TIFT united nations educational, scientific and cultural organization \bigcirc international atomic energy agency

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS In memory of J.C. Fuggle & L. Fonda

19 April - 21 May 2004

Miramare - Trieste, Italy

__

 1561/14

[Multilayers](#page-1-0)

 Massimo Altarelli

strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

REVIEW OF QUANTUM MECHANICS AND ATOMIC PHYSICS

M. ALTARELLI

30.04.2004

REVIEW OF QUANTUM MECHANICS AND ATOMIC PHYSICS

- 1. Who needs Quantum Mechanics?
- 2. The basic formalism: wave functions, operators
- 3. Energy, position, momentum, angular momentum,and their measurements.
- 4. The Schrödinger Equation, harmonic oscillator, hydrogen atom
- 5. Atomic Structure

1. Who needs Quantum Mechanics?

Blackbody radiation

Classical physics: at temperature T every mode has average energy $(1/2)$ **k**_B**T**

Number of modes between $, + d$ with $k_x=2n$ /L, etc.

$$
(\mathrm{V}/\mathrm{c}^3)\,8-{}^2\mathrm{d}
$$

Total Energy at temp. $T \sim T$ $^{2}dv =$!! θ

Blackbody radiation

Planck's constant: *h* = 6.6252 10[−]²⁷ *erg s* $\frac{1}{\sqrt{2}}$ $\hbar = h/2\pi = 1.0544 \; 10^{-27} erg \; s$

Einstein (1905): $E = h$

STABILITY OF "PLANETARY" ATOMS

Rutherford's α -particles scattering experiments show:

Electrons are waves, because they are diffracted by crystals and crystal surfaces!

Ag 100

Si 111 7X7

2. The basic formalism: wave functions, measurement operators.

In *classical* **physics the state of a particle at a given time is specified by the value of its position r(t) and its velocity v(t) (or momentum p(t)).**

More generally for a system of N particles the state is identified by giving $r_i(t)$ **,** $p_i(t)$ **, with i =1,2,...N.**

In *quantum* **physics the state of a particle at a given time is specified by a complex wavefunction of its coordinates, x,y,z,t).**

Physical interpretation: $|\psi(x,y,z,t)|^2$ dxdydz proportional to **probability that a measurement at time t will find particle between x,y,z, and x+dx,y+dy, z+dz.**

2. The basic formalism: wave functions, measurement operators, measurement

Note that $|\psi(x,y,z,t)|^2 dx dy dz$ is equal - and not just **proportional to the probability if:**

$$
\left|\psi(x, y, z, t)\right|^2 dxdydz = 1
$$

For a system of N particles, generalize:

 $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t}$ => $\psi(\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1; \mathbf{x}_2, \mathbf{y}_2, \mathbf{z}_2; \dots; \mathbf{x}_N, \mathbf{y}_N, \mathbf{z}_N; \mathbf{t})$

Related to prob. of finding one particle between r¹ and $\mathbf{r}_1 + \mathbf{d} \, \mathbf{r}_1$, one between \mathbf{r}_2 and $\mathbf{r}_2 + \mathbf{d} \, \mathbf{r}_2$, etc.

Observable physical quantites:

e.g. the *position* x,y,z of a particle; the *momentum* p_x , p_y , p_z , of a particle; the *z* component of its angular momentum l_z ; its *energy* E

the *total momentum* $P = p_i$ of a system of particles.

In Quantum Mechanics observables correspond to *linear***,** *selfadjoint* **(or** *hermitian***) operators in the vector space of wavefunctions**

Definition:

Operator \hat{O} *:* $\hat{O} \psi(x,y,z) = \psi_1(x,y,z)$; it operates (performs an operation) on the wavefunction $\psi(x,y,z)$ that transforms it into a different function $\psi_1(x,y,z)$.

Examples of Operators:

$$
\frac{\partial}{\partial x} : \hat{\mathbf{O}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{\partial}{\partial x} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})
$$
\n
$$
e^{i\phi} : \hat{\mathbf{O}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = e^{i\phi} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})
$$
\n
$$
x \frac{\partial}{\partial y} : \hat{\mathbf{O}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = x \frac{\partial}{\partial y} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})
$$

Definitions:

Linear operator:

 \hat{O} $[c_1 \psi_1(x,y,z) + c_2 \psi_2(x,y,z)] = c_1 \hat{O} \psi_1(x,y,z) + c_2 \hat{O} \psi_2(x,y,z)$

Scalar product of two wavefunctions:

 $\int_{1} \left| \psi_{2} \right| = \psi_{1}^{*}(x, y, z) \psi_{2}(x, y, z) dx dy dz$

Self-adjoint or hermitian operator :

An operator Ô such that for two arbitrary functions $\frac{1}{1}$ \boxed{O} \wedge 2 = *O* \wedge $\mathbf{u}_1 | \mathbf{v}_2 = \mathbf{v}_1 | \mathbf{O}$ \wedge $|\psi_2$ 1 $\int_1^*(x, y, z) \, O$ \wedge $\left\{O \psi_2(x,y,z)\right\} dx dy dz = \left\{O\right\}$ \wedge $\left\{O \psi_1(x,y,z)\right\}$ * ² (*x*, *y*,*z*)*dxdydz* Examples of hermitian operators:

3. Energy, position, momentum, angular momentum,…and their measurement

> Examples of correspondence between observables and operators:

Position along x [or y, z] $\hat{O} \psi(x,y,z) = x \psi(x,y,z)$ *[or y* ψ , *z* ψ *]* **Momentum component px :** *O* \wedge (*x*, *y*,*z*) = −*i*h *x* (*x*, *y*,*z*)

Kinetic energy of a particle with mass *m***,** $T=(p_x^2+p_y^2+p_x^2)/2m$ **:**

$$
\hat{O}\psi(x, y, z) = \frac{-\hbar^2}{2m} \quad {}^2\psi(x, y, z)
$$

$$
{}^2\psi(x, y, z) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\psi(x, y, z)
$$

Examples of correspondence between observables and operators

Angular momentum of a particle, $l = r$ *p* :

$$
L_x = (yp_z - zp_y) : -i\hbar(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y}) \psi(x, y, z)
$$

$$
L_y = (zp_x - xp_z) : -i\hbar(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z}) \psi(x, y, z)
$$

$$
L_z = (xp_y - yp_x) : -i\hbar(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}) \psi(x, y, z)
$$

Remarks on products of operators and commutation

$$
L_x = (yp_z - zp_y) \qquad \longrightarrow \qquad -i\hbar(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y})\psi(x, y, z)
$$

We implicitly used the notion of operator product, e.g. *yp^z* as the operator that first applies p_z to , than applies (i.e. multiplies by) **y** to the resulting function.

Operator product is non-commutative, in general:

$$
\hat{A} \hat{B} \psi(x, y, z) \hat{B} \hat{A} \psi(x, y, z)
$$
\n
$$
xp_x \psi = x(-i\hbar \frac{\partial}{\partial x} \psi) = -i\hbar x \frac{\partial}{\partial x} \psi
$$
\nExample:
\n
$$
p_x x \psi = -i\hbar \frac{\partial}{\partial x} (x \psi) = -i\hbar \psi - i\hbar x \frac{\partial}{\partial x} \psi
$$
\n**Commutator:**
$$
[x, p_x] = xp_x - p_x x = i\hbar
$$

Eigenvalues and eigenvectors of linear operators *Definition:*

n (x,y,z) is an *eigenvector* **(eigenfunction) of linear operator** $\hat{\bm{O}}$ with eigenvalue $\mathbf{e}_{\mathbf{n}}$ ($\mathbf{e}_{\mathbf{n}}$ is a number) if, for all x,y,z:

$$
\hat{O} \psi_n(x,y,z) = e_n \psi_n(x,y,z)
$$

Generalization: ϵ *e i* $\vec{k} \vec{r} = e^{ik_x x} e^{ik_y y} e^{ik_z z}$

Is an eigenvector of: $\mathbf{p}_x, \mathbf{p}_y, \mathbf{p}_z$ **with eigenvalues respectively:** \overline{a} $\hbar k_{_x},\hbar k_{_y},\hbar k_{_z}$

….and also of: $\hat{T} =$ *With eigenvalue:* \overline{a} *p* 2 2*m* $=\frac{-\hbar^2}{2}$ 2*m* \hbar^2 2*m* $(k_x^2 + k_y^2 + k_z^2)$

 $[L^2, L_z] = 0$

The spherical harmonics (l=0,1,2)

- $Y_{\ell m_l}(\theta,\phi)=\Theta_{\ell m_l}(\theta)\Phi_{m_l}(\phi)$ m_{ℓ} ℓ
- 0 $(1/4\pi)^{1/2}$ $\mathbf{0}$
- 0 $(3/4\pi)^{1/2}$ cos θ $\overline{1}$
- $\mathbf{1}$
- $\sqrt{2}$
- \overline{c}
- ± 2 $(15/32\pi)^{1/2} \sin^2 \theta e^{\pm 2i\phi}$ \overline{c}

$$
\Phi_{m_{\ell}}(\phi) = \frac{1}{\sqrt{2\pi}} e^{im_{\ell}\phi}
$$
\n
$$
\Theta_{\theta m_{\ell}}(\theta) = \left[\frac{2\ell + 1}{2} \frac{(\ell - m_{\ell})!}{(\ell + m_{\ell})!}\right]^{1/2} P_{\ell}^{m_{\ell}}(\theta)
$$
\n
$$
P_{\ell}^{m_{\ell}}(\theta) = associated \ Legendre \ polynomial
$$

Measurements of Observables in QM

If a system is in a state described by a wavefunction which is an eigenfunction of an operator *Ô*, with eigenvalue *e*, then measurements of the observable shall always produce the value *e.*

If on the other hand the system is in a state described as a linear superposition of the eigenfunctions of \hat{O} , $_{n}(x,y,z)$ with eigenvalues *eⁿ* , i.e.:

$$
\Psi(x, y, z) = c_n \Psi_n(x, y, z)
$$

Then the measurement of \hat{O} can produce any of the e_n values, with a probability equal to:

$$
P(e_n) = \frac{|c_n|^2}{|c_{n'}|^2}
$$

Measurements of Observables in QM

Before the measurement the wavefunction is:

$$
\Psi(x, y, z) = c_n \Psi_n(x, y, z)
$$

After the measurement, with result e_n it becomes:

 $\Psi_n(x, y, z)$

Three Important Theorems

Theorem 1. *All eigenvalues of a hermitian operator are real*

Theorem 2. *Eigenfunctions of the same operator corresponding to two different eigenvalues are orthogonal, i.e.*

$$
\hat{\mathbf{O}}\mathbf{\psi}_1 = e_1 \mathbf{\psi}_{11}, \hat{\mathbf{O}}\mathbf{\psi}_2 = e_2 \mathbf{\psi}_{22}
$$

\n
$$
\mathbf{e}_1 \quad \mathbf{e}_2
$$

\n
$$
\mathbf{inply:} \quad \mathbf{\psi}_1 \mid \mathbf{\psi}_2 = 0
$$

Theorem 3. *Eigenfunctions* ψ_n *of a hermitian operator are* a complete set, *i.e.* an arbitrary function $\psi(x, y, z)$ can be *written as:*

$$
\Psi(x, y, z) = c_n \Psi_n(x, y, z)
$$

4. The Schrödinger Equation and the Role of Energy

In *classical* physics a particle moving in an external potential V(x,y,z) has a Hamiltonian (energy written as a function of position and momentum) given by:

$$
H = \frac{p^2}{2m} + V(x, y, z)
$$

The corresponding *quantum mechanical* operator is:

$$
\hat{H} = \hat{T} + \hat{V} = \frac{-\hbar^2}{2m} + V(x, y, z),
$$

V λ where $V\psi(x, y, z) = V(x, y, z)\psi(x, y, z)$, (a multiplicative op.) Energy plays a very important role: it determines the time evolution of systems.

(Time-dependent) Schrödinger Equation:

$$
i\hbar \frac{\partial}{\partial t} \psi(x, y, z, t) = \hat{H} \psi(x, y, z, t)
$$

Suppose that at t=0 $(x,y,z,0)$ is an eigenvector of H^:

$$
\hat{H}\psi(x,y,z,0) = E_n\psi(x,y,z,0)
$$

(Time independent) Schrödinger Equation

Then, at $t=0$:

$$
i\hbar[-\psi(x,y,z,t)]_{t=0} = \hat{H}\psi(x,y,z,0) = E_n\psi(x,y,z,0)
$$

Solution:

$$
\psi(x,y,z,t) = \psi(x,y,z,0)e^{-i(E_n/\hbar)t}
$$

Consequence: for energy eigenfunctions, time dependence is just a *phase factor*, and:

$$
\left|\psi\left(\ ,\ ,\ ,\ \right)\right|^2=\left|\psi\left(\ ,\ ,\ ,\ \left|0\right|\right|^2\right|
$$

Probability distribution is **constant** in time: energy eigenfunctions are called **"stationary states".**

Time-independent Schrödinger Equation for Central Potentials

General motion of a particle in 3-dim. potential: *H* ^ $(x, y, z) = [\hbar^2$ $\frac{2}{ }$ 2*m* $+ V(x, y, z) \psi(x, y, z) = E \psi(x, y, z)$

Important class of potentials are those with with rotation invariance, i.e. depending only on distance from a centre:

$$
V(x,y,z) = V(\sqrt{x^2 + y^2 + z^2}) = V(r)
$$

Examples:

Coulomb potential

 $V(r) = -Z e^2/r$

3-dim. isotropic harmonic oscillator $V(r) = (1/2) m \omega^2 r^2$

General Structure of Solutions for Central Potentials

 $\hat{\textit{H}}$ Solutions labelled by 3 numbers n,l,m:

To describe $\psi_{nlm}(x,y,z)$ use spherical coordinates $\psi_{nlm}(r,\theta,\phi)$:

A two-body central force problem: the H atom

A two-body central force problem: the H atom

$$
(\hat{H}_R + \hat{H}_r) \quad (\vec{R}, \vec{r}) = E \quad (\vec{R}, \vec{r})
$$

$$
(\vec{R}, \vec{r}) = (\vec{R})\psi(\vec{r})
$$

Free particle motion of the whole atom:

$$
(\vec{R}) = e^{i\vec{K}\cdot\vec{R}}; E_R = \frac{\hbar^2}{2(M+m)}K^2
$$

Relative motion around the c. of m.:

$$
\psi(\vec{r}) = \psi_{nlm}(\vec{r}) = f_{nl}(r)Y_{l,m}(\theta, \varphi)
$$

Quantum Numbers and Orbitals

Orbital Energies

Fig 1. A few electronic energy levels of the hydrogen atom. As n increases the energy levels converge to a limit, and above this limit (the shaded area) there are a continuum of levels corresponding to complete separation

Orbital Shapes

• Note that the "1s" wavefunction has no angular dependence (i.e., and do not appear).

$$
\Psi_{1s} = \frac{1}{\sqrt{\pi}} \frac{Z}{a_o} \int_{0}^{\frac{3}{2}} e^{-\frac{Z}{a_o}r} = \frac{1}{\sqrt{\pi}} \frac{Z}{a_o} \int_{0}^{\frac{3}{2}} e^{-\sigma}
$$

\n**Bohr**
\n
$$
a_0 = \frac{\hbar^2}{me^2} = 0.539 \ 10^{-8} \, cm
$$

\nProbability = $\Psi^* \Psi$

• Probability is spherical

Orbital Shapes (cont)

- r dependence only
- as n increases, orbitals demonstrate n-1 nodes.

Orbital Shapes (cont.)

$2p$ ($l = 1$) orbitals

• labeled with respect to orientation along x, y, and z.

Orbital Shapes (cont.)

3p orbitals

• still can be represented by a "dumbbell" contour.

Orbital Shapes (cont.)

3d $(l = 2)$ orbitals

• **labeled as** d_{xz} **,** d_{yz} **,** d_{xy} **,** d_{x2-y2} **and** d_{z2} **.**

• exceedingly complex probability distributions.