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Modelling climate change

Use general circulation models (GCMs)

e.g., double CO � and measure temperature change

But models parameterize processes, like:

� Sub-grid scale dissipation

� Tracer mixing

� Air-sea coupling

� Boundary conditions

Which approach is right? Why do different models
give different results?
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Idealized models

Take a simplified system, and examine its
dependencies (e.g. boundary conditions) thoroughly

� Improve the GCMs

� Write simplified climate models

� Understand the physics
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Idealized models

1) Meridional overturning circulation

2) Wind-driven oceanic variability
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Global heat transport

Trenberth and Caron, 2001
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Oceanic heat transport

Trenberth and Caron, 2001
Understanding the buoyancy-driven circulation – p.6/39



Mean vs. eddies

Jayne and Marotzke, 2002
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Model example

Te Raa and Dijkstra, 2002
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Understanding the models

Questions:

� What drives the overturning (MOC)?

� How does MOC depend on mixing?

� On frictional parameterizations?

� On boundary conditions?
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Models II

Marotzke, 1997
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Geostrophy
Atmospheric and oceanic motion governed by the
Navier-Stokes equations

But simplified dynamics possible at larger scales,
where the Coriolis force approximately balances
pressure gradients

L
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Geostrophy
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Scaling theory
e.g. Bryan and Cox, ’67, Nilsson et al., 2003

Assume: 1) Geostrophic flow:
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2) Hydrostatic balance
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Scaling theory

3) Vertical advective-diffusive balance
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Yields:
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Scaling theory

Park and Bryan, 2000
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Viscosity dependence

Huck et al., 1999
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Scaling

Scaling theory approximately correct when constant
mixing over the whole basin

Numerical simulations suggest mixing is intensified
near the boundaries and viscosity-dependent

Observations (Polzin, Ledwell) also suggest
boundary-intensified mixing

Scaling theory probably inadequate
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Abyssal circulation
Stommel and Arons, 1960; Kawase, 1987

x

Understanding the buoyancy-driven circulation – p.18/39



Equations
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Abyssal flow
Stommel and Arons, 1960
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Abyssal solutions

Good:

� Dynamically plausible

� Predicted Deep Western Boundary current

� Viscosity dependence in boundary layer

Less good:

� Must specify upwelling

� Buoyancy driving produces purely baroclinic
flow
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Implied flow
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Model example

Te Raa and Dijkstra, 2002
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Linear model
Pedlosky, 1968,1969; Salmon, 1986
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Planetary Geostrophy
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Linear PG
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Temperature equation becomes:
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Characteristics
1) Flow driven by vertical mixing

2) Flow confined to surface boundary layer

about 500 m thick

3) Baroclinic velocities

4) Viscosity, lateral diffusion important only at west,
North, South walls

5) Upwelling/downwelling occurs mostly near lateral
boundaries
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Diffusive viscosity
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Rayleigh viscosity
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Boundary mixing
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Comparison to models

� Similarities
Boundary-intensified vertical velocities
Western boundary current with large �

� sensitive to viscosity and BC
Zonal thermocline flow with BT � �

� Differences
Sense of surface flow
Magnitudes of vertical velocities
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Models

Huck et al., 1999

Understanding the buoyancy-driven circulation – p.32/39



Models

Huck et al., 1999
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Models

Marotzke, 1997
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Models

Understanding the buoyancy-driven circulation – p.35/39



Comparison to observations
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Comparison to observations
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Comparison to observations

Skagseth and Orvik, 2002
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Summary

� Idealized thermocline models capture some
elements of observed circulation (Deep Western
Boundary Current, Norwegian Atlantic Current)

� But none (so far) capture the flow exhibited by
most numerical models

� Need for an improved analytical representation
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