to viscosity and BC
Zonal thermocline flow with BT κ_V

• Differences

Sense of surface flow Magnitudes of vertical velocities

Huck et al., 1999

Huck et al., 1999

Marotzke, 1997

umix/vmix, time no. 249

Comparison to observations

Comparison to observations

Orvik and Niiler, 2002

Comparison to observations

Skagseth and Orvik, 2002

Understanding the buoyancy-driven circulation – p.38/39

Summary

- Idealized thermocline models capture some elements of observed circulation (Deep Western Boundary Current, Norwegian Atlantic Current)
- But none (so far) capture the flow exhibited by most numerical models
- Need for an improved analytical representation