School on Commutative Algebra and Interactions with

 Algebraic Geometry and Combinatorics(24 May - 11 June 2004)

Toric rings and discrete convex geometry

W. Bruns

FB Mathematik/Informatik
Universität Osnabrück
49069 Osnabrück
Germany

Toric rings and discrete convex geometry

Lectures for the School on
Commutative Algebra and Interactions with Algebraic Geometry and Combinatorics
Trieste, May/June 2004

Winfried Bruns

FB Mathematik/Informatik
Universität Osnabrück

Preface

This text contains the computer presentation of 4 lectures:

1. Affine monoids and their algebras
2. Homological properties and combinatorial applications
3. Unimodular covers and triangulations
4. From vector spaces to polytopal algebras

Lecture 1 introduces the affine monoids and relates them to the geometry of rational convex cones. Lecture 2 contains the homological theory of normal affine semigroup rings and their applications to enumerative combinatorics developed by Hochster and Stanley.

Lectures 3 and 4 are devoted to lines of research that have been pursued in joint work with Joseph Gubeladze (Tbilisi/San Francisco).

A rather complete expository treatment of Lectures 1 and 2 is contained in
W. Bruns. Commutative algebra arising from the

Anand-Dumir-Gupta conjectures. Preprint.
Most of Lecture 3 and much more - in particular basic notions and results of polyhedral convex geometry - is to be found in
W. Bruns and J. Gubeladze. K-theory, rings, and polytopes. Draft version of Part 1 of a book in progress.

For Lecture 4 there exists no coherent expository treatment so far, but a brief overview is given in
W. Bruns and J. Gubeladze. Polytopes and K-theory. Preprint.

A previous exposition, covering various aspects of these lectures is to be found in

> W. Bruns and J. Gubeladze. Semigroup algebras and discrete geometry. In L. Bonavero and M. Brion (eds.), Toric geometry.
> Séminaires et Congrès 6 (2002), 43-127

All these texts can be downloaded from (or via)
http://www.math.uos.de/staff/phpages/brunsw/course.htm

They contain extensive lists of references.

Osnabrück, May 2004
Winfried Bruns

Lecture 1

Affine monoids and their algebras

Affine monoids and their algebras

An affine monoid M is (isomorphic to) a finitely generated submonoid of \mathbb{Z}^{d} for some $d \geq 0$, i. e.
$\square M+M \subset M \quad(M$ is a semigroup);
■ $0 \in M$ (now M is a monoid);
\square there exist $x_{1}, \ldots, x_{n} \in M$ such that

$$
M=\mathbb{Z}_{+} x_{1}+\cdots+\mathbb{Z}_{+} x_{n}
$$

Often affine monoids are called affine semigroups.
$\operatorname{gp}(M)=\mathbb{Z} M$ is the group generated by M.
$\operatorname{gp}(M) \cong \mathbb{Z}^{r}$ for $r=\operatorname{rank} M=\operatorname{rank} \operatorname{gp}(M)$.

Let K be a field (or a commutative ring). Then we can form the monoid algebra

$$
K[M]=\bigoplus_{a \in M} K X^{a}, \quad X^{a} X^{b}=X^{a+b}
$$

$X^{a}=$ the basis element representing $a \in M$.
$M \subset \mathbb{Z}^{d} \Rightarrow K[M] \subset K\left[\mathbb{Z}^{d}\right]=K\left[X_{1}^{ \pm 1}, \ldots, X_{d}^{ \pm 1}\right]$ is a monomial subalgebra.

Proposition 1.1. Let M be a monoid.
(a) M is finitely generated $\Longleftrightarrow K[M]$ is a finitely generated K-algebra.
(b) M is an affine monoid $\Longleftrightarrow K[M]$ is an affine domain.

Proposition 1.2. The Krull dimension of $K[M]$ is given by

$$
\operatorname{dim} K[M]=\operatorname{rank} M
$$

Proof. $K[M]$ is an affine domain over K. Therefore

$$
\begin{aligned}
\operatorname{dim} K[M] & =\operatorname{trdeg} \operatorname{QF}(K[M]) \\
& =\operatorname{trdeg} \operatorname{QF}(K[\operatorname{gp}(M)]) \\
& =\operatorname{trdeg} \operatorname{QF}\left(K\left[\mathbb{Z}^{r}\right]\right) \\
& =r
\end{aligned}
$$

where $r=\operatorname{rank} M$.

Sources for affine monoids (and their algebras) are

- monoid theory,
- ring theory,
- initial algebras with respect to monomial orders,
- invariant theory of torus actions,
\square enumerative theory of linear diophantine systems,
- lattice polytopes and rational polyhedral cones,

■ coordinate rings of toric varieties.

Polytopal monoids

Definition 1.3. The convex hull $\operatorname{conv}\left(x_{1}, \ldots, x_{m}\right)$ of points $x_{i} \in \mathbb{Z}^{n}$ is called a lattice polytope.

With a lattice polytope $P \subset \mathbb{R}^{n}$ we associate the polytopal monoid

$$
M_{P} \subset \mathbb{Z}^{n+1} \quad \text { generated by }(x, 1), x \in P \cap \mathbb{Z}^{n}
$$

Vertical cross-section of a polytopal monoid
Such monoids will play an important role in Lectures 3 and 4.

Presentation of an affine monoid algebra

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$. Then we have a presentation

$$
\pi: K[X]=K\left[X_{1}, \ldots, X_{n}\right] \rightarrow K\left[x_{1}, \ldots, x_{n}\right], \quad X_{i} \mapsto x_{i}
$$

Let $I=\operatorname{Ker} \pi$ and $M=\left\{\pi\left(X^{a}\right): a \in \mathbb{Z}_{+}^{n}\right\}$

Theorem 1.4. The following are equivalent:
(a) M is an affine monoid and $R=K[M]$;
(b) I is prime, generated by binomials $X^{a}-X^{b}, a, b \in \mathbb{Z}_{+}^{n}$;
(c) $I=K[X] \cap I K\left[X^{ \pm 1}\right]$, I is generated by binomials $X^{a}-X^{b}$, and $U=\left\{a-b: X^{a}-X^{b} \in I\right\}$ is a direct summand of \mathbb{Z}^{n}.

Proof. (a) \Rightarrow (b) Since R is a domain, I is prime. Let $f=c_{1} X^{a_{1}}+\cdots+c_{m} X^{a_{m}} \in I, c_{i} \in K, c_{i} \neq 0, a_{1}>_{\operatorname{lex}} \cdots>_{\operatorname{lex}} a_{m}$. There exists $j>1$ with $\pi\left(X^{a_{1}}\right)=\pi\left(X^{a_{j}}\right)$, and so $X^{a_{1}}-X^{a_{j}} \in I$. Apply lexicographic induction to $f-c_{1}\left(X^{a_{1}}-X^{a_{j}}\right)$.
(b) \Rightarrow (c) Since I is an ideal, U is a subgroup. Since I is prime and $X_{i} \notin I$ for all $i, I=K[X] \cap I K\left[X^{ \pm 1}\right]$. Let $u \in \mathbb{Z}^{n}, m>0$ such that $m u \in U, u=v-w$ with $v, w \in \mathbb{Z}_{+}^{n}$. Clearly $X^{u m}-X^{v m} \in I$. We can assume char $K \nmid m$. Then

$$
X^{u m}-X^{v m}=\left(X^{u}-X^{v}\right)\left(X^{u(m-1)}+X^{u(m-2) v}+\cdots+X^{(m-1)}\right),
$$

and the second term is not in $\left(X_{1}-1, \ldots, X_{n}-1\right) \supset I$.
(c) \Rightarrow (a) Consider $K[X] \rightarrow K\left[X^{ \pm 1}\right]=K\left[\mathbb{Z}^{n}\right] \rightarrow K\left[\mathbb{Z}^{n} / U\right]$.

Cones

An affine monoid M generates the cone

$$
\mathbb{R}_{+} M=\left\{\sum a_{i} x_{i}: x_{i} \in M, a_{i} \in \mathbb{R}_{+}\right\}
$$

Since $M=\sum_{i=1}^{n} \mathbb{Z}_{+} x_{i}$ is finitely generated, $\mathbb{R}_{+} M$ is finitely generated:

$$
\mathbb{R}_{+} M=\left\{\sum_{i=1}^{n} a_{i} x_{i}: a_{1}, \ldots, a_{n} \in \mathbb{R}_{+}\right\}
$$

The structures of M and $\mathbb{R}_{+} M$ are connected in many ways. It is necessary to understand the geometric structure of $\mathbb{R}_{+} M$.

Finite generation \Longleftrightarrow intersection of finitely many halfspaces:

Theorem 1.5. Let $C \neq \emptyset$ be a subset of \mathbb{R}^{m}. Then the following are equivalent:
\square there exist finitely many elements $y_{1}, \ldots, y_{n} \in \mathbb{R}^{m}$ such that

$$
C=\mathbb{R}_{+} y_{1}+\cdots+\mathbb{R}_{+} y_{n}
$$

\square there exist finitely many linear forms $\lambda_{1}, \ldots, \lambda_{s}$ such that C is the intersection of the half-spaces $H_{i}^{+}=\left\{x: \lambda_{i}(x) \geq 0\right\}$.

For full-dimensional cones the (essential) support hyperplanes $H_{i}=\left\{x: \lambda_{i}(x)=0\right\}$ are unique:

Proposition 1.6. If C generates \mathbb{R}^{m} as a vector space and the representation $C=H_{1}^{+} \cap \cdots \cap H_{s}^{+}$is irredundant, then the hyperplanes H_{i} are uniquely determined (up to enumeration).
Equivalently, the linear forms λ_{i} are unique up to positive scalar factors.
rational generators \Longleftrightarrow rationality of the support hyperplanes:
Proposition 1.7. The generating elements y_{1}, \ldots, y_{n} can be chosen in $\mathbb{Q}^{m}\left(o r \mathbb{Z}^{m}\right)$ if and only if the λ_{i} can be chosen as linear forms with rational (or integral) coefficients.

Such cones are called rational.
Proposition 1.8. If $Y=\left\{y_{1}, \ldots, y_{n}\right\} \subset \mathbb{Q}^{m}$, then
$\mathbb{Q}^{m} \cap \mathbb{R}_{+} Y=\mathbb{Q}_{+} Y$.

Gordan's lemma and normality

As seen above, affine monoids define rational cones. The converse is also true.

Lemma 1.9 (Gordan's lemma). Let $U \subset \mathbb{Z}^{d}$ be a subgroup and
$C \subset \mathbb{R}^{d}$ a rational cone. Then $U \cap C$ is an affine monoid.
Proof. Let $V=\mathbb{R} U \subset \mathbb{R}^{d}$. Then:

- $V \cap \mathbb{Q}^{d}=\mathbb{Q} U$;
- $C \cap V$ is a rational cone in V
$■ \Rightarrow$ We may assume that $U=\mathbb{Z}^{d}$.
C is generated by elements $y_{1}, \ldots, y_{n} \in M=C \cap \mathbb{Z}^{d}$.

$$
x \in C \Rightarrow x=a_{1} y_{1}+\cdots+a_{n} y_{n} \quad a_{i} \in \mathbb{R}_{+}
$$

$$
x=x^{\prime}+x^{\prime \prime}, \quad x^{\prime}=\left\lfloor a_{1}\right\rfloor y_{1}+\cdots+\left\lfloor a_{n}\right\rfloor y_{n} .
$$

Clearly $x^{\prime} \in M$. But

$$
x \in M \Rightarrow x^{\prime \prime} \in \operatorname{gp}(M) \cap C \Rightarrow x^{\prime \prime} \in M .
$$

$x^{\prime \prime}$ lies in a bounded set $B \Rightarrow$
M generated by $\quad y_{1}, \ldots, y_{n} \quad$ and the finite set $\quad M \cap B$.
The monoid $M=U \cap C$ has a special property:
Definition 1.10. A monoid M is normal \Longleftrightarrow

$$
x \in \operatorname{gp}(M), k x \in M \text { for some } k \in \mathbb{Z}, k>0 \quad \Rightarrow \quad x \in M
$$

Proposition 1.11.

$\square M \subset \mathbb{Z}^{d}$ normal affine monoid \Longleftrightarrow there exists a rational cone C such that $M=\operatorname{gp}(M) \cap C$;
$\square M \subset \mathbb{Z}^{d}$ affine monoid \Rightarrow the normalization

$$
\bar{M}=\operatorname{gp}(M) \cap \mathbb{R}_{+} M \quad \text { is affine }
$$

Briefly: Normal affine monoids are discrete cones.

Positivity, gradings and purity

Definition 1.12. A monoid M is positive if $x,-x \in M \Rightarrow x=0$.
Definition 1.13. A grading on M is a homomorphism $\operatorname{deg}: M \rightarrow \mathbb{Z}$. It is positive if $\operatorname{deg} x>0$ for $x \neq 0$.

Proposition 1.14. For M affine the following are equivalent:
(a) M is positive;
(b) $\mathbb{R}_{+} M$ is pointed (i. e. contains no full line);
(c) M is isomorphic to a submonoid of \mathbb{Z}_{+}^{s} for some s;
(d) M has a positive grading.

Proof. (c) \Rightarrow (d) \Rightarrow (a) trivial.
(a) \Rightarrow (b) Set $C=\mathbb{R}_{+} M$. One shows:
$\{x \in C:-x \in C\}=\mathbb{R}\{x \in M:-x \in M\}$.
Therefore: M positive $\Rightarrow C$ pointed.
(b) \Rightarrow (c) Let C be positive. For each facet F of C there exists a unique linear form $\sigma_{F}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with the following properties:
$\square F=\left\{x \in C: \sigma_{F}(x)=0\right\}, \quad \sigma_{F}(x) \geq 0$ for all $x \in C ;$
$\square \sigma$ has integral coefficients, $\quad \sigma\left(\mathbb{Z}^{d}\right)=\mathbb{Z}$.
These linear forms are called the support forms of C. Let $s=\#$ facets (C) and define

$$
\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}, \quad \sigma(x)=\left(\sigma_{F}(x): F \text { facet }\right)
$$

Then $\sigma(M) \subset \sigma(\bar{M}) \subset \mathbb{Z}_{+}^{s}$. Since C is positive, σ is injective!
We call σ the standard embedding.

For M normal the standard embedding has an important property:

Proposition 1.15. M positive affine monoid. Then the following are equivalent:
(a) M is normal;
(b) σ maps M isomorphically onto $\mathbb{Z}_{+}^{s} \cap \sigma(\operatorname{gp}(M))$.
M pure submonoid of $N \Longleftrightarrow M=N \cap \operatorname{gp}(M)$.
Corollary 1.16. M affine, positive, normal $\Longleftrightarrow M$ isomorphic to a pure submonoid of \mathbb{Z}_{+}^{s} for some s.

Normality and purity of $K[M]$

An integral domain R is normal if R integrally closed in $\mathrm{QF}(R)$.
R pure subring of $S \Longleftrightarrow S=R \oplus T$ as an R-module.

Theorem 1.17. M positive affine monoid.
(a) M normal $\Longleftrightarrow K[M]$ normal
(b) $M \subset \mathbb{Z}_{+}^{s}$ pure submonoid $\Longleftrightarrow K[M]$ pure subalgebra of $K\left[\mathbb{Z}_{+}^{s}\right]=K\left[Y_{1}, \ldots, Y_{s}\right]$

Proof. (a) $x \in \operatorname{gp}(M), m x \in M$ for some $m>0$
$\Rightarrow X^{x} \in K[\operatorname{gp}(M)] \subset \mathrm{QF}(K[M]), \quad\left(X^{x}\right)^{m} \in K[M]$.
Thus: $K[M]$ normal $\Rightarrow X^{x} \in K[M] \Rightarrow x \in M$.

Conversely, let M be normal, $\operatorname{gp}(M)=\mathbb{Z}^{r}, C=\mathbb{R}_{+} M$
$\Rightarrow M=\mathbb{Z}^{r} \cap C$
$C=H_{1}^{+} \cap \cdots \cap H_{s}^{+}, \quad H_{i}^{+}$rational closed halfspace \Rightarrow

$$
\begin{aligned}
M & =N_{1} \cap \cdots \cap N_{s}, \quad N_{i}=\mathbb{Z}^{r} \cap H_{i}^{+} \\
\Rightarrow \quad K[M] & =K\left[N_{1}\right] \cap \cdots \cap K\left[N_{s}\right]
\end{aligned}
$$

N_{i} discrete halfspace

Consider the hyperplane H_{i} bounding H_{i}^{+}. Then $H_{i} \cap \mathbb{Z}^{r}$ direct summand of \mathbb{Z}^{r}.

$\Rightarrow \mathbb{Z}^{r}$ has basis u_{1}, \ldots, u_{r} with $u_{1}, \ldots, u_{r-1} \in H_{i}, \quad u_{r} \in H_{i}^{+}$
$\Rightarrow K\left[N_{i}\right] \cong K\left[\mathbb{Z}^{r-1} \oplus \mathbb{Z}_{+}\right] \cong K\left[Y_{1}^{ \pm 1}, \ldots, Y_{r-1}^{ \pm 1}, Z\right]$

Thus $K[M]$ intersection of factorial (hence normal) domains $\Rightarrow K[M]$ normal
(b) $T=K\left\{X^{x}: x \in \mathbb{Z}^{s} \backslash M\right\} \Rightarrow K\left[Y_{1}, \ldots, Y_{s}\right]=K[M] \oplus T$ as K-vector space
M pure submonoid $\Rightarrow T$ is $K[M]$-submodule
Converse not difficult.

A grading on M induces a grading on $K[M]$:

Proposition 1.18. Let M be an affine monoid with a grading deg.
Then

$$
K[M]=\bigoplus_{k \in \mathbb{Z}} K\left\{X^{x}: \operatorname{deg} x=k\right\}
$$

is a grading on $K[M]$.
If deg is positive, then $K[M]$ is positively graded.

The class group

R normal Noetherian domain (or a Krull domain).
$I \subset \mathrm{QF}(R)$ fractional ideal \Longleftrightarrow there exists $x \in R$ such that $x I$ is a non-zero ideal
I is divisorial $\Longleftrightarrow\left(I^{-1}\right)^{-1}=I$ where

$$
I^{-1}=\{x \in \mathrm{QF}(R): x I \subset R\} .
$$

$(I, J) \mapsto\left((I J)^{-1}\right)^{-1}$ defines a group structure on
$\operatorname{Div}(R)=\{$ div. ideals $\}$
Fact: $\operatorname{Div}(R)$ free abelian group with basis $\mathbb{Z} \operatorname{div}(\mathfrak{p}), \mathfrak{p}$ height 1 prime ideal ($\operatorname{div}(I)$ denotes I as an element of $\operatorname{Div}(I))$
$\operatorname{Princ}(R)=\{x R: x \in \mathrm{QF}(R)\}$ is a subgroup

$$
\mathrm{Cl}(R)=\frac{\operatorname{Div}(R)}{\operatorname{Princ}(R)}
$$

is called the (divisor) class group.
It parametrizes the isomorphism classes of divisorial ideals.
R is factorial $\Longleftrightarrow \mathrm{Cl}(R)=0$.

Let M be a positive normal affine monoid, $R=K[M]$. Choose

$$
\begin{aligned}
& x \in \operatorname{int}(M)=\left\{y \in M: \sigma_{F}(y)>0 \text { for all facets } F\right\} . \\
\Rightarrow & M[-x]=\operatorname{gp}(M) \\
\Rightarrow & R\left[\left(X^{x}\right)^{-1}\right]=K[\operatorname{gp}(M)]=L=\text { Laurent polynomial ring }
\end{aligned}
$$

Nagata's theorem \Rightarrow exact sequence

$$
0 \rightarrow U \rightarrow \mathrm{Cl}(R) \rightarrow \mathrm{Cl}(L) \rightarrow 0
$$

U generated by classes [p] of minimal prime overideals of X^{x}
L factorial $\Rightarrow \mathrm{Cl}(L)=0 \Rightarrow \mathrm{Cl}(R)=U$.

For a facet F of $\mathbb{R}_{+} M$ set

$$
\mathfrak{p}_{F}=R\left\{x \in M: \sigma_{F}(x) \geq 1\right\} .
$$

$\Rightarrow \mathfrak{p}_{F}$ is a prime ideal since $R / \mathfrak{p}_{F} \cong K[M \cap F]$.

Evidently

$$
R x=R\left\{X^{y}: \sigma_{F}(y) \geq \sigma_{F}(x) \text { for all } F\right\}=\bigcap_{F} \mathfrak{p}_{F}^{\left(\sigma_{F}(x)\right)}
$$

$\mathfrak{p}_{F}^{(k)}=R\left\{X^{y}: \sigma_{F}(y) \geq k\right\}$ is the k-th symbolic power of \mathfrak{p}_{F}.
$\Rightarrow \mathrm{Cl}(R)=\sum_{F} \mathbb{Z}\left[\mathfrak{p}_{F}\right]$.

$$
\left[\bigcap_{F} \mathfrak{p}_{F}^{\left(k_{F}\right)}\right]=\sum_{F} k_{F}\left[\mathfrak{p}_{F}\right]
$$

\Rightarrow every divisorial ideal is isomorphic to an ideal $\bigcap_{F} \mathfrak{p}_{F}^{\left(k_{F}\right)}$

Monomial ideal I principal
\Longleftrightarrow there exists a monomial X^{y} with $I=X^{y} R$
Enumerate the facets $F_{1}, \ldots, F_{s}, \mathfrak{p}_{i}=\mathfrak{p}_{F_{i}}, \sigma_{i}=\sigma_{F_{i}}$

Theorem 1.19 (Chouinard).

$$
\mathrm{Cl}(R) \cong \frac{\bigoplus_{i=1}^{s} \mathbb{Z} \operatorname{div}\left(\mathfrak{p}_{i}\right)}{\left\{\operatorname{div}\left(R X^{y}\right): y \in \operatorname{gp}(M)\right\}} \cong \frac{\mathbb{Z}^{s}}{\sigma(\operatorname{gp}(M)}
$$

where σ is the standard embedding.

Lecture 2

Homological properties and combinatorial applications

Magic Squares

In 1966 H. Anand, V. C. Dumir, and H. Gupta investigated a combinatorial problem:

- Suppose that n distinct objects, each available in k identical copies, are distributed among n persons in such a way that each person receives exactly k objects.

What can be said about the number $H(n, k)$ of such distributions?

They formulated some conjectures:
(ADG-1) there exists a polynomial $P_{n}(k)$ of degree $(n-1)^{2}$ such that $H(n, k)=P_{n}(k)$ for all $k \gg 0$;
(ADG-2) $H(n, k)=P_{r}(n)$ for all $k>-n$; in particular $P_{n}(-k)=0$, $k=1, \ldots, n-1$;
(ADG-3) $P_{n}(-k)=(-1)^{(n-1)^{2}} P_{n}(k-n)$ for all $k \in \mathbb{Z}$.
These conjectures were proved and extended by R. P. Stanley using methods of commutative algebra.

The weaker version (ADG-1) of (ADG-2) has been included for didactical purposes.

Reformulation:

$a_{i j}=$ number of copies of object i that person j receives
$\Rightarrow A=\left(a_{i j}\right) \in \mathbb{Z}_{+}^{n \times n}$ such that

$$
\sum_{k=1}^{n} a_{i k}=\sum_{l=1}^{n} a_{l j}=k, \quad i, j=1, \ldots, n
$$

$H(n, k)$ is the number of such matrices A.
The system of equations is part of the definition of magic squares. In combinatorics the matrices A are called magic squares, though the usually requires further properties for those.

Two famous magic squares:

8	1	6
3	5	7
4	9	2

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

The 3×3 square can be found in ancient sources and the 4×4 appears in Albrecht Dürer's engraving Melancholia (1514). It has remarkable symmetries and shows the year of its creation.

A step towards algebra

Let \mathscr{M}_{n} be the set of all matrices $A=\left(a_{i j}\right) \in \mathbb{Z}_{+}^{n \times n}$ such that

$$
\sum_{k=1}^{n} a_{i k}=\sum_{l=1}^{n} a_{l j}, \quad i, j=1, \ldots, n
$$

By Gordan's lemma $\mathscr{\Lambda}_{n}$ is an affine, normal monoid, and $A \mapsto$ magic sum $k=\sum_{k=1}^{n} a_{1 k}$ is a positive grading on \mathscr{M}.

It is even a pure submonoid of $\mathbb{Z}_{+}^{n \times n}$.
$\operatorname{rank} \mathscr{M}_{n}=(n-1)^{2}+1$

Theorem 2.1 (Birkhoff-von Neumann). \mathscr{M}_{n} is generated by the its degree 1 elements, namely the permutation matrices.

Translation into commutative algebra

We choose a field K and form the algebra

$$
R=K\left[\mathscr{M}_{n}\right] .
$$

It is a normal affine monoid algebra, graded by the "magic sum", and generated in degree $1 . \quad \operatorname{dim} R=\operatorname{rank} \mathscr{M}_{n}=(n-1)^{2}+1$.
$\Rightarrow H(n, k)=\operatorname{dim}_{K} R_{k}=H(R, k)$ is the Hilbert function of $R!$
\Rightarrow (ADG-1): there exists a polynomial P_{n} of degree $(n-1)^{2}$ such that $H(n . k)=P_{n}(k)$ for $k \gg 0$.

In fact, take P_{n} as the Hilbert polynomial of R.

A recap of Hilbert functions

Let K be a field, and $R=\oplus_{k=0}^{\infty} R_{k}$ a graded K-algebra generated by homogeneous elements x_{1}, \ldots, x_{n} of degrees $g_{1}, \ldots, g_{n}>0$.

Let M be a non-zero, finitely generated graded R-module.
Then $\quad H(M, k)=\operatorname{dim}_{K} M_{k}<\infty \quad$ for all $k \in \mathbb{Z}$.
$H\left(M, _\right): \mathbb{Z} \rightarrow \mathbb{Z}$ is the Hilbert function of M.

We form the Hilbert (or Poincaré) series

$$
H_{M}(t)=\sum_{k \in \mathbb{Z}} H(M \cdot k) t^{k}
$$

Fundamental fact:

Theorem 2.2 (Hilbert-Serre). Then there exists a Laurent polynomial $Q \in \mathbb{Z}\left[t, t^{-1}\right]$ such that

$$
H_{M}(t)=\frac{Q(t)}{\prod_{i=1}^{n}\left(1-t^{g_{i}}\right)}
$$

More precisely: $H_{M}(t)$ is the Laurent expansion at 0 of the rational function on the right hand side.

Refinement: M is finitely generated over a graded Noether normalization $K\left[y_{1}, \ldots, y_{d}\right], \quad d=\operatorname{dim} M$, of $R / \operatorname{Ann} M$.

Special case: $g_{1}, \ldots, g_{n}=1$. Then y_{1}, \ldots, y_{d} can be chosen of degree 1 (after an extension of K).

Theorem 2.3. Suppose that $g_{1}=\cdots=g_{n}=1$ and let $d=\operatorname{dim} M$.
Then

$$
H_{M}(t)=\frac{Q(t)}{(1-t)^{d}}
$$

Moreover:

- There exists a polynomial $P_{M} \in \mathbb{Q}[X]$ such that

$$
\begin{array}{ll}
H(M, i)=P_{M}(i), & i>\operatorname{deg} H_{M}, \\
H(M, i) \neq P_{M}(i), & i=\operatorname{deg} H_{M} .
\end{array}
$$

$e(M)=Q(1)>0$, and if $d \geq 1$, then

$$
P_{M}=\frac{e(M)}{(d-1)!} X^{d-1}+\text { terms of lower degree. }
$$

The general case is not much worse: P_{M} must be allowed to be a quasi-polynomial, i. e. a "polynomial" with periodic coefficients (instead of constant ones).

Theorem 2.4. Suppose R / Ann M has a graded Noether normalization generated by elements of degrees e_{1}, \ldots, e_{d}. Then

$$
H_{M}(t)=\frac{Q(t)}{\prod_{i=1}^{d}\left(1-t^{e_{i}}\right)}, \quad Q(1)>0
$$

Moreover there exists a quasi-polynomial P_{M}, whose period divides $\operatorname{lcm}\left(e_{1}, \ldots, e_{d}\right)$, such that

$$
\begin{array}{ll}
H(M, i)=P_{M}(i), & i>\operatorname{deg} H_{M}, \\
H(M, i) \neq P_{M}(i), & i=\operatorname{deg} H_{M} .
\end{array}
$$

Hochster's theorem

Theorem 2.5. Let M be an affine normal monoid. Then $K[M]$ is Cohen-Macaulay for every field K.

There is no easy proof of this powerful theorem. For example, it can be derived from the Hochster-Roberts theorem, using that $K[M] \subset K\left[X_{1}, \ldots, X_{s}\right]$ can be chosen as a pure embedding.

A special case is rather simple:
Definition 2.6. An affine monoid M is simplicial if the cone $\mathbb{R}_{+} M$ is generated by rank M elements.

Proposition 2.7. Let M be a simplical affine normal monoid. Then $K[M]$ is Cohen-Macaulay for every field K.

Proof. Let $d=\operatorname{rank} M$. Choose elements $x_{1}, \ldots, x_{d} \in M$ generating $\mathbb{R}_{+} M$, and set

$$
\operatorname{par}\left(x_{1}, \ldots, x_{d}\right)=\left\{\sum_{i=1}^{d} q_{i} x_{i}: q_{i} \in[0,1)\right\} .
$$

$$
\begin{array}{r}
B=\operatorname{par}\left(x_{1}, \ldots, x_{d}\right) \cap \mathbb{Z}^{d} \\
N=\mathbb{Z}_{+} x_{1} \cdots+\mathbb{Z}_{+} x_{d} .
\end{array}
$$

The arguments in the proof Gordan's lemma and the linear independence of x_{1}, \ldots, x_{d} imply:
$\square M=\bigcup_{z \in B} z+N$

- N is free.
- The union is disjoint.

In commutative algebra terms:
$\square K[M]$ is finite over $K[N]$.

- $K[N] \cong K\left[X_{1}, \ldots, X_{d}\right]$.
- $K[M]$ is a free module over $K[N]$.
$\Rightarrow K[M]$ is Cohen-Macaulay.

Combinatorial consequence of the Cohen-Macaulay property:

Theorem 2.8. Let M be a graded Cohen-Macaulay module over the positively graded K-algebra R and x_{1}, \ldots, x_{d} a h.s.o.p. for M, $e_{i}=\operatorname{deg} x_{i}$. Let

$$
H_{M}(t)=\frac{h_{a} t^{a}+\cdots+h_{b} t^{b}}{\prod_{i=1}^{d}\left(1-t^{e_{i}}\right)}, \quad h_{a}, h_{b} \neq 0
$$

Then $h_{i} \geq 0$ for all i.
If $M=R=K\left[R_{1}\right]$, then $h_{i}>0$ for all $i=0, \ldots, b$.
Proof. $\quad h_{a} t^{a}+\cdots+h_{b} t^{b}$ is the Hilbert series of

$$
M /\left(x_{1} M+\cdots+x_{d} M\right)
$$

Reciprocity

(ADG-3) compares values $P_{R}(k)$ of the Hilbert polynomial of $R=K\left[\mathscr{M}_{n}\right]$ for all values of k :
(ADG-3) $P_{n}(-k)=(-1)^{(n-1)^{2}} P_{n}(k-n)$ for all $k \in \mathbb{Z}$.
According to (ADG-2) the shift $-n$ in $P_{n}(k-n)$ is the degree of $H_{R}(t)$ (not yet proved).
\square What identity for $H_{R}(t)$ is encoded in (ADG-3) ?

Lemma 2.9. Let $P: \mathbb{Z} \rightarrow \mathbb{C}$ be a quasi-polynomial. Set

$$
H(t)=\sum_{k=0}^{\infty} P(k) t^{k} \quad \text { and } \quad G(t)=-\sum_{k=1}^{\infty} P(-k) t^{k}
$$

Then H and G are rational functions. Moreover

$$
H(t)=G\left(t^{-1}\right)
$$

Corollary 2.10. Let R be a positively graded, finitely generated K-algebra, $\operatorname{dim} R=d$, with Hilbert quasi-polynomial P. Suppose $\operatorname{deg} H_{R}(t)=g<0$. Then the following are equivalent:

■ $P(-k)=(-1)^{d-1} P(k+g)$ for all $k \in \mathbb{Z} ;$
$\square(-1)^{d} H_{R}\left(t^{-1}\right)=t^{-g} H_{R}(t)$.

Strategy:

- Find an R-module ω with $H_{\omega}(t)=(-1)^{d} H_{R}\left(t^{-1}\right)$

This is possible for R Cohen-Macaulay: ω is the canonical module of R.

- Compute ω for $R=K\left[\mathscr{M}_{n}\right]$ and show that $\omega \cong R(g)$, $g=\operatorname{deg} H_{R}(t)$.
$R(g)$ free module of rank 1 with generator in degree $-g$. Thus $H_{R(g)}(t)=t^{-g} H_{R}(t)$.

More generally:

- Compute ω for $R=K[M]$ with M affine, normal.

The canonical module

In the following: R positively graded Cohen-Macaulay K-algebra, x_{1}, \ldots, x_{d} h.s.o.p., $\operatorname{deg} x_{i}=g_{i}$.
$S=K\left[x_{1}, \ldots, x_{d}\right]$ is a graded Noether normalization of R.
First $R=S=K\left[X_{1}, \ldots, X_{d}\right]$:

$$
(-1)^{d} H_{S}\left(t^{-1}\right)=\frac{(-1)^{d}}{\prod_{i=1}^{d}\left(1-t^{-g_{i}}\right)}=\frac{t^{g_{1}+\cdots+g_{d}}}{\prod_{i=1}^{d}\left(1-t^{-g_{i}}\right)}=H_{\omega}(t)
$$

with

$$
\omega=\omega_{S}=S\left(-\left(g_{1}+\cdots+g_{d}\right)\right)
$$

The general case: R free over $S \cong K\left[X_{1}, \ldots, X_{d}\right]$, say with homogeneous basis y_{1}, \ldots, y_{m} :

$$
\begin{aligned}
R & \cong \bigoplus_{j=1}^{m} S y_{j} \cong \bigoplus_{i=1}^{u} S(-i)^{h_{i}}, \quad h_{i}=\#\left\{j: \operatorname{deg} y_{j}=i\right\}, \\
H_{R}(t) & =\left(h_{0}+h_{1} t+\cdots+h_{u} t^{u}\right) H_{S}(t)=Q(t) H_{S}(t)
\end{aligned}
$$

Set $\quad \omega_{R}=\operatorname{Hom}_{S}\left(R, \omega_{S}\right)$. Then, with $\quad s=g_{1}+\cdots+g_{d}$

$$
\begin{aligned}
\omega_{R} & \cong \bigoplus_{i=1}^{u} \operatorname{Hom}_{S}\left(S(-i)^{h_{i}}, S(-s)\right) \cong \bigoplus_{i=1}^{u} S(-i+s)^{h_{i}} \\
H_{\omega_{R}}(t) & =\left(h_{0} t^{s}+\cdots+h_{u} t^{s-u}\right) H_{S}(t)=Q\left(t^{-1}\right) t^{s} H_{S}(t) \\
& =(-1)^{d} Q\left(t^{-1}\right) H_{S}\left(t^{-1}\right)=(-1)^{d} H_{R}\left(t^{-1}\right) .
\end{aligned}
$$

Multiplication in the first component makes ω_{R} an R-module:

$$
a \cdot \varphi\left(__{-}\right)=\varphi\left(a \cdot{ }_{-}\right) .
$$

- But: Is ω_{R} independent of S ?

Theorem 2.11. ω_{R} depends only on R (up to isomorphism of graded modules).

The proof requires homological algebra, after reduction from the graded to the local case.

Gorenstein rings

Definition 2.12. A positively graded Cohen-Macaulay K-algebra is Gorenstein if $\omega_{R} \cong R(h)$ for some $h \in \mathbb{Z}$.

Actually, there is no choice for h :

Theorem 2.13 (Stanley). Let R be Gorenstein. Then
$\square \omega_{R} \cong R(g), g=\operatorname{deg} H_{R}(t) ;$
$\square h_{0}=h_{u-i}$ for $i=0, \ldots, u$: the h-vector is palindromic;

- $H_{R}\left(t^{-1}\right)=(-1)^{d} t^{-g} H_{R}(t)$.

Conversely, if R is a Cohen-Macaulay integral domain such that $H_{R}\left(t^{-1}\right)=(-1)^{d} t^{-h} H_{R}(t)$ for some $h \in \mathbb{Z}$, then R is Gorenstein.

Proof.

$$
\begin{aligned}
(-1)^{d} H_{R}(t) & =\left(h_{0} t^{s}+\cdots+h_{u} t^{s-u}\right) H_{S}(t) \\
t^{-h} H_{R}(t) & =\left(h_{s} t^{u-h}+\cdots+h_{0}^{-h}\right) H_{S}(t)
\end{aligned}
$$

Equality holds

$$
h=u-s=\operatorname{deg} H_{R}(t) \quad \text { and } \quad h_{i}=h_{u-i}, i=0, \ldots, u
$$

If R is a domain, then ω_{R} is torsionfree. Consider $R \mapsto \omega_{R}, a \mapsto a x$, $x \in \omega_{R}$ homogeneous, $\operatorname{deg} x=-g$.

This linear map is injective: $R(g) \hookrightarrow \omega_{R}$. Equality of Hilbert functions implies bijectivity.

The canonical module of $K[M]$

In the following M affine, normal, positive monoid. We want to find the canonical module of $R=K[M]$ (Cohen-Macaulay by Hochster's theorem).

Theorem 2.14 (Danilov, Stanley). The ideal I generated by the monomials in the interior of $\mathbb{R}_{+} M$ is the canonical module of $K[M]$ (with respect to every positive grading of M).

Note: $x \in \operatorname{int}\left(\mathbb{R}_{+} M\right) \Longleftrightarrow \sigma_{F}(x)>0$ for all facets F of $\mathbb{R}_{+} M$.
\mathfrak{p}_{F} is generated by all monomials $X^{x}, x \in M$ such that $\sigma_{F}(x)>0$.

$$
\Rightarrow \quad I=\bigcap_{F \text { facet }} \mathfrak{p}_{F}
$$

Choose a positive grading on M and let ω be the canonical module of R with respect to this grading.

By definition ω is free over a Noether normalization $\Rightarrow \omega$ is a Cohen-Macaulay R-module $\Rightarrow \omega$ is (isomorphic to) a divisorial ideal \Rightarrow

- As discussed in Lecture 1 , there exist $j_{F} \in \mathbb{Z}$ such that

$$
\omega=\bigcap \mathfrak{p}_{F}^{\left(j_{F}\right)}
$$

Without further standardization we cannot conclude that $j_{F}=1$ for all F.

We have to use the natural \mathbb{Z}^{r}-grading, $\mathbb{Z}^{r}=\operatorname{gp}(M)$ on R !

The homological property characterizing the canonical module is

$$
\operatorname{Ext}_{R}^{j}\left(K, \omega_{R}\right)=\left\{\begin{array}{ll}
K, & j=d, \\
0, & j \neq d
\end{array} \quad d=\operatorname{dim} R\right.
$$

This is to be read as an isomorphism of graded modules: let \mathfrak{m} be the irrelevant maximal ideal; then $K=R / \mathfrak{m}$ lives in degree 0 .

In our case R / \mathfrak{m} is a \mathbb{Z}^{r}-graded module, as is ω
$\Rightarrow \operatorname{Ext}_{R}^{j}\left(K, \omega_{R}\right) \cong K$ lives in exactly one multidegree $v \in \mathbb{Z}^{r}$
$\Rightarrow \operatorname{Ext}_{R}^{j}\left(K, X^{-v} \omega_{R}\right) \cong K$ in multidegree $0 \in \mathbb{Z}^{r}$
Replace ω_{R} by $X^{-v} \omega_{R}$.

Definition 2.15. Let R be a \mathbb{Z}^{n}-graded Cohen-Macaulay ring such that the homogeneous non-units generate a proper ideal \mathfrak{p} of R.
$\Rightarrow \mathfrak{p}$ is a prime ideal; set $d=\operatorname{dim} R_{\mathfrak{p}}$.
One says that ω is a \mathbb{Z}^{n}-graded canonical module of R if

$$
\operatorname{Ext}_{R}^{j}(R / \mathfrak{p}, \omega)= \begin{cases}R / \mathfrak{p}, & j=d \\ 0, & j \neq d\end{cases}
$$

We have seen: $R=K[M]$ has a \mathbb{Z}^{r}-graded canonical module

$$
\omega=\bigcap \mathfrak{p}_{F}^{\left(j_{F}\right)}
$$

and it remains to show that $j_{F}=1$ for all facets F.

Let $R_{F}=R\left[(M \cap F)^{-1}\right]$: we invert all the monomials in F.
$\Rightarrow R_{F}$ is the "discrete halfspace algebra" with respect to the support hyperplane through F.

$\Rightarrow \mathfrak{p}_{F} R_{F}$ is the \mathbb{Z}^{r}-graded canonical module of R_{F} (easy to see since $\mathfrak{p}_{F} R_{F}$ is principal generated by a monomial X^{x} with $\sigma_{F}(x)=1$)

On the other hand: $\omega_{R_{F}}=\left(\omega_{R}\right)_{F}$: the \mathbb{Z}^{r}-graded canonical module "localizes" (a nontrivial fact)
$\Rightarrow j_{F}=1$.

Back to the ADG conjectures

Recall that \mathscr{M}_{n} denotes the "magic" monoid. It contains the matrix 1 with all entries 1.

Let $C=\mathbb{R}_{+} \mathscr{M}_{n}$. Then C is cut out from $\mathbb{R} \mathscr{M}_{n}$ by the positive orthant
$\Rightarrow \operatorname{int}(C)=\left\{A: a_{i j}>0\right.$ for all $\left.i, j\right\}$.
$\Rightarrow A-\mathbf{1} \in \mathscr{M}_{n}$ for all $A \in M \cap \operatorname{int}(C)$
\Rightarrow interior ideal I is generated by $X^{\mathbf{1}}$; $\mathbf{1}$ has magic sum n
$\Rightarrow I \cong R(-n) . \quad R=K\left[\mathscr{M}_{n}\right]$ is a Gorenstein ring with
$\operatorname{deg} H_{R}(t)=-n$
$\operatorname{deg} H_{R}(t)=-n \Rightarrow$
(ADG-2) $H(n, k)=P_{n}(k)$ for all $k>-n$; in particular $P_{n}(-k)=0$, $k=1, \ldots, n-1$;
(ADG-2) and R Gorenstein \Rightarrow
(ADG-3) $P_{n}(-k)=(-1)^{(n-1)^{2}} P_{n}(k-n)$ for all $k \in \mathbb{Z}$.

In terms of

$$
H_{R}(t)=\frac{1+h_{1} t+\cdots+h_{u} t^{u}}{(1-t)^{(n-1)^{2}+1}}, \quad h_{u} \neq 0
$$

we have seen that
$\square u=(n-1)^{2}+1-n \quad(A D G-2)$

- $h_{i}>0$ for $i=1, \ldots, u \quad$ (R Cohen-Macaulay)
- $h_{i}=h_{u-i}$ for all i (ADG-3)

Very recent result, conjectured by Stanley and now proved by Ch. Athanasiadis:
\square the sequence $\left(h_{i}\right)$ is unimodal: $h_{0} \leq h_{1} \leq \cdots \leq h_{\lceil u / 2\rceil}$

Lecture 3

Unimodular covers and triangulations

Recall: $P=\operatorname{conv}\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{R}^{d}, \quad x_{i} \in \mathbb{Z}^{d}$, is called a lattice polytope.

$\Delta=\operatorname{conv}\left(v_{0}, \ldots, v_{d}\right), \quad v_{0}, \ldots, v_{d}$ affinely independent, is a simplex.

Set $U_{\Delta}=\sum_{i=0}^{d} \mathbb{Z}\left(v_{i}-v_{0}\right)$.

$$
\mu(\Delta)=\left[\mathbb{Z}^{d}: U_{\Delta}\right]=\text { multiplicity of } \Delta
$$

Δ is unimodular if $\mu(\Delta)=1$.
Δ is empty if $\operatorname{vert}(\Delta)=\Delta \cap \mathbb{Z}^{d}$.

Lemma 3.1.

$$
\mu(\Delta)=d!\operatorname{vol}(\Delta)= \pm \operatorname{det}\left(\begin{array}{c}
v_{1}-v_{0} \\
\vdots \\
v_{d}-v_{0}
\end{array}\right)
$$

When is P covered by its unimodular subsimplices?
For short: P has UC.

Low Dimensions

$$
\begin{aligned}
& d=1: \\
& \begin{array}{lllllll}
-1 & 0 & 1 & 2 & 3 & 4 \\
\text { unimodular triangulation. }
\end{array} \quad P \text { has a unique }
\end{aligned}
$$

$$
d=2
$$

Every empty lattice triangle is unimodular \Rightarrow every 2-polytope has a unimodular triangulation.

$d=3$: There exist empty simplices of arbitrary multiplicity!

Polytopal cones and monoids

The cone over P is $C_{P}=\mathbb{R}_{+}\left\{(x, 1) \in \mathbb{R}^{d+1}: x \in P\right\}$.
The monoid associated with P is
$M_{P}=\mathbb{Z}_{+}\left\{(x, 1): x \in P \cap \mathbb{Z}^{d}\right\}$.
The integral closure of M_{P} is $\widehat{M}_{P}=C_{P} \cap \mathbb{Z}^{d+1}$.

Proposition 3.2. P has $U C \Rightarrow M_{P}=\widehat{M}_{P} \quad$ (P is integrally closed).
P is integrally closed

> (i) $\mathrm{gp}\left(M_{P}\right)=\mathbb{Z}^{d+1}$ and
> (ii) M_{P} is a normal monoid $\left(M_{P}=C_{P} \cap \operatorname{gp}\left(M_{P}\right)\right)$

There exist non-normal 3-dimensional polytopes, for example

$$
P=\left\{x \in \mathbb{R}^{3}: x_{i} \geq 0,6 x_{1}+10 x_{2}+15 x_{3} \leq 30\right\}
$$

$\Rightarrow P$ does not have UC, and this cannot be "repaired" by replacing
\mathbb{Z}^{3} by the smallest lattice containing $P \cap \mathbb{Z}^{3}$.

Monoid algebras, toric ideals and Gröbner bases

Let K be a field. The polytopal K-algebra $K[P]$ is the monoid algebra

$$
K[P]=K\left[M_{P}\right]=K\left[X_{x}: x \in P \cap \mathbb{Z}^{d}\right] / I_{P}
$$

The toric ideal I_{P} is generated by all binomials

$$
\begin{aligned}
& \prod_{x \in P \cap \mathbb{Z}^{d}} X_{x}^{a_{x}}-\prod_{x \in P \cap \mathbb{Z}^{d}} X_{x}^{b_{x}}, \\
& \\
& \quad \sum a_{x} x=\sum b_{x} x, \quad \sum a_{x}=\sum b_{x}
\end{aligned}
$$

expressing the affine relations between the lattice points in P.

Sturmfels:
"generic" weights for $X_{x} \longmapsto$

$$
\left\{\begin{array}{l}
\text { (i) regular triangulation } \Sigma \text { of } P, \quad \operatorname{vert}(\Sigma) \subset P \cap \mathbb{Z}^{d} \\
\text { (ii) term (pre)order on } K\left[X_{x}\right], \quad \operatorname{ini}\left(I_{P}\right) \text { monomial ideal }
\end{array}\right.
$$

Theorem 3.3.

- (Stanley-Reisner ideal of $\Sigma)=\operatorname{Rad}\left(\operatorname{ini}\left(I_{P}\right)\right)$

■ Σ is unimodular $\Longleftrightarrow \operatorname{ini}\left(I_{P}\right)$ squarefree

Multiples of polytopes

For $c \rightarrow \infty(c \in \mathbb{N})$ the lattice points $c P \cap \mathbb{Z}^{d}$ approximate the continuous structure of $c P \sim P$ better and better.

Algebraic results:

Theorem 3.4.

- $c P$ integrally closed for $c \geq \operatorname{dim} P-1$. Thus $K[c P]$ normal for $c \geq \operatorname{dim} P-1$.
- $I_{c P}$ has an initial ideal generated by degree 2 monomials for $c \geq \operatorname{dim} P$. Thus $K[c P]$ is Koszul for $c \geq \operatorname{dim} P$.

Proof of Koszul property uses technique of Eisenbud-Reeves-Totaro.

Questions:

(i) Does $c P$ have UC for $c \geq \operatorname{dim} P-1$?
(ii) Does $c P$ have a regular unimodular triangulation of degree 2 for $c \geq \operatorname{dim} P$?

Positive answers: \quad (i) $\operatorname{dim} P \leq 3$, (ii) $\operatorname{dim} P \leq 2$.

No algebraic obstructions in arbitrary dimension !

Positive rational cones and Hilbert bases

C generated by finitely many $v \in \mathbb{Z}^{d}$, and $x,-x \in C \Rightarrow x=0$.
Gordan's lemma: $C \cap \mathbb{Z}^{d}$ is a finitely generated monoid.
Its irreducible element form the Hilbert basis $\operatorname{Hilb}(C)$ of C.
C is simplicial $\Longleftrightarrow C$ generated by linearly independent vectors v_{1}, \ldots, v_{d}.

Can assume that the components of v_{i} are coprime. Then $\mu(C)=\left[\mathbb{Z}^{d}: \mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{d}\right]$
C unimodular $\Longleftrightarrow C$ generated by \mathbb{Z}-basis of $\mathbb{Z}^{d} \Longleftrightarrow \mu(C)=1$

Theorem 3.5. C has a triangulation into unimodular subcones.

Proof: Start with arbitrary triangulation. Refine by iterated stellar subdivision to reduce multiplicities.

Here we make no assertion on the generators of the unimodular subcones.

But: P has a unimodular triangulation $\Rightarrow C_{P}$ satisfies UHT.
UHT: C has a Unimodular Triangulation into cones generated by subsets of $\operatorname{Hilb}(C)$.

UHC: C is Covered by its Unimodular subcones generated by subsets of $\operatorname{Hilb}(C)$.

A condition with a more algebraic flavour:
ICP: (Integral Carathéodory Property) for every $x \in C \cap \mathbb{Z}^{d}$ there exist $y_{1}, \ldots, y_{d} \in \operatorname{Hilb}(C)$ with $x \in \mathbb{Z}_{+} y_{1}+\cdots+\mathbb{Z}_{+} y_{d}$.
$\mathrm{UHT} \Rightarrow \mathrm{UHC} \Rightarrow \mathrm{ICP}$.
UHC \nRightarrow UHT. No example known with ICP, but without UHC.

Dimension 3

Cones of dimension 3:

Theorem 3.6 (Sebö). $\operatorname{dim} C=3 \Rightarrow C$ has UHT

If $C=C_{P}, \operatorname{dim} P=2$, this is easy since P has UT. General case is somewhat tricky.

Polytopes of dimension 3:

First triangulate P into empty simplices and then use classification of empty simplices (White):

$$
\begin{gathered}
\Delta_{p q}=\operatorname{conv}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
p & q & 1
\end{array}\right), \quad 0 \leq q<p, \operatorname{gcd}(p, q)=1 \\
\mu\left(\Delta_{p q}\right)=p
\end{gathered}
$$

No classification known in dimension ≥ 4. Essential difference to dimension 3: lattice width of Δ may be >1.

Lagarias \& Ziegler, Kantor \& Sarkaria:

Proposition 3.7. $c P$ has $U C$ for $c \geq 2$.

Theorem 3.8.

- $2 \Delta_{p q}$ has UT $\Longleftrightarrow q=1$ or $q=p-1$.
- 4P has UT for all P.
- $c \Delta_{p q}$ has UT for $c \geq 4$.

Question: What about $3 \Delta_{p q}$?

Counterexamples

$P=2 \Delta_{53}$ integrally closed 3 polytope without $\mathrm{UT} \Rightarrow C_{P}$ has dimension 4 and violates UHT (first counterexample by Bouvier \& Gonzalez-Sprinberg)
C_{6} with Hilbert basis z_{1}, \ldots, z_{10}, is of form $C_{P_{5}}, \operatorname{dim} P_{5}=5, P_{5}$ integrally closed, and violates UHC and ICP (B \& G \& Henk, Martin, Weismantel)

$$
\begin{array}{ll}
z_{1}=(0,1,0,0,0,0), & z_{6}=(1,0,2,1,1,2), \\
z_{2}=(0,0,1,0,0,0), & z_{7}=(1,2,0,2,1,1), \\
z_{3}=(0,0,0,1,0,0), & z_{8}=(1,1,2,0,2,1), \\
z_{4}=(0,0,0,0,1,0), & z_{9}=(1,1,1,2,0,2), \\
z_{5}=(0,0,0,0,0,1), & z_{10}=(1,2,1,1,2,0) .
\end{array}
$$

$\Rightarrow P_{5}$ violates UC

There exists a polytope of dimension 10 with UT, but without a regular unimodular triangulation (Hibi \& Ohsugi)

Questions:

- Do all integrally closed polytopes P of dimensions 3 and 4 have UC ?
- Do all cones C of dimensions 4 and 5 have UHC ?
- Does there exist C with ICP, but violating UHC ?

Triangulating $c P$

Theorem 3.9 (Knudsen \& Mumford, Toroidal embeddings). Let P be a lattice d-polytope. Then $c P$ has a regular unimodular triangulation for a some $c \in \mathbb{Z}_{+}, c>0$.

Not so hard: UC of d-simplices with non-overlapping interiors Harder: UT

Most difficult: regularity
Questions: Does $c P$ have UT for $c \gg 0$? Can we bound c uniformly in terms of dimension? Is $c \geq \operatorname{dim} P$ enough ?

Covering $c P$

Theorem 3.10. Let P be a d-polytope. Then there exists \mathfrak{c}_{d} such that $c P$ has UC for all $c \geq \mathfrak{c}_{d}^{\text {pol }}$, and

$$
\mathfrak{c}_{d}^{\mathrm{pol}}=O\left(d^{16.5}\right)\left(\frac{9}{4}\right)^{(\operatorname{ld} \gamma(d))^{2}}, \quad \gamma(d)=(d-1)\lceil\sqrt{d-1}\rceil .
$$

For the proof one needs a similar theorem about cones-cones allow induction on d.

Theorem 3.11. Let C be a rational simplicial d-cone and Δ_{C} the simplex spanned by O and the extreme integral generators. Then
(a) (M. v. Thaden) C has a triangulation into unimodular simplicial cones D_{i} such that $\operatorname{Hilb}\left(D_{i}\right) \subset c \Delta_{C}$ for some

$$
c \leq \frac{d^{2}}{4}(\mu(C))^{7}\left(\frac{9}{4}\right)^{(\operatorname{ld}(\mu(C)))^{2}} .
$$

(b) C has a cover by unimodular simplicial cones D_{i} such that $\operatorname{Hilb}\left(D_{i}\right) \subset c \Delta_{C}$ for some

$$
c \leq \frac{d^{2}}{4}(d+1)(\gamma(d))^{8}\left(\frac{9}{4}\right)^{(\operatorname{ld}(\gamma(d)))^{2}} .
$$

Sketch of proof of Theorem 3.11:
(i) $d-1 \rightarrow d$: we can cover the "corners"] of C with unimodular subcones.
(ii) Extend the corner covers far enough into C. To have enough room, we must go "further up" in the cone. We loose unimodularity, but the multiplicity remains under control:
$\leq \gamma(d)=\lceil\sqrt{d-1}\rceil(d-1)$
(iii) Apply part (a) of theorem to restore unimodularity.
(iv) Part (a): Control the "lengths" of the vectors in iterated stellar subdivision.

Sketch of proof of Theorem 3.10: May assume $P=\Delta$ is an (empty) simplex. Consider corner cones of Δ :

Apply Theorem 3.11 to corner cone:

Must multiply P by factor c^{\prime} from Theorem 3.11 to get basic unimodular corner simplices into P

Tile corner cones:

Must multiply $c^{\prime} P$ by $c^{\prime \prime} \approx d \sqrt{d}$ to get the tiling by unimodular corner simplices close enough (= beyond red line) to facet opposite of v_{0}.

Lecture 4

From vector spaces to polytopal algebras

Every so often you should try a damn-fool experiment -
from J. Littlewood's A Mathematician's Miscellany

The category $\operatorname{Pol}(K)$

Recall from Lecture 3 that a lattice polytope P is the convex hull of finitely many points $x_{i} \in \mathbb{Z}^{n}$.
M_{P} submonoid of \mathbb{Z}^{n+1} generated by $(x, 1), x \in P \cap \mathbb{Z}^{n}$.
For a field K we let $\operatorname{Pol}(K)$ be the category

- with objects the graded algebras $K[P]=K\left[M_{P}\right]$
- with morphisms the graded K-algebra homomorphisms

Main question: To what extent is $\operatorname{Pol}(K)$ determined by combinatorial data ?
$\operatorname{Pol}(K)$ generalizes $\operatorname{Vect}(K)$, the category of finite-dimensional K-vector spaces:
$\Delta_{n} n$-dimensional unit simplex

$$
\Rightarrow K\left[\Delta_{n}\right]=K\left[X_{1}, \ldots, X_{n+1}\right]
$$

$$
\begin{aligned}
\operatorname{Hom}_{K}\left(K^{m}, K^{m}\right) & \leftrightarrow \operatorname{gr} \cdot \operatorname{hom}_{K}\left(S\left(K^{m}\right), S\left(K^{n}\right)\right) \\
& \leftrightarrow \operatorname{gr.} \operatorname{hom}_{K}\left(K\left[X_{1}, \ldots, X_{m}\right], K\left[X_{1}, \ldots, X_{n}\right]\right) \\
& \left.\leftrightarrow \operatorname{gr.} \cdot \operatorname{hom}_{K}\left(K\left[\Delta_{m-1}\right], K\left[\Delta_{n-1}\right]\right)\right)
\end{aligned}
$$

What properties of $\operatorname{Vect}(K)$ can be passed on $\operatorname{Pol}(K)$?
Note: $\operatorname{Pol}(K)$ not abelian

Why not graded affine monoid algebras $K[M]$ in full generality?

Proposition 4.1. Let P, Q be lattice polytopes. Then the K-algebra homomorphisms $K[P] \rightarrow K[Q]$ correspond bijectively to K-algebra homomorphisms $\overline{K[P]} \rightarrow \overline{K[Q]}$ of the normalizations.

In fact, $K[P]$ equals $\overline{K[P]}$ in degree 1 .

In the following the base field K is often replaced by a general commutative base ring R.

Toric automorphisms and symmetries

Elementary fact of linear algebra: $\mathrm{GL}_{n}(K)$ is generated by matrices of 3 types:

- diagonal matrices
- permutation matrices
- elementary transformations

Actually, the permutation matrices are not needed. But their analogues in the general case cannot always be omitted.

It easy to generalize diagonal matrices and permutation matrices:

- the diagonal matrices correspond to
$\left(\lambda_{1}, \ldots \lambda_{n+1}\right) \in \mathbb{T}_{n+1}=\left(K^{*}\right)^{n+1}$ acting on $K[P] \subset K\left[X_{1}^{ \pm 1}, \ldots, X_{n+1}^{ \pm 1}\right]$ via the substitution $X_{i} \mapsto \lambda_{i} X_{i}$,
- the permutation matrices represent symmetries of Δ_{n-1} and correspond to the elements of the (affine!) symmetry group $\Sigma(P)$ of P.

How can we generalize elementary transformations?

Column structures

A column structure arranges the lattice points in P in columns:

More formally: $v \in \mathbb{Z}^{n}$ is a column vector if their exists a facet F, the base facet $P_{v}=F$ of v, such that

$$
x+v \in P \quad \text { for all } x \in P \backslash F .
$$

A column vector $v \in \mathbb{Z}^{n}$ is to be identified with $(v, 0) \in \mathbb{Z}^{n+1}$.

Elementary automorphisms

To each facet F of P there corresponds a facet of the cone $\mathbb{R}_{+} M_{P}$, also denoted by F.

Recall the support form σ_{F}. For $F=P_{v}$ set $\sigma_{v}=\sigma_{F}$.
For every $\lambda \in R$ define a map from M_{P} to $R\left[\mathbb{Z}^{n+1}\right]$ by

$$
e_{v}^{\lambda}: x \mapsto(1+\lambda v)^{\sigma_{v}(x)} x
$$

$\sigma_{v} \mathbb{Z}$-linear and v column vector $\Rightarrow e_{v}^{\lambda}$ homomorphism from M_{P} into ($\left.R\left[M_{P}\right], \cdot\right)$
$\Rightarrow e_{v}^{\lambda}$ extends to an endomorphism of $R\left[M_{P}\right]$
Since $e_{v}^{-\lambda}$ is its inverse, e_{v}^{λ} is an automorphism.

Proposition 4.2. v_{1}, \ldots, v_{s} pairwise different column vectors for P

 with the same base facet $F=P_{v_{i}}$. Then$$
\varphi:(R,+)^{s} \rightarrow \operatorname{gr.}^{\operatorname{aut}_{R}}(R[P]), \quad\left(\lambda_{1}, \ldots, \lambda_{s}\right) \mapsto e_{v_{1}}^{\lambda_{1}} \circ \cdots \circ e_{v_{s}}^{\lambda_{s}},
$$

is an embedding of groups.
$e_{v_{i}}^{\lambda_{i}}$ and $e_{v_{j}}^{\lambda_{j}}$ commute and the inverse of $e_{v_{i}}^{\lambda_{i}}$ is $e_{v_{i}}^{-\lambda_{i}}$.
R field $\Rightarrow \varphi$ is homomorphism of algebraic groups.
$\Rightarrow \operatorname{subgroup} \mathbb{A}(F)$ of gr. aut $_{R}(R[P])$ generated by e_{v}^{λ} with $F=P_{v}$ is an affine space over R
$\operatorname{Col}(P)=$ set of column vectors of P (can be empty).

The polytopal linear group

Theorem 4.3. Let K a field.

- Every $\gamma \in \operatorname{gr}^{-\operatorname{aut}_{K}}(K[P])$ has a presentation

$$
\gamma=\alpha_{1} \circ \alpha_{2} \circ \cdots \circ \alpha_{r} \circ \tau \circ \sigma,
$$

$\sigma \in \Sigma(P), \tau \in \mathbb{T}_{n+1}$, and $\alpha_{i} \in \mathbb{A}\left(F_{i}\right)$.

- $\mathbb{A}\left(F_{i}\right)$ and \mathbb{T}_{n+1} generate conn. comp. of unity gr. aut ${ }_{K}(K[P])^{0}$.
$\square=\left\{\gamma \in \operatorname{gr}^{\square}\right.$ aut $_{K}(K[P])$ inducing id on div. class group of $\left.\overline{K[P]}\right\}$.
■ dimgr. $\operatorname{aut}_{K}(K[P])=\# \operatorname{Col}(P)+n+1$.
$\square \mathbb{T}_{n+1}$ is a maximal torus of gr. aut ${ }_{K}(K[P])$.

The proof uses in a crucial way that every divisorial ideal of $K\left[M_{P}\right]$ is isomorphic to a monomial ideal.

This fact allows a polytopal Gaussian algorithm.

Using elementary automorphisms it corrects an arbitrary γ to an automorphism δ such that $\delta(\operatorname{int}(K[P]))=\operatorname{int}(K[P])$.

Lemma 4.4. $\delta(\operatorname{int}(K[P]))=\operatorname{int}(K[P]) \Rightarrow \delta=\tau \circ \sigma$,
$\tau \in \mathbb{T}_{n+1}, \sigma \in \Sigma(P)$
Important fact: the divisor class group of $\overline{K[P]}\}$ is a discrete object.
To some extent one can also classify retractions of $K[P]$.

Milnor's classical K_{2}

Its construction is based on

- the passage to the "stable" group of elementary automorphisms
- the Steinerg relations

Construction of the stable group: $E_{n}(R)$ subgroup generated by of elementary matrices,

$$
\begin{aligned}
E \in E_{n}(R) & \mapsto\left(\begin{array}{ll}
E & 0 \\
0 & 1
\end{array}\right) \in E_{n+1}(R) \\
\mathbb{E}(R) & =\xrightarrow{\lim } E_{n}(R) .
\end{aligned}
$$

The Steinberg relations for elementary matrices:

$$
\begin{aligned}
e_{i j}^{\lambda} e_{i j}^{\mu} & =e_{i j}^{\lambda+\mu} & & \\
{\left[e_{i j}^{\lambda}, e_{j k}^{\mu}\right] } & =e_{i k}^{\lambda \mu}, & & i \neq k \\
{\left[e_{i j}^{\lambda}, e_{k i}^{\mu}\right] } & =e_{k j}^{-\lambda \mu} & & j \neq k \\
{\left[e_{i j}^{\lambda}, e_{k l}^{\mu}\right] } & =1 & & i \neq l, j \neq k
\end{aligned}
$$

The stable Steinberg group of K is defined by
\square generators $x_{i j}^{\lambda}, i, j \in \mathbb{N}, i \neq j, \lambda \in K$ representing the elementary matrices

- the (formal) Steinberg relations $x_{i j}^{\lambda} x_{i j}^{\mu}=x_{i j}^{\lambda+\mu},\left[x_{i j}, x_{j k}^{\mu}\right]=x_{i k}^{\lambda \mu}$ etc.

Set

$$
K_{2}(R)=\operatorname{Ker}(\mathbb{S t}(R) \rightarrow \mathbb{E}(R)), \quad x_{i j}^{\lambda} \mapsto e_{i j}^{\lambda}
$$

Milnor's theorem:

Theorem 4.5. The exact sequence

$$
1 \rightarrow K_{2}(R) \rightarrow \mathbb{S t}(R) \rightarrow \mathbb{E}(R) \rightarrow 1
$$

is a universal central extension and $K_{2}(R)$ is the center of $\operatorname{St}(R)$.
$K_{2}(R)$ captures the "hidden syzygies" of the elementary matrices.

Products of column vectors

Let $u, v, w \in \operatorname{Col}(P)$. We say that

$$
u v=w \quad \Longleftrightarrow \quad w=u+v \quad \text { and } \quad \mathrm{P}_{w}=P_{u}
$$

Examples of products of column vectors:

\Rightarrow partial, non-commutative product structure on $\operatorname{Col}(P)$.

Balanced polytopes

A polytope is balanced if

$$
\sigma_{F}(v) \leq 1 \quad \text { for all } v \in \operatorname{Col}(P), F=P_{w}
$$

A nonbalanced polytope

Polytopal Steinberg relations

Proposition 4.6. P balanced, $u, v \in \operatorname{Col}(P), u+v \neq 0, \lambda, \mu \in R$.
Then

$$
\begin{aligned}
e_{v}^{\lambda} e_{v}^{\mu} & =e_{v}^{l+\mu} \\
{\left[e_{u}^{\lambda}, e_{v}^{\mu}\right] } & = \begin{cases}e_{u v}^{-\lambda \mu} & \text { if } u v \text { exists, } \\
e_{v u}^{\mu \lambda} & \text { if } v u \text { exists }, \\
1 & \text { if } u+v \notin \operatorname{Col}(P) .\end{cases}
\end{aligned}
$$

Note: we know nothing about $\left[e_{u}^{\lambda}, e_{-u}^{\mu}\right] \quad$ if $u,-u \in \operatorname{Col}(P)$!

Doubling along a facet

Let $F=P_{v}$ be a facet of P and choose coordinates in \mathbb{R}^{n} such that \mathbb{R}^{n-1} is the affine hyperplane spanned by F.

$$
\begin{aligned}
P^{-} & =\left\{\left(x^{\prime}, x_{n}, 0\right):\left(x^{\prime}, x_{n}\right) \in P\right\} \\
P^{\mid} & =\left\{\left(x^{\prime}, 0, x_{n}\right):\left(x^{\prime}, x_{n}\right) \in P\right\} \\
P^{\perp_{F}} & =\operatorname{conv}\left(P, P^{\mid}\right) \subset \mathbb{R}^{n+1}
\end{aligned}
$$

$$
\begin{array}{r}
v=v^{-}=\delta^{+} v^{\mid} \\
v^{\mid}=\delta^{-} v^{-}
\end{array}
$$

Crucial facts:

$$
\begin{aligned}
\operatorname{Col}(P) & \hookrightarrow \operatorname{Col}\left(P^{\lrcorner_{F}}\right) \\
G & \mapsto \operatorname{conv}\left(G^{-}, G^{\downharpoonleft}\right), \quad G \neq F \\
F & \mapsto P^{\mid} \\
P^{-} & =\text {new facet }
\end{aligned}
$$

Lemma 4.7. P balanced $\Rightarrow P\lrcorner_{F}$ balanced and

$$
\operatorname{Col}\left(P^{\perp_{F}}\right)=\operatorname{Col}(P)^{-} \cup \operatorname{Col}(P)^{\mid} \cup\left\{\delta^{+}, \delta^{-}\right\} .
$$

Doubling spectra

The chain of lattice polytopes $\mathfrak{P}=\left(P=P_{0} \subset P_{1} \subset \ldots\right)$ is called a doubling spectrum if
\square for every $i \in \mathbb{Z}_{+}$there exists a column vector $v \subset \operatorname{Col}\left(P_{i}\right)$ such that $P_{i+1}=P_{i}^{\lrcorner^{v}}$,
\square for every $i \in \mathbb{Z}_{+}$and any $v \in \operatorname{Col}\left(P_{i}\right)$ there is an index $j \geq i$ such that $P_{j+1}=P_{j}^{\lrcorner_{v}}$.

Associated to \mathfrak{P} are the 'infinite polytopal' algebra

$$
R[\mathfrak{P}]=\lim _{i \rightarrow \infty} R\left[P_{i}\right]
$$

and the filtered union

$$
\operatorname{Col}(\mathfrak{P})=\lim _{i \rightarrow \infty} \operatorname{Col}\left(P_{i}\right)
$$

Now we can define a stable elementary group:

$$
\begin{aligned}
& \mathbb{E}(R, P)=\text { subgroup of } \operatorname{gr} . \operatorname{aut}_{R}(R[\mathfrak{P}]) \text { generated by } e_{v}^{\lambda} \\
& v \in \operatorname{Col}(\mathfrak{P}), \lambda \in R .
\end{aligned}
$$

Note: it depends only on P, not on the doubling spectrum.

Theorem 4.8. $\mathbb{E}(R, P)$ is a perfect group with trivial center.

Polytopal Steinberg groups

The group $\mathbb{S t}(R, P)$ is defined by
\square generators $x_{v}^{\lambda}, v \in \operatorname{Col}(f P), \lambda \in R$ representing the elementary automorphisms e_{v}^{λ}

- the (formal) Steinberg relations between the x_{v}^{λ}

It depends only on the partial product structure on $\operatorname{Col}(P)$. This allows some functoriality in P.

Polytopal K_{2}

In analogy with Milnor's theorem we have

Theorem 4.9. P balanced polytope $\Rightarrow \mathbb{S t}(R, P) \rightarrow \mathbb{E}(R, P)$ is a universal central extension with kernel equal to the center of $\mathbb{S t}(R, P)$.

Definition 4.10.

$$
K_{2}(R, P)=\operatorname{Ker}(\mathbb{S t}(R, P) \rightarrow \mathbb{E}(R, P))
$$

Balanced polygons

It is not difficult to classify the balanced polygons = 2-dimensional polytopes: ($K_{2}=$ classical K_{2})

$$
\begin{array}{ll}
\{ \pm u, \pm v, \pm w\} & K_{2} \\
\{ \pm u, \pm v\} & K_{2} \oplus K_{2} \\
& \\
\{u, \pm v, w\} & \\
w=u v & \\
u=w(-v) & K_{2} \oplus K_{2}
\end{array}
$$

$$
\begin{array}{ll}
\{u, v, w\} & \\
w=u v & K_{2} \oplus K_{2}
\end{array}
$$

$\{u, v\}$

Higher K-groups

Using Quillen's +-construction or Volodin's construction one can define higher K-groups.

For certain well-behaved polytopes both constructions yield the same result (in the classical case proved by Suslin).

Potentially difficult polytope:

