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The eectron beam

The electron beam circulating in a synchrotron radiation source is an ensembl e of
particles moving in such away that the velocity in one direction is much greater than the
velocity in the other directions.

Let us define a Cartesian coordinate system in which the y axis is the instantaneous beam
direction and x and z are respectively in and perpendicular to the electron ring plane.

The state of each electron can be specified by a point in the 6-dimensiona phase space
{X,y,z,vx,Vy,Vz} . Usually the longitudinal motion along the beam axisy is decoupled from
the motion in the transverse xz plane and the 6-dimensional space can be split into a
longitudinal 2-dim phase space and a transverse 4-dim phase space. We will consider
only the transverse phase space { X,z,vx,Vz} . The transverse velocities of the electrons are
usually expressed in terms of the direction cosines:
VvV, =Vvcosa

vV, =VCosy

where a and y are the angles between the
instantaneous el ectron velocity vV and the reference

axes x and z.

Introducing the new coordinates:
X'= cosa

Z'=cosy

and using the hypothesis:

v, >>V,,V,

the transverse velocities are proportional to x’,z":
v, Lv,X

v, Ov,Z

In first approximation, X’ and z have avery simple meaning: X’ and Z' are the angles
between the y axis and the projections of the instantaneous el ectron velocity respectively
in the xy and yz plane.

Oneisusually more interested to know about the anglesx’ and z', therefore the
transverse phase spaceis considered to be { x,z,x’,Z'} instead of {x,z,vx,Vz}.

An electron beam can be represented in a phase space diagram as a cloud of points within
aclose contour, usualy an elipse. The example of an instantaneous cross section of a
beam at awaist is shown in the following sketch.




The areawithin the close contour is called the emittance of the beam. Emittance isavery
important parameter for the electron beam. Liouville theorem states that if the forces
acting on the electrons are conservative, emittance is conserved. Thisiswhat happensto
the electron beam: along the ring, the shape of the occupied phase space changes but the
volume remains constant.

If the ellipse is upright, its area, which is the product of the two semi-axes, isthe beam
size multiplied by the beam divergence. In this case Liouvill€' s theorem states that the
product beam size multiplied by beam divergence is conserved.

Example 1. adiverging beam.

<> < >
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In the first position, electrons are crowded in physical space and spread out in angles
In the second position, electrons are diffuse in physical space and angles. the
corresponding ellipseistilted, but its area remains constant

Example 2: afocusing beam.
After the focusing action of a quadrupole magnet, the beam will be more confined in
space and more divergent in angles.
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The area of the ellipse representing the occupied phase space is dways the same: if you
confine the beam in space you make it more divergent, if you make it more parallel the
beam diameter increases.

For a4 dimensional transverse phase space, the el ectron beam emittanceis:

€=0.0¢

where:

Oc isthe latera extent of the electron beam

0’ isthe solid angle of the electrons trajectories around the ideal traectory.

Since the two orthogonal latera directions are only weakly coupled, it is useful to define
ahorizontal emittance g, and a vertical emittance €;:

&= C gy

where C is the coupling factor, which, like the emittance, is an invariant of the system.
The coupling factor depends on the “goodness’ of the alignment of the magnet fieldsin
thering.

The third generation synchrotron radiation sources are optimized for low-emittance
electron beams.

Caseof ELETTRA:

Electron energy=2GeV

Horizontal emittance €x = 7 micron mrad



C=1%

In the straight sections the el ectron beam has:
Horizontal /vertical dimensions = 241/15 micron
Horizontal/vertica divergence = 29/6 microrad

Basic properties of synchrotron radiation

The main distinguishing properties of synchrotron radiation (SR) that make it so
advantageous depend on the characteristics of the storage ring and are summarized in the
following:

1. photon energy can be selected in avery broad and continuous spectral range, from
infrared through vacuum-ultraviolet, extreme ultraviolet, soft x-rays up to hard x-
ray region.

SR has high intensity

the emitted radiation is highly collimated and emanates from avery small source,

the electron beam

4. the électronsin the storage ring are grouped in bunches, therefore SR is emitted as
pul ses from each bunch

5. SRishighly polarized: SR emitted from bending magnets and conventional 1D in
the plane of the ring islinear polarized (the electric vector liesin the plane of the
ring). Above and below the plane of the ring the radiation is elliptically polarized.

whmn

Property number 3 can be well described introducing a parameter called “brilliance”,
which is acombination of the emitted flux and of two geometric characteristics: the
source size and the angular spreads of the emitted beam:

photon flux 1
I 0,0,0,0,BW

Brilliance =

| = electron current in the storage ring

0,0, = transverse area from which the SR is emitted

0,0, = solid angle into which the SR is emitted

BW = spectral bandwidth, usually A—EE =01%

The Cartesian reference system is the same as that introduced for the electron beam: the y
axisisthe central direction of the photon beam while x and z are in the transverse plane,
in and perpendicular to the orbit plane.

z
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Brilliance is the main figure of merit of SR sources.

As an example, the following figure shows the photon brilliance
(photons/s/0.1%BW/mrad) as a function of photon energy for different ID’s at
ELETTRA, eectron energy 2GeV, electron current 300mA.
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The figureillustrates how wiggler and undulator sources can provide greatly improved
synchrotron characteristics over more conventional bending magnet radiation.

Why is brilliance important?

On one hand, the importance of a higher flux is evident: more flux means more signal for
the experiment. Moreover, having alot of photonsin anarrow energy band allows to
reach a good energy resolution with a sufficient signal, that is without increasing the
acquisition time.

But why combining the flux with geometrical factors? The answer is provided by
Liouville stheorem, that we have already applied to the electron beam. Applied to optics
it states that the occupied phase space volume is constant along the optical path for an
optical system without losses. More simply, Liouvill€' s theorem states that the product
(beam size x beam divergence) cannot be decreased without |0osing photons. This
implies that to focus a beam in asmall spot (which is needed for achieving high energy
and/or spatial resolution) one must accept an increase in the beam divergence. Along the
beamline this requires the installation of large size optical devices, which are expensive
and have lower optical qualities. But also at the sample the divergence cannot be made
arbitrarily large: it isimpossible to concentrate the whole radiation in an arbitrarily small
spot. With anot brilliant source the spot size at the sample can be made small only
reducing the photon flux.

The answer to the question “why is brilliance important?’ is therefore the following: the
high brilliance of the radiation source alows the development of monochromators with
high energy resolution and high throughput and gives also the possibility to image a beam
down to avery small spot on the sample with high intensity.



The beamline

The researcher needs at his experiment a certain number of photons/second into a phase
volume of some particular characteristics. Each kind of experiment imposes different
demands, for example scanning microscopy needs a high flux of photons focused in a
sub-micron spot. Moreover, these photons have to be monochromatized to a greater or
less extent.

Thisisthe job of the beamline: the beamline is the means of bringing the radiation from
the source to the experiment transforming the phase volume in a controlled way, that is:
demagnifying and monochromatizing the source and refocusing it onto a sample.

In doing this, the beam-line must preserve the excellent qualities of the radiation up to the
experiment. We have seen that third generation synchrotron radiation sources are
optimized for low-emittance el ectron beams and high-brilliance radiation: the beam-line
scientist and engineer has to design a beam-line that transfers this brilliance to the
experiment. We will come back to thisissue.

We restrict ourselves to photon energies from 10 to 2000eV. This energy range includes
Vacuum Ultra Violet (VUV ,which extends from 4eV to 30eV ), Extreme Ultra Violet
(EUV, from 30eV to 250eV) and soft x-ray regions (up to several keV). These limits are
not precisely defined and can vary from author to author.

VUV, EUV and soft x-ray regions are very interesting because they are characterized by
the presence of the absorption edges of most low and intermediate Z elements (Z isthe
atomic number). Thus photons with these energies are avery sensitive tool for elemental
and chemical identification. But from the point of view of the optics, these absorption
edges make these regions difficult to access. What makes VUV and soft x-ray radiation
so different from neighboring spectral regions s the high degree of absorptionin all
materials. At lower photon energies, in the visible and ultraviolet, and at higher photon
energies, in the hard x-ray region, many materials become transparent, but at VUV and
soft x-rays al materials are absorbing. Because no windows are available, the entire
optical system must be kept under vacuum in order not to disturb the storage ring and the
experiment. Moreover, ultrahigh vacuum conditions (P=1-2x10-° mbar) are required to
avoid photon absorption in air and to protect the optical surfaces from contamination
(especially from carbon).

The other consequence of the strong absorption of radiation by al materialsin this
spectral region isthat no refractive optics are available. The only* optical elements which
can be used in the VUV and soft x-rays regions are mirrors and diffraction gratings, used
in reflection.

Moreover, the reflectivity of ordinary materials® are very small and, at a given energy,
drop down fast with the increasing of the grazing incidence angle. Therefore only mirrors
and gratings at grazing incidence angles (1-2 degrees) are used. As an example, the
following figure shows the reflectivity of gold as afunction of photon energy for
different incidence angles.

! There are few exceptions, for example zone plates, which are transmission optical devices composed of
nanometer-scale concentric metal rings which are used to focus x-rays.
2 Special materials called multilayers can be built with high reflectivity at particular given energies.
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Focusing properties and surface equations of common optical elements

X-ray optics can have different kinds of geometrical shapes: they vary from plane to
more exotic aspherica forms. We will review the main focusing properties of the more
common geometrical surfaces: paraboloid, ellipsoid, toroid.

First, let us consider a generic concave mirror and a point source A which is focused to
the point B. The plane defined by the central ray AO and the normal to the mirror in O is
called tangential or meridional plane. The plane perpendicular to the tangentia plane and
containing the normal to the surface in O is called sagittal plane. We'll use a Cartesian
reference system with originin O, x axis normal to the surfacein O, y and z axis
belonging to the plane tangent to the mirror in O, y belongs to the tangential plane, x to
the sagittal plane.

Sagittal
\di[‘EEfIOH

Meridian
direction



Paraboloid

The parabola has the property that rays traveling parallel to the symmetry axis OX are all
focused to apoint at A. Conversely, the parabola will collimate rays emanating from a
point situated at the focus of the parabola A.

AY

- S

\ Y SP parallel to X0

If focusing in one plane only is required, the mirror surface would be plane in the
direction perpendicular to the plane of the diagram. If the angle of incidence on the off-
axissegment is 7, fisthe distance from the pole of the segment to the focus and a is the
distance from the focus to the pole of the parabola, then the line equation for the parabola
is:

Y? = 4ax

where

a=fcos’d

The position of the pole can be given by

X, =atan’$

Y, = 2atand

If double focusing is required, a paraboloidal shape could be used and can be obtained by
rotating a parabola around its axis of symmetry OX. The equation of the surface of the
paraboloid would then be

Y2 +272% = 4aX



The above equations use a Cartesian coordinate system centered on the pole of the
parabola (X,Y,Z). Itisoften necessary, however, to use the reference coordinate system
(xyz) introduced before, centered on the center of the optical segment under
consideration. In this coordinate system, the equation of the paraboloid becomes

x?sin® &+ y® cos® &+ z° - 2xysing cosd — daxsecd =0

Ellipsoid

The ellipse has the property that rays from one point focus F; will always be perfectly
focused to the second point focus F,. In a Cartesian system (X,Y,Z) centered on the
center of the ellipse O, the equation of the ellipse is given by

2 2
X Y:1

a? b?

The parameters of the ellipse a and b can be defined in terms of the object and image
distancesr and r’ and the angle of incidence J by

r+r'
2

b=ayl-e?

where eisthe eccentricity and is given by

ezzi\/r2 +1'2-2rr'cos(2:9)
a

The position of the pole of the element is given by

Y, = re'sin (29)
2ae
Y2
X, = 1—b—°2

If double focusing is required, an elipsoidal shape could be used. This would be obtained
by rotating the e lipse around the major axis OX. The equation of the surface formed
would be given

X% y? Zz?
-+ —+—=1
a’? b?> b?



In the coordinate system x,y,z with the origin at the center of the optical, the surface
equation of the ellipsoid is given by

b2 b2 b2

b? a’

b

.2 2 2 ; 2 2
Xz[sm 9 1j+y2(cos §j+z _X(4fcosﬂj_xy{25|nz9\/e2 sin 79}:0

Toroids

The bicycle tyre toroid is generated by rotating a circle of radius p in an arc of radius R.
(p isthe minor radius, R isthe mgjor radius.).
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/ Bicycle tyre toroid

In the coordinate system x,y,z with the origin at the center of the optical element, the
surface equation can be given as

x?+y*+ 7> =2Rx-2R(R- p) +2(R- p)4/(R-X)? + y?

The conditions for a meridian focus are

(E+1jcosz9_i
r r') 2 R

and for a sagittal focus are

(Li) 1 .1
r r')2cosd p

To obtain a stigmatic image of a point source we therefore have the relationship between
Rand p:

P - cos? 9
R

The following sketch illustrates a vertical deflecting toroidal mirror: the point source A
has the tangential focus T and the sagittal focus S in two different positions. The bundle
of rays in the meridian plane MON, which also contains the source point A, forms an
image of A at the vertical meridional focus T. Bundles of meridional rayslike AK and
AL will be focused each in their own plane of incidence, so the meridiona image of the
point A isahorizontal line. The sagittal bundles reflected from KOL will be focused at
the sagittal focus S. The sagittal bundles reflected from zones of the mirror before and
after KOL will be focused to points above and below S. The sagittal image of the point A
istherefore avertical line.

11



A special case of toroid is a sphere: p=R. Therelation R =cos’9 impliesthat a

stigmatic image can be obtained only if J =0, that is: for a spherica mirror a stigmatic
image can only be obtained at normal incidence. For avertical deflecting spherical mirror
at grazing incidence the horizontal sagittal focusis always further away from the mirror
than the vertical tangential focus. The spherical mirror only weakly focusses in the
sagittal direction.

Diffraction gratings

A diffraction grating is the heart of a soft x-rays beamline: it separates the different
components of the spectrum by redirecting the radiation by an amount which depends
upon the wavelength. A slit after agrating is therefore able to select and trasmit a given
narrow band of wavelengths. The most common grating consists of a suitablerigid
substrate with an optical surface upon which are produced a series of equispaced paralel
grooves. The standard notation used is shown in the following sketch.

Radiation of wavelength A incident on the grating at an angle o, measured with respect
to the surface normal, is either reflected (zero order) or diffracted at an angle 3. The
diffraction angle 3 is related to the angle of incidence a, the groove density N and the
wavelength A by the grating equation:

sing +sin 8 = NkA

o and 3 are of opposite sign if on opposite sides of the surface normal. In the figure, a is
positive and 3 is negative. Diffraction into orders whose angles [3 are greater than that of

12



the zero-order beam are called “negative” or outside orders, and for these k takes
negative values. Inthefigure, B isshown for the first negative order.

The relative amount of light of wavelength A reflected or diffracted into a particular order
k is determined by the shape of the grooves and by the materia on the grating surface.

k=-2 Outside,

I ncident edaive
wavelength A 5 k= o(ragerc
| k=2 k=1,
Grating
normal :
Inside,
positive
orders

Conserving brilliance

The basic elements of a beam-line working in the photon energy range from 10 to
2000eV are mirrors, gratings and dlits.
Total reflection X-ray mirrors operating at grazing angles of incidence can efficiently
focus awide beam of x-rays. Mirrors can also be employed asfilters to effectively reflect
or pass x-rays below a certain cut-off energy and to absorb or block x-rays above this
energy. Gratings diffract radiation as a function of the wavelength and dlits spatially
select the dispersed radiation.
In doing these jobs, the optical elements have to preserve the high quality of the
radiation. We have seen that the parameter that well describes the quality of the emitted
radiation is brilliance. Conserving brilliance along a beam-line requires special attention.
Brilliance decreases because of different reasons:

- Micro-roughness and slope errors on optical surfaces

- Therma deformations of optical elements due to heat load produced by the high

power radiation

- Aberrations of optical e ements
We will not consider the effects of real optical surfaces, such as slope errors, roughness,
and thermal induced deformations; we will study the focusing properties of optical
elements, mirrors and gratings, with theoretical surface shapes. These optical elements
produce aberrated images. Let us understand what aberrations are.
Anideal optica element is able to perform perfect imaging if al the rays originating
from a single object point cross at a single image point, or, equivaently, the wave front in
image space has a spherical shape centered on the image point.

13
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Deviations from perfect imaging are called aberrations.

Image quality is essentia for achieving high energy and spatial resolution: knowledge of
the aberration theory is therefore necessary for the design of abeamline.

Aberration theory alows to treat mathematically in general terms the focusing properties
of a concave optical element. We will study the case of a grating, amirror can be
considered a particular case of grating with zero density of lines. The general theory of
aberrations of diffraction gratings applies Fermat’s principle to derive expressions for the
aberrations coefficients.

Principle of Fermat

Fermat’ s principle asserts that light rays choose their paths to minimize the optica length.
The optical length is defined by the actual length of the path times the index of refraction
of the medium. Assuming the index of refraction to vary as afunction of the position,
n(r), the optical path length from point A to point B is given by

B

j n(7)dl

A

where dl =/dx? +dy? +dz® istheline segment along the path.

If amedium has a constant refraction index, Fermat’s principle states that light will travel
along straight lines.

Since

n(@)dl = Sdl = cdt
\%

where c isthe light speed in vacuum and v is the light speed in the medium, the optical
B

path length is equal to cj dt. That iswhy the principle of Fermat is aso known as the
A

principle of least time: the actua path between two points taken by abeam of light isthe
one which is traversed in the least time. The laws of reflection and refraction directly
follow from Fermat’ principle.

14



Theory of conventional diffraction gratings

The following figure shows aclassical concave grating with paralel rectilinear grooves
and constant spacing d. The Cartesian coordinate system has origin O in the grating pole,
x-axis dong the normal to the surface at O and y- and z-axes belonging to the plane
tangent to the grating at O. The z-axisis parallel to the groove which passes through O.
Let us consider alight ray which leaves the generic point A(Xa, Ya, Za), hitsthe
mirror/grating surface at an arbitrary point P(x,y,z) and is reflected/diffracted to the point
B(Xb, Yb, Zb).

Let assume that the refraction index is constant, therefore light travels along straight
lines. The optical path length F for that ray in the case of amirror is simply:
F=AP+PB

For a grating an additional term hasto be inserted to cope with the physical optics of
diffraction. For aclassical grating with rectilinear grooves with constant spacing d, this
additional termis:

F=AP+PB+kNAy

where A is the wavelength of the diffracted light, k is the order of diffraction (£1,%2,...),
N=1/d is the grating groove density. To better understand this additiona term, let us
consider two points on the grating surface, P, and P, , separated by an integer number of
grooves. The last term accounts for the fact that the distances AP;B and AP,B may be
different and the light along both rays may be in phase at B if the difference between
these two distances contains an integer number of wavelengths. If P,and P, are one
groove apart, the number of wavelengths in the difference is the order of diffraction.

In the above drawing the positions of A and B are specified by the cylindrical coordinates
r,d, za andr’ 3, z,; the angles of incidence and diffraction, a and 3, are measured in the

15



Xy plane and the signs of a and 3 are opposite if the incident and diffracted rays are on
opposite sides of the xy plane (in the figure a is negative and 3 is positive.)

The groove profileisignored in this geometrical treatment of grating aberrations, but it is
of course extremely important in the calculation of intensity distribution.

Now, let us consider some number of light rays starting from A and impinging on the
grating at different points P. Fermat’s principle states that if the point A isto beimaged at
the point B, then al the optical path lengths from A viathe grating surface to B will be
the same. Thus B will be the point of a perfect focusif the two equations:

a_F:O a_F:O
oy 0z

are satisfied simultaneously by any pair of (y,z). For amirror, thisis accomplished if the
surface has the correct geometry. For a grating, the shape of the surface and the groove
density N decideif the desired result will be achieved.

In generd, oF and oF are functions of y and z and can not be made zero for any (y,z).

oy 0z
Therefore when the point P wanders over the grating surface, diffracted raysfall on
dightly different points on the focal plane and an aberrated imageisformed. The image
produced by the centra ray (which isthe ray passing through the origin O) is called the
Gaussian image (point Bo in the following figure).

Theray diffracted by the generic point P on the grating surface will arrive at a different
point B: the displacement of B with respect to By is called the ray aberration. The goal of
an aberration theory isto produce simple expressions for these intersection points B in
the image plane produced by the rays diffracted from different points on the gratings

16



surface. We will see that these expressions can be reduced to aform consisting of asum
in powers of the aperture coordinates y and z, each term representing a particular
geometric aberration. By adjusting the values of the different parameters, such as
substrate shape, groove density, object and image distances, the sum of the aberrations
can be reduced.

The mirror/grating surface may be described by its analytical equation or may in general
be described by a series expansion:

00

X=Z aijyizj

0
i=0 j=0

where ag = ay0 = ap;= 0 because of the choice of origin and j=even if the xy planeisa
symmetry plane.

Giving suitable values to the coefficients &;’s, we obtain the expressions for the various
possible surfaces. The first coefficients for toroidal, paraboloida and ellipsoidal surfaces
arereported in the following. Vaues for the toroidal and elipsoidal coefficients are given
to sixth order at http://xdb.Ibl.gov/Section4/Sec_4-3Extended.pdf. The geometry and the
parameters for the three different cases have been introduced before, when we described
these three geometrical surfaces.

Note that sphere, cylinder and plane are special cases of the toroid:

R=p = sphere

R=c0 - cylinder

R=p=c - plane.

For gratings only toroids, sphere and plane surfaces are of interest.

Toroid
1 1 R 1
Any 51 azo_ﬁi a22_4R2,0’ 40_8R31
1
ay = 8p3; a,=0 a; =0
Paraboloid
8, = 1 _ cosd 0 = 3sin’d
> 4fcosd’ P 4f T ® 32f3cosd
_ tand. _singcos?
a12__8f2’ Ay =~ gf2
a _5sin®gcosd 8, = sin®g9
0 64f® ' ™ 64ficos’S
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Ellipsoid

N SN _ cosd . _ b? sin2ﬂ+i_
Bz 4f cosd’ °  4f Bos 64f3cos®9 | b®> az|
tand 2 2 g2 SN (, ., W2
=—— — |ee-d9n-g) ; = e  —-sin“ 3| ;
B b? 5sin®fcos’sd 5sin?g 1 |
a40 - 3 3 2 - 2 t—
64f ° cos’ I b a a

_sin?g 3 L. b? cos’ 9
ay=—5———— | =C0s’F-—|1-
16f°cos’d | 2 a 2

-1
where f:[}+1}
ror

Now, let us consider the optical path function F. The path lengths AP and PB can be
expressed as.

AP = (x, =X +(y, —y) +(z. - 2)

P_B:\/(Xb_x)2 +(yb _y)2+(zb_z)2

and x can be substituted with the power seriesiny and z:

It is also convenient to express the position of A and B in cylindrical coordinates:

X, =TI cosa y, =rsna

X, =r'cosf Y, =r'sing

After these substitutions, the resulting expression for F can be expressed as a power
seriesin the aperture coordinates y and z:

18



F= Z Fijkyi z
ik

1 1 1 1 1 1
= Fogo + YFigo + ZFoy + > Y*Fao + By Z*Fop + > Y*Fooo * > y2*Fp + 3 Y*Fao + 1 Y?Z*Fyp +

1 1 1 1
+§ Z4|:040 + yZFlll +§ yFlOZ +Z y2F202 +§ yZZlel t..

It can be proved that the coefficient Fjx has the general structure:

Fi = Z:Cijk(a1r) + ZtlJ(Cijk (B,r')+NkA f,
_ |1 when ijk =100
1o  otherwise

The first two subscriptsi,j refer to the exponents of y and z, the third subscript k refers to
the exponent of z, and z, .

We have seen that the condition for having a perfect focus is that the two partial
derivatives of F are zero for each pair (y,z). This meansthat all (except Fooo) the
coefficients Fj, must be zero. No optical system can be made to satisfy all these
conditions at once: the operative approach is to understand which are the most significant
terms and set them to zero. In thisway the two derivatives, also if not equal to zero, are
small enough.

Each term in the series (except the first two terms Foop and Figo) represents a particul ar
type of aberration and the corresponding coefficient Fjkisrelated to the strength of that
aberration. Thiswill be clearer in the following.

The expressions of the most important terms, for r,r’ >> z,,z,, are reported in the
following.
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Foo =T +1"
Fioo = NkKA = (sina +sin )

Fao = (COS g, 'Bj 2a,, (COSO’ +cosf )

I

r r
1 1

Foo = — +— —2a,,(cosa + cos )
ror

0, a)}sna{T(r',ﬂ)
-

r

EC a)}sna{s(r',ﬂ)
g

r

Fao =

}sin B - 2a,,(cosa +cos 3)

Fipo =

}sin B - 2a,,(cosa +cos )

F4oo = 4T(I’ O’)}Sm 0’—|:T2(r’a):|+{4T$_r,,2”3)}5in2IB_|:T2—(r'”8):|

r r r'

.8 [sinarcosaJrsin,Br(,:oSﬁ}_ga (COSCHcos,8)+4azo[lr1 rl}
,:220_[25(r a)}m o+ [ZS(rr"z,ﬁ)}Sinzﬁ_[T(r,a)S(r,a)}_{T(r’,ﬁ)S(r’,,B)}

r r r'

singcosa , sin,Bcos,B}

+4a,,a,, E + %} — 4a,, (cosa +cos B) - 4a12[ ; -

Foso :4a§2[%+%}—8a04(cosa+cos,8){82(rr’a)}—{82(:,"8)}
Fou __%_%
Fu, Z, S|2na zbs! 21 B
r r
_zsna  z°snp
Fi2 2 2

Fm:(éjz{zgnza—T(r,a)H—,] {29” G ﬂ)}
r r r r
F211=3{T<r,a)—29?2”} {T(r B2 ﬂ

cos’ a

where T(r,a) =

—-2a,cosa and  S(r,a)=—-2a,,cosa

and analogousexpressionsfor T(r', 8) and S(r', 5)
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Now, let us apply Fermat’s principle to the central ray, that isthe ray which passesvia
the pole of the grating where x=y=z=0. Imposing:

(%) (5.
oy y=2=0 0Z ) pep

we obtain the following expressions:

Fi00=0 > sina +sing, = NkA
Fo11=0 > é:—ﬁ
r

The first equation, F100=0, is the grating equation. For N->0 (no grating) it ssimply gives
the law of reflection in the plane xy: a=-f3.

The second equation, Fp11=0, is the law of magnification in the sagittal direction. Let us
remind that z, z, are the out-of-plane heights at the object and image points. The equation
saysthat in the vertical plane the grating acts as a mirror: the angle of incidence in the

sagittal plane, arctan Za , isequal to the angle of reflection, arctanz—b,O . The sagittal
r r

0
'

e . T
magnification %0 g equal to theratio 2.

z, r

The tangential foca distancer’ of the Gaussian image is obtained by setting the focusing
term F0 equal to zero:

cos’ a N cos® B,
I

r o

Fa00=0 > ( j - 2a,,(cosa +cos3,) =0

The three equations. F100=0, Fo11=0, F200=0, determine the Gaussian image point
Bo(r 0:BorZio) » that is the perfect image point.

While the second order aberration term Fxoo governs the tangential focusing, the second
order term Fyzo governs the sagittal focusing.
The sagittal focus condition is obtained by setting Fozo equal to zero:

Fo20=0 > % + rl — 2a,,(cosa +cosB)=0
The associated aberrations are called defocus and astigmatism, respectively.
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The two aberrations describe the extent of an image, defocusdescribes the blurring of the
image in the tangential plane, astigmatism pertains to the extent of theimage in the
sagittal direction. In asoft x-ray monochromator, the tangential planeisusually vertical
and the sagittal planeishorizontal. In a storage ring the vertical source sizeis smaller
than the horizontal source size and therefore the dispersion planeis usualy chosen to be
the vertical planein order to reach a higher energy resolution.

Actudly astigmatism defines the condition in which the tangential and sagittal foci are
not coincident, which implies aline image at the tangential focus.

Toroidal mirror example.
Substituting the coefficients a,, and &y, with their expressions corresponding to atoroidal
surface:

1,1
Ao, 2,0’ 20~ 50

and assuming that a=- 3= -0, the tangential and sagittal focusing conditions become the
relations already introduced for the tangential and sagittal foci of atoroida mirror:

(1 1}(:05:9
T+ o= =
rr'

(Lij 1 _1
r r'j2cosd p

While higher order aberrations are usually of less importance than defocus and
astigmatism, they can be significant. For example it can be important to minimize the
third order aberrations primary coma F30 and astigmatic coma Fi20. The fourth order
terms Fa00 F220 Foao Can be regarded as generalized types of spherical aberration.

Other higher order terms contribute to secondary coma, secondary spherical aberrations,
field curvature and distortion.

Calculation of ray aberrations

By definition, the central ray AO arrives at the Gaussian image point Bg , which
coordinates (ro’,Bo,200) are determined by the equations: F100=0, Fo11=0, F200=0. In
general, the ray starting from A will arrive at the focal plane at a point B displaced from
the Gaussian image point Bo by the ray aberrations Ay, and Az, .

It can be shown that:

I

Lo F
® cosf, dy
oF
Az, =1, —
Z, =Ty 3
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The meaning of the non-zero differentials oF Z O,O—F # 0, isthat of achangeinthe

ay 0z
appropriate direction cosine of the emergent ray from the Gaussian value. The division by
cos 3o comes from the coordinate transformation to the image plane.
If we substitute the power series expansion of F in the aperture coordinate,
F=> F,Y'z, wecan calculatethe ray aberrations for each aberration type:

ijk

. r! L )
Ay =—2—F, iy™*Z
b COSﬂO ijk

ik _ it
Az," =1 Fy Yz

The above equations describe the impact of each aberration term on the final image.
Thefinal ray displacement is given by summing all the individual aberrations:

By, = By,"
i
Az, = Az,™

ijk

Each coefficient Fj represents a particular form of aberration and isrelated to the
strength of that aberration. An aberration is absent from an image (of a given wavelength
in agiven order of diffraction) if its associated coefficient Fj is zero.

Inserting the geometrical parameters a; corresponding to the grating surface shape, we
obtain the F;jx coefficients and with them we can calculate the size of the aberrated image
that we can expect from a given (perfectly made) grating. The parametersy and z have to
be chosen half the dimension of the photon spot on the grating surface:

y=w (half ruled lenght of the grating); z=I (half ruled width of the grating)

In this way we evaluate the contributions of the rays which are more distant from the pole
of the grating.
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2w=44mm

Let us consider in more details the defocus and coma contributions.

The defocusterm islinear in the ruled length of the grating (xw ) and gives an error (in
the dispersive direction) which is symmetric about the Gaussian image point,
corresponding to rays from the top and bottom of the grating :
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- cosf, (14)

If amonochromator is only limited by defocus, a decrease in the dispersive aperture will
cause a corresponding linear decrease in the dispersive error.

In contrast, the comaterm is proportional to w? giving a dispersive error which only
occurs on one side of the Gaussian image point for rays from both the top and the bottom
of the grating (y=tw):

I

I
Ay, (W) = —2— Fpp 3W?
Yo o (XW) c0s 3, 300

Az, 300 _

If the monochromator isonly limited by coma, areduction in dispersive aperture by a
factor of 2 will cause the error from the most aberrated raysto reduce by afactor of 4.
These conclusions have been reached without the need to consider the form of the
substrate. The shape of the substrate will ater the magnitude of the Fj terms and their
wavel ength dependence but not their aperture dependence.

Let us compare what can be learnt from aray trace and from the aberration theory,
considering the simple example in the following figure. Ray trace simple tells us that the
ray arrives in acertain point, the aberration theory shows that the ray arrives off the
perfect focus in the tangential direction because of Fx0, which is defocus (theimageis
imaged but not where you want it), and Fsgo which is primary coma. It arrives off the
perfect focus in the sagittal direction by Fgoo, Which is astigmatism, and Fos0. Knowing
this, the designer can have at least a beginning idea of how to combat the aberrated
performance.

Z A 7z A
(0] B B
Foo
Fozo
> — > y
Bo y Bo
Faoo
Ray tracing Aberration-based calculations
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Calculation of aberration contribution to resolution

Let us calculate the contribution to resolution caused by aberrations.

(aA
M ) (ﬁ]a:mna Aﬁ

Deriving the grating equation:

01 _ cosf
aﬂ a=const Nk

we have:

cosf
Nk

A =

AB

Substituting:

we get:

A = COSﬁ%
Nk r’

We have already seen that:

F _oosf
ay r

Then:

1 oF

Nk dy

and therefore:

1 C il
M:mZF”“y Lzl

ijk
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Inserting the geometrical parameters a; corresponding to the grating surface shape we
obtain the F;jx coefficients and with them we can cal cul ate the aberration-limited
wavelength resolution that we can expect from a given (perfectly made) grating.

In conclusion:

We have seen that the condition for having a perfect focus is that the two partial
derivatives must zero for each pair (y,z). Thismeansthat all the coefficients Fj (ijk#000)
must be zero. Non-zero values for the coefficients Fj« lead to displacements of the rays
arriving in the image plane from the ideal Gaussian image point. We have found the
expressions for these rays displacements and the corresponding contributions to energy
resolution. In this way the impact on the imaging and energy resolution properties of a
given grating can be evaluated. By a proper choice of the grating shape, groove density,
object and image distances, the sum of the aberrations may be reduced to a minimum.
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