Understanding the buoyancy-driven circulation

J. H. LaCasce

Norwegian Meteorological Institute Oslo, Norway

Modelling climate change

Use general circulation models (GCMs) e.g., double CO_2 and measure temperature change But models parameterize processes, like:

- Sub-grid scale dissipation
Tracer mixing
- Tracer mixing
- Tracer mixing
Air-sea coupli
- Air-sea coupling
Boundary condit Boundary conditions

ich approach is right?

Which approach is right? Why do different models give different results?

Idealized models

Take ^a simpli fied system, and examine its dependencies (e.g. boundary conditions) thoroughly

-
- Improve the GCMs
Write simplified cli \bullet fied climate models
- Write simpli
Understand Understand the physics

Idealized models

1) Meridional overturning circulation

2) Wind-driven oceanic variability

Global heat transport

FIG. 7. The required total heat transport from the TOA radiation. RT is compared with the derived estimate of the adjusted ocean heat transport OT (dashed) and implied atmospheric transport AT from NCEP reanalyses (PW).

Trenberth and Caron, 2001

Oceanic heat transport

FIG. 5. Implied zonal annual mean ocean heat transports based upon the surface fluxes for Feb 1985-Apr 1989 for the total, Atlantic, Indian, and Pacific basins for NCEP and ECMWF atmospheric fields (PW). The 1 std err bars are indicated by the dashed curves.

Trenberth and Caron, 2001 Understanding the buoyancy-driven circulation – p.6/39

Mean vs. eddies

Fits. 1. Zonally integrated total time-mean northward heat transport (heavy line) and eddy portion of the total (thin line) for (a) the World Ocean, (b) the Indian Ocean, (c) the Pacific Ocean, and (d) the Atlantic Ocean.

Jayne and Marotzke, 2002

Model example

Te Raa and Dijkstra, 2002

Understanding the models

Questions:

- What drives the overturning (MOC)?
- What drives the overturning (MOC)?
How does MOC depend on mixing?
- How does MOC depend on mixing?
On frictional parameterizations? \bullet On frictional parameterizations?
- \bullet . On boundary conditions?

Models II

Marotzke, 1997

Geostrophy

Atmospheric and oceanic motion governed by the Navier-Stokes equations

But simplified dynamics possible at larger scales, where the Coriolis force approximately balances pressure gradients

Geostrophy

Scaling theory

e.g. Bryan and Cox, '67, Nilsson et al., 2003

Assume: 1) Geostrophic flow:

$$
fu_0 = -\frac{1}{\rho} \frac{\partial}{\partial y} P, \quad fv_0 = \frac{1}{\rho} \frac{\partial}{\partial x} P
$$

atic balance

$$
\frac{\partial}{\partial z} p = -\rho g
$$

2) Hydrostatic balance

$$
\rho \frac{\partial y}{\partial z} p = -\rho g
$$

Scaling theory

3) Vertical advective-diffusive balance

$$
w\frac{\partial}{\partial z}\rho = \kappa_v \frac{\partial^2}{\partial z^2}\rho
$$

Yields:

$$
\int \frac{1}{2} \cos^2 \theta \, dz = \frac{1}{2} \cos^2 \theta
$$
\n
$$
h \propto \kappa_v^{1/3} \, \triangle \rho^{-1/3}
$$

$$
hUL\propto \kappa_v^{2/3}\,\bigtriangleup\rho^{1/3}
$$

Scaling theory

Park and Bryan, 2000

Viscosity dependence

Huck et al., 1999

Scaling

Scaling theory approximately correct when constant mixing over the whole basin

Numerical simulations sugges^t mixing is *intensified near the boundaries* and viscosity-dependent

Observations (Polzin, Ledwell) also sugges^t boundary-intensified mixing

 \rightarrow Scaling theory probably inadequate

Abyssal circulation

Stommel and Arons, 1960; Kawase, 1987

Equations

$$
v\sin\theta = \frac{1}{\cos\theta} \frac{\partial p}{\partial \phi}
$$

$$
u\sin\theta = -\frac{\partial p}{\partial \theta}
$$

$$
\frac{\partial(hu)}{\partial \phi} + \frac{\partial(hv\cos\theta)}{\partial \theta} = -\cos\theta w_0(\theta, \phi)
$$

Abyssal flow

Stommel and Arons, 1960

Abyssal solutions

Good:

- Dynamically plausible
- Dynamically plausible
Predicted Deep Wester
- Predicted Deep Western Boundary current
Viscosity dependence in boundary layer Viscosity dependence in boundary layer
ss good:

Less good:

- Must specify upwelling
- Must specify upwelling
Buoyancy driving produ
flow Buoyancy driving produces purely *baroclinic* flow

Implied flow

Model example

Te Raa and Dijkstra, 2002

Linear model

Pedlosky, 1968,1969; Salmon, 1986

Planetary Geostrophy

$$
-fv=-\frac{\partial}{\partial x}\phi+\mathcal{D}_x
$$

$$
fu = -\frac{\partial}{\partial y}\phi + \mathcal{D}_y
$$

$$
\frac{\partial y}{\partial z} + T
$$

$$
0 = -\frac{\partial}{\partial z}\phi + T
$$

$$
\frac{\partial}{\partial z}\phi + T
$$

$$
\frac{\partial}{\partial x}u + \frac{\partial}{\partial y}v + \frac{\partial}{\partial z}w = 0
$$

$$
\frac{\partial x}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z} = \kappa_H \nabla^2 T + \kappa_V \frac{\partial^2}{\partial z^2} T
$$

Understanding the buoyancy-driven c

Linear PG

 \overline{x} \overline{u} $z = \mathcal{T}_0(z) + \theta(x, y)$ \sim Δ

 $\overline{}\rightarrow \overline{}|T_0| \gg |\theta|$

Temperature equation becomes:

$$
Sw = \kappa_H \nabla^2 \theta + \kappa_V \frac{\partial^2}{\partial z^2} \theta
$$

where $S \propto \frac{\partial}{\partial z} T_0$

where
$$
S \propto \frac{\partial}{\partial z} T_0
$$

Characteristics

1) Flow driven by vertical mixing 2) Flow con fined to surface boundary layer about 500 ^m thick3) Baroclinic velocities

4) Viscosity, lateral diffusion important only at west, North, South walls

5) Upwelling/downwelling occurs mostly near lateral boundaries

Diffusive viscosity

Rayleigh viscosity

Boundary mixing

Understanding the buoyancy-driven circulation – p.30/39

Comparison to models

Similarities
Bounda
Wester Boundary-intensi fied vertical velocities Western boundary current with large w w sensitive to viscosity and BC Zonal thermocline flow with BT

Differences
Sense d
Magnit Sense of surface flow Magnitudes of vertical velocities

Huck et al., 1999

Understanding the buoyancy-driven circulation $- p.32/39$

Huck et al., 1999

Marotzke, 1997

Comparison to observations

Comparison to observations

Orvik and Niiler, 2002

Comparison to observations

Skagseth and Orvik, 2002

Summary

- Idealized thermocline models capture some Idealized thermocline models capture some
elements of observed circulation (Deep West
Boundary Current, Norwegian Atlantic Cur elements of observed circulation (Deep Western Boundary Current, Norwegian Atlantic Current)
- But none (so far) capture the flow exhibited by
most numerical models
Need for an improved analytical representation most numerical models
- Need for an improved analytical representation