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The electron beam 
 
The electron beam circulating in a synchrotron radiation source is an ensemble of 
particles moving in such a way that the velocity in one direction is much greater than the 
velocity in the other directions.  
Let us define a Cartesian coordinate system in which the y axis is the instantaneous beam 
direction and x and z are respectively in and perpendicular to the electron ring plane. 
The state of each electron can be specified by a point in the 6-dimensional phase space 
{ x,y,z,vx,vy,vz} . Usually the longitudinal motion along the beam axis y is decoupled from 
the motion in the transverse xz plane and the 6-dimensional space can be split into a 
longitudinal 2-dim phase space and a transverse 4-dim phase space.  We will consider 
only the transverse phase space { x,z,vx,vz} . The transverse velocities of the electrons are 
usually expressed in terms of the direction cosines: 
 
 
 
where α and γ are the angles between the 
instantaneous electron velocity v

�
 and the reference 

axes x and z. 
Introducing the new coordinates: 
 
 
and using the hypothesis: 

the transverse velocities are proportional to x’ ,z’ : 

In first approximation, x’  and z’  have a very simple meaning: x’  and z’  are the angles 
between the y axis and the projections of the instantaneous electron velocity respectively 
in the xy and yz plane.    
One is usually more interested to know about the angles x’  and z’ , therefore the 
transverse phase space is considered to be { x,z,x’ ,z’ }  instead of { x,z,vx,vz} . 
 
An electron beam can be represented in a phase space diagram as a cloud of points within 
a close contour, usually an ellipse. The example of an instantaneous cross section of a 
beam at a waist is shown in the following sketch.  
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The area within the close contour is called the emittance of the beam. Emittance is a very 
important parameter for the electron beam. Liouville theorem states that if the forces 
acting on the electrons are conservative, emittance is conserved. This is what happens to 
the electron beam: along the ring, the shape of the occupied phase space changes but the 
volume remains constant.  
If the ellipse is upright, its area, which is the product of the two semi-axes, is the beam 
size multiplied by the beam divergence. In this case Liouville’s theorem states that the 
product beam size multiplied by beam divergence is conserved. 
 
Example 1: a diverging beam. 
 
 

 
In the first position, electrons are crowded in physical space and spread out in angles 
In the second position, electrons are diffuse in physical space and angles: the 
corresponding ellipse is tilted, but its area remains constant 
 
Example 2: a focusing beam. 
After the focusing action of a quadrupole magnet, the beam will be more confined in 
space and more divergent in angles.  
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The area of the ellipse representing the occupied phase space is always the same: if you 
confine the beam in space you make it more divergent, if you make it more parallel the 
beam diameter increases. 
For a 4 dimensional transverse phase space, the electron beam emittance is:   
ε= σe σ’e  
where:  
σe is the lateral extent of the electron beam  
σ’e is the solid angle of the electrons trajectories around the ideal trajectory.  
Since the two orthogonal lateral directions are only weakly coupled, it is useful to define 
a horizontal emittance εx and a vertical emittance εz:  
εz= C εx       
where C is the coupling factor, which, like the emittance, is an invariant of the system. 
The coupling factor depends on the “goodness”  of the alignment of the magnet fields in 
the ring. 
 
The third generation synchrotron radiation sources are optimized for low-emittance 
electron beams.  
Case of ELETTRA: 
Electron energy=2GeV 
Horizontal emittance εx = 7 micron mrad 
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C = 1% 
In the straight sections the electron beam has: 
Horizontal/vertical dimensions = 241/15 micron 
Horizontal/vertical divergence = 29/6 microrad 
 
 
Basic properties of synchrotron radiation 
 
The main distinguishing properties of synchrotron radiation (SR) that make it so 
advantageous depend on the characteristics of the storage ring and are summarized in the 
following: 

1. photon energy can be selected in a very broad and continuous spectral range, from 
infrared through vacuum-ultraviolet, extreme ultraviolet, soft x-rays up to hard x-
ray region.  

2. SR has high intensity 
3. the emitted radiation is highly collimated and emanates from a very small source, 

the electron beam 
4. the electrons in the storage ring are grouped in bunches, therefore SR is emitted as 

pulses from each bunch  
5. SR is highly polarized: SR emitted from bending magnets and conventional ID in 

the plane of the ring is linear polarized (the electric vector lies in the plane of the 
ring). Above and below the plane of the ring the radiation is elliptically polarized.  

 
Property number 3 can be well described introducing a parameter called “brilliance” , 
which is a combination of the emitted flux and of two geometric characteristics: the 
source size and the angular spreads of the emitted beam: 
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 I = electron current in the storage ring 
 

zxσσ  = transverse area from which the SR is emitted 

 

zx ′′σσ  = solid angle into which the SR is emitted 

 BW = spectral bandwidth, usually 1.0=∆
E

E
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The Cartesian reference system is the same as that introduced for the electron beam: the y 
axis is the central direction of the photon beam while x and z are in the transverse plane, 
in and perpendicular to the orbit plane. 
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Brilliance is the main figure of merit of SR sources. 
As an example, the following figure shows the photon brilliance 
(photons/s/0.1%BW/mrad) as a function of photon energy for different ID’s at 
ELETTRA, electron energy 2GeV, electron current 300mA.  
 
 

 
 
 
The figure illustrates how wiggler and undulator sources can provide greatly improved 
synchrotron characteristics over more conventional bending magnet radiation.  
 
Why is brilliance important? 
On one hand, the importance of a higher flux is evident: more flux means more signal for 
the experiment. Moreover, having a lot of photons in a narrow energy band allows to 
reach a good energy resolution with a sufficient signal, that is without increasing the 
acquisition time.  
But why combining the flux with geometrical factors? The answer is provided by 
Liouville’s theorem, that we have already applied to the electron beam.  Applied to optics 
it states that the occupied phase space volume is constant along the optical path for an 
optical system without losses. More simply, Liouville’s theorem states that the product 
(beam size x beam divergence) cannot be decreased without loosing photons. This 
implies that to focus a beam in a small spot (which is needed for achieving high energy 
and/or spatial resolution) one must accept an increase in the beam divergence. Along the 
beamline this requires the installation of large size optical devices, which are expensive 
and have lower optical qualities. But also at the sample the divergence cannot be made 
arbitrarily large: it is impossible to concentrate the whole radiation in an arbitrarily small 
spot. With a not brilliant source the spot size at the sample can be made small only 
reducing the photon flux. 
The answer to the question “why is brilliance important?”  is therefore the following:  the 
high brilliance of the radiation source allows the development of monochromators with 
high energy resolution and high throughput and gives also the possibility to image a beam 
down to a very small spot on the sample with high intensity. 
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The beamline 
 

The researcher needs at his experiment a certain number of photons/second into a phase 
volume of some particular characteristics. Each kind of experiment imposes different 
demands, for example scanning microscopy needs a high flux of photons focused in a 
sub-micron spot. Moreover, these photons have to be monochromatized to a greater or 
less extent. 
This is the job of the beamline: the beamline is the means of bringing the radiation from 
the source to the experiment transforming the phase volume in a controlled way, that is: 
demagnifying and monochromatizing the source and refocusing it onto a sample. 
In doing this, the beam-line must preserve the excellent qualities of the radiation up to the 
experiment.  We have seen that third generation synchrotron radiation sources are 
optimized for low-emittance electron beams and high-brilliance radiation: the beam-line 
scientist and engineer has to design a beam-line that transfers this brilliance to the 
experiment. We will come back to this issue. 
 
We restrict ourselves to photon energies from 10 to 2000eV. This energy range includes 
Vacuum Ultra Violet (VUV,which extends from 4eV to 30eV ), Extreme Ultra Violet 
(EUV, from 30eV to 250eV) and soft x-ray regions (up to several keV). These limits are 
not precisely defined and can vary from author to author. 
VUV, EUV and soft x-ray regions are very interesting because they are characterized by 
the presence of the absorption edges of most low and intermediate Z elements (Z is the 
atomic number). Thus photons with these energies are a very sensitive tool for elemental 
and chemical identification. But from the point of view of the optics, these absorption 
edges make these regions difficult to access. What makes VUV and soft x-ray radiation 
so different from neighboring spectral regions is the high degree of absorption in all 
materials. At lower photon energies, in the visible and ultraviolet, and at higher photon 
energies, in the hard x-ray region, many materials become transparent, but at VUV and 
soft x-rays all materials are absorbing. Because no windows are available, the entire 
optical system must be kept under vacuum in order not to disturb the storage ring and the 
experiment. Moreover, ultrahigh vacuum conditions (P=1-2x10-9 mbar) are required to 
avoid photon absorption in air and to protect the optical surfaces from contamination 
(especially from carbon). 
The other consequence of the strong absorption of radiation by all materials in this 
spectral region is that no refractive optics are available. The only1 optical elements which 
can be used in the VUV and soft x-rays regions are mirrors and diffraction gratings, used 
in reflection.  
Moreover, the reflectivity of ordinary materials2 are very small and, at a given energy, 
drop down fast with the increasing of the grazing incidence angle. Therefore only mirrors 
and gratings at grazing incidence angles (1-2 degrees) are used. As an example, the 
following figure shows the reflectivity of gold as a function of photon energy for 
different incidence angles. 

                                                 
1 There are few exceptions, for example zone plates, which are transmission optical devices composed of 
nanometer-scale concentric metal rings which are used to focus x-rays.   
2 Special materials called multilayers can be built with high reflectivity at particular given energies. 
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Focusing properties and surface equations of common optical elements 
 
X-ray optics can have different kinds of geometrical shapes: they vary from plane to 
more exotic aspherical forms. We will review the main focusing properties of the more 
common geometrical surfaces: paraboloid, ellipsoid, toroid.  
First, let us consider a generic concave mirror and a point source A which is focused to 
the point B. The plane defined by the central ray AO and the normal to the mirror in O is 
called tangential or meridional plane. The plane perpendicular to the tangential plane and 
containing the normal to the surface in O is called sagittal plane. We’ ll use a Cartesian 
reference system with origin in O, x axis normal to the surface in O , y and z axis 
belonging to the plane tangent to the mirror in O, y belongs to the tangential plane, x to 
the sagittal plane.  
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Paraboloid 

The parabola has the property that rays traveling parallel to the symmetry axis OX are all 
focused to a point at A. Conversely, the parabola will collimate rays emanating from a 
point situated at the focus of the parabola A.  

 

If focusing in one plane only is required, the mirror surface would be plane in the 
direction perpendicular to the plane of the diagram. If the angle of incidence on the off-
axis segment is ϑ ,  f is the distance from the pole of the segment to the focus and a is the 
distance from the focus to the pole of the parabola, then the line equation for the parabola 
is: 

aXY 42 =  

where 

ϑ2cosfa =  

The position of the pole can be given by 

ϑ
ϑ
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aY

aX

o

o

=
=

 

If double focusing is required, a paraboloidal shape could be used and can be obtained by 
rotating a parabola around its axis of symmetry OX. The equation of the surface of the 
paraboloid would then be 

aXZY 422 =+  
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The above equations use a Cartesian coordinate system centered on the pole of the 
parabola (X,Y,Z).  It is often necessary, however, to use the reference coordinate system 
(xyz) introduced before, centered on the center of the optical segment under 
consideration. In this coordinate system, the equation of the paraboloid becomes 

0sec4cos  sin2cossin 22222 =−−++ ϑϑϑϑϑ axxyzyx      

 

Ellipsoid 

The ellipse has the property that rays from one point focus F1 will always be perfectly 
focused to the second point focus F2. In a Cartesian system (X,Y,Z) centered on the 
center of the ellipse O, the equation of the ellipse is given by 
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The parameters of the ellipse a and b can be defined in terms of the object and image 
distances r and r’  and the angle of incidence ϑ   by 

21

2

'

eab

rr
a

−=

+=
 

where e is the eccentricity and is given by 

) 2cos('2'
2

1 22 ϑrrrr
a

e −+=  

The position of the pole of the element is given by 

2

2
0

0

0

1

2

) 2( sin'

b

Y
aX

ae

rr
Y

−=

= ϑ

  

If double focusing is required, an ellipsoidal shape could be used. This would be obtained 
by rotating the ellipse around the major axis OX. The equation of the surface formed 
would be given 
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In the coordinate system x,y,z with the origin at the center of the optical, the surface 
equation of the ellipsoid is given by 
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Toroids 

The bicycle tyre toroid is generated by rotating a circle of radius ρ in an arc of radius R. 
(ρ is the minor radius, R is the major radius.).   
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In the coordinate system x,y,z with the origin at the center of the optical element, the 
surface equation can be given as 

22222 )()(2)(22 yxRRRRRxzyx +−−+−−=++ ρρ  

The conditions for a meridian focus are 
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and for a sagittal focus are 
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To obtain a stigmatic image of a point source we therefore have the relationship between 
R and ρ: 

ϑρ 2cos=
R

 

The following sketch illustrates a vertical deflecting toroidal mirror: the point source A 
has the tangential focus T and the sagittal focus S in two different positions.  The bundle 
of rays in the meridian plane MON, which also contains the source point A, forms an 
image of A at the vertical meridional focus T.  Bundles of meridional rays like AK and 
AL will be focused each in their own plane of incidence, so the meridional image of the 
point A is a horizontal line. The sagittal bundles reflected from KOL will be focused at 
the sagittal focus S. The sagittal bundles reflected from zones of the mirror before and 
after KOL will be focused to points above and below S. The sagittal image of the point A 
is therefore a vertical line.  
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A special case of toroid is a sphere: ρ=R. The relation ϑρ 2cos=
R

  implies that a 

stigmatic image can be obtained only if ϑ  =0, that is: for a spherical mirror a stigmatic 
image can only be obtained at normal incidence. For a vertical deflecting spherical mirror 
at grazing incidence the horizontal sagittal focus is always further away from the mirror 
than the vertical tangential focus. The spherical mirror only weakly focusses in the 
sagittal direction. 

 

 
Diffraction gratings 
 
A diffraction grating is the heart of a soft x-rays beamline: it separates the different 
components of the spectrum by redirecting the radiation by an amount which depends 
upon the wavelength. A slit after a grating is therefore able to select and trasmit a given 
narrow band of wavelengths. The most common grating consists of a suitable rigid 
substrate with an optical surface upon which are produced a series of equispaced parallel 
grooves. The standard notation used is shown in the following sketch. 
Radiation of wavelength λ incident on the grating at an angle α, measured with respect  
to the surface normal, is either reflected (zero order) or diffracted at an angle β. The 
diffraction angle β is related to the angle of incidence α, the groove density N and the 
wavelength λ by the grating equation: 
 

λβα Nk=+ sinsin  
 
α  and β are of opposite sign if on opposite sides of the surface normal. In the figure, α is 
positive and β is negative. Diffraction into orders whose angles β are greater than that of 
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the zero-order beam are called “negative”  or outside orders, and for these k takes 
negative values.  In the figure, β is shown for the first negative order.  
The relative amount of light of wavelength λ reflected or diffracted into a particular order 
k is determined by the shape of the grooves and by the material on the grating surface. 
 

 
 
Conserving brilliance 

 
The basic elements of a beam-line working in the photon energy range from 10 to 
2000eV are mirrors, gratings and slits. 
Total reflection X-ray mirrors operating at grazing angles of incidence can efficiently 
focus a wide beam of x-rays. Mirrors can also be employed as filters to effectively reflect 
or pass x-rays below a certain cut-off energy and to absorb or block x-rays above this 
energy. Gratings diffract radiation as a function of the wavelength and slits spatially 
select the dispersed radiation.  
In doing these jobs, the optical elements have to preserve the high quality of the 
radiation. We have seen that the parameter that well describes the quality of the emitted 
radiation is brilliance. Conserving brilliance along a beam-line requires special attention.  
Brilliance decreases because of different reasons: 

- Micro-roughness and slope errors on optical surfaces 
- Thermal deformations of optical elements due to heat load produced by the high 

power radiation 
- Aberrations of optical elements 

We will not consider the effects of real optical surfaces, such as slope errors, roughness, 
and thermal induced deformations; we will study the focusing properties of optical 
elements, mirrors and gratings, with theoretical surface shapes.  These optical elements 
produce aberrated images. Let us understand what aberrations are. 
An ideal optical element is able to perform perfect imaging if all the rays originating 
from a single object point cross at a single image point, or, equivalently, the wave front in 
image space has a spherical shape centered on the image point. 
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Deviations from perfect imaging are called aberrations.  
Image quality is essential for achieving high energy and spatial resolution: knowledge of 
the aberration theory is therefore necessary for the design of a beamline. 
Aberration theory allows to treat mathematically in general terms  the focusing properties 
of a concave optical element. We will study the case of a grating, a mirror can be 
considered a particular case of grating with zero density of lines. The general theory of  
aberrations of diffraction gratings applies Fermat’s principle to derive expressions for the 
aberrations coefficients. 
 
 
 
Principle of Fermat 
 
Fermat’s principle asserts that light rays choose their paths to minimize the optical length. 
The optical length is defined by the actual length of the path times the index of refraction 
of the medium. Assuming the index of refraction to vary as a function of the position, 

)(rn
�

, the optical path length from point A to point B is given by 



B

A

dlrn )(
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where 222 dzdydxdl ++=  is the line segment along the path. 

If a medium has a constant refraction index, Fermat’s principle states that light will travel 
along straight lines.  
Since  

cdtdl
v

c
dlrn ==)(
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where c is the light speed in vacuum and v is the light speed in the medium, the optical 

path length is equal to 

B

A

dtc . That is why the principle of Fermat is also known as the 

principle of least time: the actual path between two points taken by a beam of light is the 
one which is traversed in the least time. The laws of reflection and refraction directly 
follow from Fermat’principle. 
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Theory of conventional diffraction gratings 
 
The following figure shows a classical concave grating with parallel rectilinear grooves 
and constant spacing d. The Cartesian coordinate system has origin O in the grating pole, 
x-axis along the normal to the surface at O and y- and z-axes belonging to the plane 
tangent to the grating at O. The z-axis is parallel to the groove which passes through O.  
Let us consider a light ray which leaves the generic point A(xa, ya, za), hits the 
mirror/grating surface at an arbitrary point P(x,y,z) and is reflected/diffracted to the point 
B(xb, yb, zb). 
Let assume that the refraction index is constant, therefore light travels along straight 
lines. The optical path length F for that ray in the case of a mirror is simply: 

PBAPF +=  
For a grating an additional term has to be inserted to cope with the physical optics of 
diffraction. For a classical grating with rectilinear grooves with constant spacing d, this 
additional term is: 
 

                                                                          y          λkNPBAPF ++=  

where λ is the wavelength of the diffracted light, k is the order of diffraction (±1,±2,...), 
N=1/d is the grating groove density. To better understand this additional term, let us 
consider two points on the grating surface, P1 and P2 , separated by an integer number of 
grooves. The last term accounts for the fact that the distances AP1B and AP2B may be 
different and the light along both rays may be in phase at B if the difference between 
these two distances contains an integer number of wavelengths. If P1and P2 are one 
groove apart, the number of wavelengths in the difference is the order of diffraction. 

 
In the above drawing the positions of A and B are specified by the cylindrical coordinates 
r, α, za  and r’ ,β, zb; the angles of incidence and diffraction, α and β, are measured in the 
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xy plane and the signs of α and β are opposite if the incident and diffracted rays are on 
opposite sides of the xy plane (in the figure α is negative and β is positive.)  

The groove profile is ignored in this geometrical treatment of grating aberrations, but it is 
of course extremely important in the calculation of intensity distribution. 

Now, let us consider some number of light rays starting from A and impinging on the 
grating at different points P. Fermat’s principle states that if the point A is to be imaged at 
the point B, then all the optical path lengths from A via the grating surface to B will be 
the same. Thus B will be the point of a perfect focus if the two equations: 

                                                                                                 0     0 =
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are satisfied simultaneously by any pair of (y,z).  For a mirror, this is accomplished if the 
surface has the correct geometry. For a grating, the shape of the surface and the groove 
density N decide if the desired result will be achieved.  

In general, 
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   and   are functions of y and z and can not be made zero for any  (y,z). 

Therefore when the point P wanders over the grating surface, diffracted rays fall on 
slightly different points on the focal plane and an aberrated image is formed.  The image 
produced by the central ray (which is the ray passing through the origin O) is called the 
Gaussian image (point B0 in the following figure).  

The ray diffracted by the generic point P on the grating surface will arrive at a different 
point B: the displacement of B with respect to B0 is called the ray aberration. The goal of 
an aberration theory is to produce simple expressions for these intersection points B in 
the image plane produced by the rays diffracted from different points on the gratings 
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surface. We will see that these expressions can be reduced to a form consisting of a sum 
in powers of the aperture coordinates y and z, each term representing a particular 
geometric aberration. By adjusting the values of the different parameters, such as 
substrate shape, groove density, object and image distances, the sum of the aberrations 
can be reduced.  

The mirror/grating surface may be described by its analytical equation or may in general 
be described by a series expansion: 

                                                                                                 
0 0
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where a00 = a10 = a01= 0 because of the choice of origin and j=even if the xy plane is a 
symmetry plane.  
Giving suitable values to the coefficients aij’s, we obtain the expressions for the various 
possible surfaces. The first coefficients for toroidal, paraboloidal and ellipsoidal surfaces 
are reported in the following. Values for the toroidal and ellipsoidal coefficients are given 
to sixth order at http://xdb.lbl.gov/Section4/Sec_4-3Extended.pdf. The geometry and the 
parameters for the three different cases have been introduced before, when we described 
these three geometrical surfaces. 
Note that sphere, cylinder and plane are special cases of the toroid: 
R=ρ � sphere 
R= ∞  � cylinder 
R=ρ= ∞  � plane.  
For gratings only toroids, sphere and plane surfaces are of interest. 
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Ellipsoid 
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Now, let us consider the optical path function F. The path lengths AP  and PB  can be 
expressed as: 

( ) ( ) ( )                                                                  222 zzyyxxAP aaa −+−+−=  

( ) ( ) ( )222 zzyyxxPB bbb −+−+−=  

and x can be substituted with the power series in y and z: 
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It is also convenient to express the position of A and B in cylindrical coordinates: 
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sin                cos 
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==

 

 
After these substitutions, the resulting expression for F can be expressed as a power 
series in the aperture coordinates y and z: 
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It can be proved that the coefficient Fijk has the general structure: 

 
The first two subscripts i,j refer to the exponents of y and z, the third subscript k refers to 
the exponent of za and zb . 
 
We have seen that the condition for having a perfect focus is that the two partial 
derivatives of F are zero for each pair (y,z). This means that all (except F000) the 
coefficients Fi jk must be zero. No optical system can be made to satisfy all these 
conditions at once: the operative approach is to understand which are the most significant 
terms and set them to zero. In this way the two derivatives, also if not equal to zero, are 
small enough.  
Each term in the series (except the first two terms F000 and F100) represents a particular 
type of aberration and the corresponding coefficient Fijk is related to the strength of that 
aberration. This will be clearer in the following. 
 
The expressions of the most important terms, for r,r’  >> za,zb, are reported in the 
following.  
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Now, let us  apply Fermat’s principle to the central ray, that is the ray which passes via 
the pole of the grating where x=y=z=0. Imposing: 
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we obtain the following expressions: 

F100=0   �   λβα Nk=+ 0sinsin        

F011=0   �    
0

0

r

z

r

z ba

′
−=         

 
The first equation, F100=0, is the grating equation.  For N�0 (no grating) it simply gives 
the law of reflection in the plane xy: α=-β.  
The second equation, F011=0, is the law of magnification in the sagittal direction. Let us 
remind that za ,za are the out-of-plane heights at the object and image points. The equation 
says that in the vertical plane the grating acts as a mirror: the angle of incidence in the 

sagittal plane, 
r

zaarctan , is equal to the angle of reflection, 
0

0arctan
r

zb

′
.  The sagittal 

magnification 
b

b

z

z 0 is equal to the ratio 
r

r0′ . 

 
 
The tangential focal distance r’ 0 of the Gaussian image is obtained by setting the focusing 
term F200 equal to zero: 
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The three equations: F100=0, F011=0, F200=0, determine the Gaussian image point 
B0(r’0,β0,zb0) , that is the perfect image point. 
 
 
While the second order aberration term F200 governs the tangential focusing, the second 
order term F020 governs the sagittal focusing.   
The sagittal focus condition is obtained by setting F020 equal to zero: 
 

F020=0 �   ( ) 0coscos2
11

02 =+−
′

+ βαa
rr

       

 
The associated aberrations are called defocus and astigmatism, respectively. 
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The two aberrations describe the extent of an image, defocus describes the blurring of the 
image in the tangential plane, astigmatism pertains to the extent of the image in the 
sagittal direction.  In a soft x-ray monochromator, the tangential plane is usually vertical 
and the sagittal plane is horizontal. In a storage ring the vertical source size is smaller 
than the horizontal source size and therefore the dispersion plane is usually chosen to be 
the vertical plane in order to reach a higher energy resolution.  
Actually astigmatism defines the condition in which the tangential and sagittal foci are 
not coincident, which implies a line image at the tangential focus. 
 
Toroidal mirror example.  
Substituting the coefficients a20 and a02 with their expressions corresponding to a toroidal 
surface: 

R
aa

2

1
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2

1
2002 ==

ρ
 

and assuming that α=- β= -θ, the tangential and sagittal focusing conditions become the 
relations already introduced for the tangential and sagittal foci of a toroidal mirror: 
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While higher order aberrations are usually of less importance than defocus and 
astigmatism, they can be significant. For example it can be important to minimize the 
third order aberrations primary coma F300 and astigmatic coma F120. The fourth order 
terms F400 F220 F040 can be regarded as generalized types of spherical aberration. 
Other higher order terms contribute to secondary coma, secondary spherical aberrations, 
field curvature and distortion. 
 
 
Calculation of ray aberrations 
 
By definition, the central ray AO arrives at the Gaussian image point B0 , which 
coordinates (r0’ ,β0,zb0) are determined by the equations: F100=0, F011=0, F200=0. In 
general, the ray starting from A will arrive at the focal plane at a point B displaced from 
the Gaussian image point B0 by the ray aberrations ∆yb and ∆zb .  
It can be shown that: 
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The meaning of the non-zero differentials 0,0 ≠
∂
∂≠

∂
∂

z

F

y

F
, is that of a change in the 

appropriate direction cosine of the emergent ray from the Gaussian value. The division by 
cos β0 comes from the coordinate transformation to the image plane. 
If we substitute the power series expansion of F in the aperture coordinate, 

ji

ijk
ijk zyFF �= , we can calculate the ray aberrations for each aberration type: 
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The above equations describe the impact of each aberration term on the final image.   
The final ray displacement is given by summing all the individual aberrations: 
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Each coefficient Fi jk represents a particular form of aberration and is related to the 
strength of that aberration.  An aberration is absent from an image (of a given wavelength 
in a given order of diffraction) if its associated coefficient Fijk is zero.  
 
Inserting the geometrical parameters aij corresponding to the grating surface shape, we 
obtain the Fijk coefficients and with them we can calculate the size of the aberrated image 
that we can expect from a given (perfectly made) grating. The parameters y and z have to 
be chosen half the dimension of the photon spot on the grating surface:  
y=w (half ruled lenght of the grating); z=l (half ruled width of the grating) 
In this way we evaluate the contributions of the rays which are more distant from the pole 
of the grating. 
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Let us consider in more details the defocus and coma contributions.  
The defocus term is linear in the ruled length of the grating (±w ) and gives an error (in 
the dispersive direction) which is symmetric about the Gaussian image point, 
corresponding to rays from the top and bottom of the grating : 
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Example grating footprint: 
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If a monochromator is only limited by defocus, a decrease in the dispersive aperture will 
cause a corresponding linear decrease in the dispersive error. 
In contrast, the coma term is proportional to w2 giving a dispersive error which only 
occurs on one side of the Gaussian image point for rays from both the top and the bottom 
of the grating (y=±w): 
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If the monochromator is only limited by coma, a reduction in dispersive aperture by a 
factor of 2 will cause the error from the most aberrated rays to reduce by a factor of 4. 
These conclusions have been reached without the need to consider the form of the 
substrate. The shape of the substrate will alter the magnitude of the Fi jk terms and their 
wavelength dependence but not their aperture dependence. 
 
Let us compare what can be learnt from a ray trace and from the aberration theory, 
considering the simple example in the following figure. Ray trace simple tells us that the 
ray arrives in a certain point, the aberration theory shows that the ray arrives off the 
perfect focus in the tangential direction because of F200, which is defocus (the image is 
imaged but not where you want it), and F300 which is primary coma. It arrives off the 
perfect focus in the sagittal direction by F020, which is astigmatism, and F040. Knowing 
this, the designer can have at least a beginning idea of how to combat the aberrated 
performance. 
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Calculation of aberration contribution to resolution 
 
Let us calculate the contribution to resolution caused by aberrations. 
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Deriving the grating equation:  
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we have: 
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Substituting: 
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We have already seen that: 
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Inserting the geometrical parameters aij corresponding to the grating surface shape we 
obtain the Fijk coefficients and with them we can calculate the aberration-limited 
wavelength resolution that we can expect from a given (perfectly made) grating.   
 
 
In conclusion: 
 
We have seen that the condition for having a perfect focus is that the two partial 
derivatives must zero for each pair (y,z). This means that all the coefficients Fi jk (ijk#000) 
must be zero. Non-zero values for the coefficients Fi jk lead to displacements of the rays 
arriving in the image plane from the ideal Gaussian image point. We have found the 
expressions for these rays displacements and the corresponding contributions to energy 
resolution. In this way the impact on the imaging and energy resolution properties of a 
given grating can be evaluated. By a proper choice of the grating shape, groove density, 
object and image distances, the sum of the aberrations may be reduced to a minimum.  

 

 

These notes have been taken from the following references:  
 
 
D.Attwood, “Soft x-rays and extreme ultraviolet radiation” , Cambridge University Press, 
1999 
 
D.Attwood, “Challenges for utilization of the new Synchrotron facilities”, Nucl. Instr.and 
Meth.A291, 1-7, 1990 
 
B.W.Batterman and D.H.Bilderback, “X-Ray Monocromators and Mirrors”  in 
“Handbook on Synchrotron Radiation” , Vol.3, G.S.Brown and D.E.Moncton, Editors, 
North Holland, 1991, chapter 4 
 
W.Gudat and C.Kunz, “ Instrumentation for Spectroscopy and Other Applications” , in 
“Syncrotron Radiation”, “Topics in Current Physics” , Vol.10, C.Kunz, Editor, Springer-
Verlag, 1979, chapter 3 
 
M.Howells, “Gratings and monochromators” , Section 4.3 in “X-Ray Data Booklet” , 
Lawrence Berkeley National Laboratory, Berkeley, 2001 
 
M.Howells, “Vacuum Ultra Violet Monochromators” , Nucl. Instrum. and Meth. 172, 
123-131, 1980 
 
M.C. Hutley, “Diffraction Gratings” , Academic Press, 1982 
 



 28

R.L. Johnson, “Grating Monochromators and Optics for the VUV and Soft-X-Ray 
Region”  in “Handbook on Synchrotron Radiation” , Vol.1, E.E.Koch, Editor, North 
Holland, 1983, chapter 3 
 
C.Kunz and J.Voss, “Scientific progress and improvement of optics in the VUV range” , 
Rev. Sci.Instrum. 66 (2), 1995 
 
G.Margaritondo, Y.Hwu and G.Tromba, “Synchrotron light: from basics to coherence 
and coherence related applications” , in: “Syncrotron Radiation:Fundamentals, 
Methodologies and Applications” , Conference Proceedings, Vol. 82, S.Mobilio and 
G.Vlaic, Editors, S.Margherita di Pula, 2001 
 
W.R.McKinney, M.Howells, H.Padmore, “Aberration analysis calculations for 
Synchrotron radiation beamline design” , in “Gratings and Grating Monochromators for 
Synchrotron Radiation”, W.R. McKinney, C. A. Palmer, Eds., Proc. SPIE Vol.3150, 
1997 
 
A.G. Michette, “Optical Systems for X Rays” , Plenum Press, 1986 

W.B.Peatman, “Gratings, mirrors and slits” , Gordon and Breach Science Publishers, 1997 
 
J.B. West and H.A. Padmore, “Optical Engineering”  in “Handbook on Synchrotron 
Radiation” , Vol.2, G.V.Marr, Editor, North Holland, 1987, chapter 2 
 
G.P.Williams, “Monocromator Systems”, in “Synchrotron Radiation Research: Advances 
in Surface and Interface Science” ,Vol.2, R.Z.Bachrach, Editor, Plenum Press, 1992, 
chapter 9 


