united nations educational, scientific and cultural organization

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS In memory of J.C. Fuggle & L. Fonda

19 April - 21 May 2004

Miramare - Trieste, Italy

1561/19

Photoelectron Diffraction: Applications and Developments

Juerg Osterwalder

strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

School on Synchrotron Radiation and Applications, ICTP Trieste, May 3-6, 2004

Photoelectron Diffraction: Applications and Developments

Jürg Osterwalder

Physik-Institut, Unversität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland - <u>osterwal@physik.unizh.ch</u> http://www.physik.unizh.ch/groups/grouposterwalder/

Lecture 6

- Typical Surface Structure Problems
- Photoelectron Diffraction Patterns as Fingerprints
 - High-Temperature Superconductors
 - Tartaric Acid on Cu(110): Chiral Molecules
 - Na/Al(111): Atomic Adsorbates
- Application to Large Adsorbed Molecules: C₆₀
- Application to Heterogeneous Catalysis: O/Rh(111)
- Applications to Materials Science: h-BN/Ni(111)

XPD Applications - Lecture 6

Measuring times for full 2π XPD pattern: 1 hour to 24 hours (depending on count rates **and** on anisotropies)

XPD Applications - Lecture 6

X-Ray Photoelectron Diffraction

XPD Applications - Lecture 6

Coverage (XPS) vs. Exposure:

Summary of structural parameters:

Est.	Gamou (LEED)	this work (XPD)	Grad (DFT)
registry (N,B)	(top,fcc)	(top,fcc)	(top,fcc)
corrugat	0.18 Å	0.07 Å	0.11 Å
d N -Ni	2.22 Å	1.95 Å	2.19 Å
d Ni-Ni,1	1.98 Å	2.03 Å	2.03 Å

G. Grad *et al.*, submitted Gamou *et al.*,Sci. Rep.RITU A 44, 221 (1997)

The structure is well understood ! ... but:

2nd stable DFT structure + 18 meV

(N,B)=(top,hcp)

30

Defects and two-domain monolayers

Defect lines in 1 ML *h*-BN (cf. Co deposits)

Where do they come from ?

XPD Applications - Lecture 6

h-BN partial coverage:

⇒ Triangular islands of two orientations coexist on the surface.

31

⇒ Defect lines appear where they touch

Quantitative comparison of XPD and STM Data

Compare areas of differently oriented islands

Determine domain ratios from B 1s forward scattering peaks

⇒ Island shape and bonding geometry correspond !

