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The theoretical basis of elastic magnetic x-ray scattering is reviewed, and a detailed discussion of
the physical implications of the various terms in the cross section is carried out for the non-resonant
as well as for the resonant case. Relevant examples from the experimental literature are used to
illustrate the general properties derived from the theoretical discussion.

I. INTRODUCTION

The purpose of this article is to review the basic aspects of (elastic) magnetic x-ray scattering, a method to
investigate magnetic structures with synchrotron light, which nicely complements more traditional and widespread
methods such as neutron scattering.

Although the application of magnetic x-ray scattering has only recently become popular, thanks to the development
of modern synchrotron light sources, the coupling between photons and magnetic moments is predicted by quantum
electrodynamics, and in fact it was described as early as 1954 by Low [1] and Gell-Mann and Goldberger [2] in their
derivations of the low-energy limit of the Compton cross section. Later, Platzman and Tzoar [3] pointed out the
possibility to use this effect to investigate magnetic structures.

Due to the very small cross section, 1t was not until 1981, however, that the first magnetic scattering experiment
was carried out by de Bergevin and Brunel [4] on NiO, demonstrating the basic features of non-resonant scattering.
The truly heroic apects of this first experiment performed with an x-ray tube were later alleviated by the advent of
synchrotron sources, and experiments were performed to take advantage of the attractive features of x-ray magnetic
scattering, as compared to neutron scattering, i.e. the very high momentum resolution and the possibility of a separate
determination of the spin and of the orbital contributions to the magnetic moment by the different polarization
dependence.

A very important development took place in 1988 with the discovery by Gibbs et al. [5] of resonant magnetic
scattering (also called resonant exchange scattering), i.e. of an enhancement of several orders of magnitude of the
magnetic scattering intensity when the photon energy is close to an absorption edge of the material. A very large
number of studies in rare earth, actinide and transition metal systems followed. Although the price to pay for the
resonant enhancement is the loss of a direct interpretation of the scattering intensity in terms of spin and orbital
magnetic structure factors, many experiments followed, and contributed to clarify many issues on the electronic
structure of magnetic materials : as we shall see, the selection rules for optical transitions make the resonant process
sensitive to electronic states with specific orbital character, and enhance their contribution to the magnetic properties.
It is interesting to notice that the resonant scattering is sensitive not only to charge and magnetic order but also to
orbital order, because the atomic scattering amplitude can vary substantially depending on the occupation of selected
spin or orbital states and therefore on their availability to serve as intermediate states in the second order scattering
process.

The structure of the article is the following : in Section 2 we recall the formalism necessary to set up the Hamiltonian
for the interaction between radiation and matter, and to develop a perturbation description of scattering processes.
In Section 3 the cross section for the non-resonant case is obtained and discussed, and the resonant case is treated in
Section 4. Section 5 is devoted to final considerations and discussion of future trends.

II. INTERACTION OF RADIATION WITH ELECTRONIC MATTER

A microscopic discussion of the magnetic properties of matter, which originate from the electron spin and from
quantized orbital moments, must necessarily be formulated in the language of quantum mechanics. We also need to
consider relativistic effects, because quantities such as the magnetic moment associated to the electron spin appear
only in a relativistic theory, and a relativistic effect such as the spin-orbit interaction plays an essential role in
determining the coupling between radiation and magnetic moments, as we shall see.



We therefore expect the reader to be familiar with basic quantum mechanics and its general formalism, although
more advanced topics such as relativistic quantum mechanics and the second quantization formalism are not indipens-
able to follow the essence of the arguments. The less experienced readers should be prepared to accept some of the
intermediate steps in the calculations without a detailed proof.

In discussing the scattering of electromagnetic waves on a material system composed of electrons and nuclei, we
shall follow the usual approach and consider the Hamiltonian for the material system, plus the Hamiltonian for the
free electromagnetic field, plus an interaction term between the two systems. As it will be clear soon, the scattering
from electrons is much more intense than the scattering from nuclei, and we shall therefore consider matter as a system
of electrons, interacting with one another and with a set of nuclei in fixed positions, through a potential energy which
can be written :

N
Vs, orn) = 3 Viue(rs) + D Ve (v — ) (1)
i=1 i>j
where the first term represents the interaction with the nuclei, and in the second the Coulomb interaction is Ve (r) =
e?/r. The system of electrons and nuclei is a many-body system and not much progress is possible without suitable
approximations. A self-consistent field approximation is often introduced in which the dependence of Eq. 1 on the
positions of all electrons is replaced by a one-electron average,

N
Vi(ry,..,rn) ~ ZV(I-Z»). (2)

The potential energy is the key ingredient that allows to write the Hamiltonian for the i-th electron, which, in
relativistic quantum mechanics, is the Dirac Hamiltonian [6], [7]:

H, = Z(ca i + fme? + V(ry)) (3)

i=1

where o and 8 are the 4 x 4 Dirac matrices, and p is the momentum four-vector (we shall soon revert to the more
familiar three-dimensional notation, so the less experienced reader should not be intimidated).

The radiation field, on the other hand, is described by the electric and magnetic fields E, B, which obey Maxwell’s
equations [8], and which can also be described by introducing a scalar and a vector potential, ®(r) and A(r,?) :

B =VxA
0A
E=-V®—-(1l/c)— 4
(17022, (1
where the vector V = (C,C; , ;—;, %).

For given E(r) and B(r), the definition of the vector and scalar potentials is not unique; when describing the fields
of electromagnetic waves in vacuum, we can use this freedom to chose the gauge in such a way that the scalar potential
vanishes, and the vector potential A is divergence free (V-A = 0) [9]. This will turn out to be a convenient choice
later. An arbitrary space- and time-dependent vector potential can be expanded in terms of plane waves, which are
characterized by a wavevector k and by one of the two polarization modes labelled by A. Let us write this expansion
in the following form:

hCE i(kr—w * —i(kr—w
A(r,t):Z(Q—wk)l/? {eA(k)a(k,)\)e (er—wit) 4 o3 (k)al (k, A)e i kr—wkt) | (5)
kX

In this equation, €2 is the volume of the quantization box , and does not appear in any physically meaningful quantity
in the following, wk is just c|k|, ey is the polarization vector associated to the mode A, i.e. one of two vectors in
the plane normal to k. Furthermore, in a classical description of the field, a(k, A) and af(k, A) are the amplitude of
the corresponding mode of the field and its complex conjugate. However, the reader who is familiar with the second
quantization formalism knows that in this language a and a' are operators, respectively the annihilation and creation
operators of a photon with quantum numbers (k, A). In this formalism the Hamiltonian of the field takes a very simple
and appealing form :

Hyga =Y he (al(k, Na(k, A) +1/2) . (6)
|39



Turning now to the modifications of H.; in presence of the electromagnetic field, we follow the usual prescription to
insert the A(r;) in the Dirac Hamiltonian [6], [7]:

N

Hl =) (ca-[pi— (e/)A(ry)] + Bme® +V (xy)). (7)

i=1

and consider that the processes we are interested in (scattering of x-ray photons in the ~ 10keV range), always involve
energies much smaller than the electron rest energy, me? ~ 511keV. This authorizes us to adopt the non-relativistic
limit of Eq. 7, which is considered and derived in great detail in Section 15 of [7]. The resulting Hamiltonian, accurate
to order (1/c)? is :

b= 3 —pi*/8mic? + V(r;) — (eh/mce)s; - B—
m
7=1

, al s — (e/c)A(r;))?
_Z[(p (¢e/c)A(rq))

(eh/2m>c®)s; - (E x (p; — (e/c)A(x;)) + (e/8m°c*)V - E] . (8)

In this equation, the first term on the r.h.s. is the usual modification of the kinetic energy in presence of a field, the
second is the relativistic correction to the kinetic energy, which does not involve the field and is therefore not relevant
to our discussion; the fourth term is the interaction of the electron spin s = (1/2)he with the magnetic field of the
radiation, B = VXA ; the fifth is the spin-orbit interaction term, with the usual modification of the momentum in
presence of the field ; and the last is the Darwin correction, which is again independent of the radiation field, because
the transversality of electromagnetic waves (k - E = 0) implies V - E = 0, so that the only contribution to this term
comes from the electric field of the charges (the gradient of V). After removing all the relativistic corrections to HY,
which are not affected by the radiation field, we are left with the following Hamiltonian for the system of electrons
and the radiation field :

)A(ri)*

m

N
H=H\+Hawu=Y [(pi — (62/ +V(r;) — (eh/me)s; - B—

(eh/?mzcz)si (Ex (ps — (G/C)A(I‘Z'))] + Z hwy (aT(k, Na(k, A) + 1/2) . (9)

We are then in a position to separate all the terms mixing electron and photon variables, that constitute the
interaction Hamiltonian, Hypy -

H = He+ Hyaa+ Hipe, (10)
Hdzfi[;§+v@n+&mmm%3w«VV@AXpn, (11)
Hygd = gh% (al(k,Na(k,A) + 1/2) (12)
Hine = i [(¢?/2me*) A% (x;) — (¢/me)A(r) - pi—
E:;L/mc)si (V% Ar;) +
(eh/2m*c®)s; - [(0A(r:)/0t) x (Pi — (¢/c)A(r:))] (13)

= |+ H} + Hy+ H).

The total Hamiltonian, to the required order of relativistic corrections, is thus split into the Hamiltonian for electronic
matter, Eq. 11, for the radiation field, Eq. 12 and the Hamiltonian describing the interaction between matter and
radiation, Eq. 13. In the next section, scattering processes will be described as transitions between the eigenstates
of He and H,qq induced by the perturbation H;,¢. This can be done by regarding the A field as a classical quantity,
or alternatively and more elegantly, by considering it as an operator, according to the expansion (Eq. 5) in terms of
annihilation and creation operators.



III. CROSS SECTION FOR NON-RESONANT SCATTERING

In developing the expressions for the scattering cross section, we closely follow the lucid discussion by Blume [10],
warning the reader that this important paper unfortunately contains many misprints.

Our discussion is restricted to elastic scattering, i.e. to processes in which the sample (the system of electrons) is
in the same state (for simplicity, let us say the ground state) before and after the scattering event. If we consider the
scattering of an incoming photon with polarization ey and wavevector k into an outgoing photon with polarization
e’y and wavevector k' (conservation of energy implies |k| = |k’|), we can describe the initial and final state of the
system (sample plus radiation field) as :

|8 = 0;..., (ex, k), ...
|f> = |0; cey (e'>\/,k'), .. > (14)

with an obvious notation labelling the ground state of the electronic system with |0), and the radiation field state
with the quantum numbers of the photons present in that state.

It is then clear that the transition consists in the annihilation of one photon (ey, k), and in the creation of one
photon (€’ys,k’). This means that the operator A, which is linear in the creation and annihilation operators, must
operate twice. Therefore the lowest order contributing processes will come from applying second order perturbation
theory to HY and HJ, which contain one A operator, and by first order perturbation theory applied to H] and H},
which contain two A operators. As a matter of fact, H} contains two terms, respectively proportional to A /d¢ - p
and to JA /0t - (e/c)A. However, we shall soon verify that the second order perturbation on the first term produces a
contribution to the cross section which is a factor (hw/mec?)? smaller than the first order contribution of the second,
so we will drop it and retain the second term only.

According to Fermi’s Golden Rule of time-dependent perturbation theory, the number of transitions per unit time
is proportional to

2
+H’|n><n|H§+Hé|i>
En +h(.Jk

_ i / / f|H/
w= 20 (F1H] + Hyli) + Z 5(h(wx — @) (15)

In the second term, the sum over the complete set of eigenstates |n) of the unperturbed Hamiltonian, He + Hyqq
appears, referred to as the sum over the intermediate states. The calculation of the matrix elements involve both
electron and photon operators and is tedious, but straightforward. For example :

(1) = (e, )] (€5 - ex)al (W, X)a(le, A)el (k) r

105 (ex, k))

Qw ch

_ [ € ﬁ(e/)\l 'e)\) Z<0|€z(k—k )or;

Quy me?

0y, (16)

K3

after taking the photon annihilation and destruction operator matrix elements according to the usual rules. In this
matrix element we recognize the Thompson scattering amplitude, with the dot product polarization dependence and
the structure factor, expressed by the ground state expectation value of ). e i(k=k")ri This is the basic scattering
process of x-ray crystallography In a perodic system, momentum conservation up to a reciprocal lattice vector implies
the Bragg law. Notice also that the matrix element magnitude per electron is controlled by the quantity ro = e?/mc?
which has the dimensions of length and is the Thompson radius , ro = 2.818 x 10~ 3em

We are now in a position to confirm that the scattering from the nuclei is negligible. In fact, to obtain the
corresponding matrix element for nuclear scattering, we should simply replace the electronic positions with the atomic
ones, and also replace e¢?/me?, with Z2e2/Mc? | where Z and M are the nuclear charge and mass. However, M is
roughly proportional to 2Zm,,, where m,, is the nucleon mass, and the mass ratio m, /m is about 1850. Therefore,
the scattering matrix element for a nucleus is ~ Z/(2 x 1850) times smaller than that for an electron, and can be
neglected because Z never exceeds 92 (remember that, in addition, there are Z times more electrons than nuclei!).

To evaluate ( f|H}|7), we first determine an expression for the operator A /dt from Eq. 5:

2 . .
OA /Ot = (gi)l/? —iwres (k)a(k, N)e & TmeRt) 4y ek (k)al (k, A)e ik r—wt) | (17)

Wk

Inserting this expression, the H) matrix element is readily evaluated :



hwk

(FIHL) = —i(— )

i(k—k')-r * /

€ sy - (€3, (k') x ex(k))|0). 18
. kaZu (65 (€) x ex(K))[0) (15)
One therefore sees immediately that a term containing the spin operators, i.e. a genuine magnetic scattering term
appears, and that its magnitude compared to the Thompson term is reduced by the factor (hwk/mcz). This is a small
number, because typically in the x-ray region hwy ~ 10keV, while mc? = 511keV. We now proceed to the evaluation
of the second term in Eq. 15. The accessible intermediate states have either no photons, or two photons, and their
energy 1s :

[n) = [¥,;0,0); B = E(¥y) (19)
[n) = |¥,,; (e, k), (e/)\/,k/)>; E, = E(V,) + 2hwy (20)

The first set of terms (let us call them terms (a)) is reached by the action of the annihilation part of the A operator
on the initial state; the second (terms (b)) by the action of the creation operator part. There is also an additional,
important difference between the two kinds of terms : in case (a) the energy denominator can vanish, and give rise
to a resonance, when Ey — E, 4+ hwyx = 0 ; in case (b) it cannot, because Ey — E(¥n) — hwy < 0 always. To prevent
an unphysical divergence of the scattering cross section, we must take into account that the intermediate states |n)
are not really stationary, but have a finite lifetime, which is represented by adding a small imaginary part to the
eigenvalue, which becomes important only near the resonance condition ; i.e. E(¥,) is replaced by E(¥,) — i, /2.
We want to examine the non-resonant case first, i.e. the case in which hwyx > E(¥,) — Ej for all states, or, more
precisely, for all states |n) which give an appreciable contribution to the sum in Eq. 15. Using the following simple
identities for the energy denominators :

1 _ L B(¥) = By— T2 1
Eo— E(U,) + hon + 10,72 T T Eo— E(U,) + how + il /2
1 1 Ey— E(¥, 1
- 40 (¥n) , (21)
Ey— E(\I/n) — hwy huwy howy Ey— E(\I/n) + hwy

it is easy to see that in this case the denominators are well approximated by +hwy. Substituting Eq. 5 into H + Hj,
and paying due attention to the action of photon creation and annihilation operators on the two kinds of intermediate
states, we find for type (a) intermediate states:

(f[Hs + Hs|n)(n|H3 + H|i) =

2 N
he e N ) . .
(ka)(%)k<0|z I:e/>\l p] — Zh(k/ X el)\’) S]:I e k J|n>
Jj=1
N
13 e by -+ ik x e) -]+ 0 @)
=

while, for type (b) intermediate states we obtain an expression differing only in that the operators acting between (0]
and |n) and between {n| and |0) are interchanged. This, together with the fact that the energy denominators, in the
non-resonant approximation defined above, are independent of [n) and change sign for the two types of intermediate
states, and with the closure relationship :
Y In)nl =1 (23)
n

where 1 denotes the unit operator, allows to write the second term in Eq. 15 as the expectation value of a commutator:

(FLHS + Hiln)(nlHY + HYli) e e o
~ —)={0| [C", C]10 24
y L AR () ()0l o), (24
where :
C' = [ pj—ih(K xe') - s)] e~ (25)
C=lex -pj+ih(k xey) - sjle ik (26)



To calculate the commutator is a tedious operation, but is easily performed remembering the basic commutation
rules for components of positions, momenta, spin and arbitrary functions of them, referred to the same electron :

[Ta,p@] = Z'h(ga,ﬁ
[pa, f(xr)] = —ihOf/Or,
[Sa, $8] = theasysy. (27)

Here the antisymmetric tensor ¢,4, was introduced, and it is worthwhile to remember the expression of the cross
product of two vectors in terms of it (summation over repeated indices is implied) :

(Vi X Va)a = €apyVigVay. (28)
By a careful use of these rules, of the transversality conditions, e -k = 0 and of a simple vector identity :
(AxB)- (CxD)=(A-C)(B-D)-(A-D)(B-C) (29)

which is applied to the four vectors : (k — k') = q, p;, €'}/, ex , the patient reader should obtain :

FIHS + Hin)Y(n|H) + Hb|é L he?  e? hwk iors 14 X Py
Z< 3 >< 3>I—Z( )( 0|Z qr; 4 2 Pj

1%
Ey— E, + hwi Quy ' me? ka hk? [0)(e5 x ex)+

(013 s, 0K x ) - ex) = (K x ex)(k-e'5,) = (K x &/3) x (k x ea)]| (30)

Now that we have the second order contribution of the A - p term in H), we can substantiate our claim that the
contribution of the A /Jt x p term of H) is negligible. In fact, the magnitude of the latter contribution would be
similar to that of the former, which we just evaluated, except for some different prefactors. On the one hand, the time
derivative introduces a factor wk, on the other, the constant in front of H) introduces, with respect to H/, another
factor of h/2me?, so that all in all an extra factor hwy/2mc? is obtained. This shows that the matrix element of
the first part of H} is reduced by (hwy/2mc?)? with respect to the Thompson term, and therefore is negligible with
respect to the other magnetic scattering terms, which are reduced by hwy /2mc?.

We are now in a position to collect all the pieces that are needed to calculate Eq. 15. However, this gives a
number of transitions per unit time which depends on the normalization volume. We would rather have a physically
meaningful quantity, i. e. a cross section, defined as : the number of transitions per unit time, into photon states
with energy hwy < E < hwy + dF, with wavevector k/ in the solid angle dO’, divided by the number of incident
photons per unit time and area. That is, in differential form

o wp(E)
dEdO"  ¢/Q

(31)

where p is the density of photon states (with specified polarization), i.e. the number of wavevectors within dO’
satisfying periodic boundary conditions in a box of volume  and hwy < hwy < hwg + dFE, i.e.
Q £
p(E)dEdO' = ( 7 B 3dEdO’ (32)

Finally, by putting Eq 15, 16, 18, 30, 31 together, and upon multiplying Eq. 31 by dE and integrating (remember
the Dirac J in Eq. 15) we obtain the important result in the non-resonant limit :

dO' 9 iq-r; *
5 =75 |2 (010N - en)
J
i q><p
— 0 PR "0 P 0 e rig |0 33
i <|§jj 0 P+ |§]j 5i10) - Ps || (33)

where we introduced the polarization factors :



P = (e/:, X ey) (34)

Ps=[(K' xe )k -ex) — (kxey)(k-ey) — (K xe'}) x (kx ey (35)

The indices I and S where adopted for these factors because the second one is attached to the term related to the
spin moment, while the first pertains to a term which, as we shall show, is related to the orbital moment. In fact, after

noting that |q| = 2|k|sinfp, where 20p is the scattering angle (the angle between k’ and k), and defining q = q/|q|,
the relevant quantity can be transformed as follows :

Zeiq'rjw = L (4sin0p) > efTiq x p;

5 hk? hq J
, e |
= hiq(48in293)<i X /dl‘elq.r§ Zj:[pjé(r — ;) +4(r —x;)py]
- ;h? (4sin*05)q x / drej(r) = ﬁﬂsinzﬁsm i@ o)

where the electrical current density operator j(r) = (—e/2m) Zj[pjé(r — 1)+ Jd(r — r;)p;] has been expressed in
terms of the momentum and the density of electrons multiplied in symmetrized form, because they do not commute.

This current density describes the microscopic currents associated to the motion of the electrons, not the macroscopic
ones, which we can assume to vanish in our system in the absence of external perturbations (remember that all matrix
elements in a perturbation calculation refer to the unperturbed system eigenstates). The vanishing of macroscopic
currents means that the flux across any surface S internal to the sample vanishes, i.e. :

/J(I‘) ‘ngdS =0, (37)
s

which implies that the microscopic current is divergence-free, i.e. V- j(r) = 0, and can therefore be expressed as the
curl of a vector field. We write this field so that :

j(r) =¢[V x Mg (r)]. (38)

For the purposes of our discussion, we identify My (r) with the density of orbital magnetization. Although a formal
identification between operators is analytically involved [11], [12], one can satisfy himself of the plausibility of Eq. 38
by the classical description of magnetic fields in matter; Maxwell’s equations for the fields H and B = H + 47M (no
spin magnetization exists in the classical description, so here M means Mj,) prescribe that the microscopic currents
are related to the curl of M by Eq. 38 (see for example [13]).

Eq. 38 implies that j(q) = —icq x My (q). Therefore :

iqrs 1 X Pj me
Do S = s M(a) < d] (39)
. ,

We are now ready to collect all the bits and pieces in a formula for the differential cross section :

dO’ QT *
57 = 70| 2010} (e - e)

J

2

hwy [me mce
—i T gl x M all0) - Pr + 2 (0[Ms (@)]0) - P 40
2 T 01 M () = ll0) - Py + 2 O[Ms(@)]0) - P (40)
where the polarization factor P; was redefined to include the angular factor ;
Py = (e}, x ey)dsin?lp (41)

and the Fourier transform of the spin magnetization density was introduced :

6h QT
MS(q):%Zeq i8;. (42)
J

-1



We are now ready to obtain from Eq. 40 the basic properties of non-resonant magnetic scattering. In a system with
an ordered magnetic structure, e.g. an antiferromagnet, the densities of (orbital and spin) magnetization are periodic
functions, with Fourier transforms which are non vanishing only for selected q values corresponding to this periodicity.
Some of these vectors may possibly concide with reciprocal lattice vectors of the crystallographic structure, others will
correspond to new reflections (magnetic reflections) with nonvanishing intensity below the Nel temperature, below
which the antiferromagnetic order sets in.

As already noticed, the prefactor hwy/me? reduces the intensity of the magnetic terms considerably with respect
to the Thompson one. To reinforce this, while all core and valence electrons contribute to Thompson scattering, only
electrons 1n partially filled shells can contribute to magnetic scattering as the orbital and spin moments of filled shells
add up to zero. Therefore, apart from the first pioneering experiments [4], the high intensity of sinchrotron light
sources is necessary for these experiments.

It is important to notice that Py contains the factor 4sin?fp, and since |q| = 2|k|sinfp, for a given reflection, i.e.
for a given q, sinfp is proportional to 1/hw. Thus the weight of the orbital part decreases at high photon energies,
where spin scattering dominates the magnetic cross section.

The different polarization factors Pz , P and the well known polarization properties of synchrotron radiation allow
to separate the spin and the orbital contributions to the magnetic moments by changing the experimental geometry.
This 1s a much more direct approach to the separation of the two contributions than it is possible with neutron
scattering. This method was applied to rare earth systems such as Ho [5], to actinide systems such as UAs [14], [15]
and more recently to 3d antiferromagnets such as NiO [16], and V203 [17]. Together with the higher momentum
resolution allowed by well collimated synchrotron beams, this orbit and spin separation justifies the interest of x-ray
scattering for some cases, in spite of the more widespread use of neutron scattering to determine magnetic structures.

A further important point to mention about the magnetic terms in Eq. 40 is the imaginary prefactor —ihwy /mc?.
This means that, upon taking the square modulus, no interference of Thompson and magnetic scattering terms occurs,
unless the structure factors

> (0fe™rs|0) (43)

J

are complex (which means that the crystallographic structure is non-centrosymmetric), or that the polarization vectors
are complex (corresponding to non-linear, i.e. elliptic or circular polarization). In such cases one has interference
terms, and these can be useful in detecting magnetic scattering in ferromagnets [18], [19].

IV. RESONANT MAGNETIC SCATTERING

We now abandon the assumption of the non-resonant limit and consider the case in which E(¥,) — Ey ~ hwy, at
least for one excited state W,, (normally, in a solid there will be a continuum of states satisfying this condition).

Returning to the expressions of the matrix elements of H) + HY as written in Eq. 22, we want first of all to prove
that the contribution of H is always much larger than that of Hj. To establish this, we begin by remarking that the
most important excited states which are resonant with x-ray photons are those in which a core electron in one of the
atoms is promoted to an empty one-electron state above the highest occupied orbital. Arguing within an approximate
scheme in which the states |0), |n) are reasonably well described by an antisymmetric product of one-electron states,
then the matrix elements of the operators H) or H%, which are sums of one-electron operators, can be written [20] in
terms of an overlap integral over N-1 of the coordinates, multiplied by a one-electron matrix element, i.e:

(n|Hj + Hjli) =
C,

e . ikr; —
ka 1/2 mc Z e)\.pj+zh(k><e>\)~sj]ek 710) =

(o

i=1

he? e
(ka 1/2 H /dr]y (r;) 1/)45])(1'1)

g / dey N (1) [ex - pj + ih(k % e3) - 5;] €T ey, (44)

where ¢, is a one-electron valence wavefunction, either for the ground or the n-th excited states and . a core
wavefunction which is exponentially decreasing, outside an appropriate core radius r.. We can then argue that the



main contribution to the integral comes from this inner region ; and one can see that inside this region k-r; < 1, for
the values of & = |k| of interest here. This is because at the resonance condition

k=w/c= E/hc, (45)

where E is the difference of the core and valence energy, i.e. the core ionization energy. This energy is related to the
radius of the core orbital by the approximate hydrogen-like relationship :

E ~ h*/2mr? (46)

whence one finds r. ~ h/v/2mF and therefore

kre = \/E/2mc. (47)

The right hand side is always small for all core levels, because 2mc? is about 1 MeV, while the deepest core level (1s
in uranium) has a binding energy of about 116 keV. So, in this most extreme case, k7. ~ 0.34, and is less for all other
core levels. It is therefore legitimate, for » < r., to expand :

eEN I ik ery — (kory)? /24 (48)

and to observe that the terms of the series are rapidly decreasing with increasing order (which is referred to as the
multipole order). We can then reach the proof of the statement that H} matrix elements dominate over those of HJ,

i.e. that the first term in the last integral of Eq. 44 dominates over the second. The point is that for given 1/)1(/7\2, w£0)’
the lowest nonvanishing order in the series Eq. 48 for the integral of p; is lower by one than the lowest nonvanishing
order for the second term (which contains the spin, but no ry operator). Remember indeed that the selection rules
for atomic transitions are the same for p or for r matrix elements (a manifestation of the Wigner-Eckart theorem
[21]), and since the Hj-related operator contains the spin but neither p nor r’s, it is necessary to have one more r
(with respect to the first term) in order to have a nonvanishing integral, i.e. to go to the next order in k - r;.

Therefore, near the resonance condition, the resonant terms dominate the cross section, and, among these, only the
HY matrix elements need to be retained. Eq. 15 becomes :

I HnMn|H:
S (J[Hz|n){n|Hjli)

= 5]], — 1] =
s Fo— B+ hon t T2 | O =)

h

n

2

(5(h(wk - wk/)) (49)

2 | he? e 23 (013201, €% - pie~ ™ in)(n| 5, ex - pjre™ ™ |0)

h (ka)(% Eo— E(W,) + hwy + iy, /2

As a matter of fact, the above equation contains a contribution that was already taken into account in the non-
resonant part ; remember Eq. 21, where the first piece on the r.h.s. was included in the previous Section. Therefore,
only the second addendum needs to be considered here and that means that in Eq. 49 we must replace :

1
Eq— E(¥,) 4+ hwy +iT, /2 (50)
with :
E(V,)—Ey—il,/2 1 . (51)
hwi Ey — E(¥,) + hwy + 4T, /2
Let us then look in detail into the relevant matrix elements. Consider :
(nlex - pje’™*i10) ~ (nles - p; (1 + ik -v; +.....)|0) (52)

and, for a given |n}, consider only the lowest order term for which the matrix element does not vanish. We established
already that all higher order terms are negligible in comparison to it. The largest contributions come from those |n)’s
for which the first term provides a nonvanishing contribution, so that the exponential is simply replaced by 1. These
states are said to be accessible by electric dipole transitions. In a full quantum electrodynamical formulation, one can
see that electric dipole transitions are induced by photons with a total angular momentum of 1. The name electric
dipole comes from the fact that in a non-relativistic theory, neglecting the spin-orbit interaction altogether, so that
Heg = Ej(pi/Qm + V(x;)), one can write :



(nlex - p;j|0) = m(nlex - ;]0) = %(nlex [rj, Het]l0) =
B0, — E(0))(nles -x10). (53)

In view of this, and neglecting i[',, /2 in the numerator of Eq. 51, the sum over intermediate states in Eq. 49
becomes :

m’ 3 (E(¥n) = E(0))* (0]}, -Rn)(n|es - R|0) (54)

h? huwi E(U,) — E(0) + hwy + 1T, /2’

where we defined
R=)r;. (55)
)

In order to make progress and to make contact with the literature [22], we express all vectors in terms of their spherical
components, i.e. we define :

Ry = iR,, Re1 = (Fi/V2)(R, +iR,). (56)

The definitions of the 0,41 components apply to any vector, e.g. to the polarization e as well, and they are clearly
inspired from the definition of the spherical harmonics for I = 1,

(3 A T o ] i
Yio=1 E(Z/r),yl,:l:lz:le 8_71'( ry)’ (57)

where we adopted the convention for the phases given in ref. [23]. Tt is easily verified that the scalar product becomes

1

ex R= > (=1)" e R_p. (58)
m=—1
It is then easy to see that :
<0|e/:’ : R|n><n|e)\ : R|0> = Z (_1)m+ml e/*)\’me)\m’<0|R—m|n><n|R—m’|0>~ (59)

To simplify this expresssion further, one must take advantage of the symmetry of the physical system. The simplest
case correspods of course to the highest symmetry,i.e. the spherical symmetry of isolated atoms. Then, the eigenstates
|0) and |n) are eigenstates of the angular momentum and of its z-component, and this implies that the sum is restricted
to m = —m’, because the angular momentum selection rules say that, for the matrix elements :

(O|R_pu|n) #0= —my — m+ m, =0,
(n|R_]0Y # 0 = —my, — m' + mg = 0,
=>m=-m (60)

The sum in Eq. 59 is then simplified and it is worth noticing that :

(0 Ro|n)(n| Ro|0) = —|{n| Ro|0)|”

(O[R-1[n){n|R1[0) = [(n]| R1|0)]"
(0] Ru|n){n|R-1]0) = [(n| R-1|0)|* (61)
The first relationship may look surprising, but remember that, because of the factor 7 in the definition, coming from
the chosen convention on the phases of the spherical harmonics, Ry is an antihermitian operator. Another consequence

of that 1s the fact that if

exo = tey, (62)

it is also
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"0 = i€ 5z, (63)

i.e. the spherical component 0 of the complex conjugate need not be the complex conjugate of the 0 component. With
the help of all of the above we can write :

(0le’s - Rln)(nles - R|0) = —e"xoexo|(n|Rol0)]* + e ier_i|(n|Ri[0)[?
+e* x_1ex [(n|Ro1|0)[*. (64)

Going back to cartesian coordinates for the polarization vectors, it is possible, with a bit of algebra to recast this
expression in the following form :

(n|Rol0)[* %(|<n|Rll0>|2 — n|R-1[0)*)] +

e/*)\’ze)\z[
1 * 2 2
5 - ea(l(nlBu|0)” + [(n B_1[0)[?)
—2(e%s x ex): ([(n|Ra] 0} — |(n| R_1]0)]). (65)
2

We define :

E(W,) — E(0) (2] R |0)*
Fe o =me - , 66
b Zn: B3un E(0) — BE(¥, + hwy + iy, /2 (66)
where the label e and 1 on F remind us that this refers to electric (e) dipole (1=1) contributions, and where we
introduced the symbol m, for the electron mass, to avoid any confusion with the index m, which runs over 0, +1 ;
reinserting the prefactors present in Eq. 49 and those allowing to relate w to do/dO’, see Eq. 31, we finally obtain:

do
do’

= |f7‘es|2a (67)

where f..s is the resonant scattering amplitude, given by :
1 1% € €
fres = =70 S cex(Fei1+ P 1)

? N
—i(el)\*, xey) #(F° 10— F% _1)

-~ A e 1 € 1 €
+ey - z)(ex - 2)(F o= 5 F = o F )|, (68)

where the unit vector in the z direction (i.e. in the axis of quantization of the angular momenta), z, was introduced.
Eq. 68 was derived in [22] using the relativistic formalism of vector spherical harmonics, soon after the discovery
of resonant magnetic scattering by Gibbs et al. [5]. A more complicated expression can also be derived for electric
quadrupole transitions, i.e. for the case in which the resonant transitions are only allowed if the second term in the
expansion of e’ ¥ ~ | 4+ ik -r + ... is retained (see for example [24]). Dipole and quadrupole terms allowed a detailed
interpretation of the experiments of Gibbs et al. on holmium, a rare earth with a spiral antiferromagnetic phase in
the 20K < T < 131K temperature range.

As we emphasized before, Eq. 68 was derived under the assumption of a system with spherical symmetry, for
example a single magnetic ion in a weak (i.e. negligible) crystal field environment. This is a reasonable approximation
for rare earth ions, in which the magnetic f shell is very localized and does not hybridize at all with the orbitals of
the surrounding atoms.

The three terms in Eq. 68 describe resonant or anomalous scattering in general, not only in the magnetic case, and
the three terms are therefore rather different in nature. The first is proportional to (F°1 1 + F°1,_1) and is therefore
nonvanishing even for a completely isotropic system, with no magnetic moment selecting a particular direction. It is
related to pure charge scattering. The second is a genuinely magnetic term, because it originates from the difference
between the 1 and the —1 components, which arise only in the presence of a magnetic preference for one direction along
the quantization axis. Finally, the last term is nonvanishing for any anisotropic system, a system with a preferential
axis, 1dentified either by a crystal anisotropy or by a magnetic moment.

At the location of each ion, the quantization direction Z coincides with the direction of the magnetic moment. The
existence of an ordered magnetic structure means that there is a dependence on the ion lattice position of the type

11



Zi(Rimn) = 4(0,0,0) Y a;(Kp e Fimn, (69)
h

where ¢ = z,y,7z ; (I,m,n) are integers labelling the lattice sites, and the set of wavevectors Kj characterise the
structure. The scattering amplitude f,., derived above is for an ion sitting at the origin; for an ion sitting at Ry, it
acquires a factor ei(k=K') Rimn (by replacing v; with r; + Ry, in Eq. 49) and, of course, one must replace %(0,0,0)
with Z(Ry ). These replacements, together with Eq. 69 guarantee that when the contribution of all sites is added
up, a nonvanishing intensity is obtained only if the scattering vector k — k’ equals one of the K} vectors of the
magnetic structure.

If the assumption of spherical symmetry is untenable, as it is the case for 3d systems, for which the interaction
with the environment results in strong crystal field effects, the selection rules on m,m’ are modified, producing more
complicated expressions, which are exemplified, for some point group symmetries, in [24].

The reader may wonder where, in the formulation in terms of dipole transitions between the ground and the
intermediate states, the sensitivity to magnetic moments may come from. This is a subtle but very important point.
In fact, no spin operators appear in the resulting expressions. The sensitivity to magnetic moments comes from the
combined action of two ingredients : the Pauli principle and the spin-orbit interaction. The Pauli principle enters
because of the strong dependence of the scattering amplitude on the availability of states, at or near the resonance
energy, suitable to play the role of intermediate states. In a one-electron language, if states with a given spin are
predominantly occupied, this implies that it is mostly states with the opposite spin which are available to be virtually
filled by the promotion of a core electron in the first part of the resonant scattering process. Since the spin is conserved
in the optical transition, it is mostly electrons with the same spin as the predominantly available intermediate states
which are virtually excited. In the case of all core levels with I # 0, the spin-orbit interaction is nonvanishing and
much larger than in the valence states (for example, the Ly and Lg core levels of the rare earths are separated by
many hundreds of V). In a given spin-orbit partner, states with spin up or down have a different orbital character
(the spin polarizes the orbital state, i.e. it tends to line up the orbital moment along or against the spin direction).
Because of the dipole selection rules to the available intermediate states, this orbital polarization translates into a
difference between the transition rates for different m, therefore in an imbalance among the corresponding F¢y ),
which is in turn responsible for a nonvanishing magnetic scattering amplitude.

The above qualitative description must be modified for s core levels, which have a vanishing spin-orbit interaction.
In this case, resonant magnetic scattering is also observable [25], but it must be ascribed to the much weaker spin-
orbit interaction of the valence states, which acts to polarize the final states of given spin and to reproduce the same
mechanism.

V. CONCLUSIONS

In the preceding sections, an overview of the theoretical foundations of x-ray magnetic scattering was attempted.
The purpose was to a large extent pedagogical, trying to adopt the simplest possible arguments to arrive at an
understanding of the information and of the quantities accessible to this experimental technique.

There is at present an ongoing effort to explore new magnetic materials, magnetic microstructures and materials
with strong electronic correlations by x-ray scattering, in particular by resonant scattering. This technique has
the added value of atomic specificity (an important asset when dealing with systems with more than one magnetic
element), and even the specific sensitivity to the electronic shell of the atom, via the selection rules and the choice of
the energy. It has originally found applications in the hard x-ray regime, and more recently in the soft x-ray regime,
especially in connection to artificial strctures (multilayers and superlattices) with periods much longer than atomic
distances.

Materials with strong electronic correlations, which are very central in contemporary condensed matter research,
are characterized by the interplay of structural, electronic and magnetic properties. In some cases, long range or-
dered arrangements of spins, of charge and of orbital symmetry coexist, such as in the case of LagsCa0.5MnOs or
LagsSr1 s MnO,4. Resonanrt scattering from the Mn K-edge is to some extent sensitive to all these kinds of order
parameters and has therefore been used to investigate them [26]. Another system of interest is V2Qgs, where magnetic
and orbital order have been investigated by resonant scattering at the V K-edge [27].

It seems therefore easy to predict an intense activity in the field in the next few years, stimulated by the progress
in synchrotron radiation sources with tunable polarization properties and by the opportunities offered by resonant
scattering in the investigation of some very interesting physical systems. It is also to be expected that some of the
results, as it happened already in the case of Ref. [26], [27], will stimulate a lively theoretical activity.
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Introduction to X-ray Magnetic Scattering

M. Altarelli

1. Why magnetic x-ray scattering? How?
2. Non-Resonant and Resonant Scattering

3. Exampleswith Hard and Soft X-rays



Fig. 4. Magnetic structure of MCl, (bpy—d8), M = Co and Ni, below 5.0 ar

8.5 K, respectively. The origin of the unit cell is shifted to (ﬁ% 0). Only tl
metal and Cl atoms are shown



Fig 1. Aview of the crystal structure of GeNi,Q,, illustrating the
magnetically frustrated comer-sharing tetrahedra. The refative Nitt spin
directions are shown by the plus and minus signs for the teo collinear
magretic sublattices,



MnF,

Cr

=]

-

G-6-0-0100-0/¢

s 3

PR

™
+ 1
s

25000

ORCRCRCHGNURVEY

Rare
Earths



Deter mination of M agnetic Structures

NEUTRON SCATTERING isthe standard probe for
structure determination

X-RAY SCATTERING useful in special cases:
Small samples

High momentum space resol ution (periods of
Incommensurate structures

ORBITAL-SPIN separation (non-resonant)

Presence of more than one magnetic element (resonant)



Consider a system of electrons movingin thefield of
the nucle, V(r;) and interacting with one another viaa
Coulomb potential V(|r;-r;[), described by the Hamiltonian:

A =2
H = ng_m + W (F) + V(I F = ) +(er/2m*c")s - (VV(F) x B)

Thelast term isthe Spin-Orbit inter action.

Simplify this many-body Hamiltonian by somehow making
an aver age potential for each electron:

N A2
H = EZH_m +V([) + (e 2m°c™)§ - (VV(T) x B)

Remember that every electron carriesa spin /2 and a
magnetic moment:

ﬁi = (en/ mc)§,



B:T}iﬁ

" oA Fields E, B from
E=-Ve—(l/c)—5, potentials A, ®

where the vector V = ( Ji, j’; j)

To describe electromagnetic waves, we can choose a
gauge where the scalar potential ®=0, and the vector

potential is:

. he’ 1/2= ~/1, i(KT -t
A, =D (—)"" {8 akk,A)e“ "V 1+ cc]
g O
> W, =CK
Normal. Polarization

Box Volume vector A=1,2



General recipe (from classical physics) to introduce
Interaction of electrons with field A(r t):p => p-(e/c)A.

Also: do not forget interaction of magnetic moment pwith
magnetic field of radiation:

Kinetic Energy uB

i 3 (R (COAN)

iZTN 2m
(€1/2mPc?)§ - (E x (B, - (e/ ) A(F))]

7

Spin-Orbit

+V(F) - (er/mc)§ - B -



H, H,
N
If{-ut — 2 [(ﬁEJ/QIHGEJAE (1‘3‘] = (‘51/'”“7]15!-(1'11] CPi—

gl

Hs
(eh/me)s; - (V x A(ry)) +

H,
(efif2m*c?)s; - [(OA(x:)/0t) % (pi — (¢/c)A(r:))]]




We aready encountered H; and H,, . There are two new
terms, H; and H,, that are related to the electron spin

Elastic Scattering Processes

&‘ ‘/ev K’ This photon present

in theinitial state

T This photon present

Electronic in the final state

ground state



Wesaw in a previous lecturehow H; gives
origin to Thompson scattering. Including the
three other pieces gives additional termsthat
can bederived in detail.

Befor e describing them we must discussthe
differ ence between non-resonant and
resonant scattering.



58
c =
e o I — N
78 §E 2
4» %N__ o Ui
-
g x20 =
< an]

)

| mZ

1 =S

Vm1

Ll : \ O\




A

In the non-resonant case  (Aw >> ho,,im,)

all of the 4 terms contribute

B
In the resonant case  (h® = 7o, or h® =ho,)

thetermH, = (e/mc) ZA(r;)p, dominates all others



The quantity that best describestheintensity of the elastic
scattering isthe differential cross section:

do Number of photons per unit time scattered within dO’

dO' ~ Number of incident photons per unit time per unit surface

4 =

\AA4




A  Non-resonant scattering

\‘/ §<1

d_G - (e_)Z. metalll
do  ‘mc? actor
/

iGiF ~, T _
‘2<0|e1|0>(e*x-eh) L (01 x[M, (@) 810 R + (0] Ny(@)[0)- R

Thompson F.T. of orbital F.T. of spin
(charge scattering) moment density moment density

|
90° dephasing




A Non-resonant scattering

Definitions:

q=
M (@) = Y e¥" M (F)
Ms(@) = Y, €°"5
P=(&* xe)4sii®

o | o

Po=[(k'x&*, )(k'-8)-(k x&)(k-&*,) - (k'x&™*, )x (k x&)]



A Non-resonant scattering

1. Isvery weak compared to Thompson scattering

ho 5 (10keV 5 1
mc?’  ‘511keV’ 2500
ng<Z

2. Hasa very different polarization factor for orbital M,
and spin Mg components of the magnetic moment.
Therefore selecting the incoming photon polarization and
analyzing the outgoing photon polarization one can see
either “orbital” or “spin” scattering



Fig. 1a

Fig. 1b




7{“’ POLN ANALYZER
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Analysis of polarization by 90° scattering on a“poor” crystal



Observation of Magnetic X-ray Scattering

TEEEX

Ferromagnet : magnetic periodicity=lattice periodicity

- Same reciprocal lattice vectors

TIXEE.

Antiferromagnet : magnetic periodicity= multiple of lattice periodicity
—p  Additional magnetic reciprocal lattice vectors
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FIG. 6. Spin form factor and orbital-moment form factor in
Nif). The data have been obtained by normalizing magnetic inten-
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Fig. 6 Sketch of a basal-plane spiral antiferromagnet, and the scattering geometry

Arrangement of Moments in Holmium
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Muagnetic X-Ray Scattering Studies of Holmium Using Synchrotron Radiation
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FIG. 1. Temperature dependence of the Ho(004) ¥ magnetic satellite taken with synchrotron radiation (lines drawn to guide
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Synchrotron X-rays have excellent angular resolution!




B Resonant (Anomalous) Scattering
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B Resonant scattering

Differential _ ‘2
Cr 0ss section res

\ Scattering amplitude

P n)n " - pe7|0)
E —E, -ho +il, /2

Multipole expansion: %" =1 +ik -F +



©
77)
/\
&
(7]
3
—_— = n
f.. w d
g = 2
o > a)
~—
I w
1 LU
.- IIIIIIIIIIIIII

Quadrupole: 2p -->f




ARS0APTE0N COEFFICENT

I'ul_-.m"l

INTEGRATED INTENSITY o u | 0™ cOUNTS )

Cler

2000 -+

BOD +

G004

400

—r . P
| B Bl

2Dk 4

_“__..;.—-:.-'
| i_"l._"D e
N

D. Gibbset al.,
Phys. Rev. Lett. 61, 1241(1988)

Holmium, L; (2p;, edge)

Polarization:

+ -"‘I-'b—.-unl- {

!Fl r2el
| TIG.G.E 2l |

O Parallel to scatt. Plane

® Perpendicular to scatt. plane



B Resonant Magnetic Scattering




Hannon-Trammel formula for dipole-dipole scattering

Definitions: R=(X,Y,Z) = ¥ T,
J

R =iZ R, =F(i//2)(X £iY)
Z Unit vector in z direction

eZ

1, . e
fres = _W[z(é *;g '%)(FLl( ) + Fl,—l( ))

| e Lay.5(F (@ c
2 (€% x8) AR, -F_,°)
+(8'*,.2)(€, - 2)(F90-FK 9 -F ,°)

Hannon et al., Phys. Rev. Lett. 61, 1245 (1988)



Soft X-ray Magnetic scattering:
structures with long periods.

Artificial structures (multilayers)

Complex compounds with large
structural and/or magnetic unit cells

L, ; edges of 3d transition metals
2p --> 3d



) 10 12 14 Ilt’:u 18 20 22 24 26 28 30
o)
H Durr et al., [Co(1 nm) Cu(1nm)]s, multilayer, Co L;-edge (=778 eV)
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W have conducted the firs sell a-ray dilTracthon experinents foom a bulk singhe eoystal. stady ng
the Bilayer mangoniie Las s Seg. o MigOs wilh & = 0475 in which we were able 10 access the ((02)
Bragg reflection using soft & rays The Bragg refection displis o seroag resosang enhancement o the
Lo and Ly rangamsss absoopion cdges, We demonsteste thal the resonant enbancement of 1he mag-
netic diffraction of the (00 is extremely large, indeed so large tha it exceeds thit of the nonresonnm
Braap diffraction. Resonam soft s-ray scatvering of 34 tramsition metal oaides is the anly rech nigue for
the avoaile selective measurement of aphn, charge, and orbaal correlations in mareraabs, such as high
temperatire superconduciors. calossal magneloresistance manganites, and charge siripe nickelabes.



Spin ordering in Lay_»ySrj4+2xMnyO7

Two dimensional layered
structure

At low temperatures
the Mn3* and Mn**
ions spin order
antiferromagnetically




Resonant magnetic exchange scattering

Below T the (001) 1s
resonantly enhanced at the
Ly and Lyt edges

2p == 3d transition
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Above T only weak charge

scatter is observed — no
resonance. The (001) is due
to AFM magnetic scattering.
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