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Spin of the electron

We learned that angular momentum is quantized in
integer numbersl, such that the eigenvalues of L2 are:

(I +) #°

Thisisvalid for the orbital angular momentum,
associated in classical physicsto the motion of the
particle. In Quantum Mechanics there is another kind
of angular momentum, which is“intrinsic” to a particle

(it isthere whether it moves or not) and has the same I
magnitude for a given kind of particle. It isasthough

the particle were “ spinning”, that’s why this non-
classical property is called “SPIN”




Spin of the electron

Spin can not only take integer, but aso half-
integer values, i.e. s=1/2,1,3/2,2,5/2,...... and
the possible eigenvalues of its square, & are:

s(s+) i’

For electrons, s=1/2 (electrons are fermions)

==
i

We know that given |, than the possible eigenvalues of L, are:

ma,m=-1,-(-1),...1(- 3 |
The same holds for spin, so for s=1/2 the eigenvalues of s, are:
1
ch,c =%

2



Spin of the electron

S0, the degeneracy of the H atom levels is doubled,
because each state can be occupied by an eectron with

spin up (s=+1/2) or spin down (s=- 1/2).



Addition of angular momenta

If I have two momenta L, and L, (e.g, momenta of 2 different
particles, angular momentum and spin of same particle, etc.)
and they have magnitudes:

L (I, + DA% L (1, + DA

Classically, the sum of thetwo, |L,+L,| can take a continuous
range of values depending on the angle 6 between them.

Quantum Mechanics: the eigenvalues
- 0 of (L,+L,)?0obtainablefrom |, |, are:

I (. +1)A°

sum( sum

with the possible valuesof |

Isum = |I1 - I2|’|I1 B I2 +1I’ """" ’|I1 T |2|



The spin-orbit interaction

Every energy level of the H atom is characterized by the
guantum numbersn,l,m. Theangular (L) and spin (S) angular
momenta add up to form thetotal angular momentum J=L+S,
For alevel with agiven [, thisgivestwo values, j=1+1/2, j=I-1/2.
For example, the 2p level has|=1, sothereisa 2p with j=3/2,
and a 2p with |=1/2, denoted by 2p,,, and 2p,.

Thereisarelativistic effect known as* spin-orbit” interaction,
which is proportional to:
N gl . =~
Ho=——SXNV "™ p
~— SV’ p)
whereV isthe potential felt by the electron. For a central
potential, V(r ),



So the above expression reducesto:

" e 1dVv - -
Hy=—-—L>S
2mcr dr
Thescalar product of L and S, in an eigenstate of J4, L2, &

can be written:

J(+D-1(+1)- s(s+1)
2
The spin-orbit interaction shall ther efore produce a splitting
of thelevelswith samel,sbut different j. Thisisnot so
relevant in hydrogen, but it isin other atoms. the more so the
heavier they are, because the factor (1/r)(dV/dr) islargest
near the nucleus of alarge-Z atom.




From Hydrogen to Many - Electron Atoms

M any-body problems (many means> 2) are essentially
Impossible to solve exactly in QM.

For atomswith Z>1, a good approximate start isthe central
field approximation, which allowsto describe, if not really
calculate, the possible states.

According to this approach, every electron movesin a central
potential, V(r ), which ishowever not Coulombic, because it
Is caused by the nucleus but also by the other electrons, which
provide some “ screening’ .

We can classify the solutiosin this potential likein the H
atoms, but with a very important difference: levelswith same
n, but different | areno longer degener ate.
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Pauli exclusion principle

Electrons arefermions (they have half-integer
spin) and only one electron can occupy a fully-
defined quantum state.

Therefore on each atomic level, we can put at most
one electron with spin up and one with spin down

A more general formulation for the wavefunction of N
electrons (fermions):

Y (6T B nB) == Y (B oy )

Antisymmetry



E Thelithium atom Z=3
A

4s

3s

-éf 2p
2S
1sbinding energy < Z2rydbergs
/
‘ 15*




With spin-or bit splitting

3ds);
3Py, 3y = = — =
4s =
3Pu2 2P3);
3s
2Py,
2S

1s



For atomswith larger Z, there are degener ate one-electron
levelsthat can be occupied in morethan one way.

HUND'SRULES:

Start from one-electron levels without spin-or bit
and start filling the lowest levels with two
electrons (spin up and down).

When you get to the first “incomplete shell”:
Rule# 1. Maximise S
Rule# 2. Maximise L for that valueof S

Rule# 3. Spin-orbit: J=L-Sfor lessthan
half filled shells

J =L+Sfor morethan
half filled shells



E The carbon atom Z=6
A

3p

4s
3s é é
2p
2S
1sbinding energy < Z2rydbergs

H / Coreelectrons’: no chemistry!
1s




Mn 1V 104 Linesof Data Found (page 1 of 10)

Configuration Term J Level Leadingpercentages
(cm-1)

3d4 a 3P
0 20654.2

1 212788 3PJ

2 223247

3d4 a 3H
4 21280.7

3y . —
5 21474.8 Hj’(L _5)

6 21679.3

3d4 a 3F
2 227910

3c . —
3 228623 Fj’ Q_ = 3)

4 22959.1




Interaction of Electromagnetic Radiation with Matter

1. Perturbation Theory
2. Description of the Interaction
3. Absor ption and Emission of Photons

4. Scattering of Radiation



Perturbation Theory

Consider a physical system described by the Hamiltonian:
H=Ho+nH

Assume that we know how to solve for the eigenvalues
and the eigenfunctions of H,. If becomes sufficiently
small, it isreasonableto look for an expression of the
eigenvalues and eigenfunctions of H asa power series of
n. Thisapproach iscalled “ perturbation theory”



Perturbation Theory (cont.)

Weareinterested in time-dependent perturbations:
H=Ho+nH'(t)

and, in particular, in the case of periodic
perturbations, when H’(t) takesthe form:

H (t) = H ()" +&™)

Examples.  thee€lectricfield of an EM wave of
frequency

thedisturbancein thedistance and in the
Interaction of atoms by an ultrasonic wave



Perturbation Theory (cont.)

The perturbation can inducetransitions between
stationary states of H,, which differ in energy by *7®

Assume the system isinitially in the ground state¥,. The

number of transition per unit time dN/dt isgiven, tothe
lowest order of perturbation, by Fermi’s“golden rule

2
dN 2
TRLAY, 1H'©) 1Y, F3(E - E, ho)
* n o N X
/ Mairix dlement d functlc;tr_l of ?ne”rgy
Sum over possible  of H' (h conservation. _+
final statesp for emission, “-” for

suppressed)

absorption




STRATEGY

1. Write Hamiltonian describing the
electronsin the system in presence of
external EM fields

2. | dentify terms contributing to
absor ption, emission, scattering, etc.

3 Develop perturbation theory for
transition probabilities, etc.



Consider a set of electronsmoving in thefield of the
nuclei, V(r;) and interacting with one another via a
Coulomb potential V (|r;-r;[), described by the
Hamiltonian:
A R2
o P5i ~ S
H=a — +V,(r)+V.(|r-r
?- m N( |) c(l | ] |)
Simplify this many-body by somehow making an
aver age potential for each electron:
2

N o p _
H=3 = +V(i
ai12m+ ()

Forget spin, spin-orbit for the moment.



B=VxA

B _?{E_{lff}i},_ﬁ; Flelds-E, B from
o potentials A, F
7 : SRR 4 | & g -
where the vector V = ( Pr? Ay’ 8z ).

To describe el ectromagnetic waves, we can choose a
gauge where the scalar potential F =0, and the vector

potential is: 2 L
A1) =a ( he )98 ak,1)e™ " Y+ cc]
K\ k
Normal. f Polarization Wi=cK

Box Volume vector | =1,2



General recipe (from classical physics) to introduce
Interaction of electrons with field A(r t):p => p-(e/c)A

e 1. = .
H=3 2=(f - ZARD) +V() =

) i_,z - 62 2/ _ i P —
0 zm'f’iT +\7/‘<r.)+ S ALY (C)AED
HO

Pure electronic Electron-radiation
Interaction

H; H,



“Golden Rule” for H’,: Absorption and Emission

Number of transitions per unit time:

2
dd_lzlz%é é-Yo“:rz(O)lYf#S(Ef' Eoihm)
f

" e . o -, .. _
H',(0) :(E)Eil A(Tr) XQ
A(F) » ReQ a(k,)\)& "

k, A

Take one particular k,I (monochr., collimated,

polarized wave), and try to calculate matrix
element



Multipolar Expansion of H’,

Therelevant matrix element is

&Y, | H, (O)]Y, > ()Y, | a8, xpe™™ +cc. [Y

In almost all of the interesting cases, one can expand:

&7

e " =1+1kxX +

And the expansion is converging rapidly, i.e. each term ismuch
larger than the next.

Reason : k=2p/l (wavelength), and wavelength>>atomic
dimension (inthevisiblel ~400- 700nm, atoms ~0.1 nm)



Multipolar Expansion of H’2 (cont)

More precisely consider the matrix element:

&Y, |a8, e’ | Y, fi=
oA, A% Y (FE,...Fy) a8, xpe* ™Y (FF,...Fy) »
adf*ny o (F)8, XPe "y (7)

In the last step wetook a one-electron approximation, in which
one electron “jumps’ fromy,toy,, and all others*look”.

Thelast integral receives a contribution from theregion where
y,and vy, are nonvanishing; Thesize of thisregion isthat of the

wavefunction of the most tightly bound level ,



Multipolar Expansion of H’, (cont)

Thereisarelationship between the photon energy, which is
of the same order asthe binding energy Eg of y,, and the size
of the wavefunction r
hZ
ho » E; » 5
2mr,

and therefore:

2
kro_gl‘ » f :‘/ 1 h » EB

¢’ 2mer, Y2me® 2nwv,? Y 2me

2

Therefore since mc?, therest energy of the electron, equals
5.11 10° eV, thismeansthat even for x-ray transitions from
core levels as degp as 50 keV, the exponential can be safely
expanded.
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iKoF . - 1 o \2
e =1+ik X - = (k) +......
| 2 |
Therefore, in calculating matrix elements for absorption or

emission, it is agood approximation to replace the exponential with
thefirst term, 1. Thisis called “the dipole approximation”. The

remaining terms can be neglected, unless the first matrix element
vanishes.

Under which circumstances the matrix element

aY, |a P, | Y, i» adp’ry o8, xpe "y (T)

vanishes or not, is established by the“dipole selection rules’. The
most important one says that it vanishes for the one-electron
wavefunctionsy ;andy ,, if, for their | quantum numbers :

1
FEREES|



If on the other hand,

the matrix element can still vanish for some photon
polarization and some values of the quantum number m,
and m,. For example, if m;=m,, and the photon is
linearly polarised along thez axis, then it does not
vanish, whileit doesfor polarization along x or .

The proof of these selection rulesis based on symmetry
arguments (group theory)



Golden Rulefor H’;: Elastic Scattering of X-rays

L et us now consider the other term of H':

N e2 2
H . = A(r,t
1 2rm2 (| )

Thesquareof the EM field impliesthat therearetermsin
which the k, Amode (with frequency w=clk|)is mixed with a
different modek’, A’, with frequency ’. The Fourier
expansion of A2 containsthereforetermswith frequency
o+’ , and termswith frequency o—’. We want to explore
thelatter case when w=w’. In this case the é-function that

conserves ener gy forcesto consider initial and final states
with no differencein energy: thisiselastic photon
scattering



The“Golden Rule’ expression is.

2

M2 2 lav, 1A, Y, %S(Ef- E,)

o n @

H ,(0) =( z)aA(r)x

AYT) » A ak,1)E,e"" q a*(k',\)E*, e ™ +...
kA

kK A

wher e the missing terms at the end are those obtained
by taking the complex conjugate of either or both
factors.

Assume the ground state ¥, is non-degener ate (the only
possible Vs is'Y, ).



Elastic Scattering Processes

/e’v % This photon present

In the initial state

- '
|Z> — [03 rot +:(e}.;k)j A .>j

Y= 105005 (€ K )y <+
~

T This photon present

Electronic In the final state

ground state



Theimportant piece of the matrix element, for a
given k,k’ pair is:

2

&Y, | H1(0) | Yoft> —= (6, *,)8 aYo e " | Vo=
3 s \2 v e v e NPAR-K W 43, 43 3

W(e‘ €*.)a Yo (.G, ..R)| € d’rd’r,....d°r,
Using antisymmetry:

aY,|H1(0)| Y ,n»

3 -
% (e xe* ENQFY (7\5,,... 1) €K7 dr dir,...d%,



Definition of electron density:
ARy o = P o3 -
p(r) _ NdY(ryrz,rN)l d er rN

Can rewrite matrix element in terms
of Fourier transform of the electron
density:

‘v . € .
&%, | H1(0)] Yot — (6, % *,)p(@)

where: go k- k
Thompson scattering

AN, 50
dt

»|(e, e, ) p@)[



Fig. 1a




