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REVIEW OF QUANTUM MECHANICS
AND ATOMIC PHY SICS

1. Who needs Quantum Mechanics?

2. The basic formalism: wave functions, operators

3. Energy, position, momentum, angular momentum,and their

measurements.

4. The Schroédinger Equation, harmonic oscillator, hydrogen atom

5. Atomic Structure




1. Who needs Quantum Mechanics?

Blackbody radiation 83

Classical physics: at Number of modes between
temperature T every n, n#n with k. =2np/L, etc.
mode has aver age
energy (1/2) kgT

(V/c3) 8pn?dn

Total Energy attemp. T ~T Odv = I
0



Blackbody radiation

C Cl.Th
88 ? AE(n) s
Y| -
Energy in modes between n , nn:
>

Planck: Walls exchange energy
with field at frequency nonly in

quanta:

hn, 2hn, 3hn, 4n, ...




Planck’ s constant:

h=6.625220 *erg>s
h=h/2n =1.0544 X10"*" erg>s




PHOTOELECTRIC EFFECT

Experiment: NO photoel ectrons if
N < Ryesolg - INtENSItY Of light

determines intensity of
photocurrent, but not electron
energy. Electron kinetic energy

dependsonly on n!

Einstein (1905): E=hn




STABILITY OF “PLANETARY” ATOMS

Rutherford’s a—particles scattering experiments show:

Nucleus with charge +Ze

Z electrons each with charge -e

’ “ Planetary” model of the atom
SO

’V Why electrons do not radiate
and fall into the nucleus??



Electrons are waves, because they are diffracted by
crystals and crystal surfaces!

S 111 7X7



2. The basic formalism; wave functions,

operators.

In classical physicsthe state of a particleat a given timeis
specified by the value of its position r(t) and its velocity v(t) (or
momentum p(t)).

Moregenerally for a system of N particlesthe stateisidentified
by giving r;(t), p;(t), with i =1,2,...N.

In quantum physicsthe state of a particle at a given timeis
specified by a complex wavefunction of its coordinates,
Y(X,y,z1).

Physical interpretation: | w(x,y,z,t) | 2 dxdydz proportional to

probability that a measurement at timet will find particle
between Xx,y,z, and x+dx,y+dy, z+dz.



2. The basic formalism; wave functions,

operators, measurement

Notethat | y(x,y,zt) | ? dxdydz isequal - and not just
proportional to the probability if:

& (x ¥, 2t)] dxdydz =1

For a system of N particles, generalize:

W(X,Y,Zt) => W(X1,Y1,Z1; X0,Y2,Z0; -5 XY oy 1)

Related to prob. of finding one particle between r; and
r,+dr,, onebetweenr, and r,+dr,, etc.



Observable physical quantites:
e.g. thepositionx,y,z of aparticle;
the momentum p,, p,, p,, of aparticle;
the z component of its angular momentuml, ;

itsenergy E

the total momentum P = Sp, of a system of particles.

In Quantum M echanics observables correspond to linear, self-
adjoint (or hermitian) operatorsin the vector space of
wavefunctions



Definition;

Operator O: O y(x,y,2) = y,(X,y,2) ; it operates
(performs an operation ) on the wavefunction y(Xx,y,z)
that transformsit into a different function y,(x,y,2).

Examples of Operators:

d d

W O y(xy,2) = X Vo2

' i
el(p . Oy(xy,2) = e(p\p(x,y,z)

9 J
: O ) ) - X— ] )
5y | Ovixyd Y(xy,2)

dy




Definitions;

Linear operator:

O [c, wi(X.Y,2) + G yp(X,Y.2)] = ¢ O yi(Xy,2) + O y,(X,y,2)
Scalar product of two wavefunctions:

ay, |y ,fi= Ay, (XY, 2w, (X Y,2)dxdydz

Self-adjoint or hermitian operator :

An operator O such that for two arbitrary functions
ay | Oy,Nn= 2Dy, [y,n=ay, [O]y,F

& (%, z){sz(x,y, z)} dxdydz = c‘{owx, y z)} W, (X, ¥, 2) chclyciz



Examples of hermitian operators:

O = x, (areal multiplicative constant)

O = x (the operator that transformsy into xy ).

O=i d  (For functions that vanish at infinity, proof uses
=j— . .
X integration by parts)



3. Energy, position, momentum, angular momentum,...and

their measurement

Examples of correspondence between
observables and operators:

Position along x [or Y, Z] O w(xy,2) = xy(xy,2) [or yw,2zy]

M omentum component p, : CA)\V(x, V,2) =-ih axq;(x Y,2)

d
Kinetic energy of a particlewith massm, T=(p, %+ p, 2+ p,?)/2m
74,

2 82 82
+ =5 (XY.2)

Ov (XY,

KAy (x,y, 2) = (aX -



Examples of correspondence between
observables and operators

Angular momentum of aparticle, |=r p :

.., 0d %,
I—x - (ypz' Zpy) D Ih(ya_z - Z_)\V(X1 Y, Z)

L= @R) TS - X (%2

0
, = (Xp, - YB,): Ih(x—y-y (XY, 2)



Remarks on products of operators and commutation

.. 0 0
L= 0P = - inly= - Z@)\V(X, Y, 2)

We implicitly used the notion of operator product, e.g. yp,
as the operator that first appliesp, to y,than applies (i.e.

multiplies by) v to the resulting function.
Operator product is non-commutative, in general:

ABy (x,y,2) * BAy(X,y,2)

XpW = x(-ihi\p) =- ihxiw
oX 0X

Example:

.0 . 0
pxxw—-lhax(xw)— VA 'hxax“’

Commutator: [X,p,]=Xp, - pX=IiA



Eigenvalues and eigenvector s of linear operators
Definition:

v, (X,y,2) iIsan eigenvector (eigenfunction) of linear oper ator
O with eigenvalue e, (e, isa number) if, for all x,y,z:

O y,(X,y,2) = &, y,(X.y,2)

Example: A 0
O=p, =-1h—
P, 7

v (x,y,2) =0(x y)e*

Eigenvalue SZ(P(X’ y)ékzz — hkz(P(X’ y)eikzz

Eigenvector




Generalization: g** = g'*@“sYgkz?

| san eigenvector of: Py Py s P,
with eigenvaluesrespectively: 7k, 7k, 7k,
_ pZ - hZNZ
2m 2m

' ' " n’ 2 2 2
With eigenvalue: 2_m(k‘ + I +K2)

....and also of:



O=L12=L2+ L2+ L2

Spherica

g > Harmonic

‘EigenfunctionSZ Yxy.2) = X1 Y 1(9,0) J

L% ()Y, 0 0.0) =11 +2 5% (1)Y .0.0)
1=0,1.2,3,...; me-l-(-1),.....1-1]

Thesame x(r) Y (0,¢) are also eigenfunctions of L
Lx (DY, ®,¢) =max(r)Y .(6,¢)
Operators that commute have common eigenfunctions!

[L2,L,]=0



The spherical harmonics (1=0,1,2)

¢ m Y,(0,0)=6,,(0)®,(0)
0  (1/4m)"?

0 (3/4m)"cos0

+1  F(3/8m)"*sin@e™®

0  (5/16m)"*(3cos*0-1)
+1  F(15/8m) "% sinOcoshe*™

0

+2  (15/32m) "2 sin? g0

= } fmfﬁ':r
P9 «Jz

12
Jot+1¢=-m)]
BF”‘E{QJ_[ 2 (ﬁ+mF}1] B@)

P (8) = associated Legendre polynomial



Measurements of Observablesin QM

If asystem isin astate described by a wavefunction whichis an
eigenfunction of an operator O, with eigenvalue e, then
measurements of the observable shall always produce the value e.

If on the other hand the system isin a state described as alinear
superposition of the eigenfunctions of O, y (X,y,z) with
eigenvaluese,, i.e.: .

v(xYy,2=a cy.(X,y.2)

Then the measurement of O can produce any of the e, values, with
a probability equal to:

lc.|”
Pe)=w51—2
AT

n'



M easurements of Observablesin QM

Before the measurement the wavefunction is:

v(xy,2)=a ey, (% Y2

After the measurement, with result e, it becomes:

Va(xY,2)



Three Important Theorems

Theorem 1. All eigenvalues of a hermitian operator are real

Theorem 2.  Eigenfunctions of the same operator corresponding
to two different eigenvalues are orthogonal, i.e.

Oy, =ey.,,0y, =ey.,
e'e
imply: ay, |y,N=0

Theorem 3. Eigenfunctions v, of a hermitian operator are

a complete set, i.e. an arbitrary functiony(x,y,2) can be

written as: o
v(xy.2)=a Vv, (x.y.2)



4. The Schrodinger Equation and the Role of Energy

In classical physics a particle moving in an external potential
V(x,y,z) has aHamiltonian (energy written as a function of
position and momentum) given by:

p2
H=2—+V(xy,
o= +V(x.2)

The corresponding quantum mechanical operator is:

N N N _ 2~2
H=T+v=_"N

+V(X,Y,2),

where \A/\p(x, Y,2) = V(X,Y, 2y (X Y, 2), (amultiplicative op.)



Energy plays avery important role: it determines the
time evolution of systems.

(Time-dependent) Schrodinger Equation:

ih(,?—t\p(x,y,z,t) = I:Iw(x,y,z,t)

Suppose that at t=0 (X,y,z,0) is an eigenvector of H”:

pl\|f(><,y,z,0) = Ev(X,y,z0)

(Time independent) Schrédinger Equation

Then, at t=0:

ih[%w(x,y,z,t)]tzo = Fhy (%, ¥,2,0) = Ey (x,y,2,0)



Solution:

\lj (X1y, Z,t) :\lf (X’y’ Z, O)e' (B, /At

Conseguence: for energy eigenfunctions, time
dependence isjust aphase factor, and:

w(,,, ) =w(,, 0

Probability distribution isconstant in time: energy
eigenfunctions are called “ stationary states’.




Time-independent Schrodinger Equation for Central Potentials

General motion of a particlein 3-dim. potential:
2K]2

I:IW(X! Y; Z) = [' + V(X,y,Z)]\V(X, Y, Z) = E\V (X’ Y; Z)

2m

| mportant class of potentials are those with with rotation
Invariance, i.e. depending only on distance from a centre:

V(x,y,2) =V X" +y* +2°) = V(r)

Examples:

Coulomb potential V(r)=-Z¢elr

3-dim. isotropic harmonic oscillator ~ V(r ) =(1/2) m ®?r?



Genera Structure of Solutions for Central Potentials

Solutions labelled by 3 numbers n,|,m: Hy, =Ey.

Todescribe vy, (X,y,z) use spherical coordinatesy,,, (r,0,0):

Then}n\’q’f ) = 1tnl( r ) Ylm(q’]c )

L.
n,
. o 2 h
» | principal ||L m
X | quantum o m=-1,-(1-1,.1-11
number
| =0,1,2,...
y
2 2 2 +
“Radial Equation”: [- na +V(r)+ i~ I ])]rfnl (r)=E,rf (r)

2m dr? m  r?



A two-body central force problem: the H atom

Proton electron
' @ M~1850 m
M1 +e m, 'e
~ o R? h? . e’
H =- 2—N§,- —NZ - ——
m 2m ° |- T,
Freeparticle
Centre of Mass and Relative Coordinates;  motion of the
~ . whole atom
ME,+nP, . .1 1.1 1
—E e =f -, —=—+=—»=
M+m m* M m m
S ) X Relative
:-h_NRz_ h R.2- e_:HR+Hr4_mot|on
2(M +m) 2m* r



A two-body central force problem: the H atom

(Ha* HO)Y(RT) = EY(R )
Y (RF) =F (R (T)
®: Free particle motion of the whole atom:
2
2(I\/Tl+ m)K2

F(R) =" E, =

y: Relative motion around the c. of m.:

V() =y, (F) = f,(Y .(0,0)



A two-body central force problem: the H atom

Rydberg Constant, 13.6 eV

Energy levels: ‘

E<O n=12.3,... . me* 1

(bound)  1=0,1,2....n-1 2K P
m=-1,-(I-2)....

E>0 n=ik

o h2k2

(ionized) 1=0,1,2....n-1 —

m=-1-(I-1)....| 2m*



Quantum Numbers and Orbitals

# of Orb.

i

™

L0

-1,0,1

Orbital

1s

2S

N

™

™

™



Orbital Energies

3s— p——ee Jd———ea—o—
e energy increases as 1/r?
25— 2P ——— _ :
o orbitals of same n, but different
| are of equal
i energy (“degeneracy”).

» the“ground’ or lowest energy
orbital isthe 1s.



H* + e- Continuum

I -
5 g
4 [ 5]
- y -
3 o< @
g ] h
@ B Ritz- &
- @|e —
2 Paschen
i J J Series
2
Balmer Series
=4
E”
=)
el
=]
]
(=1
-1
w0
o~
i X
n=1

Lyman Series

Fig 1. A few electronic energy levels of the hydrogen atom,  As n increases the energy levels
converge to a limit, and above this limit (the shaded area) there are a continuum of levels
corresponding to complete separation of proton and electron with kinetic energy =00



Orbital Shapes

Note that the “1s’ wavefunction has no angular
dependence (i.e.,, Q and F do not appear).

A .

- Yoo m8as © Jndas
Bohr h2
~ a,=— =0.539x10 °cm
radius me

Probability =/

Mo e Probability is spherical

Prabability (85




Orbital Shapes (cont)

s(l =0) orbitals

vis v | Vi | « 1 dependence only
e asnincreases, orbitals
- ; - demonstrate n-1 nodes.

+ ©

3s

> 90 9

(c) 3s




Orbital Shapes (cont.)

2p (I = 1) orbitals

+ not spherical, but lobed. V2. = 4 55 o
» |abeled with respect to orientation along X, y, and z.

Cc0osO




Orbital Shapes (cont.)

3p orbitals

aez</2 52 o/
( e ’ b (00 o

* more nodes as compared to 2p (expected.).

o still can be represented by a“dumbbell” contour.



Orbital Shapes (cont.)

3d (I = 2) orbitals

= .
(LA}
£ £ L £ [
[ ] [ ]
~ i o F AT !
- o, e i _,e“\: - .
i oL d, T £,

. labeled asd,y, d,,, dy, Ay, and d,,.



Orbital Shapes (cont.)

%4

o

4f (1 = 3) orbitals

A

 exceedingly complex probability distributions.



