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Preface

This text contains the computer presentation of 4 lectures:

1. Affine monoids and their algebras

2. Homological properties and combinatorial applications

3. Unimodular covers and triangulations

4. From vector spaces to polytopal algebras

Lecture 1 introduces the affine monoids and relates them to the geometry

of rational convex cones. Lecture 2 contains the homological theory of

normal affine semigroup rings and their applications to enumerative

combinatorics developed by Hochster and Stanley.

Lectures 3 and 4 are devoted to lines of research that have been pursued in

joint work with Joseph Gubeladze (Tbilisi/San Francisco).
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A rather complete expository treatment of Lectures 1 and 2 is contained in

W. Bruns. Commutative algebra arising from the

Anand-Dumir-Gupta conjectures. Preprint.

Most of Lecture 3 and much more – in particular basic notions and results of

polyhedral convex geometry – is to be found in

W. Bruns and J. Gubeladze. K-theory, rings, and polytopes. Draft

version of Part 1 of a book in progress.

For Lecture 4 there exists no coherent expository treatment so far, but a

brief overview is given in

W. Bruns and J. Gubeladze. Polytopes and K-theory. Preprint.
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A previous exposition, covering various aspects of these lectures is to be

found in

W. Bruns and J. Gubeladze. Semigroup algebras and discrete

geometry. In L. Bonavero and M. Brion (eds.), Toric geometry.

Séminaires et Congrès 6 (2002), 43–127

All these texts can be downloaded from (or via)

http://www.math.uos.de/staff/phpages/brunsw/course.htm

They contain extensive lists of references.

Osnabrück, May 2004 Winfried Bruns
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Lecture 1

Affine monoids and their algebras

Toric rings and discrete convex geometry – p.5/119



Affine monoids and their algebras

An affine monoid M is (isomorphic to) a finitely generated

submonoid of Zd for some d � 0, i. e.

M C M � M (M is a semigroup);

0 2 M (now M is a monoid);

there exist x1; : : : ; xn 2 M such that

M D ZCx1 C � � � C ZCxn.

Often affine monoids are called affine semigroups.

gp.M / D ZM is the group generated by M .

gp.M / Š Zr for r D rank M D rank gp.M /.
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Let K be a field (or a commutative ring). Then we can form the

monoid algebra

KŒM � D
M
a2M

KX a; X aX b D X aCb

X a D the basis element representing a 2 M .

M � Zd ) KŒM � �KŒZd � D KŒX ˙1
1 ; : : : ; X ˙1

d
� is a monomial

subalgebra.

Proposition 1.1. Let M be a monoid.

(a) M is finitely generated ” KŒM � is a finitely generated

K-algebra.

(b) M is an affine monoid ” KŒM � is an affine domain.

Toric rings and discrete convex geometry – p.7/119



Proposition 1.2. The Krull dimension of KŒM � is given by

dim KŒM � D rank M:

Proof. KŒM � is an affine domain over K. Therefore

dim KŒM � D trdeg QF.KŒM �/

D trdeg QF.KŒgp.M /�/

D trdeg QF.KŒZr �/

D r

where r D rank M .
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Sources for affine monoids (and their algebras) are

monoid theory,

ring theory,

initial algebras with respect to monomial orders,

invariant theory of torus actions,

enumerative theory of linear diophantine systems,

lattice polytopes and rational polyhedral cones,

coordinate rings of toric varieties.
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Polytopal monoids

Definition 1.3. The convex hull conv.x1; : : : ; xm/ of points xi 2 Zn

is called a lattice polytope.

P
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With a lattice polytope P � Rn we associate the polytopal monoid

MP � ZnC1 generated by .x; 1/; x 2 P \ Zn:

P

Vertical cross-section of a polytopal monoid

Such monoids will play an important role in Lectures 3 and 4.
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Presentation of an affine monoid algebra

Let R D KŒx1; : : : ; xn�. Then we have a presentation

� W KŒX � D KŒX1; : : : ; Xn� ! KŒx1; : : : ; xn�; Xi 7! xi:

Let I D Ker � and M D f�.X a/ W a 2 ZnCg

Theorem 1.4. The following are equivalent:

(a) M is an affine monoid and R D KŒM �;

(b) I is prime, generated by binomials X a � X b , a; b 2 ZnC;

(c) I D KŒX � \ IKŒX ˙1�, I is generated by binomials X a � X b ,

and U D fa � b W X a � X b 2 Ig is a direct summand of Zn.
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Proof. (a) ) (b) Since R is a domain, I is prime. Let

f D c1X a1 C � � � C cmX am 2 I , ci 2 K, ci ¤ 0, a1 >lex � � � >lex am.

There exists j > 1 with �.X a1/ D �.X aj /, and so X a1 � X aj 2 I .

Apply lexicographic induction to f � c1.X a1 � X aj /.

(b) ) (c) Since I is an ideal, U is a subgroup. Since I is prime and

Xi … I for all i , I D KŒX � \ IKŒX ˙1�. Let u 2 Zn, m > 0 such that

mu 2 U , u D v � w with v; w 2 ZnC. Clearly X um � X vm 2 I . We

can assume char K � m. Then

X um � X vm D .X u � X v/.X u.m�1/ C X u.m�2/v C � � � C X .m�1//;

and the second term is not in .X1 � 1; : : : ; Xn � 1/ � I .

(c) ) (a) Consider KŒX � !KŒX ˙1� D KŒZn� ! KŒZn=U �.
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Cones

An affine monoid M generates the cone

RCM D
� X

aixi W xi 2 M; ai 2 RC
�

Since M D Pn
iD1 ZCxi is finitely generated, RCM is finitely

generated:

RCM D
� nX

iD1

aixi W a1; : : : ; an 2 RC
�

:

The structures of M and RCM are connected in many ways. It is

necessary to understand the geometric structure of RCM .
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Finite generation ” intersection of finitely many halfspaces:

Theorem 1.5. Let C ¤ ; be a subset of Rm. Then the following are

equivalent:

there exist finitely many elements y1; : : : ; yn 2 Rm such that

C D RCy1 C � � � C RCyn;

there exist finitely many linear forms �1; : : : ; �s such that C is the

intersection of the half-spaces H C
i D fx W �i.x/ � 0g.

For full-dimensional cones the (essential) support hyperplanes

Hi D fx W �i.x/ D 0g are unique:
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Proposition 1.6. If C generates Rm as a vector space and the

representation C D H C
1 \ � � � \ H C

s is irredundant, then the

hyperplanes Hi are uniquely determined (up to enumeration).

Equivalently, the linear forms �i are unique up to positive scalar factors.

rational generators ” rationality of the support hyperplanes:

Proposition 1.7. The generating elements y1; : : : ; yn can be chosen in

Qm (or Zm) if and only if the �i can be chosen as linear forms with

rational (or integral) coefficients.

Such cones are called rational.

Proposition 1.8. If Y D fy1; : : : ; yng � Qm, then

Qm \ RCY D QCY .
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Gordan’s lemma and normality

As seen above, affine monoids define rational cones. The converse is

also true.

Lemma 1.9 (Gordan’s lemma). Let U � Zd be a subgroup and

C � Rd a rational cone. Then U \ C is an affine monoid.

Proof. Let V D RU � Rd . Then:

V \ Qd D QU ;

C \ V is a rational cone in V

) We may assume that U D Zd .

C is generated by elements y1; : : : ; yn 2 M D C \ Zd .

x 2 C ) x D a1y1 C � � � C anyn ai 2 RC:
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x D x0 C x00; x0 D ba1cy1 C � � � C bancyn:

Clearly x0 2 M . But

x 2 M ) x00 2 gp.M / \ C ) x00 2 M:

x00 lies in a bounded set B )

M generated by y1; : : : ; yn and the finite set M \ B .

The monoid M D U \ C has a special property:

Definition 1.10. A monoid M is normal ”

x 2 gp.M /; kx 2 M for some k 2 Z; k > 0 ) x 2 M :
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Proposition 1.11.

M � Zd normal affine monoid ” there exists a rational cone

C such that M D gp.M / \ C ;

M � Zd affine monoid ) the normalization
NM D gp.M / \ RCM is affine.

Briefly: Normal affine monoids are discrete cones.

0
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Positivity, gradings and purity

Definition 1.12. A monoid M is positive if x; �x 2 M ) x D 0.

Definition 1.13. A grading on M is a homomorphism

deg W M ! Z. It is positive if deg x > 0 for x ¤ 0.

Proposition 1.14. For M affine the following are equivalent:

(a) M is positive;

(b) RCM is pointed (i. e. contains no full line);

(c) M is isomorphic to a submonoid of ZsC for some s;

(d) M has a positive grading.

Proof. (c) ) (d) ) (a) trivial.
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(a) ) (b) Set C D RCM . One shows:

fx 2 C W �x 2 C g D Rfx 2 M W �x 2 M g.

Therefore: M positive ) C pointed.

(b) ) (c) Let C be positive. For each facet F of C there exists a

unique linear form �F W Rd ! R with the following properties:

F D fx 2 C W �F .x/ D 0g, �F .x/ � 0 for all x 2 C ;

� has integral coefficients, �.Zd/ D Z.

These linear forms are called the support forms of C . Let

s D # facets.C / and define

� W Rd ! Rs; �.x/ D �
�F .x/ W F facet

�
:

Then �.M / � �. NM / � ZsC. Since C is positive, � is injective!

We call � the standard embedding.
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For M normal the standard embedding has an important property:

Proposition 1.15. M positive affine monoid. Then the following are

equivalent:

(a) M is normal;

(b) � maps M isomorphically onto ZsC \ �.gp.M //.

M pure submonoid of N ” M D N \ gp.M /.

Corollary 1.16. M affine, positive, normal ” M isomorphic to a

pure submonoid of ZsC for some s.
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Normality and purity of KŒM �

An integral domain R is normal if R integrally closed in QF.R/.

R pure subring of S ” S D R ˚ T as an R-module.

Theorem 1.17. M positive affine monoid.

(a) M normal ” KŒM � normal

(b) M � ZsC pure submonoid ” KŒM � pure subalgebra of

KŒZsC� D KŒY1; : : : ; Ys �
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Proof. (a) x 2 gp.M /, mx 2 M for some m > 0

) X x 2 KŒgp.M /� � QF.KŒM �/, .X x/m 2 KŒM �.

Thus: KŒM � normal ) X x 2 KŒM � ) x 2 M .

Conversely, let M be normal, gp.M / D Zr , C D RCM

) M D Zr \ C

C D H C
1 \ � � � \ H C

s , H C
i rational closed halfspace )

M D N1 \ � � � \ Ns; Ni D Zr \ H C
i

) KŒM �D KŒN1� \ � � � \ KŒNs �

Ni discrete halfspace
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Consider the hyperplane Hi bounding H C
i . Then Hi \ Zr direct

summand of Zr .

0 Fi

Ni M

ur

) Zr has basis u1; : : : ; ur with u1; : : : ; ur�1 2 Hi , ur 2 H C
i

) KŒNi � Š KŒZr�1 ˚ ZC� Š KŒY ˙1
1 ; : : : ; Y ˙1

r�1; Z�
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Thus KŒM � intersection of factorial (hence normal)

domains ) KŒM � normal

(b) T D KfX x W x 2 Zs n M g ) KŒY1; : : : ; Ys � D KŒM � ˚ T as

K-vector space

M pure submonoid ) T is KŒM �-submodule

Converse not difficult.
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A grading on M induces a grading on KŒM �:

Proposition 1.18. Let M be an affine monoid with a grading deg.

Then

KŒM � D
M
k2Z

KfX x W deg x D kg

is a grading on KŒM �.

If deg is positive, then KŒM � is positively graded.
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The class group

R normal Noetherian domain (or a Krull domain).

I � QF.R/ fractional ideal ” there exists x 2 R such that xI is a

non-zero ideal

I is divisorial ” .I�1/�1 D I where

I�1 D fx 2 QF.R/ W xI � Rg:

.I; J / 7! ..IJ /�1/�1 defines a group structure on

Div.R/ D fdiv. idealsg
Fact: Div.R/ free abelian group with basis Z div.p/, p height 1 prime

ideal ( div.I/ denotes I as an element of Div.I/ )

Princ.R/ D fxR W x 2 QF.R/g is a subgroup
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Cl.R/ D Div.R/

Princ.R/

is called the (divisor) class group.

It parametrizes the isomorphism classes of divisorial ideals.

R is factorial ” Cl.R/ D 0.
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Let M be a positive normal affine monoid, R D KŒM �. Choose

x 2 int.M / D fy 2 M W �F .y/ > 0 for all facets Fg:

) M Œ�x� D gp.M /

) RŒ.X x/�1� D KŒgp.M /� D L = Laurent polynomial ring

Nagata’s theorem ) exact sequence

0 ! U ! Cl.R/ ! Cl.L/ ! 0;

U generated by classes Œp� of minimal prime overideals of X x

L factorial ) Cl.L/ D 0 ) Cl.R/ D U .
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For a facet F of RCM set

pF D Rfx 2 M W �F .x/ � 1g:

) pF is a prime ideal since R=pF Š KŒM \ F �.

Evidently

Rx D R
˚
X y W �F .y/ � �F .x/ for all F

� D
\
F

p
.�F .x//

F

p
.k/

F D RfX y W �F .y/ � kg is the k-th symbolic power of pF .

) Cl.R/ D P
F ZŒpF �.
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"\
F

p
.kF /

F

#
D

X
F

kF ŒpF �

) every divisorial ideal is isomorphic to an ideal
T

F p
.kF /

F

H1

H2

0

p
.2/
1

\ p
.�2/
2
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Monomial ideal I principal

” there exists a monomial X y with I D X yR

Enumerate the facets F1; : : : ; Fs , pi D pFi
, �i D �Fi

Theorem 1.19 (Chouinard).

Cl.R/ Š
Ls

iD1 Z div.pi/

fdiv.RX y/ W y 2 gp.M /g Š Zs

�.gp.M /

where � is the standard embedding.
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Lecture 2

Homological properties and
combinatorial applications
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Magic Squares

In 1966 H. Anand, V. C. Dumir, and H. Gupta investigated a

combinatorial problem:

Suppose that n distinct objects, each available in k identical

copies, are distributed among n persons in such a way that

each person receives exactly k objects.

What can be said about the number H.n; k/ of such distributions?
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They formulated some conjectures:

(ADG-1) there exists a polynomial Pn.k/ of degree .n � 1/2 such

that H.n; k/ D Pn.k/ for all k � 0;

(ADG-2) H.n; k/ D Pr .n/ for all k > �n; in particular Pn.�k/ D 0,

k D 1; : : : ; n � 1;

(ADG-3) Pn.�k/ D .�1/.n�1/2

Pn.k � n/ for all k 2 Z.

These conjectures were proved and extended by R. P. Stanley using

methods of commutative algebra.

The weaker version (ADG-1) of (ADG-2) has been included for

didactical purposes.
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Reformulation:

aij D number of copies of object i that person j receives

) A D .aij / 2 Zn�nC such that

nX
kD1

aik D
nX

lD1

alj D k; i; j D 1; : : : ; n:

H.n; k/ is the number of such matrices A.

The system of equations is part of the definition of magic squares. In

combinatorics the matrices A are called magic squares, though the

usually requires further properties for those.
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Two famous magic squares:

8 1 6

3 5 7

4 9 2

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

The 3 � 3 square can be found in ancient sources and the 4 � 4

appears in Albrecht Dürer’s engraving Melancholia (1514). It has

remarkable symmetries and shows the year of its creation.
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A step towards algebra

Let Mn be the set of all matrices A D .aij / 2 Zn�nC such that

nX
kD1

aik D
nX

lD1

alj ; i; j D 1; : : : ; n:

By Gordan’s lemma Mn is an affine, normal monoid, and A 7! magic

sum k D Pn
kD1 a1k is a positive grading on M .

It is even a pure submonoid of Zn�nC .

rank Mn D .n � 1/2 C 1

Theorem 2.1 (Birkhoff-von Neumann). Mn is generated by the its

degree 1 elements, namely the permutation matrices.
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Translation into commutative algebra

We choose a field K and form the algebra

R D KŒMn�:

It is a normal affine monoid algebra, graded by the “magic sum”, and

generated in degree 1. dim R D rank Mn D .n � 1/2 C 1.

) H.n; k/ D dimK Rk D H.R; k/ is the Hilbert function of R!

) (ADG-1): there exists a polynomial Pn of degree .n � 1/2 such

that H.n:k/ D Pn.k/ for k � 0.

In fact, take Pn as the Hilbert polynomial of R.
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A recap of Hilbert functions

Let K be a field, and R D ˚1
kD0

Rk a graded K-algebra generated

by homogeneous elements x1; : : : ; xn of degrees g1; : : : ; gn > 0.

Let M be a non-zero, finitely generated graded R-module.

Then H.M; k/ D dimK Mk < 1 for all k 2 Z:

H.M; _/ W Z ! Z is the Hilbert function of M .

We form the Hilbert (or Poincaré) series

HM .t/ D
X
k2Z

H.M:k/tk :
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Fundamental fact:

Theorem 2.2 (Hilbert-Serre). Then there exists a Laurent polynomial

Q 2 ZŒt; t�1� such that

HM .t/ D Q.t/Qn
iD1.1 � tgi /

:

More precisely: HM .t/is the Laurent expansion at 0 of the rational

function on the right hand side.

Refinement: M is finitely generated over a graded Noether

normalization KŒy1; : : : ; yd �, d D dim M , of R= Ann M .

Special case: g1; : : : ; gn D 1. Then y1; : : : ; yd can be chosen of

degree 1 (after an extension of K).
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Theorem 2.3. Suppose that g1 D � � � D gn D 1 and let d D dim M .

Then

HM .t/ D Q.t/

.1 � t/d
:

Moreover:

There exists a polynomial PM 2 QŒX � such that

H.M; i/ D PM .i/; i > deg HM ;

H.M; i/ ¤ PM .i/; i D deg HM :

e.M / D Q.1/ > 0, and if d � 1, then

PM D e.M /

.d � 1/!
X d�1 C terms of lower degree:
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The general case is not much worse: PM must be allowed to be a

quasi-polynomial, i. e. a “polynomial” with periodic coefficients

(instead of constant ones).

Theorem 2.4. Suppose R= Ann M has a graded Noether

normalization generated by elements of degrees e1; : : : ; ed . Then

HM .t/ D Q.t/Qd
iD1.1 � t ei /

; Q.1/ > 0:

Moreover there exists a quasi-polynomial PM , whose period divides

lcm.e1; : : : ; ed/, such that

H.M; i/ D PM .i/; i > deg HM ;

H.M; i/ ¤ PM .i/; i D deg HM :
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Hochster’s theorem

Theorem 2.5. Let M be an affine normal monoid. Then KŒM � is

Cohen-Macaulay for every field K.

There is no easy proof of this powerful theorem. For example, it can

be derived from the Hochster-Roberts theorem, using that

KŒM � � KŒX1; : : : ; Xs� can be chosen as a pure embedding.

A special case is rather simple:

Definition 2.6. An affine monoid M is simplicial if the cone RCM is

generated by rank M elements.

Proposition 2.7. Let M be a simplical affine normal monoid. Then

KŒM � is Cohen-Macaulay for every field K.
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Proof. Let d D rank M . Choose elements x1; : : : ; xd 2 M

generating RCM , and set

par.x1; : : : ; xd / D
� dX

iD1

qixi W qi 2 Œ0; 1/

�
:

0
x1

x2 B D par.x1; : : : ; xd/ \ Zd

N D ZCx1 � � � C ZCxd :
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The arguments in the proof Gordan’s lemma and the linear

independence of x1; : : : ; xd imply:

M D S
z2B z C N

N is free.

The union is disjoint.

In commutative algebra terms:

KŒM � is finite over KŒN �.

KŒN � Š KŒX1; : : : ; Xd �.

KŒM � is a free module over KŒN �.

) KŒM � is Cohen-Macaulay.
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Combinatorial consequence of the Cohen-Macaulay property:

Theorem 2.8. Let M be a graded Cohen-Macaulay module over the

positively graded K-algebra R and x1; : : : ; xd a h.s.o.p. for M ,

ei D deg xi . Let

HM .t/ D hata C � � � C hbtbQd
iD1.1 � t ei /

; ha; hb ¤ 0:

Then hi � 0 for all i .

If M D R D KŒR1�, then hi > 0 for all i D 0; : : : ; b.

Proof. hata C � � � C hbtb is the Hilbert series of

M=.x1M C � � � C xdM /:
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Reciprocity

(ADG-3) compares values PR.k/ of the Hilbert polynomial of

R D KŒMn� for all values of k :

(ADG-3) Pn.�k/ D .�1/.n�1/2

Pn.k � n/ for all k 2 Z.

According to (ADG-2) the shift �n in Pn.k � n/ is the degree of

HR.t/ (not yet proved).

What identity for HR.t/ is encoded in (ADG-3) ?
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Lemma 2.9. Let P W Z ! C be a quasi-polynomial. Set

H.t/ D
1X

kD0

P .k/tk and G.t/ D �
1X

kD1

P .�k/tk :

Then H and G are rational functions. Moreover

H.t/ D G.t�1/:

Corollary 2.10. Let R be a positively graded, finitely generated

K-algebra, dim R D d , with Hilbert quasi-polynomial P . Suppose

deg HR.t/ D g < 0. Then the following are equivalent:

P .�k/ D .�1/d�1P .k C g/ for all k 2 Z;

.�1/dHR.t�1/ D t�gHR.t/.
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Strategy:

Find an R-module ! with H!.t/ D .�1/dHR.t�1/

This is possible for R Cohen-Macaulay: ! is the canonical module of

R.

Compute ! for R D KŒMn� and show that ! Š R.g/,

g D deg HR.t/.

R.g/ free module of rank 1 with generator in degree �g. Thus

HR.g/.t/ D t�gHR.t/.

More generally:

Compute ! for R D KŒM � with M affine, normal.
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The canonical module

In the following: R positively graded Cohen-Macaulay K-algebra,

x1; : : : ; xd h.s.o.p., deg xi D gi .

S D KŒx1; : : : ; xd � is a graded Noether normalization of R.

First R D S D KŒX1; : : : ; Xd �:

.�1/dHS.t�1/ D .�1/dQd
iD1.1 � t�gi /

D tg1C���CgdQd
iD1.1 � t�gi /

D H!.t/

with ! D !S D S.�.g1 C � � � C gd//
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The general case: R free over S Š KŒX1; : : : ; Xd �, say with

homogeneous basis y1; : : : ; ym:

R Š
mM

jD1

Syj Š
uM

iD1

S.�i/hi ; hi D #fj W deg yj D ig;

HR.t/D .h0 C h1t C � � � C hutu/HS.t/ D Q.t/HS.t/

Set !R D HomS.R; !S/. Then, with s D g1 C � � � C gd

!R Š
uM

iD1

HomS.S.�i/hi ; S.�s// Š
uM

iD1

S.�i C s/hi ;

H!R
.t/D .h0t s C � � � C hut s�u/HS.t/ D Q.t�1/t sHS.t/

D .�1/dQ.t�1/HS.t�1/ D .�1/dHR.t�1/:
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Multiplication in the first component makes !R an R-module:

a � '._/ D '.a � _/:

But: Is !R independent of S ?

Theorem 2.11. !R depends only on R (up to isomorphism of graded

modules).

The proof requires homological algebra, after reduction from the

graded to the local case.
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Gorenstein rings

Definition 2.12. A positively graded Cohen-Macaulay K-algebra is

Gorenstein if !R Š R.h/ for some h 2 Z.

Actually, there is no choice for h:

Theorem 2.13 (Stanley). Let R be Gorenstein. Then

!R Š R.g/, g D deg HR.t/;

h0 D hu�i for i D 0; : : : ; u: the h-vector is palindromic;

HR.t�1/ D .�1/d t�gHR.t/.

Conversely, if R is a Cohen-Macaulay integral domain such that

HR.t�1/ D .�1/d t�hHR.t/ for some h 2 Z, then R is Gorenstein.
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Proof.

.�1/dHR.t/ D .h0t s C � � � C hut s�u/HS.t/

t�hHR.t/ D .hst
u�h C � � � C h�h

0 /HS.t/

Equality holds ”

h D u � s D deg HR.t/ and hi D hu�i; i D 0; : : : ; u

If R is a domain, then !R is torsionfree. Consider R 7! !R , a 7! ax,

x 2 !R homogeneous, deg x D �g.

This linear map is injective: R.g/ ,! !R . Equality of Hilbert

functions implies bijectivity.
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The canonical module of KŒM �

In the following M affine, normal, positive monoid. We want to find

the canonical module of R D KŒM � (Cohen-Macaulay by Hochster’s

theorem).

Theorem 2.14 (Danilov, Stanley). The ideal I generated by the

monomials in the interior of RCM is the canonical module of KŒM �

(with respect to every positive grading of M ).

Note: x 2 int.RCM / ” �F .x/ > 0 for all facets F of RCM .

pF is generated by all monomials X x , x 2 M such that �F .x/ > 0.

) I D
\

F facet

pF :
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Choose a positive grading on M and let ! be the canonical module

of R with respect to this grading.

By definition ! is free over a Noether normalization ) ! is a

Cohen-Macaulay R-module ) ! is (isomorphic to) a divisorial

ideal )

As discussed in Lecture 1, there exist jF 2 Z such that

! D
\

p
.jF /

F :

Without further standardization we cannot conclude that jF D 1 for

all F .

We have to use the natural Zr -grading, Zr D gp.M / on R !
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The homological property characterizing the canonical module is

ExtjR.K; !R/ D
8<:K; j D d;

0; j ¤ d :
d D dim R:

This is to be read as an isomorphism of graded modules: let m be the

irrelevant maximal ideal; then K D R=m lives in degree 0.

In our case R=m is a Zr -graded module, as is !

) ExtjR.K; !R/ Š K lives in exactly one multidegree v 2 Zr

) ExtjR.K; X �v!R/ Š K in multidegree 0 2 Zr

Replace !R by X �v!R .
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Definition 2.15. Let R be a Zn-graded Cohen-Macaulay ring such

that the homogeneous non-units generate a proper ideal p of R.

) p is a prime ideal; set d D dim Rp.

One says that ! is a Zn-graded canonical module of R if

ExtjR.R=p; !/ D
8<:R=p; j D d;

0; j ¤ d :

We have seen: R D KŒM � has a Zr -graded canonical module

! D
\

p
.jF /

F

and it remains to show that jF D 1 for all facets F .
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Let RF D RŒ.M \ F/�1�: we invert all the monomials in F .

) RF is the “discrete halfspace algebra” with respect to the

support hyperplane through F .

0 F

MF M

x
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) pF RF is the Zr -graded canonical module of RF (easy to see

since pF RF is principal generated by a monomial X x with

�F .x/ D 1)

On the other hand: !RF
D .!R/F : the Zr -graded canonical module

“localizes” (a nontrivial fact)

) jF D 1.

Toric rings and discrete convex geometry – p.62/119



Back to the ADG conjectures

Recall that Mn denotes the “magic” monoid. It contains the matrix 1
with all entries 1.

Let C D RCMn. Then C is cut out from RMn by the positive

orthant

) int.C / D fA W aij > 0 for all i; j g.

) A � 1 2 Mn for all A 2 M \ int.C /

) interior ideal I is generated by X 1; 1 has magic sum n

) I Š R.�n/. R D KŒMn� is a Gorenstein ring with

deg HR.t/ D �n
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deg HR.t/ D �n )

(ADG-2) H.n; k/ D Pn.k/ for all k > �n; in particular Pn.�k/ D 0,

k D 1; : : : ; n � 1;

(ADG-2) and R Gorenstein )

(ADG-3) Pn.�k/ D .�1/.n�1/2

Pn.k � n/ for all k 2 Z.
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In terms of

HR.t/ D 1 C h1t C � � � C hutu

.1 � t/.n�1/2C1
; hu ¤ 0;

we have seen that

u D .n � 1/2 C 1 � n (ADG-2)

hi > 0 for i D 1; : : : ; u (R Cohen-Macaulay)

hi D hu�i for all i (ADG-3)

Very recent result, conjectured by Stanley and now proved by Ch.

Athanasiadis:

the sequence .hi/ is unimodal: h0 � h1 � � � � � hdu=2e
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Lecture 3

Unimodular covers and triangulations
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Recall: P D conv.x1; : : : ; xn/ � Rd , xi 2 Zd , is called a lattice

polytope.

P

�1

�2

� D conv.v0; : : : ; vd/, v0; : : : ; vd affinely independent, is a

simplex.
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Set U� D Pd
iD0 Z.vi � v0/.

�.�/ D ŒZd W U�� D multiplicity of �

� is unimodular if �.�/ D 1.

� is empty if vert.�/ D � \ Zd .

Lemma 3.1.

�.�/ D d! vol.�/ D ˙ det

0BB@
v1 � v0

:::

vd � v0

1CCA

When is P covered by its unimodular subsimplices?

For short: P has UC.
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Low Dimensions

d D 1: 0 1 2 3 4�1 P has a unique

unimodular triangulation.

d D 2:

Every empty lattice triangle is

unimodular ) every 2-polytope

has a unimodular triangulation.
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d D 3: There exist empty simplices of arbitrary multiplicity!
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Polytopal cones and monoids

The cone over P is CP D RCf.x; 1/ 2 RdC1 W x 2 Pg:
The monoid associated with P is

MP D ZCf.x; 1/ W x 2 P \ Zdg:
The integral closure of MP is cM P D CP \ ZdC1:

P

CP

Proposition 3.2. P has UC ) MP D cM P (P is integrally closed).
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P is integrally closed ”
(i) gp.MP / D ZdC1 and

(ii) MP is a normal monoid (MP D CP \ gp.MP /)

There exist non-normal 3-dimensional polytopes, for example

P D fx 2 R3 W xi � 0; 6x1 C 10x2 C 15x3 � 30g:

) P does not have UC, and this cannot be “repaired” by replacing

Z3 by the smallest lattice containing P \ Z3.
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Monoid algebras, toric ideals and Gröbner
bases

Let K be a field. The polytopal K-algebra KŒP � is the monoid

algebra

KŒP � D KŒMP � D KŒXx W x 2 P \ Zd �=IP :

The toric ideal IP is generated by all binomialsY
x2P\Zd

X ax

x �
Y

x2P\Zd

X bx

x ;

X
axx D

X
bxx;

X
ax D

X
bx

expressing the affine relations between the lattice points in P .
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Sturmfels:

“generic” weights for Xx 7�!8<:(i) regular triangulation ˙ of P , vert.˙/ � P \ Zd

(ii) term (pre)order on KŒXx�, ini.IP / monomial ideal

Theorem 3.3.

.Stanley-Reisner ideal of ˙/ D Rad.ini.IP //

˙ is unimodular ” ini.IP / squarefree
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Multiples of polytopes

For c ! 1 (c 2 N) the lattice points cP \ Zd approximate the

continuous structure of cP 	 P better and better.
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Algebraic results:

Theorem 3.4.

cP integrally closed for c � dim P � 1. Thus KŒcP � normal for

c � dim P � 1.

IcP has an initial ideal generated by degree 2 monomials for

c � dim P . Thus KŒcP � is Koszul for c � dim P .

Proof of Koszul property uses technique of Eisenbud-Reeves-Totaro.
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Questions:

(i) Does cP have UC for c � dim P � 1 ?

(ii) Does cP have a regular unimodular triangulation of degree 2 for

c � dim P ?

Positive answers: (i) dim P � 3, (ii) dim P � 2.

No algebraic obstructions in arbitrary dimension !
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Positive rational cones and Hilbert bases

C generated by finitely many v 2 Zd , and x; �x 2 C ) x D 0.

Gordan’s lemma: C \ Zd is a finitely generated monoid.

Its irreducible element form the Hilbert basis Hilb.C / of C .

C is simplicial ” C generated by linearly independent vectors

v1; : : : ; vd .

Can assume that the components of vi are coprime. Then

�.C / D ŒZd W Zv1 C � � � C Zvd �

C unimodular ” C generated by Z-basis of Zd ” �.C / D 1
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Theorem 3.5. C has a triangulation into unimodular subcones.

Proof: Start with arbitrary triangulation. Refine by iterated stellar

subdivision to reduce multiplicities.

Here we make no assertion on the generators of the unimodular

subcones.
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But: P has a unimodular triangulation ) CP satisfies UHT.

UHT: C has a Unimodular Triangulation into cones generated by

subsets of Hilb.C /.

UHC: C is Covered by its Unimodular subcones generated by subsets

of Hilb.C /.

A condition with a more algebraic flavour:

ICP: (Integral Carathéodory Property) for every x 2 C \ Zd there

exist y1; : : : ; yd 2 Hilb.C / with x 2 ZCy1 C � � � C ZCyd .

UHT ) UHC ) ICP.

UHC 6) UHT. No example known with ICP, but without UHC.
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Dimension 3

Cones of dimension 3:

Theorem 3.6 (Sebő). dim C D 3 ) C has UHT

If C D CP , dim P D 2, this is easy since P has UT. General case is

somewhat tricky.
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Polytopes of dimension 3:

First triangulate P into empty simplices and then use classification of

empty simplices (White):

�pq D conv

0BBBBB@
0 0 0

0 1 0

0 0 1

p q 1

1CCCCCA ; 0 � q < p; gcd.p; q/ D 1

�.�pq/ D p

No classification known in dimension � 4. Essential difference to

dimension 3: lattice width of � may be > 1.
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Lagarias & Ziegler , Kantor & Sarkaria:

Proposition 3.7. cP has UC for c � 2.

Theorem 3.8.

2�pq has UT ” q D 1 or q D p � 1.

4P has UT for all P .

c�pq has UT for c � 4.

Question: What about 3�pq ?
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Counterexamples
P D 2�53 integrally closed 3 polytope without UT ) CP has

dimension 4 and violates UHT (first counterexample by Bouvier &

Gonzalez-Sprinberg)

C6 with Hilbert basis z1; : : : ; z10, is of form CP5
, dim P5 D 5, P5

integrally closed, and violates UHC and ICP (B & G & Henk, Martin,
Weismantel)

z1 D .0; 1; 0; 0; 0; 0/; z6 D .1; 0; 2; 1; 1; 2/;

z2 D .0; 0; 1; 0; 0; 0/; z7 D .1; 2; 0; 2; 1; 1/;

z3 D .0; 0; 0; 1; 0; 0/; z8 D .1; 1; 2; 0; 2; 1/;

z4 D .0; 0; 0; 0; 1; 0/; z9 D .1; 1; 1; 2; 0; 2/;

z5 D .0; 0; 0; 0; 0; 1/; z10 D .1; 2; 1; 1; 2; 0/:

) P5 violates UC
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There exists a polytope of dimension 10 with UT, but without a

regular unimodular triangulation (Hibi & Ohsugi)

Questions:

Do all integrally closed polytopes P of dimensions 3 and 4 have

UC ?

Do all cones C of dimensions 4 and 5 have UHC ?

Does there exist C with ICP, but violating UHC ?
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Triangulating cP

Theorem 3.9 (Knudsen & Mumford, Toroidal embeddings). Let P

be a lattice d -polytope. Then cP has a regular unimodular

triangulation for a some c 2 ZC, c > 0.

Not so hard: UC of d -simplices with non-overlapping interiors

Harder: UT

Most difficult: regularity

Questions: Does cP have UT for c � 0 ? Can we bound c

uniformly in terms of dimension ? Is c � dim P enough ?
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Covering cP

Theorem 3.10. Let P be a d -polytope. Then there exists cd such that

cP has UC for all c � c
pol
d

, and

c
pol
d

D O
�
d16:5

� �
9

4

�.ld �.d//2

; � .d/ D .d � 1/d
p

d � 1e:

For the proof one needs a similar theorem about cones—cones allow

induction on d .
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Theorem 3.11. Let C be a rational simplicial d -cone and �C the

simplex spanned by O and the extreme integral generators. Then

(a) (M. v. Thaden) C has a triangulation into unimodular simplicial

cones Di such that Hilb.Di/ � c�C for some

c � d2

4
.�.C //7

�
9

4

�.ld.�.C ///2

:

(b) C has a cover by unimodular simplicial cones Di such that

Hilb.Di/ � c�C for some

c � d2

4
.d C 1/

�
� .d/

�8

�
9

4

�.ld.� .d///2

:
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Sketch of proof of Theorem 3.11:

(i) d � 1 ! d : we can cover the “corners”] of C with unimodular

subcones.

(ii) Extend the corner covers far enough into C . To have enough

room, we must go “further up” in the cone. We loose unimodularity,

but the multiplicity remains under control:

� � .d/ D ˙p
d � 1

�
.d � 1/

(iii) Apply part (a) of theorem to restore unimodularity.

(iv) Part (a): Control the “lengths” of the vectors in iterated stellar

subdivision.
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Sketch of proof of Theorem 3.10: May assume P D � is an

(empty) simplex. Consider corner cones of �:

v0

v2

v1

�
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Apply Theorem 3.11 to corner cone:

v0

v2

v1

�
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Must multiply P by factor c0 from Theorem 3.11 to get basic

unimodular corner simplices into P

v0

v2

v1
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Tile corner cones:

v0

v2

v1

Must multiply c0P by c00 
 d
p

d to get the tiling by unimodular

corner simplices close enough (D beyond red line) to facet opposite

of v0.
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Lecture 4

From vector spaces to polytopal
algebras

Every so often you should try a damn-fool experiment —
from J. Littlewood’s A Mathematician’s Miscellany
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The category Pol.K/

Recall from Lecture 3 that a lattice polytope P is the convex hull of

finitely many points xi 2 Zn.

MP submonoid of ZnC1 generated by .x; 1/, x 2 P \ Zn.

For a field K we let Pol.K/ be the category

with objects the graded algebras KŒP � D KŒMP �

with morphisms the graded K-algebra homomorphisms

Main question: To what extent is Pol.K/ determined by

combinatorial data ?
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Pol.K/ generalizes Vect.K/, the category of finite-dimensional

K-vector spaces:

�n n-dimensional unit simplex

) KŒ�n� D KŒX1; : : : ; XnC1�

HomK .Km; Km/ $ gr: homK .S.Km/; S.Kn//

$ gr: homK .KŒX1; : : : ; Xm�; KŒX1; : : : ; Xn�/

$ gr: homK .KŒ�m�1�; KŒ�n�1�//

What properties of Vect.K/ can be passed on Pol.K/?

Note: Pol.K/ not abelian
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Why not graded affine monoid algebras KŒM � in full generality?

Proposition 4.1. Let P; Q be lattice polytopes. Then the K-algebra

homomorphisms KŒP � ! KŒQ� correspond bijectively to K-algebra

homomorphisms KŒP � ! KŒQ� of the normalizations.

In fact, KŒP � equals KŒP � in degree 1.

In the following the base field K is often replaced by a general

commutative base ring R.
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Toric automorphisms and symmetries

Elementary fact of linear algebra: GLn.K/ is generated by matrices

of 3 types:

diagonal matrices

permutation matrices

elementary transformations

Actually, the permutation matrices are not needed. But their

analogues in the general case cannot always be omitted.
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It easy to generalize diagonal matrices and permutation matrices:

the diagonal matrices correspond to

.�1; : : : �nC1/ 2 TnC1 D .K�/nC1 acting on

KŒP � � KŒX ˙1
1 ; : : : ; X ˙1

nC1� via the substitution Xi 7! �iXi ,

the permutation matrices represent symmetries of �n�1 and

correspond to the elements of the (affine!) symmetry group

˙.P / of P .

How can we generalize elementary transformations?
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Column structures

A column structure arranges the lattice points in P in columns:

v

F D Pv

More formally: v 2 Zn is a column vector if their exists a facet F , the

base facet Pv D F of v, such that

x C v 2 P for all x 2 P n F:

A column vector v 2 Zn is to be identified with .v; 0/ 2 ZnC1.
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Elementary automorphisms

To each facet F of P there corresponds a facet of the cone RCMP ,

also denoted by F .

Recall the support form �F . For F D Pv set �v D �F .

For every � 2 R define a map from MP to RŒZnC1� by

e�
v W x 7! .1 C �v/�v.x/x:

�v Z-linear and v column vector ) e�
v homomorphism from MP

into .RŒMP �; �/
) e�

v extends to an endomorphism of RŒMP �

Since e��
v is its inverse, e�

v is an automorphism.
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Proposition 4.2. v1; : : : ; vs pairwise different column vectors for P

with the same base facet F D Pvi
. Then

' W .R; C/s ! gr: autR.RŒP �/; .�1; : : : ; �s/ 7! e�1

v1
ı � � � ı e�s

vs
;

is an embedding of groups.

e�i
vi

and e
�j

vj
commute and the inverse of e�i

vi
is e��i

vi
.

R field ) ' is homomorphism of algebraic groups.

) subgroup A.F/ of gr: autR.RŒP �/ generated by e�
v with F D Pv

is an affine space over R

Col.P / D set of column vectors of P (can be empty).
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The polytopal linear group

Theorem 4.3. Let K a field.

Every � 2 gr: autK .KŒP �/ has a presentation

� D ˛1 ı ˛2 ı � � � ı ˛r ı � ı �;

� 2 ˙.P /, � 2 TnC1, and ˛i 2 A.Fi/.

A.Fi/ and TnC1 generate conn. comp. of unity gr: autK .KŒP �/0.

D f� 2 gr: autK .KŒP �/ inducing id on div. class group of KŒP �g.

dim gr: autK .KŒP �/ D # Col.P / C n C 1.

TnC1 is a maximal torus of gr: autK .KŒP �/.
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The proof uses in a crucial way that every divisorial ideal of KŒMP � is

isomorphic to a monomial ideal.

This fact allows a polytopal Gaussian algorithm.

Using elementary automorphisms it corrects an arbitrary � to an

automorphism ı such that ı.int.KŒP �// D int.KŒP �/.

Lemma 4.4. ı.int.KŒP �// D int.KŒP �/ ) ı D � ı � ,

� 2 TnC1, � 2 ˙.P /

Important fact: the divisor class group of KŒP �g is a discrete object.

To some extent one can also classify retractions of KŒP �.
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Milnor’s classical K2

Its construction is based on

the passage to the “stable” group of elementary automorphisms

the Steinerg relations

Construction of the stable group: En.R/ subgroup generated by of

elementary matrices,

E 2 En.R/ 7!
0@E 0

0 1

1A 2 EnC1.R/

E.R/ D lim�! En.R/:
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The Steinberg relations for elementary matrices:

e�
ije

�
ij D e

�C�
ij

Œe�
ij ; e

�

jk
� D e

��

ik
; i ¤ k

Œe�
ij ; e

�

ki
� D e

���

kj
j ¤ k

Œe�
ij ; e

�

kl
� D 1 i ¤ l; j ¤ k

The stable Steinberg group of K is defined by

generators x�
ij , i; j 2 N, i ¤ j , � 2 K representing the

elementary matrices

the (formal) Steinberg relations x�
ij x

�
ij D x

�C�
ij , Œxij ; x

�

jk
� D x

��

ik

etc.
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Set

K2.R/ D Ker
�
St.R/ ! E.R/

�
; x�

ij 7! e�
ij :

Milnor’s theorem:

Theorem 4.5. The exact sequence

1 ! K2.R/ ! St.R/ ! E.R/ ! 1

is a universal central extension and K2.R/ is the center of St.R/.

K2.R/ captures the “hidden syzygies” of the elementary matrices.
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Products of column vectors

Let u; v; w 2 Col.P /. We say that

uv D w ” w D u C v and Pw D Pu

Examples of products of column vectors:

w D uv u

v

�v

w u D w.�v/

) partial, non-commutative product structure on Col.P /.
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Balanced polytopes

A polytope is balanced if

�F .v/ � 1 for all v 2 Col.P /; F D Pw:

A nonbalanced polytope
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Polytopal Steinberg relations

Proposition 4.6. P balanced, u; v 2 Col.P /, u C v ¤ 0, �; � 2 R.

Then

e�
v e�

v D elC�
v

Œe�
u ; e�

v � D

8̂̂<̂
:̂

e
���
uv if uv exists;

e
��
vu if vu exists;

1 if u C v … Col.P /:

Note: we know nothing about Œe�
u ; e

��u� if u; �u 2 Col.P /!

Toric rings and discrete convex geometry – p.110/119



Doubling along a facet

Let F D Pv be a facet of P and choose coordinates in Rn such that

Rn�1 is the affine hyperplane spanned by F .

P � D f.x0; xn; 0/ W .x0; xn/ 2 Pg
P j D f.x0; 0; xn/ W .x0; xn/ 2 Pg

P F D conv.P; P j/ � RnC1:

P

P j

F

ı�
ıC

v�
v j

v D v� D ıCv j

v j D ı�v�
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Crucial facts:

Col.P / ,! Col.P F /

G 7! conv.G�; G j/; G ¤ F

F 7! P j

P � D new facet

Lemma 4.7. P balanced ) P F balanced and

Col.P F / D Col.P /� [ Col.P / j [ fıC; ı�g:
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Doubling spectra

The chain of lattice polytopes P D .P D P0 � P1 � : : : / is called a

doubling spectrum if

for every i 2 ZC there exists a column vector v � Col.Pi/ such

that PiC1 D P v

i ,

for every i 2 ZC and any v 2 Col.Pi/ there is an index j � i

such that PjC1 D P v

j .

Associated to P are the ‘infinite polytopal’ algebra

RŒP� D lim
i!1 RŒPi �

and the filtered union

Col.P/ D lim
i!1 Col.Pi/:
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Now we can define a stable elementary group:

E.R; P / D subgroup of gr: autR.RŒP�/ generated by e�
v

v 2 Col.P/; � 2 R:

Note: it depends only on P , not on the doubling spectrum.

Theorem 4.8. E.R; P / is a perfect group with trivial center.
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Polytopal Steinberg groups

The group St.R; P / is defined by

generators x�
v , v 2 Col.fP /, � 2 R representing the

elementary automorphisms e�
v

the (formal) Steinberg relations between the x�
v

It depends only on the partial product structure on Col.P /. This

allows some functoriality in P .
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Polytopal K2

In analogy with Milnor’s theorem we have

Theorem 4.9. P balanced polytope ) St.R; P / ! E.R; P / is a

universal central extension with kernel equal to the center of St.R; P /.

Definition 4.10.

K2.R; P / D Ker
�
St.R; P / ! E.R; P /

�
:
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Balanced polygons

It is not difficult to classify the balanced polygons = 2-dimensional

polytopes: (K2 D classical K2)

f˙u; ˙v; ˙wg K2

f˙u; ˙vg K2 ˚ K2

fu; ˙v; wg
w D uv

u D w.�v/ K2 ˚ K2
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fu; v; wg
w D uv K2 ˚ K2

fv W Pv D Fg K2

fu; vg K2 ˚ K2
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Higher K-groups

Using Quillen’s C-construction or Volodin’s construction one can

define higher K-groups.

For certain well-behaved polytopes both constructions yield the same

result (in the classical case proved by Suslin).

Potentially difficult polytope:

u
v

w
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