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Interaction of Radiation and Matter
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  Spin of the electron

We learned that angular momentum is quantized in
integer numbers l, such that the eigenvalues of L2 are:

  l(l +1) h2

This is valid for the orbital angular momentum,
associated in classical physics to the motion of the
particle.  In Quantum Mechanics there is another kind
of angular momentum, which is “intrinsic” to a particle
(it is there whether it moves or not) and has the same
magnitude for a given kind of particle.  It is as though
the particle were “spinning”, that’s why this non-
classical property is called “SPIN”



      Spin of the electron

Spin can not only take integer, but also half-
integer values, i.e. s=1/2,1,3/2,2,5/2,……and
the possible eigenvalues of its square, S2 are:

  s(s +1) h2

For electrons, s=1/2  (electrons are fermions)

We know that given l, than the possible eigenvalues of Lz are:

  mh,m = −l,−(l −1),....(l −1), l

The same holds for spin, so for s=1/2 the eigenvalues of sz are:

  
h, = ±

1

2



Spin of the electron

So, the degeneracy of the H atom levels is doubled,
because each state can be occupied by an electron with
spin up (σ=+1/2) or spin down (σ=−1/2).



   Addition of angular momenta

If I have two momenta L1 and L2 (e.g, momenta of 2 different
particles, angular momentum and spin of same particle, etc.)
and they have magnitudes:

  l1(l1 +1)h2, l2 (l2 +1)h2

Classically, the sum of the two, |L1+ L2| can take a continuous
range of values depending on the angle between them.

L2

 L1

L1+ L2

Quantum Mechanics: the eigenvalues
of (L1+ L2 )2 obtainable from  l1 , l2 are:

  lsum (lsum +1)h2

with the possible values of lsum:

lsum = l1 − l2 , l1 − l2 +1,......., l1 + l2



Every energy level of the H atom is characterized by the
quantum numbers n,l,m.  The angular (L) and spin (S) angular
momenta add up to form the total angular momentum J=L+S.
For a level with a given l, this gives two values, j=l+1/2, j=l-1/2.
For example, the 2p level has l=1, so there is a 2p with j=3/2,
and a 2p with j=1/2, denoted by 2p1/2 and 2p3/2.

There is a relativistic effect known as “spin-orbit” interaction,
which is proportional to:

where V is the potential felt by the electron. For a central
potential, V( r ),

            The spin-orbit interaction
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The scalar product of L and S, in an eigenstate of J2, L2 , S2

can be written:

2
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The spin-orbit interaction shall therefore produce a splitting
of the levels with same l,s but different j. This is not so
relevant in hydrogen, but it is in other atoms: the more so the
heavier they are, because the factor (1/r)(dV/dr) is largest
near the nucleus of a large-Z atom.

So the above expression reduces to:
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  From Hydrogen to Many - Electron Atoms

Many-body problems (many means > 2 ) are essentially
impossible to solve exactly in QM.

For atoms with Z>1, a good approximate start is the central
field approximation, which allows to describe, if not really
calculate, the possible states.

According to this approach, every electron moves in a central
potential, V( r ), which is however not Coulombic, because it
is caused by the nucleus but also by the other electrons, which
provide some “screening”.

We can classify the solutios in this potential like in the H
atoms, but with a very important difference: levels with same
n, but different l are no longer degenerate.
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                             Pauli exclusion principle

Electrons are fermions (they have half-integer
spin) and only one electron can occupy a fully-
defined quantum state.

Therefore on each atomic level, we can put at most
one electron with spin up and one with spin down

A more general formulation for the wavefunction of N
electrons (fermions):

  Ψ(
r 
r 1, , ..

r 
r i ,....

r 
r j , ...

r 
r N ) = −Ψ(

r 
r 1, ,..

r 
r j , ....

r 
r i , ...

r 
r N )

        Antisymmetry
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The lithium atom Z=3

1s binding energy < Z2 rydbergs

E
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3d5/2
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      With spin-orbit splitting



For atoms with larger Z, there are degenerate one-electron
levels that can be occupied in more than one way.

HUND’S RULES:

Start from one-electron levels without spin-orbit
and start filling the lowest levels with two
electrons (spin up and down).

When you get to the first “incomplete shell”:

Rule # 1.  Maximise S

Rule # 2.  Maximise L for that value of S

Rule # 3.  Spin-orbit:  J = L-S for less than 
  half filled shells

J = L+S for more than
 half filled shells
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The carbon atom Z=6

1s binding energy < Z2 rydbergs

“Core electrons”: no chemistry!

E

3

P0

  2S+1 L=1

       J=L-S



Mn IV      104 Lines of Data Found (page 1 of 10)

Configuration   Term    J     Level    Leading percentages
                             (cm-1)
-------------- ------- --- ---------- ---------------------
3d4             a  5D

0        0.0
                        1       99.0
                        2      286.8
                        3      552.2
                        4      885.8

3d4             a  3P
0   20 654.2

                        1   21 278.8
                        2   22 324.7

3d4             a  3H
4   21 280.7

                        5   21 474.8
                        6   21 679.3

3d4             a  3F
2   22 791.0

                        3   22 862.3
                        4   22 959.1

-------------- ------- --- ---------- ---------------------

5 DJ

3PJ

3H j;(L = 5)

3Fj ; (L = 3)



      Interaction of Electromagnetic Radiation with Matter

1. Perturbation Theory

2. Description of the Interaction

3. Absorption and Emission of Photons

4. Scattering of Radiation



                Perturbation Theory

Consider a physical system described by the Hamiltonian:

H
^

= H
^

0 + H
^

'

Assume that we know how to solve for the eigenvalues
and the eigenfunctions of H0. If becomes sufficiently
small, it is reasonable to look for an expression of the
eigenvalues and eigenfunctions of H as a power series of

This approach is called “perturbation theory”



    Perturbation Theory (cont.)

We are interested in time-dependent perturbations:

H
^

= H
^

0 + H
^

' (t)

and, in particular, in the case of periodic
perturbations, when H’(t) takes the form:

H
^

' (t) = H
^

' (0)(e i t + e−i t)

Examples:  the electric field of an EM wave of 
frequency 

the disturbance in the distance and in the 
interaction of atoms by an ultrasonic wave



Perturbation Theory (cont.)

The perturbation can induce transitions between
stationary states of H0, which differ in energy by   ±h

Assume the system is initially in the ground state The
number of transition per unit time dN/dt is given, to the
lowest order of perturbation, by Fermi’s “golden rule”:

  

dN

dt
=

2

h
〈 Ψ0 | H

^

' (0) | Ψf 〉
f

∑
2

(E f − E0 ± h )

Sum over possible
final states

Matrix element
of H’ (η
suppressed)

δ function of energy
conservation. “+”
for emission, “-” for
absorption



     STRATEGY

1. Write Hamiltonian describing the
electrons in the system in presence of
external EM fields

2. Identify terms contributing to
absorption, emission, scattering, etc.

3 Develop perturbation theory for
transition probabilities, etc.



Consider a set of electrons moving in the field of the
nuclei, VN(ri) and interacting with one another via a
Coulomb potential Vc(|ri-rj|), described by the
Hamiltonian:

  
H
^

=
r 
p 2i

2mji
∑ + VN (

r 
r i) + Vc(|

r 
r i −

r 
r j |)

Simplify this many-body by somehow making an
average potential for each electron:

  
H
^

=
r 
p i

2

2mi
∑ + V(

r 
r i )

Forget spin, spin-orbit for the moment.



Fields E, B from
potentials A, Φ

To describe electromagnetic waves, we can choose a
gauge where the scalar potential Φ=0, and the vector
potential is:

  

r 
A (

r 
r ,t) = (

he2

Ω k
r 
k ,

∑ )1 / 2[
r 
e a(

r 
k , )e i(

r 
k ⋅

r 
r − k t ) + c.c.]

Normal.
Box Volume

Polarization
vector λ=1,2

ωk=ck



General recipe (from classical physics) to introduce
interaction of electrons with field A(r,t):p => p-(e/c)A

  

H
^

= 1
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∑ (
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p i − e

c

r 
A (

r 
r i ,t))

2 + V(
r 
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1
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∑ r 

p i
2 + V(

r 
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2mc2
A2(
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r i , t) − (

e

mc
)
r 
A (

r 
r i , t) ⋅

r 
p i

            H0

Pure electronic

  H’1                               H’2

    Electron-radiation
interaction



“Golden Rule”  for H’2: Absorption and Emission

Number of transitions per unit time:

  

dN

dt
=

2

h
〈 Ψ0 | H

^

'2 ( 0 )| Ψf 〉
f

∑
2

(E f − E0 ± h )

H' 2

^

(0) = (
e
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)

r 
A (

r 
r i

i
∑ ) ⋅

r 
p i

r 
A (

r 
r i) ≈ Re a(

r 
k , )

r 
e 

k,
∑ ei

r 
k ⋅r r i

Take one particular k,λ (monochr., collimated,
polarized wave), and try to calculate matrix
element



         Multipolar Expansion of H’2

  
〈 Ψ0 | H

^

' 2 (0) | Ψf 〉 ≈ (
e

mc
)〈Ψ0 | a

r 
e ⋅ r 

p ie
i
r 
k ⋅

r 
r i + c.c. |Ψf 〉

The relevant matrix element is

In almost all of the interesting cases, one can expand:

  e
i
r 
k ⋅

r 
r i = 1+ i

r 
k ⋅

r 
r i + .....

And the expansion is converging rapidly, i.e. each term is much
larger than the next.

Reason : k=2π/λ (wavelength), and wavelength>>atomic

dimension  (in the visible λ∼400−700 nm, atoms ~0.1 nm)



Multipolar Expansion of H’2 (cont)

More precisely consider the matrix element:

  

〈 Ψ0 | a
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p 1e

i
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In the last step we took a one-electron approximation, in which
one electron “jumps” from t v, and all others “look”.

The last integral receives a contribution from the region where
and v are nonvanishing; The size of this region is that of the

wavefunction of the most tightly bound level  



Multipolar Expansion of H’2 (cont)

There is a relationship between the photon energy, which is
of the same order as the binding energy EB of and the size
of the wavefunction r0:

  
h ≈ EB ≈

h2

2mr0
2

and therefore:

  
kr0 =

c
r0 ≈

h
2mcr0

=
1

2mc 2

h2

2mr0
2 ≈

EB

2mc2

Therefore since mc2, the rest energy of the electron, equals
5.11  10 5 eV, this means that even for x-ray transitions from
core levels as deep as 50 keV, the exponential can be safely
expanded.
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e i
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k ⋅
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2
(
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k ⋅

r 
r i)

2 + ......

Therefore, in calculating matrix elements for absorption or
emission, it is a good approximation to replace the exponential with
the first term, 1. This is called “the dipole approximation”. The
remaining terms can be neglected, unless the first matrix element
vanishes.

Under which circumstances the matrix element

  
〈 Ψ0 | a

r 
e ⋅

r 
p 1 | Ψf 〉 ≈ a d3∫ r1

*
0 (

r 
r 1)

r 
e ⋅

r 
p 1e

i
r 
k ⋅

r 
r 1

v(
r 
r 1 )

vanishes or not, is established by the “dipole selection rules”. The
most important one says that it vanishes for the one-electron
wavefunctions ψ0 and ψv, if, for  their l quantum numbers :

l0 ≠ lv ±1



If on the other hand,

l0 = lv ±1

the matrix element can still vanish for some photon
polarization and some values of the quantum number m0
and mv. For example, if m0 = mv, and the photon is
linearly polarised along the z axis, then it does not
vanish, while it does for polarization along x or y.

The proof of these selection rules is based on symmetry
arguments (group theory)



         Golden Rule for H’1: Elastic Scattering of X-rays

Let us now consider the other term of H’:

  
H
^

' 1 =
e2

2mc2 A2 (
r 
r i ,t)

The square of the EM field implies that there are terms in
which the k, mode (with frequency =c|k|) is mixed with a

different mode k’, ’, with frequency ’. The Fourier
expansion of A2 contains therefore terms with frequency

’, and terms with frequency ’. We want to explore

the latter case when ’. In this case the -function that
conserves energy forces to consider initial and final states
with no difference in energy: this is elastic photon
scattering



The “Golden Rule” expression is:
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=
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k ' , '

∑ e−i
r 
k ' ⋅ r r i + ...

where the missing terms at the end are those obtained
by taking the complex conjugate of either or both
factors.

Assume the ground state 0 is non-degenerate (the only

possible f is 0 ).



   Elastic Scattering Processes

Electronic
ground state

This photon present
in the initial state

This photon present
in the final state

e, k e’,k’



The important piece of the matrix element, for a
given k,k’ pair is:

  

〈 Ψ0 | H'
^

1 (0) | Ψ0 〉 ≈ e2

mc2
(e ⋅ e' * ' )

i
∑ 〈 Ψ0 | e i(
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Using antisymmetry:
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Definition of electron density:

  
(
r 
r ) = N Ψ(

r 
r ,

r 
r 2 , . . . ,

r 
r N )∫

2

d3 v r 2 ....d3v r N

Can rewrite matrix element in terms
of Fourier transform of the electron
density:

  

〈 Ψ0 | H'
^

1 (0) | Ψ0 〉 ≈
e2

mc 2 (e ⋅ e' * ' ) ˜ (
r 
q )

r 
q ≡
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k −

r 
k where:

  

dNk, → k' '
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≈ (e ⋅ e * ' )

2 ˜ (
r 
q )

2

Thompson scattering




