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Changes in ocean circulation during MIS3 inferred from radiocarbon records:
Inferences and implications from the 4C record

Short background discussion of the modern carbon cycle

The radiocarbon record
Long record from a stalagmite

Controls on radiocarbon production
Galactic cosmic rays
Solar electromagnetic field
Geomagnetic field

Partitioning of radiocarbon in the carbon cycle
Dominance of the oceans



1 I T T T T T 1 700

Projected —™ 1

s (2100) 650

— 11 600

Vostok Record
—— |PCC 1S92a Scenario 250

= 1 500
— H as0
— H ao00

= Current —»
= (2003) — 350

|
CO, concentration (ppmv)

300

250

200

150

400 300 200 100 O

Age of entrapped air
(thousands of years before present)

The Vostok ice core record for atmospheric concentration (Petit et al
1999) and the ‘business as usual’ prediction used in the IPCC third
assessment (IPCC 2001a). The current concentration of atmospheric
carbon dioxide (CO;) is also indicated.

From The Global Carbon Project, ESSP Report #1.
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The CO, global growth rate (expressed here as 10?'® g/yr of carbon
accumulating in the atmosphere since the start of direct CO., monitor-
ing) is compared to fossil fuel emissions over 4 decades. On average,
55% of the anthropogenic carbon is retained in the atmosphere, but
with large interannual variability related to the southern oscillation
index (S0OIl). (The very low growth following the Pinatubo volcanic
explosion in 1991 is an exception). All CO, data are deseasonalised
and smoothed over 650 days. The records collected by SI10/NOAA
from Mauna Loa. by NOAA from 50 global sites, or by CSIRO from
Cape Grimm all closely track the global growth rates (Source: R J
Francey, presented at the EC-IGBP-GTOS Terrestrial Carbon Meeting,
22-26 May 2000, Costa da Caparica, Portugal).



Table 1 Contemporary carbon budgets for the 1980s and 1990s

1980s* (Gt C wr™) 1990s* (Gt C yr™)

Emissions (fossil-fuel burning, 54 0.3 6.3+ 0.4
cement manufacture)

Atmospheric increase 3.3 * 0.1 3.2 + 0.1
Ocean-atmosphere flux -1.9* 0.5 -1.7%205
Land-atmosphere flux =0.2 = 0.7 =14+ 0.7
Emissions due to land-use change 1.7 (0.6 to 2.5) Assume 1.6 = 0.8%
Hesidual terrestrial sink -1.9(-3.81t0 0.3) -2 to -4

(Highly uncertain)

Megative values denote flux from the atmosphere, that is, ocean orland uptake.
* From ref. 4.

t The range of estimates available to [PCC 2001 (ref. 4).
T Based on the early 1980s only and not the full decade (ref. 24).



Methodologies

Inverse modelling techniques

* A p(CO,) method

* Inventory approach

« Atmospheric 6'°C method

* Atmospheric (O,/N,) Method

» Radiocarbon inventory

e Coupled OCGCM
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(d) Anthropogenic CO, Column Inventory (mol m2)

(Sabine et al., 2003)
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Figure 1 Zonal distribution of terrestrial and oceanic carbon fluxes. These data were  the full range of results from the models. Positive numbers are fluxes to the
deduced from eight inverse models using different techniques and sets of atmospheric  atmosphere. Note that data and time-intervals are not precisely consistent with those
observations after accounting for fossil-fuel emissions (ot shnwn}”. Results are used in other analyses presented in this Progress Article, and so the global totals may
shown for the 19805 (plain bars) and for 1990-96 (hatched bars). The bars indicate ~ differ from those mentioned elsewhere.
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Figure 15

Predicted changes in global land carbon (vegetation plus soils) from two coupled climate-carbon cycle GCMs. Positive represents an increase in land
storage. The Hadley Centre results are shown by the continuous lines and the IPSL model results by the dashed lines. Blue lines represent runs with-
out climate change, and the red lines are from the fully coupled runs including climate-carbon cycle feedback (Cox et al 2000).

Global Carbon Project The Science Framework and Implementation
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Figure 7-1: The global carbon
cycle. Carbon is exchanged
among the atmosphere,
oceans, and land. This cycling
of carbon is fundamental to
regulating Earth’s climate. In
this static figure, the
components are simplified
and average values are
presented. Storages [in
petagrams carbon (PgC)] and
fluxes (in PgC yr-1) of carbon
for the major components of
the Earth’s carbon cycle are
estimated for the 1990s.

For more information, see
Annex C.



Futur Long-term variations of air-sea CO, flux: a view from a coupled model
I[PSL: OPA-HAMOCC3-LMD-SLAVE-IS92a (L..Bopp)

2090-1990 Diff. Air-Sea Flux in mol m year!
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In the tropics, changes would occur in the eastern EQPAC region; why ?
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Fig. 2. Variability in ocean and land CO» fluxes in Pg C yr—!. Positive values indicate a CO; flux anomaly from the ocean
or land to the atmosphere, negative values a CO;> flux anomaly from the atmosphere to the ocean or land. The curves are
smoothed to remove variability less than 1 vr (left panels) and less than 5 yr (right panels). The mean of 1985—-1995 is removed
from each curve. Arrows indicate El Mifio events. The different methods are described in the text.

From Le Quére et al, Tellus (2003)



Radiocarbon 1s a passive tracer that can be used to
understand the carbon cycle
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Carbon cycle: reservoir sizes and fluxes Gtc
and Gt C yrt from Siegenthaler and Sarmiento, 1993)
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Atmosphere:

14C short residence
times and small
reservoir

Deep ocean:
14C long residence times

and very large reservoir

By measuring the “C abbundance we learn something about
the residence time and exchange rates of carbon amongst these

reservoirs.



How do we obtain records of past
14C abundance?



Radiocarbon records

*Tree rings

*Varved Lake sediments
*Varved Ocean sediments
*Speleothems



Tree-ring calibration

Overlapping sequences of tree-ring
chronologies (dendrochronology) used to
obtain continuous record of decadal
estimates of past atmospheric
concentration

11.85 ka €

14C age is compared with calendar age based on tree ring count
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AC from corals

Sample 94-CB-1
Marau Sound
Guadalcanal,
Solomon Islands

Porites




Conventional C14 age (yr BP)
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Lake sediments
14C on terrestrial plant particles

Calendar ages from counting varves
(Kitagawa & van der Plicht, 2000)

Ocean sediments
14C from planktonic foraminifera

Calendar ages from comparing 8'%0 (or greyscale)
with GISP2 620
(Voelker et al., 2001; Hughen et al., 1997, 2004)

Speleothems (stalagmites)
Calendar ages from U/Th ages



Collecting speleothems
from Grand Bahamas
caves at 90m bsl, using
He-rebreather apparatus

Rob Palmer
Rob Parker







Stalagmite from
Sagittarius blue
hole, Grand
Bahama

450 mm
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Uranium-series disequilibrium
....on dissolution and subsequent precipitation of carbonate
(eg. coral or speleothem)

'Fractionation event'
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(Without derivation):

The new law governing 23YTh activity in the presence of
excess 2*U becomes:

dinThJ o +{5254U(T)]{ e J(l_ew_lm;ﬂ)
A ‘ﬁ“zm IR ’*“*134

(assuming no initial 23Th)

Can’t solve analytically because T appears in two independent terms

Solve iteratively :
1) Pick a T, then compare to measured (>3*U/?38U),
2) Repeat until convergence.



Uranium-series ages along axis of growth
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More U/Th approaches:

(1) No initial 23°Th and 6%3*U = 0 (i.e 234U’?38U at secular equilibrium)
(230Th/238U)a =1-e (A230 1)
(2311)21/235[])a =1 -¢e (R t)

(2) No initial 220Th and 834U # 0

230 234 " | ﬂ |
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(3) Initial 23°Th present:
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::% Isochron diagrams
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Uranium-series ages along axis of growth
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Arizona - NSF Accelerator Mass Spectrometry Facility
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“C age (kyr BP)

26

...plus varves from Cariaco
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“C age (kyr BP)

26

...plus corals from German tree rings
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“C age (kyr BP)
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...INTCAL98 compilation
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“C age (kyr BP)

26

...plus varves from Lake Suigetsu, Japan
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Collecting drips In
Conch Bar Cave,
Turks and Caicos

Investigation of modern
14C concentrations in drip
waters - work in progress



Constancy of dead carbon fraction
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DCF-corrected ages vs calendar ages:
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Fig. 2. Radiocarbon calibration data from wvarious sources. (A) Calibration data from Cariaco leg 165,
holes 1002D and 1002E (blue circles), plotted versus GISP2 calendar age (72) assigned by correlation of
detailed palecclimate records (77) (SOM Text and fig. 52). The thin black line is high-resolution
calibration data from Intcal98 tree rings (2, 3) joined at —12 cal. ka B.P. to the Cariaco PLO7-58PC varve
chronology (73). Red squares are paired "C-U/Th dates from corals (5). Replicate measurements,
including overlap between 1002D and 1002E, have been averaged. Light gray shading represents the
Cariaco calibration curve shifted within limits of calendar age uncertainty. Dashed line shows equal
14C-calendar ages. Error bars are 1 o. (B) Cariaco site 1002 data set plotted versus other published '4C
calibration data. Symbols are the same as above, with additional data from Lake Suigetsu varves (6)
(open cirdes), Bahama speleothem UW/Th (7) (open diamonds), and North Atlantic cores PS2644 (9)
(upside-down triangles) and SO82-5 (70) (triangles) correlated to GISP2. Error bars for all records are 1 o.



A*C definition

A*C = (F e+ -1) 1000%0

Where A is the “C decay constant,
And t is the time time of sample formation

Relative to 1950 AD,

and
F= Fraction Modern = (4C/ 2C)/(*C/2C)

Thus, A*C = 0%o 1s the same *C concentration as the 1950
Atmosphere, 1000%o is twice the “C concentration, etc..
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Why is A'*C so high during the last glacial age?

*Galactic cosmic ray flux was higher

*Geomagnetic field was lower

*Solar magnetic field was lower

*Ocean/atmosphere CO, exchange rate was significantly slower



Galactic Cosmic Rays (GCR)

«14C is formed in the atmosphere by galactic cosmic rays.

*Galactic cosmic rays are high energy (up to 106 GeV)
particles (usually protons) accelerated by celestial
events such as super nova.

*GCR striking our atmosphere shatter their target atoms into
free protons and neutrons.

*Free neutrons are gathered by other atoms in the atmosphere
to make new nuclides, such as *C.

If GCR fluxes have varried in the past, then measurement of different
cosmogenic nuclides with various halflifes (1*C, 1°Be, 4!Ca, *He, etc.)

measured in unshielded materials (such as meteorites or lunar soils) should have
different activities (N/L).

Measurements show that all such nuclides have the same activity, thus GCR has
Remained constant.



Earth's magnetosphere
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Geomagnetic '4C Production "tull carbon Cyclen
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Radiocarbon during the last glacial maximum
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Cycle 23 Sunspot Number Prediction (February 2001)
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A4C for the last millennium
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ol production during solar minima)
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Why is A'*C so high during the last glacial age?

*Galactic cosmic ray flux was higher

*Geomagnetic field was lower

*Solar magnetic field was lower

*Ocean/atmosphere CO, exchange rate was significantly slower
*Carbon export from the ocean mixed layer was slower.



Geomagnetic '4C Production

l

"full carbon cycle"

Atmosphere 60 GtC| Biosphere+
6800 GIC P S0i[s/Detritus
2200 GiC
74 GtCI
Cont. runoff ) ol
1.17 GtClyr riace Oceal .69 GiC
- 84 GIC
| !
aCC Surf+Deep
36 GIC 59GIC| s e
21 GiC

Deep Ocean
38000 GtC

__38GIC

—

Net flux into all seds
1.17 GtClyr

From Hughen et al., 2004



Geomagnetic C Production
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Model vs data comparison
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Surface Layer Water North Atlantic Deep Water

SAMW  Subantarctic Mode Water UPIW  Upper Intermediate Water, 26.8 <6, < 27.2
RSW Red Sea Water LOIW  Lower Intermediate Water, 27.2 < 5, < 27.5
AABW  Antarctic Bottom Water 10DW  Indian Ocean Deep Water
NPDW  North Pacific Deep Water BIW  Banda Intermediate Water

ACCS Antarctic Circumpolar Current System ~ NIW  Northwest Indian Intermediate Water
(W Circumpolar Deep Water

Plate 1.2.7 (see p.22) A three-dimensional schematic showing the meridional overturning circulation in each of the
oceans and the horizontal connections in the Southern Ocean and the Indonesian Throughflow. The surface layer
circulations are in purple, intermediate and SAMW are in red, deep in green and near-bottom in blue. From Schmitz
(1996b).
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From Sigman & Boyle, 2001.



Reduced' sedimentation
And reduced deep water
Ventilation scenario
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Radiocarbon during the last glacial maximum
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IRD (# grains)

4000 -

3000 -

2000 +

1000 -

IRD (#grains)

Calendar age (ka) based on GISP2

12 14, 16 18 20 22 24 26

(a,b)

| GS-1/GI-1
| BHing Transition)

|“/ GIsSP2

MD95-2010

H1

Susg1-18

1 L 1 o5

67 °N

12 14 16 18 20 22
Calendar age (ka) based on calibrated

24 26
sp-a;‘eouc (C,d)

0.55

0.50

UK37'

residual



Different mode of circulation during the last
glacial period

Heinrich event Normal glacial Dansgaard-Oeschger

'meltwater cap' halts mode event

thermohaline thermohaline enhanced convection,

circulation - colder circulation active further north in
Norwegian Sea, hence
warmer

Ganopolski, A. and S. Rahmstorf, 2001: Simulation of rapid glacial climate changes in a coupled climate
model. Nature, 409, 153-158.



Modelled ocean convection

Modern/Holocene The heights of the bars
e - are equal to the depth of
convection.

Numerical study of glacial and meltwater global ocean thermohaline conveyor by Seidov, D and Haupt, B.
J. in Computerized Modeling of Sedimentary Systems, Ed. J. Harff, W. Lemke, and K. Stattegger, 1999,
ISBN 3-540-64109-2, pages 79-113
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(After McManus et al, 2004)
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Fig. 3. Atmospheric A'C for the past 50 cal. ka B.P. Symbols are the same as those in Fig. 2A.
Cariaco error bars represent independent uncertainty in A'™C due to 1-o '*C age error. Light gray
shading shows additional uncertainty in Cariaco A™C due to calendar-age error that is not
independent from sample to sample, but rather would shift sections of the curve together within
the limits of the shading. Dotted line is modern preindustrial atmospheric A'C, defined as 0%o.
Upper and lower limits were determined by adding and subtracting 1—o errors to the calendar age
and recalculating A7C with the use of the new calendar ages.
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Conclusions

Atmospheric “C rose to very high levels during MIS3
This was 1n part due to low geomagnetic field, but
Carbon cycle box models show that either

carbon sedimentation rate or ocean overturing rate

Or both must have been significantly lower (~1/3 lower)
In order to achieve such high A*C,

Smaller fluctuations in the *C records appear synchronous
With Heinrich events, suggesting that shutdown of deep
Ocean ventilation associated with these events was significant
And prolonged.



