Decadal aspects of variability in the California Current: Dynamics and ecosystem implications

Emanuele Di Lorenzo

Collaborators: Art Miller (SIO, UCSD) Niklas Schneider (IPRC, UH) James McWilliams (UCLA)

Scripps Institution of Oceanography, UCSD Trieste, ICTP, April 30th 2004

Satellite Maximum Chlorophyll-a

Units mg chla/m³

Effects of anthropogenic forcing on biological activity

Biological Model Phytoplankton [mmol C/m³]

Ratio, Year 2100 / Year 2000

Pierce, Climate Change, 2003, submitted

Observational Dataset

California Cooperative Oceanic Fisheries Investigation Hydrography

Temperature, Salinity and Zooplankton 1949 – 2003 seasonal data 20 m vertical resolution, from 0– 500 m 70 - 80 km horizontal grid

Observations along the Southern California Coast

Large scale Pacific Decadal mode of Variability (also known as PDO, NPO, PDV, ...)

positive phase negative phase 0.8 0.4 0.2 0.0 -0.2 -0.6 4 2 -2Mantua et al. (1997); Zhang et al. (1997); _4∟____ 1900 1920 1940 1960 1980 2000

Impacts on the Ecosystem

1 C warming over the last from 1950 -1998

Impacts on the Ecosystem

20 m deepening of the isopycnals over the last from 1950 -1998

Diagram of Mean Current

Temperature and Salinity are NOT correlated on decadal timescales

Salinity

Temperature

Temperature and Salinity are NOT correlated on decadal timescales

Fundamental questions

Basic observations 1950-2000:

- 1 observed warming trend of 1.0 degree C
- 2 decline in zooplankton
- **3** enhanced low frequency salinity variations

What are the physics that control the observed temperature and salinity changes?

Are these temperature changes linked to global warming?

Can we identify mechanisms by which these physical changes impact the ecosystem?

Strategy of Investigation

Interpret the **coastal observation** with the aid of:

1) Simple dynamical considerations based on analysis of the hydrographic dataset.

2) a **numerical ocean model**, which can resolve the relevant physical processes of this coastal environment.

The Ocean Model

Di Lorenzo (2003)

Limitations of the Observational Dataset

Satellite SST

Spatial and Temporal sampling aliasing

The Ocean Model

Ocean Model SST

Satellite SST

Temperature and Salinity are NOT correlated on decadal timescales

Differences in the dynamics between Temperature and Salinity

Differences in the dynamics between Temperature and Salinity

Model to explain Salinity decadal changes

If
$$\frac{\partial S'}{\partial t} \approx -\underline{u}_{H}' \cdot \nabla_{H} \overline{S} + \kappa S'$$

then $\hat{S}(\omega)^{2} \approx \frac{\hat{u}(\omega)^{2}}{\omega^{2} + \kappa^{2}}$

Anomalous Advection Model for Salinity

Schneider, N., E. Di Lorenzo, and P. Niiler, 2004, Salinity variations in the California Current, J. Phys. Oceanogr., in revision.

Ocean Model Experiments

	Mean Advection	Local Surface Heat Fluxes	Upwelling
Exp 1			X
Exp 2		X	X
Exp 3	X	X	X

Upwelling

 $\frac{\partial T}{\partial t} = \begin{array}{c} \text{Mean} \\ \text{Advection} + \end{array} \begin{array}{c} \text{Local Surface} \\ \text{Heat Fluxes} \end{array}$

+ Upwelling

Ocean Model Experiments

	Mean Advection	Local Surface Heat Fluxes	Upwelling
Exp 1			X
Exp 2		X	X
Exp 3	X	X	X

Alongshore Winds

EXP 1

Model dynamical response to the winds

Model SSTa

Forced by: NCEP winds only

Local Heat Fluxes

 $\frac{\partial T}{\partial t} = \begin{array}{c} \text{Mean} \\ \text{Advection} + \end{array} \begin{array}{c} \text{Local Surface} \\ \text{Heat Fluxes} \end{array}$

Ocean Model Experiments

	Mean Advection	Local Surface Heat Fluxes	Upwelling
Exp 1			X
Exp 2		X	X
Exp 3	X	X	X

Surface Net Heat Fluxes

EXP 2

Upwelling and Local Surface Heat Fluxes and Mean Advection

EXP 3

Upwelling and Local Surface Heat Fluxes and Mean Advection

Surface Heat Fluxes EOF

Local and Remote Heat Fluxes

Ocean Model Experiments

	Mean Advection	Local Surface Heat Fluxes	Upwelling
Exp 1			X
Exp 2		X	X
Exp 3	X	X	X

Toy model for Temperature

Processes that control Temperature changes (a simple dynamical framework)

	Mean Advection	Local Surface Heat Fluxes	Upwelling
Exp 1			X
Exp 2		X	X
Exp 3	X	X	X

Processes that control Temperature changes (a simple dynamical framework)

	Mean Advection	Local Surface Heat Fluxes	Upwelling	
Exp 1			X	
Exp 2		X	x —	$\frac{\partial T}{\partial t} = \frac{Q}{2CnH} - \gamma \tilde{T}$
Exp 3	X	X	X	οι ρυρπ

Surface Net Heat Fluxes

Processes that control Temperature changes (a simple dynamical framework)

	Mean Advection	Local Surface Heat Fluxes	Upwelling	
Exp 1			X	
Exp 2		X	x —	$\frac{\partial T}{\partial t} = \frac{Q}{2CnH} - \gamma \tilde{T}$
Exp 3	X	X	X	οι ρυρπ

Processes that control Temperature changes (a simple dynamical framework)

	Mean Advection	Local Surface Heat Fluxes	Upwelling	
Exp 1			X	
Exp 2		X	X	
Exp 3	X	X	X —	$\frac{\partial T}{\partial t} = \frac{Q}{2CnH}$
				οι ρυρπ

Surface Heat Flux, Mean Advection of SSTa

Impacts on ecosystem

Impacts on ecosystem

a) Changes in Upwelling

b) Changes in Mesoscale Eddy variance

Upwelling (results from the ocean model)

	Mean Advection	Local Surface Heat Fluxes	Upwelling
Exp 1			X
Exp 2		X	X
Exp 3	X	X	X

Surface Salinity in Upwelling Boundary Layer

Surface Salinity in Upwelling Boundary Layer

Reduced efficiency of upwelling and vertical flux of nutrient

TS diagram

TS diagram

Mesoscale Eddy variance

Increase in Mesoscale Eddy variance in the 1980s and 1990s

30 – 40 % in the core of the California Current

(95 % significance level is 25 %)

Increase in Mesoscale Eddy variance

in the 1980s and 1990s

30 – 40 % in the core of the California Current (95 % significance level is 25 %)

Distribution and survival of larvae

Ecosystem Model?

Ecosystem Model?

Processes controlling Temperature

