

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS In memory of J.C. Fuggle & L. Fonda

19 April - 21 May 2004

Miramare - Trieste, Italy

__

 1561/32

SAXS studies of proteins in solution

A. Craievich

strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

SAXS studies of *proteins in solution proteins in solution*

SAXS studies of proteins in solution

Protein single crystal

Assymetric unit

LNLS SAXS beamline

G. Kellermann, F. Vicentin, E. Tamura, M. Rocha, H. Tolentino, A. Barbosa, A. F. Craievich e I. L. C. Torriani, J. Appl. Cryst. (1997). 30, 880-883

The shape of the proteins in *solution. Folding solution. Folding -unfolding process. unfolding process. The envelope function The envelope function*

Solution of the phase problem Solution of the phase problem

Dilute and monodisperse solutions

Ideality (high dilution) and monodispesity $I(q) = N I_1(q)$

Small-angle scattering by a macroscopically isotropic material

$$
\left\langle e^{-i\vec{q}.\vec{r}}\right\rangle = \frac{\sin qr}{qr} \qquad \qquad \gamma(r) = \frac{1}{8\pi^3 VI_e} \int_0^\infty 4\pi q^2 I(q) \frac{\sin q.r}{q.r} dq
$$

$$
\gamma(0) = \frac{1}{V} \int_{V} \Delta \rho(\vec{r}) . \Delta \rho(\vec{r}) . d\vec{r} = \overline{\Delta \rho(\vec{r})^2}
$$

$$
I(q) = I_e V \int_0^\infty 4\pi r^2 \gamma(r) \frac{\sin q.r}{q.r} dr
$$

$$
\gamma(0) = \frac{1}{8\pi^3 VI_e} Q
$$

$$
Q=\int_0^\infty 4\pi q^2 I(q) dq
$$

Small-angle scattering of a dilute system of isolated nano-objects. General equations

The reduced correlation function for a single isolated object

$$
I(q) = \sum_{i=1}^{N} I_i(\vec{q}) = N \left[\frac{1}{N} \sum_{i=1}^{N} I_i(\vec{q}) \right] \qquad I(q) = N \left\langle I_1(\vec{q}) \right\rangle
$$

$$
\gamma_0(r) = 1 - (S_1/4V_1)r
$$
 $\gamma_0(r) = \gamma(r)/[(V_1/V)(\rho_1 - \rho_2)^2]$

$$
\int_V 4\pi.r^2 \gamma_0(r) dr = V_1
$$

$$
I_1(q) = I_e (\rho_1 - \rho_2)^2 V_1 \int_0^{D_{\text{max}}} 4\pi r^2 \gamma_0(r) \frac{\sin q.r}{q.r} dr
$$

$$
I(0) = I_e N (\rho_1 - \rho_2)^2 V_1^2
$$

$$
V_1 = 8\pi^3 \frac{I(0)}{Q}
$$

Asymptotic trend of the scattering intensity at small q. Guinier law Dilute and monodispersed system (identical nano-objects)

$$
I(q) = I_e N(\rho_1 - \rho_2)^2 V_1 \int_0^{D_{\text{max}}} 4\pi r^2 \gamma_0(r) \frac{\sin qr}{qr} d\vec{r}
$$

\n
$$
I(q) = I_e N(\rho_1 - \rho_2)^2 V_1 \int_0^{D_{\text{max}}} 4\pi r^2 \gamma_0(r) (1 - \frac{q^2 r^2}{6})]dr \qquad (\sin qr/qr) = 1 - (q^2 r^2/6) + ...
$$

\n
$$
I(q) = I_e N(\rho_1 - \rho_2)^2 V_1^2 \left[1 - \frac{q^2}{6} \frac{1}{V_1} \int_0^{D_{\text{max}}} 4\pi r^2 \gamma_0(r) dr \right] = I_e N(\rho_1 - \rho_2)^2 V_1^2 \left[1 - \frac{q^2}{6} R_g^2 \right]
$$

\n
$$
R_g^2 = \frac{1}{V_1} \int_0^{D_{\text{max}}} 4\pi r^2 \gamma_0(r) dr \qquad R_g = \left[\frac{1}{V} \int_V r^2 d\vec{r} \right]^{1/2} = \overline{r^2} \qquad R_g = \left\{ \frac{\int_V \rho(\vec{r}) r^2 d\vec{r}}{\int_V \rho(\vec{r}) d\vec{r}} \right\}^{1/2}
$$

\n
$$
I(q) = I_e N(\rho_1 - \rho_2)^2 V_1^2 . e^{-\frac{R_g^2 q^2}{3}}
$$
Guiner law
\n
$$
R_g = \sqrt{3/5} R \qquad R_g = \sqrt{[D^2/8] + [H^2]/12}
$$

$$
I(q) = I_e N (\rho_1 - \rho_2)^2 V_1^2 e^{-\frac{R_g^2 q^2}{3}}
$$

Ln I versus q^2 (Guinier plot)

 $R_g = (3 \cdot \alpha)^{1/2}$

SAXS by an arbitrary two electron density model The integral of the scattering intensity in reciprocal space Asymptotic behavior of scattering curves at high q. Porod's law

$$
\gamma(r) = \varphi_1 \varphi_2 (\rho_1 - \rho_2)^2 \gamma_0(r) \qquad I(q) = I_e V \varphi_1 \varphi_2 (\rho_1 - \rho_2)^2 \int_0^\infty 4\pi r^2 \gamma_0(r) \frac{\sin q \, r}{q \, r} dr
$$

$$
\gamma_0(r) = 1 - \frac{S/V}{4\varphi_1\varphi_2}r + \dots \qquad \gamma_0(r) = \frac{1}{8\pi^3 VI_e\varphi_1\varphi_2(\rho_1 - \rho_2)^2} \int_{V_q} 4\pi q^2 I(q) \frac{\sin q \cdot r}{qr} dq
$$

$$
Q=\int_0^\infty 4\pi q^2 I(q) dq
$$

$$
\text{Proof}' \text{ s law (q \text{ } -\infty)} \\ \boxed{I(q) = \frac{2\pi I_e (\rho_1 - \rho_2)^2 S}{q^4}}
$$

$$
Q = 8\pi^3 VI_e \varphi_1 \varphi_2 (\rho_1 - \rho_2)^2
$$

For dilute and monodisperse systems

$$
Q = I_e.N.V1.8\pi^3(\rho_1 - \rho_2)^2
$$

$$
\frac{S_1}{V_1} = 4\pi^2 \frac{[Iq^4]_{q\to\infty}}{Q}
$$

$$
I_1(q) = 4\pi \int_0^{\infty} p(r) \frac{\sin qr}{qr} dr
$$

$$
p(r) = \frac{r^2}{2\pi^2} \int_0^{\infty} q^2 I(q) \frac{\sin qr}{qr} dq
$$

Because of the noise of the experiental SAXS curve and the limited q range of SAXS measurements, the mathematical problem for deriving p(r) from I(q) is "ill-defined". It can be solved using different programs such as GNOM (Svergun)

Structure parameters and function than can be directly derived from SAXS curves of proteins in solution

- $\, {\sf R}_{\rm g} \,$ radius of gyration
- V_1 : volume
- S_1 : external surface
- p(r) : distance distribution function
- d_{max}

Detailed shape ???

Practical solution of the phase problem in SAXS studies

- 1) Guessing an initial shape. From the knowledge of Dmax, an initial spherical shape with R=dmax/2 is proposed.
- 2) Calculation of the scattering intensity I(q) for the initial (homogeneous) spherical protein.
- 3) Comparison with the experimental curve. Calculation of the Discrepancy parameter Chi.
- 4) A number of modifications of the shape leading to the minimum value of Chi.

Proteins in solution

- Restauration of structural models *ab initio* using only results of small-angle scattering experiments •Characterization of proteins in solution using SAXS and (high resolution) crystallographic data obtained by single crystal XRD
	- Example of application: Phosphoenolpyruvate carboxykinase (PEPCK)

$$
Position(j) = X(j) = 1
$$

or 0

- M $\approx (D_{\text{max}}/r_0)^3 \approx 10^3 >> N_s$ parameters, too many for conventional minimization
- No unique shape restoration unless constrained
- ♦ Able to describe complex shapes
	- Chacon, P. et al. (1998) *Biophys. J.* 74, 2760-2775.
	- Svergun, D.I. (1999) **Biophys. J.76,** 2879-2886

Ab initio program DAMMIN

Using simulated annealing, finds a compact dummy atoms configuration X that fits the scattering data by minimizing

$$
f(X) = \chi^2[I_{\exp}(s), I(s, X)] + \alpha P(X)
$$

where χ is the discrepancy between the experimental and calculated curves, $P(X)$ is the penalty to ensure compactness and connectivity, $\alpha > 0$ its weight.

Local and global search

- Local search always goes to a better point and can thus be trapped in a local minimum
- \bullet To avoid local minima, global search must be able go to a worse point Local

S1 shape reconstruction

S1 shapes restored by SASHA and DAMMIN

Red: atomic model

Ig I, relative

Number of parameters:

 $M = 2729$

Some examples of *application of SAXS to the application of SAXS to the study of proteins study of proteins*

Crystal Structure of the Dimeric Phosphoenolpyruvate Carboxykinase (PEPCK) from Trypanosoma cruzi at 2 Å Resolution Stefano Trapani, Jutta Linss, Samuel Goldenberg, Hannes Fischer, Aldo F. Craievich and Glaucius Oliva J. Mol. Biol. (2001) 313, 1059-1072

Structure of the dimeric phosphoenoloxytuxate carboxykinase (PEPCK) from trypanosoma cruzi

. Tranani, J. Linss, S. Goldenberg, H. Fischer, A. F. Craievich and G. Qliva, J. Mol. Biol. (2001) 313, 1059-1072

Low resolution structure obtained from SAXS results by using Dammin

Domain motions and quaternary packing of phosphofructokinase-2 from Escherichia coli studied by small angle X-ray scattering and homology modeling

R. Cabrera, H. Fischer, S. Trapani, A.F. Craiexich, R.C. Garrat, V. Guixe and J. Babul Journal of Biological Chemistry. 278, $12913 - 9$ (2003).

Figure 1. Homollogy modelling of Pfk-2. (A) Superposition of ten CA trace models of monomeric Pfk-2 generated by MODELLER. Red color indicates a-helix, this color indicates b-strands, otherwise backbone is colored gray. (B) Mean 3D score profile for models shown in (A).

Solution scattering curves of Pfk-2 without and with ligands. In absence of ligands (black curve), with saturating Fru-6-P (blue curve) and in presence of excess of MgATP (red curve). Inset shows Guinier plot giving values shown in table I.

Distance distribution function for Pfk-2 without and with ligands. Curves were calculated using GNOM program from SAXS data of Pfk-2 in absence of ligands (black curve), Pfk-2 in presence of excess Fru-6-P (blue curve) and excess of MgATP (red curve).

Modelling Fru-6-P induced conformational changes. Top, trace drawings of Pfk-2 homology model showing rigid rotations around the calculated rotation axes (parallel brown arrows); bottom, left and right, trace drawing for the most open (40°) and most closed (-20°) structures, respectively. (Right side) Discrepancy between the experimental data and the simulated scattering from the models.

Modelling quarternary packing in tetramer (with Mg-ATP).

(A). Schematic diagram showing X simmetry axis (black arrow) along which, rotations and translations were made.

(B). Chi value of the better adjust of rotation and COM distance with SAXS data for every degree of a/b domain openness. Curves for tetramer-I (solid line) and tetramer-II (dotted line).

(C). Plot showing Chi value for every combination of rotation and distance modelled for 7 deg domain openness dimer.

References

-"Structural insights into the beta-mannosidase from T-reesei obtained by synchrotron small-angle X-ray solution scattering enhanced by X-ray crystallography". R. Aparicio, H. *Fischer, D.J. Scott, K.H.G. Verschueren, A.A. Kulminskaya, E.V. Eneiskaya, K.N.* Reustroev, A.F. Craievich, A.M. Golubev and I. Polikarpov. Biochemistry-US 41 (30):
9370-5 (2002).

-"Crystal structure of the dimeric phosphoenolpyruvate carboxykinase (PEPCK) from trypanosoma cruzi at 2 A resolution". S. Trapani, J. Linss , S. Goldenberg, H. Fischer, A.F. Craievich and G. Oliva. Journal of Molecular Biology 313, (5) 1059-72 (2001).

-"Domain motions and quaternary packing of phosphofructokinase-2 from Escherichia coli studied by small angle X-ray scattering and homology modeling". R. Cabrera, H. Fischer, S. Trapani, A.F. Craievich, R.C. Garrat, V. Guixe and J. Babul. Journal of Biological Chemistry. 278, 12913-9 (2003).

--"Low resolution structures of the retinoid X receptor DNA-binding and ligand-binding domains revealed by synchrotron X-ray solution scattering". H. Fischer, S.M.G. Dias, M.A.M. Santos, A.C. Alves, N. Zanchin, A. F. Craievich, J. W. Apriletti, J. D. Baxter, P. Webb, F.A.R. Neves, R.C.J. Ribeiro, and I. Polikarpov. Journal of Biological Chemistry.
278, 16030-8 (2003).

-"Free human mitochondrial GrpE is a symmetric dimer in solution". J. C. Borges, H. Fischer, A.F. Craievich, L.D. Hansen, C. H. Ramos. Journal of Biological Chemistry. 278, 35337-44 (2003).

The Brazilian synchrotron light *laboratory laboratory - LNLS) -Campinas Campinas*

www.lnls.br www.lnls.br

120 MeV linear accelerator (injector) (underground)

LINHA DE TRANSPORTE - 18 m

Beamlines

Construction and commisioning period: 10 anos

June 1987: Starting

December 1989: 50 MeV LINAC operation

Agust 1995: Starting the installation of the beamlines

July 1997: Opening to the external users

Electron storage ring Electron storage ring

Operation parameters Operation parameters

APPLICATIONS: APPLICATIONS: Materials Science Materials Science Chemistry Chemistry Biology Biology Physics Physics Microfabrication Microfabrication Environmental science Environmental science ...

SAXS beamline

