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Why X-ray scattering with grazing incidence in materials science?

In the opto-electonic industry, the goal is to fabricate devices of allways maller dimensions, with novel structures / features, etc.
Nanostructures in implanted semiconductors, or on thin wafers (Si, GaAs with nanometer sized islands from Ge, InAs on it), offer
technologically interesting applications: if nanocrystals have dimensions of the de Boglie wavelength of the electron, energy levels
become quantisized, and correspondingly e.g. sharp photoluminescence lines are found. Such “quantum dot” systems are promising
candidates for novel device applications like optoelectronic switches, photodiodes, lasers, etc.

For adequate performance, a macroscopic number of quantum dots with a high degree of structural homogeneity is needed. Since
opto-electronic properties of quantum dots depend mainly on strain, size, size distribution and ordering, it becomes essential to
characterize these quantities as a function of the growth parameters. Furthermore, a precise control of growth parameters such as
substrate temperature, deposition rate and substrate miscut is necessary to grow coherently strained small islands with remarkable
structural and optoelectronic properties.

Work in this direction has been done using e.g. atomic force microscopy. With it a large variety of different shapes has been found
(e.g. faceted pyramids, hut clusters, dome-like structures, ...).
Disadvantage: - Small sampling statistics -> size distribution and ordering effects can hardly be discovered

- Strain cannot be detected

- Buried dots are not accessible

X-ray scattering:

- Averages over macroscopic areas, but still yields microscopic information
- Is intrinsically sensitive to strain
- In case of grazing incidence techniques, structural information can be obtained with depth resolution.

Conventional large angle X-ray scattering methods: the signal from a single quantum dot layer on a substrate is typically 10 times
weaker than the scattering from the substrate. This intensity ratio can be improved if grazing incidence techniques are applied: the
penetration depth of X-rays can be restricted to about 10 nm, thus probing only the sample volume in which the quantum dots occur.
Since the absolute number of atoms in the dots is small, the use of highly brilliant synchrotron sources is mandatory for these
techniques.
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11-VI semi-conductors Nanostructures : what for ?
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Schematic of the ion implantation technique for NC production

BENENRNEY

Amorphous SiO, (2) Host material implanted with equal
doses of group Il and VI ions

(D) Supersaturated solid solution

formed in the near surface region

(C) nucleation of precipitates,
precipitates grow on the expense of

incoming ion flux

O 0,0 o © OQ%OO C% ‘0 OQ d) during high-T annealing II-VI
o ° O o o © O nanoparticles are being synthesized and
in the process of Ostwald ripening

agglomerating in discrete, isolated QD’s
of varying size



GISAXS pattern formation

2D

Incident beam detector

Scattering by particles in substrate
Coherent scattering from surface

A =2n/q,,,, A = average nanocrystals distance -
obtained from interference peak, q,,.,

R, = radius of gyration
= D =average cluster diameter
obtained from slope of linear region of
I(q) versus g2

2D GISAXS pattern
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Synthesis and growth of CdS Quantum Dots in SiO2
studied by GISAXS

GISAXS-pattern Intensity profiles
oo 1 oA L Isotropical distribution of spherical

ty fcounts)
800,
La

' o4 4% QDs with average diameter 8.8 nm,
> w] ¢ e, 3 E
& % and with average distance of 10.8 nm

Concentration 5.3 exp 21/cm3

il » B experimental data, § = 45

Isotropical distribution of

spherical QDs with smaller
T . ,

average diameter and distance

Intensity [counts,
o

N - ’ it
Concentration 2.0 exp 21/cm3

LMA approximation, and DWBA formalism -> scattered intensity is:
2 o0
I(q) o T(ai) |2 b (afj j P(qa D)S(qo Dh39 Thhs )\I (DaW)dD
0

U.V. Desnica, P. Dubcek, I.D. Desnica-Frankovic, M. Buljan, S. Bernstorff and C.W. White, J.Appl.Cryst. 36, 443-446 (2003)




Scattering from embedded particles:
Local Monodisperse Approximation - LMA

-system is approximated by monodisperse subsystems, weighted by the size distribution
-positions of the particles are completely correlated with their sizes

2 2%
@) [T (@) [T (@) [P@.D)S(a. Dy .7, N (D, w)dD
0
T(oy) and T(o) - Fresnell transmission coefficients for angle of incidence a; and exit o
P(q,D) - form factor of a homogeneous sphere of diameter D, (D=2R);

S(g,Dy¢my,) - structure factor (n,, - volume fraction and diameter of the hard spheres)
N(w,D) - Gaussian size distribution function

Surface scattering:

Distorted Wave Born Approximation -
DWBA

Doprinos povrsine
Doprinos cestica
Ukupno rasprienje

Intenzitet
o B 8 8 8

Itotal = ILI\/IA + Isurface
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bimodal size distribution of particles — 1D GISAXS and TEM

. — depth profiling by small increase of the
i incidence angle (0.02° step) |

closely spaced population of large particles with
narrow size distribution Rz= 50 -60 nmnm

w'E
E |

: shoulder - second group of smaller particles of
broader size distribution R5= 5-7 nm

(CdSe in SiO,, +0% Cd, 800 °C in Ar+H.,)

10°

10 [

10’

SiO/Si Interface

Cross-sectional TEM image:

Size distribution for ZnSe nanocrystals in SiO, after annealing at 1000 °C, 30s, Ar.
Sample was implanted with 33% surplus Cd. Among large particles positioned at
approx. 100nm, there is also a band of small particles with diameters below 10 nm



2. Example: GISAXS on thin Ti0, FILMS ON GLASS SUBSTRATE

P. Dubcek, A. Turkovic, B. Etlinger, O. Milat, M. Lucic-Lavcevic, S. Bernstorff and H. Amenitsch

Sy

high correlation between the film and glass surface
=» interference patterns in the specular plane (©=0)
=>» enables precise film thickness determination

concentric rings around the direct beam direction correspond to inner structure of the film



3. Example:

Grazing incidence X-ray scattering:
an ideal tool to study quantum dot systems

GISAXS study of Ge islands on a Si(111) subsirate
(T.H. Metzger et. Al, J. Phys. D: Appl. Phys. 32 (1999) A202-A207)

Sample prepared by molecular beam epitaxy at a substrate
temperature of 530 °C.

& 10K 6e % layer BGE;ONT‘T
A <3
//// L T

onSif14) 7)

GISAXS

§

Figure 1. Scaticring geometry for grazing incidence small angle scattering (GISAXS), The PSD is placed parall

: . i . el to the sample surface ;
collects the small angle signal as a function of g, = 2 /A sin(26) al constant angles of inciden g i,

the quantum dots are studied by rotating the azi::mthnl angle e S S M gy

.

basic scattering geometry: &; = &,. The scattered signal is collected

under grazing exit angles Ot in the forward direction with a 1D position
sensitive detector (PSD) which is placed parallel to the sample surface.



The axial symmetry of the dots can be studied by varying the
azimuthal angle W keeping all other angles unchanged. Since q, #
0 is typical for GISAXS, the full symmetry of the three-
dimensional (3D) objects can be assessed in contrast to the
conventional transmission SAXS with q, =0 ! cenbrul peak

& o=120°

| N TS houloley

Intensity

0,04 000 004 -004 0,00 0,04 -004 000 004

q parallel [A-‘]

Figure 2. GISAXS signal from Ge pyramids on Si(111) for differcat azimuthal angles as a function of ). The pyramids possess a tareefold
symmetry. The full curve is a fit to the experimental data (000 Q) using the strocture factor of a pyramid (for details see [14]).

-> threefold symmetry properties of the scattering pattern ->
threefold symmetry of triangular pyramids

From the relation between W and the known <110> cleavage edge

direction of the sample -> sides of pyramids are aligned along ¢l
possible <110> directions in the (111) oriented surface plane.

Fit of structure factor calculations to experimental data ->
dimensions of the pyramids

AFM (atomic force microscopy) ->
islands have pyramidal shape
with well defined {113} facets;
some exhibit also a small (111)
terrace on the truncated top




Grazing Incidence Diffraction (GID)

(T.H. Metzger et. Al I. Phys. D: Appl. Phys. 32 (1999) A202-A207)

4. Example:

Example: InAs islands grown by molecular beam epitaxy on GaAs
(100) at 530 °C substrate temperature

Position Sensitive Detector PSD

o

origin
Scuttering geometry for grazing incidence et .
diffraction to study the crystalline properties of quantum dots. g“l’““‘m directions in reciprocal space close to the (220) surface
Three-dimensional reciprocal space maps are recorded in this LR Fﬂ‘.‘“g" d‘iﬁw and M:i By adjusting g, the lattice
- i . P in the is d, alo inft th
geomel g the asa of the " Ong ga on the
exit an;)e;z{r. the seattering angle 20 and the sample angle 8. ° lateral form factor of the dots is obtained, the 4. -dependence

determines the maximum depth and reveals the form factor of the
dots in the growth direction,

GID -> crystalline properties of coherent quantum dots

analysis of reciprocal space maps -> interdependence of shape and
elastic strain within the quantum dots

Qrin A1

0,20 <010 0,
E;..oms,&'!] °

102 J )
0,10 0,05 0,00 0.08 0,10
2 S N —

! - Distance from radial path qq in A-!

10

=3
2
=]
2
E}

g
Intensity [a.u.]
s

g

Intensity normalised on the radial path
g 2

=

Intensity normalized to radial path
=
B

Distance from radial path q, in A"!
Form factor-induced scattering signal as a function of

‘Isostrain-scattering’ between the (220) surface Bragg qa for ring-shaped InAs islands overgrown by GaAs as a function
reflections of GaAs and Ins. The intensity distribution in angular of the relaxation g,. The corresponding shapes of the islangs are
scans is shown for dgifferent radial positions (g,) as indicated in the indicated schematically on the right-hand side.

inset. The angul-r dependence (g,) of the scatteri ng signal is
characteristic for the lateral shape of the InAs dots. The central
i Jens with i ing relaxation |g, |




Basic experimental considerations

Critical angles for e.g. 8 keV photons:
Organic films &, =0.1" < 1.7 mrad

Substrates X, =0.2" > 3.4 mrad

= very flat substrates needed (e.g. silicon wafers, float glass)
=» very flat films (spin coating, dip coating, implanting, ...)
needed

Sample size (length L x width W)

Accepted beam height H
H=L.x
L=20mm, & =0.2°
| d =
L - 2H=70 Mm

W2 beam width of ca § mm

le surroundin
* avoid scattered photons coming from slits etc ...

* avoid scattered photons from air (i.e. work in vacuum,
He-atmosphere, or use very short air paths):

Y " oty
—
tov on Detector




SUMMARY

There are several methods of X-ray scattering:

XRD

SAXS

XRR

GISAXS

GID

->

1
V

1
V

- average strain
- average composition
- average chemical composition

- shape, size, distribution and distances of structures in
amorphous or partly ordered sample systems (bulk informations)

- surface and interfaces
- roughness

- correlations

- layer thicknesses

- shape, size, distribution and distances (lateral correlations) of
nanostructures on surfaces, interfaces and thin films

- crystalline properties of coherent quantum dots
- in-plane strain

- depth dependent strain

- composition
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Small-angle x-ray scattering under grazing incidence:
The cross section in the distorted-wave Born approximation

M. Rauscher, T. Salditt, and H. Spohn
Sektion Physik der Ludwig-Maximilians-Universitit Miinchen, Geschwister-Scholl-Platz 1, 80539 Miinchen, Germany
(Received 11 April 1995; revised manuscript received 28 August 1995)

The specular and nonspecular intensity of x rays scattered from a rough surface with fluctuations in
the electron density is calculated in the distorted-wave Born approximation. The contributions to the
nonspecular intensity of roughness and density fluctuations can be separated. The structure factor is
given by a convolution integral of the Fourier transform of the density correlation function. Special

geometries of density fluctuations are discussed.

I. INTRODUCTION

Small-angle x-ray scattering (SAXS) is a fully
developed and well established method to investigate den-
sity ﬂuctuatlons on length scales from 10 A to several
thousand A.! In contrast to real- -space microscopy,
SAXS determines statistically averaged quantities, such
as density correlations. Experiments are usually per-
formed in transmission geometry; i.e., the sample is put
in the primary beam and the scattering intensity is mea-
sured behind the sample close to the forward direction in
the vicinity of the direct beam.

For many applications, conventional SAXS suffers
from two major drawbacks: First, an oftentimes poor
resolution at the low end of momentum transfer and
second, a lack of surface sensitivity.

As far as the first point is concerned, the resolution at
low momentum transfer is limited by the finite size of the
primary beam. Even if the half with of the beam is very
small, as is the case for most modern synchrotron
sources, the intensity tails of the beam as observed on a
logarithmic scale contaminate the scattering signal at
small angles. In practice, this effect limits the spatial
length scale that can be probed to be less than about
1000-2000 A for most instruments and samples On the
contrary, it has been shown that under grazing incidence
even by hard x rays of wavelength A=1 A, much longer
length scales of up to 10—100 um are accessible, if a suit-
able scattering geometry is chosen.”® This has been
demonstrated by the observation of diffraction maxima
from synthetic surface gratings with um periodicities,
and can be explained by the different relationship be-
tween the scattering angle and momentum transfer in
both scattering geometries. Thus, for structural charac-
terization on long length scales, it is promising to mea-
sure the so-called nonspecular or diffuse scattering, i.e.,
the small-angle scattering in the vicinity of the specularly
reflected beam. Of course, in the um range, light scatter-
ing can be employed to deduce structural information.
However, this technique does not work for opaque ma-
terials.

The second drawback is simply due to the fact that in
transmission geometry the beam has to pass through the
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whole bulk of the sample. Thus, the contributions of sur-
face roughness and other near-surface structures are
negligible in all but a very few cases as compared to the
bulk signal. However, in recent years the interest in sur-
face and near-surface phenomena has created an increas-
ing demand for surface-sensitive characterization. One
may have a number of examples in mind where spatial
fluctuations of the electron density occur only near or at
the surface, or where such fluctuations are to be studied
under the influence of the surface, e.g., precipitation of
ion-implanted dopant atoms in single crystals, thin layers
of porous silicon, segregation in a binary alloy, polymer
adsorption on a surface, Langmuir films, etc. It is there-
fore of interest to combine small-angle scattering with the
well-known surface sensitivity of grazing incidence
diffraction.* The first experiment of this kind has been
reported in 1989 by Levine et al., who have studied the
growth of gold islands on glass. Nonspecular scattering
of Langmuir-Blodgett films has also been attributed to la-
teral fluctuations.’

However, the quantitative analysis of experimental
data requires as suitable theory of the scattering process,
which is available only for relatively simple objects like
periodic surface gratings or some other special
configurations. The classical formulas of small-angle
scattering® cannot be expected to hold, as refraction
effects and in particular an eventually complex momen-
tum transfer have to be taken into account. The theoreti-
cal basis can be improved by starting from a general ex-
pression for the scattered wave in the framework of the
distorted-wave Born approximation (DWBA). The main
goal of our paper is to illustrate the general result for par-
ticular geometries of physical interest. In particular, we
want to understand how the various types of density fluc-
tuations can be unambiguously distinguished by means of
their scattering intensity distribution.

One of the most prominent density fluctuations is sur-
face roughness. Indeed, nonspecular scattering of rough
surfaces was the first kind of small-angle scattering to be
described theoretically. In 1988, Sinha and co-workers
calculated the scattering cross section of a rough surface
in DWBA, thereby starting a rapidly increasing activity
in the filed of roughness characterization.” Whereas be-

16 855 ©1995 The American Physical Society
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fore only the electron density along the surface normal
had been studied, with this theory at hand also lateral
quantities of roughness could be determined. The experi-
mental method is often referred to simply as diffuse
scattering.

A master formula including both surface roughness
and density fluctuations has been derived by Dietrich and
Haase?® (earlier efforts for particular cases are described in
Refs. 9-11). However, their very general result has not
been applied to the geometries considered in this paper.
In order to keep the notation close to Ref. 7 and for the
sake of conceptual clarity, we present here a self-
contained discussion of the scattering process. We point
out that our results can be generalized for the case of
neutron scattering in a straightforward manner.

The paper is organized as follows: In Sec. II we use the
distorted-wave Born approximation to calculate the scat-
tered wave from a rough surface with additional bulk
density fluctuations and we discuss conditions under
which correlations between these two contributions can
be neglected. In Sec. III we apply the general result to la-
teral density variations at planar surface, to columnar
disorder, and isotropically distributed spherical in-
clusions in the bulk as well as to a buried layer of density
fluctuations. Finally, some concluding remarks are found
in Sec. IV.

II. DISTORTED-WAVE BORN APPROXIMATION

A. The scattering amplitude

Let us consider a semi-infinite medium extending over
the lower half space z <0 with the average surface lying
in the xy plane. The deviation of the surface from its
mean is parametrized by the function h(r)) with
r;=(x,y). The medium is characterized by an average in-
dex of refraction n and is assumed to be homogeneous ex-
cept for the presence of surface roughness and density
fluctuations. The amplitude w (r) of the density fluctua-
tions describes the local deviation from the average index
of refraction.

Let us now assume an x-ray beam impinging on the
surface with an extension much larger than the coherence
length. Then the amplitudes scattered from parts of the
sample separated by distances larger than the coherence
length add up incoherently and the scattering intensity is
determined by a spatial average. Assuming erogodicity it
can be substituted by a configurational average denoted
as {-). The statistics of # and w are assumed to be iso-
tropic and translational invariant in the xy direction.
Thus, we have (h(x,y))=0 and (w(r))=(w)(z).
Moreover, we choose {w )(z)=0 for z— — w0, since any
offset @ from w can be used to renormalize the average
index of refraction.

The incident wave is described by a wave vector k;
with modulus k, (corresponding to the vacuum wave-
length A=2m/k,) and the scattered wave by k, of equal
modulus (Fig. 1). The scattering vector is denoted by
q=k,—k;. To distinguish the wave vectors in the medi-
um they carry a tilde, i.e., k;, k s> and @. Due to refrac-
tion and absorption they may be complex. For small
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FIG. 1. Scattering of x rays under grazing incidence. The in-
cident wave vector k;, the reflected wave vector k;, and the
scattering vector q are illustrated. 6, and 6, are the angles of
incidence and exit, respectively; S is the angle between the plane
of incidence and the projection of the final wave vector on the
surface.

scattering angles with 27 /g greater than typical inter-
atomic distances, the atomic structure of the medium can
be neglected. Furthermore, for such small scattering an-
gles and for an index of refraction n~1 polarization
effects can be ignored, i.e., electromagnetic waves behave
like scalar waves. This is a valid approximation for hard
X rays, since 1—n is of the order 1076,

The amplitude of the electromagnetic field satisfies the
stationary wave equation

(A+Kk2—V—W)¥=0, (1)

with V(z)=k2©(—z) and k2>=k3(1—n?). Here ©(—z)
denotes the Heaviside function and k, is the vertical com-
ponent of the momentum vector at the critical angle 6, of
total external reflection. The ideal surface, equal to the
xy plane, is described by the potential ¥V, surface rough-
ness, and density fluctuations by W. The perturbation W
has the following form:

W(r)=kZ2{O[h(r,)—z10(z)—O[z—h(r))]O(—2)
+w(r)O[h(r)—2z]} . (2)

The first two terms on the right-hand side correspond to
surface roughness, the third term to density fluctuations,
as illustrated in Fig. 2.

FIG. 2. Schematic of a rough surface with density fluctua-
tions. The average surface lies in the xy plane. Surface rough-
ness and density fluctuations are the two kinds of disorder con-
sidered.
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Without W, Eq. (1) describes the scattering of scalar
waves from a planar surface and is solved by the Fresnel

function
ikyz —ikjz
WO (r k)=¢ I € .~+ﬁe , ifz>0 "
Tel v ’ if z<0

for an incoming plane wave with k=(k”,k 1) and
k,=—1"k}—|k|%. The vertical component of the bulk

wave vector is kK, =—1 k2 —k2— |k,|> and the Fresnel
reflectivity 2 and transmittivity 7 are given by
2k k,—k
T=——"— and R=——1". @)
k,+k, k,+k,

Using the Green’s function,
(A+k3—V)G' A, 0", kd)=8(r—1') (5)

for outgoing waves, we transform Eq. (1) to the

Lippmann-Schwinger equation
V(D) =¥r)+ [d*'G r,r, k)W ()W) . (6)
In the far field the Green’s function is given by Refs. 8,

14, 18, and 19 and Ref. 20, Appendix B,

ikor
eO

47r

G, 1 ko)~ — VO, —k;) forz—oo .  (7)

We assume that ¥ in Eq. (6) can be expanded in powers
J

ikyr

—ianr h(ry) —ig 2
UO=9r k)= k2T, T, [ arie 0| [ Ve T |

47r

For small surface roughness o we replace the second in-
tegral by

fo dz’e_iqlz’w(rl’l,z’) . (11)

This approximation would be invalid if the density fluc-
tuations were located exclusively in a range of Lo rela-
tive to the xy plane. Within this approximation the scat-
tered amplitude has two independent parts, one from the
surface roughness and one from the density fluctuations

v—v Ok )=V +V, , (12)
where
ikor o h(rh) N
—_ € 2 ,  Tiqpr ", , —iq,z
V== KT, T, [dPrie 1 [ Vdzte
(13)
eikor ) ) —iq"'rl"
\I’d=— dr chl‘Tffd r”e

x [7 dze T w(xl,z) . (14)

To calculate the scattered intensity we have to perform
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of W and solve Eq. (6) by a recursion procedure starting
with W9(r,k;) which is the solution of the unperturbed
system for an incoming wave with wave vector k;. Up to
first order we get in the far field

eikor
4ar

W(r)=¥rk;)— [ v, —k;)

XW(r )OO k;) . ®)

Since the DWBA is valid only for small roughness
o=V (h?) (Ref. 7) and since the solution ¥* of the un-
perturbed system [Eq. (1) with W =0] is continuous at
z =0, we make the following approximation:”'>!3 The
field above the xy plane but inside the sample is given by
the transmitted part of the Fresnel solutions. Since the
integration in Eq. (8) does not exceed the z range where
the approximation is valid, we may substitute
¥ (r',—k;) and ¥O(r',k;) by Tse T and Te™i,
respectively, where 7; and T, are the Fresnel transmis-
sion coefficients for plane waves with a wave vector k;
and —k, as given in Eq. (4). Thus, the scattered wave
can be written as

W(r)=wr,k;)

eikor . ,
2,0, 147
4y ‘Ti‘Tffa' re

x [T Tdzte M wir) . (©)
Substituting W from Eq. (2) we get
h(rl'l)

dz’egiqlz'w(rl'l,z') . (10)

— o0

f

the configurational average as explained above. The
averaged intensity {|¥|?)=(¥O(k;)+W¥,+¥,) can be
written as follows:

W2 =[O H (W )+ (W, ) 2+ (W, [2) — [, ) |2
+ (W, 12 = (w2
+2Re({ W, Wh) — (W ) (W) . (15)

The first term describes the specularly reflected intensity.
The other terms are the diffuse intensities written as a
sum of contributions from the surface roughness, from
the density fluctuations, and from their intercorrelations.

B. scattering intensity and structure factor

1. Specular intensity

The specularly reflected intensity depends only on
averaged amplitudes. Obviously the contributions from
the density fluctuations are proportional to {(w ). Thus
this term gives the specular reflected intensity since we
only allow density fluctuations with (w(r))=1{(w )(z2).
For the contributions from the surface roughness the
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complete statistics of 4 is needed and explicit formulas
are available for surfaces with Gaussian statistics.”!*

Due to our choice {w )(z)=0 for z— — « for homo-
geneous density fluctuations {w(r)) =0 and give no con-
tribution to the specularly reflected intensity. Besides
such homogeneous density fluctuations we will discuss
the case where the density fluctuations are restricted to a
certain layer between z =a and z =b. Thus we substitute
w by

O(z —a)O(b —z)w(r),z) , (16)

02 b >a, with (w(r;,z))=const=w. This corresponds
to a modulation of the index of refraction in z.

The specular part of the scattered intensity is then
given by

WO+ (W ) +(w,)|?
lk r
= WO+ (y, >—-

k3w T, T,

(] o — a 2
X (2m)%8(q)) (e 0—e 17 (17)
q

1

In the far field for z— o, the rightmost term has the
asymptotic form of a plane wave with wave vector
J

4

(477 )?

7 P
ITi|2|Tf|22 Re ‘%fdz fd2r” fO dz"e LT (
g, T
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k,=(k;;, —k;;) and amplitude'

k2w T; T (e_iqlb—e_iqla)eikf.r . (18)

9.9,
According to Ref. 7 the first two terms in the specular in-

tensity can be combined to a wave field similar to the
Fresnel solutions with a modified reflection coefficient

Re 197 which is obtained in Ref. 16 by a different
method. This reflection coefficient is defined as the am-
plitude of the outgoing wave divided by the amplitude of
the incoming wave. Thus the complete reflection
coeflicient for our geometry is given by

—1/2q,4,0? —ig, b
Re 19 (e TP

T (19)

+k2w T, T ——
9.9,

The reflectivity measured in an experiment is the square

of the modulus of the reflection coefficient above.

2. Nonspecular intensity

The nonspecular scattering intensity will be calculated
for the case of statistically independent w and 4. Strong
correlations between w and 4 would make the interpreta-
tion of measured intensities rather difficult. Anyhow, in
many experimental situations, one of the two contribu-
tions is small as compared to the other. The cross term
in (15) is given by

(e 7T )y — (o TRy )y 20

and vanishes by assumption. The diffuse intensity in (15) reduces then to {|¥,|?) —[{ W, )2+ {|W,|>) — (¥, )|?, the
sum of the intensities scattered by surface roughness and density fluctuations.
For rough surfaces with Gaussian statistics, the surface contributions can be evaluated analytically. With the height

correlation function C,, (|rj—r}'|)= (h(r“ h(r)')) we have” 14

k4
2y _ 2 —
1w 12) = (e (ar)

| TP T, IPLe L

AR

where R = rII r|'|’.

1 —02/2(ql+q*2) 2 —iq,-R
I
fd R e

l7,1°C, (R}

e -1), 1)

Here L, and L, are the lengths of the illuminated area of the sample in the x and y directions. Both

L, and L, are assumed to be large as compared to the vacuum wavelength 2w /kg.

Usmg the density correlation function which is defined as C (|r|| T ',z',2")= (w(r”,z Jw(r),z

sity from the bulk is for ;70
4

) =0 = | T I T L, L

The scattered intensity is proportional to an integral
transform similar to the Fourier transform of the density
correlation function C,. By homogeneity, C,, depends
only on |r|'|—r|’|’|. In the transverse direction we have a
general dependence on both z’ and 2z', wunless
{(w ) =const, e.g., away from the surface.

The intensity is proportional to the squared moduli of
the Fresnel transmission coefficients. This leads to the
so-called Yoneda peaks whenever the angle of incidence
or exit equals the critical angle. The same effect can be

fdzR' zqu R”f d f dz" —ig,z’ +qu

")), the diffuse inten-

C (IR l,z",z") . (22)

observed in the scattering from rough surfaces [see Eq.
(21)] 17

At this point we introduce the differential cross section
do /d) and the diffuse structure factor S(q), which are
defined as follows [Ref. 8, Eq. (4.26)]:

1 do
<l\yd|2>_|<wa’>|2_7E
k4
=ﬁ|7il2|7f[2LxLyS(Q) . (23)
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Thus for the diffuse structure factor S we have
S(q)= fdzR 1€ “harRy f_o _dz’ fi)wdz”e i
xXC,(IR,|,z",z") ,
(24)

for q;70. In the following section we will calculate the
structure factors for four representative examples of
correlation functions.

III. GEOMETRIES OF DENSITY FLUCTUATIONS

In Sec. II B we derived a master formula [Eq. (24)] for
the diffuse structure factor. In order to illustrate this re-
sult we discuss four different configurations of density
fluctuations which are characterized by specific restric-
tions on the symmetry of the correlation function C,,.
These four models are displayed in Fig. 3. We first dis-
cuss the case of perturbations located in a 8-like layer at
the top of the surface [Fig. 3(a)], e.g., variations in the
density of adsorbed atoms. Second, we expand the lateral
pattern to the whole bulk, such that the density fluctua-
tions are constant in the z direction [Fig. 3(b)]. This
geometry would be appropriate to describe columnar
structures. In the third more general case, we assume iso-
tropic density fluctuations with a translational symmetry
in all three directions [Fig. 3(c)]. We will show that in
the limit Img, — o0, the structure factor of this model
reduces to the previous one. In the last configuration, we
restrict the density fluctuations of the third model to a
layer of finite thickness parallel to the average surface
[Fig. 3(d)]. In fact, this is the most general model from
which all previous structure factors can be derived. But
for the sake of clarity we discuss the simpler
configurations first.

A. & layer

Assuming density fluctuations w(r;)8(z)¢ located at the
surface of the sample [Fig. 3(a)] the correlation function
becomes

C,(R))8(z")8(z")¢? (25)

FIG. 3. Illustration of the four discussed restrictions on the
geometry of the density fluctuations. A 8-like layer at the sur-
face (a), columnar structures (b), isotropic density fluctuations
(c), and a layered structure (d).
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where ¢ denotes the thickness of the so-called 8 layer. In
this case the contribution of the density fluctuations and
of surface roughness, respectively, cannot be treated in-
dependently as in Eq. (10). Therefore, we assume a per-
fectly flat surface h(r)=0 and obtain

S(@)=[d’Rje "WTIC, (R)2=C,(q)* .  (26)

Here a “hat” indicates a Fourier transform. This formu-
la has been derived before to describe the scattering of
soft x rays from almost smooth surfaces.”!® In the limit
of 0%|g,|>—0 a rough surface cannot be distinguished
from a surface with such density fluctuations.

To illustrate Eq. (26) let us calculate the structure fac-
tor as corresponding to the correlation function of a disk
with radius R,

2mR
=TT (qylR)

Cola)= | g,

(27)

Here J, denotes the first Bessel function of the first kind.
For the example presented in Fig. 4 the radius of the disk
is assumed to be R =1000A and the index of refraction
n=1—6.1X10"%+i X 1077, corresponding to a critical
angle of total external reflection of 8, =0.2°. The struc-
ture factor is plotted at constant angle of incidence
6,=0.5° as a function of the exit angle 6, and the angle B
(out of the plane of incidence). Except for the effect of
the transmission functions, Fig. 4 shows the intensity as
measured on a two-dimensional detector behind the sam-
ple. The oscillations along 3 correspond to the radius of
the disks.

B. Columnar model

For co(r”,z')=w(r“), i.e., density fluctuations constant
along the transverse direction, the structure factor is
given by

S(@)=-—=8,(q,) - (28)

|7,
The only difference to the structure factor of the & layer
is the decay in |7, |- '

For the plot in Fig. 5 we chose the same correlation

S100°%

g1o?

S10'-

21_10'5/

L

? 40 ~
Y05 SN ~ 0.0

N = 0.25

0deg) %2500 3o 075 °°p(deg)

FIG. 4. The diffuse structure factor for a 6-like layer of
spherical disks with radius R =1000A is plotted as a function of
B and 6;. The angle of incidence is chosen, 6;=0.5°, and the
medium is assumed to have an index of refraction of
n=1—6.1X10"%+iX107".
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function and the same parameters as for the & layer. In
the calculated structure factor a change of slope is ob-
served at the critical angle 6,=6, which should not be
mixed up with the Yoneda wings.

C. Isotropic density fluctuations

To discuss a more general case we assume a correlation
function of the form C,,=C,( ]RHI, |Z|) with Z=z"—2z",
i.e., density fluctuations which are both laterally and
vertically homogeneous. Thus surface effects that extend
over a length smaller than the bulk correlation length &
can be neglected here. The structure factor is no longer a
simple Fourier transform of the correlation function as in
the previous subsections. Splitting the (z’,z"') integration

M. RAUSCHER, T. SALDITT, AND H. SPOHN 52

= o5 . 0.25 0.0
10 075 77 B(deg)

0.2 S
6;(deg) 0.0

FIG. 5. The diffuse structure factor for columnar structures
with the same correlation function as in Fig. 4 plotted as a func-
tion of B and 6,. The radius is R =1000A, the angle of in-

in Eq. (24) into two parts and interchanging the names of  cidence 6,=0.5°, and the index of refraction

z' and z"' in the second integral, we have n=1—6.1X10"%+ix107".

J
—iq R w ., f®, , —iReg (z'—z") —Img,(z'+2") .
Sta)=[d?Rye | [ “dz" [ Tz T HUET T e (IR 2 —2])
z

, iReg,(z'~z") —Img,(z'+2") .

+ [Tzt [ Tdzre T e T e (R 12 =2 | (29)
z

After substitution of z’' by Z=|z’—z"| we combine the
integrals again. The integral over z'’ can be evaluated
analytically. To handle the divergence at Img, =0 we in-
troduce a cutoff L, that corresponds to the vertical exten-
sion of the sample. Using the symmetry of the correla-
tion function C,, in the variable Z we obtain

1

S(q)=max —
2Img,

L,

x [diRe " URle TIRAZ,TIMUZC (R) | (30)

with R=(R,Z). By the convolution theorem for
Fourier integrals we get

S(q)=max LZ,;
2Img,
L Imq‘l
7 Img’ +(Reg, —p)*

where C,, is the three-dimensional Fourier transform of
the correlation function. The last term in the integral is

. -1 V4 .
the Fourier transform of e 7,12l and becomes the Dirac
6 function for Img, —0. In this case the structure factor
simplifies to

S(q)=L,C,(q,Re7,) . (32)

We have Img, 70 if either the medium is absorbing or
0, <6, respectively, 6, <6.. The structure factor is then
no longer simply the Fourier transform of the density
correlation function but the convelution of the Fourier
transform of C,, with a Lorentzian of full width at half

maximum 2Img,. The convolution damps out oscilla-
tions of @w in Reg,, which correspond to the vertical
structure of the density fluctuations.

In the limit of strong absorption, vertical structures
cannot be resolved any more. If the correlation length &
of C, is large compared to the scattering depth
A=1/|Img,| (Ref. 4), then the z integration in (30) can
be evaluated analytically after approximating éw(q“,Z )
by 6w(q",0). This leads to the structure factor

1
S(q=—->C,(q), (33)
7,1
which is identical to the one for the columnar model.
In the opposite case, for a correlation length £ much
smaller than the scattering depth, we make the approxi-

T2t in (30) and get

S(q):%Aéw(iq”Lq’l) . (34)

mation e

This is the same structure factor as derived for Img, =0
in (32) with the cutoff L, replaced by half the scattering
depth.

To illustrate this effect we consider Poisson-distributed
spherical single-particle scatterers of low density. Corre-
spondingly, we substitute for @w the Fourier transform of
the correlation function of a sphere with radius R

. 2
éw(q)= —431R 33 singR —gR cosqR . (35)

gqR
In the plots in Figs. 6 and 7 the radius equals R = 1000A

and the index of refraction 1—6.1X107%+; X 1077, as in
the previous examples. Thus the critical angle is
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FIG. 6. A plot of the diffuse structure factor corresponding
to the correlation function of a sphere with radius R = 1000A.
The angle of incidence is 6;=0.5° and the index of refraction
n=1—6.1X10"%+iX107". The structure factor is plotted as
a function of B and 6,.

6.=0.2°. In Fig. 6 the structure factor is plotted as a
function of 6, and B at 6,=0.5°>6,. For 0,<0, the
imaginary part of g, suppresses any information about
the vertical structure, and the intensity distribution
resembles that of Fig. 5. In Fig. 7, 6; is changed to 0.1°
with the other parameters kept constant. Obviously, the
vertical structure vanishes.

)
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FIG. 7. The same as in Fig. 6 but at 8;=0.1°. The imaginary
part of g, become big due to total external reflection.

D. Layer model

In Sec. II B we discussed the specular reflectivity for
density fluctuations restricted to a layer a <z <b <0 with
the form (16) for w. We now consider the diffuse struc-
ture factor in this case. Correspondingly, we replace
C,(R,Z) in Eq. (24) by

C,(r'—r")0(z'—a)O(b —z')0(z" —a)O(b—2z") ,

(36)

with C,,=C,( |R”|, |Z]), as in Sec. III C. Thus we obtain
the structure factor

S(q)=deR”e—iq“-R“fbdz,fbdzue_iReql(Z'—z")+Imql(z'+z")Cw(R”’z,_Z,,) ) 37)
a a

Substituting Z =z'—z" and using the symmetry of C,, in Z the convolution theorem for Fourier transforms allows us

to write

1 Img,

1 ©
S(q)=—— dpC,(q,p)
q 21mg, f_wp q,p

7 Tmg? + (Reg, —p)? 2{cosh[Img,(b—a)]—cos[(Reg, —p (b —a)]}le

Img (b +a)

(38)

As in Sec. III C, the Fourier transform of the correlation function appears in the structure factor in the form of a con-
volution integral. The result of Sec. III C for Img, 70 is reproduced setting b =0 and a = — « in Eq. (38).
In the case of columnar density fluctuations, i.e., C,, independent of z as in Sec. III B, the structure factor can be

more easily calculated from (24) leading directly to
1 2Img, b —Img, (b—a
S(q)=W@w(q”)e P1—2e TN

For b =0 and a — — «© we recover the columnar model;
compare with (28).

To provide an example for Eq. (39), we assume the
same correlation function as in Secs. III A and IIIB.
This describes a cylinder of length b —a normal to the
average surface. Radius, angle of incidence, and medium
are chosen as in the examples of Secs. III A and IIIB,
R =1000A, 6,=5.0°, and n=1—6.1X10"%+ix107".
Again, the structure factor is plotted as a function of 6
and B. In Fig. 8, a layer from b =—1000A to
a =—1500A is assumed. The thickness of 500A corre-
sponds to the minima of S at about 6,~0.33° and
0,=~1.0°. The decreasing scattering depth for 6,<0,
causes a rapid decay of S for 8, —0. For a layer begin-
ning right at the surface, this effect is less dramatic, as

)cos[Reql(b —a)]+e

—2Img,(b—a)

} . (39)

FIG. 8. The structure factor of density fluctuations restricted
to a layer from b =—1000A to a = — 1500A in a medium with
n=1—6.1X10"°+iX1077. The assumed correlation function
and the angle of incidence are the same as in Figs. 4 and 5. The
minima at 6,~0.33° and 1.0° correspond to the layer thickness
of 500A.
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SS —== 025 00
jo0 075 "~ B (deg)

FIG. 9. The structure factor for the same correlation func-
tion as in Fig. 8, but for a layer from b =0 to a = —2000A. The
oscillations become shorter due to the greater layer thickness
and the structure factor decreases more slowly for 8,—0 be-
cause the layer starts right at the surface. The angle of in-
cidence is 8;=0.5°.

shown in Fig. 9. There a layer from b =0 to a = —2000A
is assumed. The greater thickness shows up in shorter os-
cillations in 6.

IV. CONCLUSIONS

In the preceding section we have discussed four cases
with different restrictions on the geometry of density fluc-
tuations. From the examples, we learn how to distin-
guish these geometries by studying the corresponding
diffuse structure factor and the specularly reflected inten-
sity. Layered structures can be characterized by the
specular reflectivity which gives information about the
layer thickness. The other three models discussed do not
affect the specularly reflected intensity but can be dis-
tinguished only by the g, dependence of the diffuse
scattering factor. &-like density fluctuations have a struc-
ture factor that only depends on q;, whereas for columnar
structures the structure factor is proportional to 1//g, |2
The structure factor of isotropic density fluctuations has
a more complex g, dependence which corresponds to the
Fourier transform of the correlation function.

In contrast to conventional small-angle scattering, we
had to take refraction effects into account. In the case of
the angle of incidence and exit greater than 6, the imagi-
nary part of §, is small and the main effect is a shift and a
slight distortion of the diffraction pattern. If the angle ei-
ther of incidence or of exit is below the critical angle so
that Img, becomes large, the difference to ordinary
small-angle scattering is considerable. First of all, the
scattering signal becomes surface sensitive, as known
from grazing incidence diffraction. Second, the large
imaginary part and the small real part of the normal
momentum transfer opens up the possibility to investi-
gate lateral structures on length scales from nanometers
up to some micrometers. These advantages become evi-
dent in two kinds of scattering geometries.

In the first one, 6 ¢ is varied at constant 8; <6,. In this
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[T r T
a) Sphere 6,>0,
S, b) Sphere 0,<0, -
\F\V\/W\« -7 ¢) Columns 0,<0,

S(6,) (arb. units)

1077 B

FIG. 10. The structure factor as a function of 6, correspond-
ing to the correlation function of a sphere with R = 1000A at (a)
6;>0, and (b) 6; <6,.. For comparison the structure factor of
columnar structures with the same radius is plotted in (c). All
other parameters are equal to those of Figs. 6, 7, and 9.

case the dependence of S(q) on Reg, is smoothed out by
the large Img, and one can take advantage of the enor-
mous g resolution of the 6, scan.?® This resolution is
due to the slow variation of q; with 6,, which allows us
to measure the diffuse intensity at a large angular dis-
tance from the specular beam while still at very small q-
In conventional small-angle scattering, e.g., at 6, > 6, the
vertical structure of the density fluctuations would dom-
inate the 6, dependence of the structure factor. Figure
10 illustrates this effect for the example of Sec. IIIC.
Curves (a) and (b) show the structure factor for a 6, scan
for 6,=0.5° and 0.1°, respectively. Whereas curve (a)
shows short oscillations corresponding to the vertical ex-
tension of the sphere, the minima of curve (b) represent
the pure q; dependence of 6w. The typical length scale is
in both cases equally 2R =2000A and the structure factor
for columnar structures with radius 1000A plotted in
curve (c) shows minima at approximately the same angles
as curve (b).

In the second geometry, both angles 6,,6, <0, and the
diffuse intensity is measured as a function of 5. This way,
Reg, is kept small while q; can be varied over a wide
range. If 6,70/, we can again avoid the tails of the spec-
ular beam while measuring at small q; and g, .
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FIG. 1. Scattering of x rays under grazing incidence. The in-
cident wave vector k;, the reflected wave vector k, and the
scattering vector q are illustrated. 6; and 6, are the angles of
incidence and exit, respectively; B is the angle between the plane
of incidence and the projection of the final wave vector on the
surface.



FIG. 3. Illustration of the four discussed restrictions on the
geometry of the density fluctuations. A 8-like layer at the sur-
face (a), columnar structures (b), isotropic density fluctuations
(c), and a layered structure (d).





