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gun exitgun exit



4Exotic Radiation Sources, ICTP April 2004 

Accelerator Physics 

compressed bunchcompressed bunch
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BBBB--SRSR--TRTR
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transverse effectstransverse effects

path length dispersion
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Transition RadiationTransition Radiation
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electron beam

tilt radiator by 450

now, TR can be extracted normal to electron beam through window
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TR theory TR theory –– 11
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TR theory TR theory –– 22
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TR theory TR theory –– 33
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TR theory TR theory –– 44
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TR theory TR theory -- 55
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TR theory TR theory -- 66
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TR radiation distributionTR radiation distribution
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STRSTR

Stimulated Transition RadiationStimulated Transition Radiation
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optical cavityoptical cavity
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maximum enhancementmaximum enhancement
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new STR cavity ?new STR cavity ?

S1
radiator

kLb

S2

try this one ?
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XX--rays from Low Energy Electron Beamsrays from Low Energy Electron Beams
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types of radiationtypes of radiation

• Thomson/Compton Scattering
• Channeling Radiation
• Parametric x-rays
• Smith-Purcell Radiation
• Crystalline Undulator
• Resonant Transition Radiation
• Stimulated Transition Radiation
• ?????
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Compton scatteringCompton scattering
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Thomson backscatteringThomson backscattering

εph (eV) = 4. 959 γ 2

λL(µm )

incoming radiation backscattered radiation

coherent FIR, 100 - 1000 µm 12-120 eV

CO 2 Laser, 10µm 1200 eV

Yag Laser, 1µm 12.0 keV

For 25 MeV electrons: 
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Channeling radiationChanneling radiation
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Channeling Channeling -- 11

Channeling-radiation spectra 
from 8.0-MeV electrons 
along the (100) and (110) 
planes of ruby, obtained at the 
superconducting linac at 
Darmstadt [Freudenberger et 
al. NIM B119 (1996) 123].



29Exotic Radiation Sources, ICTP April 2004 

Accelerator Physics 

Channeling Channeling -- 22

Channeling radiation spectra 
obtained from diamond crystals 
after substraction of 
bremsstrahlung background 
(H. Genz)
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PXRPXR

PXR as diffraction of 
virtual photons 
associated with 
relativistic charged 
particles 
(A. Shchagin)
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Photon energy of PXRPhoton energy of PXR

PXR is emitted under the Bragg reflection rule

θθ Bragg reflection

d 2d sin n

d

example

for Si   d = 1.8 A
λ = 1.4 A   or  8.8 keV

θ = 22.5 deg
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Si crystalSi crystal
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PXRPXR
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Crystalline undulatorCrystalline undulator

Crystalline undulator 
(schematic). Vertical 
scale magnified by 
104. (Krause et.al.)
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Resonant TRResonant TR--theorytheory

use stack of layered low-Z/high-Z material
Ni C

e-

d

resonance condition in electron frame: d d n
d

2 2 1 2 2radiation observed in lab frame: 

for λ = 1A and E = 20 MeV, we need  d = 320 nm
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RTR experimental 
Setup at the Yerevan
Physics Institute

Resonant TRResonant TR--IspirianIspirian

Multi layer radiator

K.A. Ispirian
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Resonant TRResonant TR--IspirianIspirian
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S1
radiator

kLb

S2

STRSTR

FIR radiation:   50 < λ < 1000 µm

VUV-radiation:  150 eV < εph < 7 eV
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FIR and Biological MoleculesFIR and Biological Molecules
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Dispersive Fourier Transform SpectroscopyDispersive Fourier Transform Spectroscopy

Si
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Si-sample
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Disp.FourierTransform Spect.Disp.FourierTransform Spect.
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Disp.FourierTransform Spect.Disp.FourierTransform Spect.--22

F W,OFourier transform of peak 1

Fourier transform of peak 2 F W,L
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ñW, ñL complex refractive indices of window and liquid
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Experimentation with calf thymus NaDNAExperimentation with calf thymus NaDNA

explore low frequency dynamics of DNADNA, DNA complexes and proteins

what is the role of low frequency vibrations for biological functions ?

important, because they involve motion of large groups of atoms 

conformational transitions like

local “melting”: separation of two strands of DNA

transport of molecules and ions through cell membranes
by membrane proteins
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DNA experimentsDNA experiments

Dilute solution samples ~ 1mg/ml
B – form (native state of DNA)
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Strand separationStrand separation

study process of DNA strand separation

in laboratory initiate “melting” by heating,   ~ 60 deg C

monitor “melting” with UV absorbance

living cells do not melt their DNA by temperature !

energy for melting becomes available by hydrolysis of ATP into ADP

mechanism unknown !

hypotesis: chemical energy is converted into vibrational energy
of interbase hydrogen-stretching modes

study hydrogen-bond-stretching modes of DNA

to test validity of this hypothesis
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hydrogenhydrogen--bond stretchingbond stretching

theory (Prohofsky) indicate mode near 80 cm-1.

observed Raman modes (solid and gel samples) are very broad!

K. Woods, Stanford observed same in solutions, where DNA has no 
interaction with neighboring DNA molecules

Observed modes are much narrower and better resolved

Only one Raman study of melting has been published so far !

quality very poor and no useful information can be extracted
except to state that “feature” vanished upon melting

Initial experiments at Stanford indicate that 
FIR can produce excellent data about melting

this is of great interest
so far, nobody could follow dynamics of melting
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PumpPump--Probe exampleProbe example

“Direct Observation of Surface Chemistry using Ultrafast Soft X-Ray 
Pulses”, Bauer et.al. PRL 87 (2001) 025501-1

• consider molecular oxygen on a Pt(111) single crystal surface
• photoemission spectroscopy is extremely sensitive to chemical

state of surface-adsorbate complex
• excite oxygen molecule by laser pulse
• probe with soft x-ray pulse and photoemission spectroscopy
• determine photo electron energy spectrum by TOF

superoxo-state peroxo-state
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SummarySummary

• femtosecond electron pulses at 10 – 30 MeV provide excellent 
opportunity to do genuine research

• development and optimization of FIR and x-ray source 

• monitor chemical reactions of femto second time scale

• determine spectral complex refractive index for heavily absorbing 

samples by dispersive FT spectroscopy

• fitting for university based research

• MS and PhD projects 
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