

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR1563/2

School on Commutative Algebra and Interactions with Algebraic Geometry and Combinatorics

(24 May - 11 June 2004)

Finite free resolutions

J. Herzog

Universität Duisburg-Essen Fachbereich Mathematik und Informatik D-45117 Essen Germany

These are preliminary lecture notes, intended only for distribution to participants

FINITE FREE RESOLUTIONS

JÜRGEN HERZOG

INTRODUCTION

With these lectures we aim to give a survey on the theory of finite free resolutions. We will treat the Buchsbaum-Eisenbud acyclicity criterion, discuss upper and lower bounds for Betti-numbers, including the Evans-Griffith syzygy theorem, and compare the graded Betti-numbers of an ideal and with those of its generic initial ideal.

1. LECTURE: BASIC CONCEPTS; ACYCLICITY CRITERIA

Throughout these lectures (R, \mathfrak{m}, k) denotes either a Noetherian local ring or a standard graded *k*-algebra with graded maximal ideal \mathfrak{m} . All modules considered in these lectures will be finitely generated, and will be graded if *R* is graded.

Let *M* be an *R*-module, m_1, \ldots, m_r a minimal system of (homogeneous) generators of *M*. Let F_0 be a free *R*-module with basis e_1, \ldots, e_r , and let $\varepsilon \colon F_0 \to M$ be surjective *R*-module homomorphismus defined by $\varepsilon(e_i) = m_i$ for $i = 1, \ldots, r$. Nakayama's lemma implies that $\text{Ker}(\varepsilon) \subset \mathfrak{m}F_0$. Since *R* is Noetherian, $\text{Ker}(\varepsilon)$ is finitely generated, and there is again a free *R*-module F_1 and an epimorphism $F_1 \to \text{Ker}(\varepsilon)$, whose kernel is a sub-module of $\mathfrak{m}F_1$. Composing $F_1 \to \text{Ker}(\varepsilon)$ with the inclusion map $\text{Ker}(\varepsilon) \subset F_0$, we get a homomorphism $\varphi_1 \colon F_1 \to F_0$ such that

$$F_1 \xrightarrow{\phi_1} F_0 \longrightarrow M \longrightarrow 0$$

is exact and $\text{Im}(\varphi_1) \subset \mathfrak{m}F_o$. Proceeding this way one constructs an exact sequence

$$\cdots \longrightarrow F_p \xrightarrow{\phi_p} \cdots \longrightarrow F_2 \xrightarrow{\phi_2} F_1 \xrightarrow{\phi_1} F_0 \xrightarrow{\varepsilon} M \longrightarrow 0$$

Definition 1.1. Let *M* be an *R*-module. A complex

$$\mathbb{F}: \cdots \longrightarrow F_p \xrightarrow{\phi_p} \cdots \longrightarrow F_2 \xrightarrow{\phi_2} F_1 \xrightarrow{\phi_1} F_0 \longrightarrow 0$$

of finitely generated free R-modules is called a minimal free R-resolution of M, if

- (i) $\varphi(\mathbb{F}) \subset \mathfrak{mF};$
- (ii) $H_0(\mathbb{F}) \cong M$ and $H_i(\mathbb{F}) = 0$ for i > 0.

A minimal free resolution always exist as we have just seen. It is called minimal since for each *i* the basis elements of F_i are mapped to a minimal set of generators of Ker φ_{i-1} .

Any two minimal free resolutions of *M* are isomorphic, that is, if \mathbb{F} and \mathbb{G} are minimal free resolutions of *M*, then there is an isomorphism of complexes $\mathbb{F} \cong \mathbb{G}$.

If $(\mathbb{F}, \boldsymbol{\phi})$ is a minimal free resolution of *M*, then

$$\operatorname{syz}_i(M) = \operatorname{Im}(\varphi_i)$$

is called the *i*th syzygy module of *M*.

In the graded case, by choosing in each step of the construction of the minimal free resolution a minimal system of *homogeneous* generators of Ker φ_i , one obtains a graded minimal free resolutions, that is, a minimal free resolution \mathbb{F} such that

(iii)
$$F_i = \bigoplus_i R(-j)^{\beta_{ij}}$$
 for all *i*;

(iv) $\varphi_i \colon F_i \to F_{i-1}$ is homogeneous of degree 0.

Definition 1.2. Let \mathbb{F} be a minimal free resolution of M. Then $\beta_i = \operatorname{rank} F_i$ is called the *i*th *Betti-number of M*.

Remark 1.3. (a) In the graded case, $\beta_i = \sum_j \beta_{ij}$ for all *i*. The numbers β_{ij} are called the *graded* Betti-numbers of *M*;

(b) Let \mathbb{F} be a minimal free resolution of *M*. Since

$$\operatorname{Tor}_{i}^{R}(M,k) = H_{i}(\mathbb{F} \otimes k) = F_{i} \otimes k = F_{i}/\mathfrak{m}F_{i},$$

it follows that $\beta_i = \dim_k \operatorname{Tor}_i(M, k)$.

In the graded case, $\operatorname{Tor}_{i}^{R}(M,k)$ is a graded k-vector space, and $\beta_{ij} = \dim_{k} \operatorname{Tor}_{i}^{R}(M,k)_{j}$.

Let \mathbb{F} be the minimal free resolution of M. We say that M has a *finite free resolution*, if there exists an integer i such that $F_i = 0$.

Note that M has finite free resolution if one of the equivalent conditions are satisfied: there exists an integer i such that

- (a) $F_i = 0$ for all $j \ge i$;
- (b) $\text{Tor}_i(M,k) = 0;$
- (c) $\operatorname{Tor}_{j}(M,k) = 0$ for all $j \ge i$.

Suppose that *M* has a finite free resolution. The maximal number *i* with $\text{Tor}_i(M,k) \neq 0$ is called the *projective dimension of M*, and denoted proj dim *M*.

If *R* is regular, then *all* modules have a finite free resolution. Indeed, let $\mathbf{x} = x_1, \dots, x_n$ be a regular system of parameters of *R*. In the graded case, *R* is the polynomial ring, and for \mathbf{x} we may choose the variables.

Let \mathbb{K} be the Koszul complex attached to **x**. Then \mathbb{K} is exact, since **x** is a regular sequence. Thus \mathbb{K} is a minimal free resolution of *k*, and hence

$$\operatorname{Tor}_i(M,k) = H_i(M \otimes \mathbb{K})$$
 for all *i*.

Since $\mathbb{K}_{n+1} = 0$, we see that $\operatorname{Tor}_{n+1}(M, k) = 0$. Hence we conclude that

$$\operatorname{proj}\dim M \le n = \dim R$$

for all *R*-modules *M*.

In these lectures we are mostly interested in finite free resolutions. The following natural question arises:

What can be said about the Betti-numbers?

To be more specific we ask:

- (1) What can be said about the projective dimension?
- (2) Given a finite complex of free *R*-modules. When is it exact?
- (3) Fix certain data like the projective dimension or, in the graded case, the Hilbertfunction. Are there lower or upper bounds for the Betti-numbers for such modules?

- (4) Suppose *R* is a polynomial ring and $I \subset R$ is a graded ideal. Given a term order. How are the Betti numbers of *I* and its initial ideal in(*I*) related to each other?
- (5) What can be said about the graded Betti-numbers of a monomial ideal? In the context of (4) this question is of interest.

The answer to question (1) is classical

Theorem 1.4 (Auslander-Buchsbaum). Suppose M has a finite free resolution. Then

 $\operatorname{proj}\operatorname{dim} M + \operatorname{depth} M = \operatorname{depth} R.$

In particular, proj dim $M \leq \operatorname{depth} R$.

Proof. We proceed by induction on $c := \operatorname{depth} R - \operatorname{depth} M$. Suppose $c \le 0$ and let $t = \operatorname{depth} R$. Then there exists a sequence $\mathbf{x} = x_1, \ldots, x_t$ which is regular on R and M.

Suppose that projdim M = p > 0, and let \mathbb{F} be the minimal free resolution of M. Then $\overline{\mathbb{F}} = \mathbb{F}/(\mathbf{x})\mathbb{F}$ is a minimal free resolution of $M/(\mathbf{x})M$, and hence $\overline{\varphi}_p : \overline{F}_p \to \overline{F}_{p-1}$ is injective. However, since depth $\overline{F}_p = 0$, there exists $a \in \overline{F}_p$, $a \neq 0$ with $\mathfrak{m}a = 0$. Since $\overline{\varphi}_p(\overline{F}_p) \subset \mathfrak{m}\overline{F}_{p-1}$, it follows that $\overline{\varphi}_p(a) = 0$, contradiction.

Suppose now that c > 0. Then depth syz₁(M) = depth M + 1, so that

depth
$$R$$
 – depth syz₁ $(M) = c - 1$.

By induction hypothesis, we have $\operatorname{projdim} \operatorname{syz}_1(M) + \operatorname{depth} \operatorname{syz}_1(M) = \operatorname{depth} R$. Hence, since $\operatorname{projdim} M = \operatorname{projdim} \operatorname{syz}_1(M) - 1$, the assertion follows.

Now we will deal with the second question. Suppose \mathbb{F} is a finite complex of free *R*-modules, and suppose we want to prove it is acyclic, i.e. $H_i(\mathbb{F}) = 0$ for i > 0. Assuming it is not acyclic, we could localize at a suitable prime ideal *P* such that after localization, $H_i(\mathbb{F})$ is finite length module for all i > 0. In this situation we can apply

Theorem 1.5 (Lemme d'acyclicité, Peskine-Szpiro [28]). Let

$$\mathbb{F}: 0 \longrightarrow F_p \xrightarrow{\phi_p} F_{p-1} \xrightarrow{\phi_{p-1}} \cdots \longrightarrow F_1 \xrightarrow{\phi_1} F_0 \longrightarrow 0$$

be finite complex of free *R*-modules with $p \leq \operatorname{depth} R$, and suppose that $\operatorname{depth} H_i(\mathbb{F}) = 0$ for all i > 0. Then \mathbb{F} is acyclic.

Proof. We may assume that p > 0, and prove by induction on *i* that $H_{p-i}(\mathbb{F}) = 0$.

For i = 0, $H_p(\mathbb{F})$ is submodule of F_p of depth 0. Since depth $F_p > 0$, this submodule must be zero.

Now given *i* with 0 < i < p. By induction hypothesis we have that $H_p(\mathbb{F}) = H_{p-1}(\mathbb{F}) = H_{p-i+1}(\mathbb{F}) = 0$. Hence

$$0 \to F_p \longrightarrow F_{p-1} \longrightarrow \cdots \longrightarrow F_{p-i+1} \longrightarrow \operatorname{Im}(\varphi_{p-i+1}) \longrightarrow 0$$

is exact. It follows that depth $\text{Im}(\varphi_{p-i+1}) = \text{depth } R - (i-1) \ge p - i + 1 > 1$.

Suppose that $H_{p-i}(\mathbb{F}) \neq 0$. Then depth $H_{p-i}(\mathbb{F}) = 0$, and since depth $\text{Ker}(\varphi_{p-i}) > 0$, the exact sequence

$$0 \longrightarrow \operatorname{Im}(\varphi_{p-i+1}) \longrightarrow \operatorname{Ker}(\varphi_{p-i}) \longrightarrow H_{p-i}(\mathbb{F}) \longrightarrow 0$$

implies that depth $\text{Im}(\varphi_{p-i+1}) = 1$, a contradiction.

3

In the proof of Theorem 1.5 it was not important that the modules F_i are free, and one could have replaced them by any other modules satisfying depth $F_i \ge i$, and would have obtained the same conclusion.

Let *Q* be the ring of fractions of *R*. An *R*-module *M* has rank *r* if $M \otimes Q$ is free of rank *r*. It is easy to see that *M* has rank *r*, if and only if M_p is free of rank *r* for all $p \in Ass(R)$.

The rank is additive on short exact sequences: suppose $0 \rightarrow U \rightarrow M \rightarrow N \rightarrow 0$ is an exact sequence of *R*-modules. If two of the modules *U*, *M* or *N* have a rank, then the third does, and rank $M = \operatorname{rank} U + \operatorname{rank} N$.

The additivity of rank implies

Proposition 1.6. Suppose M has a finite free resolution \mathbb{F} . Then

$$\operatorname{rank} M = \sum_{i} (-1)^{i} \beta_{i}.$$

Corollary 1.7. Let $I \neq 0$ be an ideal with finite free resolution. Then I contains a nonzerodivisor.

Proof. By Proposition 1.6, *I* has a rank, and rank $I + \operatorname{rank} R/I = \operatorname{rank} R = 1$. Since $I \neq 0$ and $I \otimes Q \to R \otimes Q = Q$ is injective, it follows that rank I = 1. Therefore rank R/I = 0, and so R/I is annihilated by a non-zerodivisor.

Let $\varphi \colon M \to N$ be an *R*-module homomorphism. We say that φ has rank *r*, if Im φ has rank *r*.

An *R*-module homomorphism $\varphi: F \to G$ of finite free *R*-modules is given by a matrix *A* with respect to bases of *F* and *G*. We denote by $I_t(\varphi)$ the ideal generated by all *t*-minors of φ , and set $I(\varphi) = I_r(\varphi)$, if *r* is the rank of φ . We also set $I_t(\varphi) = R$ if $t \le 0$ and $I_t(\varphi) = 0$ if $t > \min\{\operatorname{rank} F, \operatorname{rank} G\}$. The definitions do not depend on the chosen bases of *F* and *G*.

For the next theorem we shall need the following facts:

Proposition 1.8. Let φ : $F \to G$ be homomorphism of finite free *R*-modules, and \mathfrak{p} a prime *ideal*. Then

- (a) I_t(φ) ⊄ p ⇐⇒ (Im φ)_p contains a free direct summand of G_p of rank t;
- (b) $I_t(\varphi) \not\subset \mathfrak{p}$ and $I_{t+1}(\varphi)_{\mathfrak{p}} = 0 \iff (\operatorname{Im} \varphi)_{\mathfrak{p}}$ is a free direct summand of $G_{\mathfrak{p}}$ of rank t;
- (c) rank $\varphi = r \iff$ grade $I_r(\varphi) \ge 1$ and $I_{r+1}(\varphi) = 0$.

Theorem 1.9 (Buchsbaum-Eisenbud [13]). Let

 $\mathbb{F}: 0 \longrightarrow F_p \xrightarrow{\phi_p} F_{p-1} \xrightarrow{\phi_{p-1}} \cdots \longrightarrow F_1 \xrightarrow{\phi_1} F_0 \longrightarrow 0$

be a finite complex of free *R*-modules, and let $r_i = \sum_{j \ge i} (-1)^{j-i} \operatorname{rank} F_j$. Then the following conditions are equivalent:

- (a) \mathbb{F} is acyclic;
- (b) grade $I_{r_i}(\varphi_i) \ge i$ for $i = 1, \dots, p$;
- (c) (i) rank $F_i = \operatorname{rank} \varphi_i + \operatorname{rank} \varphi_{i+1}$ for $i = 1, \dots p$; (ii) grade $I(\varphi_i) \ge i$ for $i = 1, \dots, p$.

Proof. (a) \Rightarrow (b): The acyclicity of \mathbb{F} and the additivity of rank imply that $r_i = \operatorname{rank} \varphi_i$. Therefore, Proposition 1.8 implies that grade $I_{r_i}(\varphi_i) \ge 1$ for $i = 1, \ldots, p$. Hence there exists a non-zerodivisor x which is contained in all the ideals $I_{r_i}(\varphi_i)$. If x is a unit, then $I_{r_i}(\varphi_i) = R$ for all i and we are done. Otherwise $x \in \mathfrak{m}$, and x is non-zerodivisor on all F_i and on $\operatorname{Im}(\varphi_1)$. Let $\bar{}$ denote residue classes modulo x. Then $0 \to \bar{F}_p \to \bar{F}_{p-1} \to \ldots \to \bar{F}_2 \to \bar{F}_1 \to 0$ is acyclic. By induction we have grade $I_{r_i}(\bar{\varphi}_i) \ge i-1$. Hence, since $I_{r_i}(\varphi_i) = I_{r_i}(\bar{\varphi}_i)$, we conclude that grade $I_{r_i}(\varphi_i) \ge i$ for $i = 2, \ldots, p$.

(b) \Rightarrow (a): By induction on p, may assume that $0 \rightarrow F_p \rightarrow \cdots \rightarrow F_1 \rightarrow 0$ is acyclic, and have to show that $H_1(\mathbb{F}) = 0$.

Set $M_i = \text{Coker}(\varphi_{i+1})$ for i = 1, ..., p. We first show by descending induction that $\text{depth}(M_i)_{\mathfrak{p}} \ge \min\{i, \text{depth}R_{\mathfrak{p}}\}$ for all $\mathfrak{p} \in \text{Spec } R$ and i = 1, ..., p.

The assertion is trivial for i = p, since $M_p = F_p$. Now let i < p and consider the exact sequence $0 \rightarrow M_{i+1} \rightarrow F_i \rightarrow M_i \rightarrow 0$.

If depth $R_{\mathfrak{p}} \ge i+1$, then our induction hypothesis implies that depth $(M_{i+1})_{\mathfrak{p}} \ge i+1$, and hence depth $(M_i)_{\mathfrak{p}} \ge i$.

If depth $R_{\mathfrak{p}} \leq i$, then (b) implies that $I_{r_{i+1}}(\varphi_{i+1}) \not\subset \mathfrak{p}$, and since rank $M_{i+1} = r_{i+1}$ we have $I_t(\varphi_{i+1}) = 0$ for $t > r_{i+1}$. Thus Proposition 1.8 implies that $(M_i)_{\mathfrak{p}}$ is free, and hence depth $(M_i)_{\mathfrak{p}} = \text{depth} R_{\mathfrak{p}}$.

Now assume that $H_1(\mathbb{F}) \neq 0$, and let $\mathfrak{p} \in \operatorname{Ass} H_1(\mathbb{F})$. If depth $R_{\mathfrak{p}} \geq 1$, then depth $(M_1)_{\mathfrak{p}} \geq 1$, and hence depth $H_1(\mathbb{F})_{\mathfrak{p}} \geq 1$, since $H_1(\mathbb{F}) = \operatorname{Ker}(M_1 \to F_0)$. This is a contradiction.

On the other hand, if depth $R_{\mathfrak{p}} = 0$, then $I_{r_1}(\varphi_1) \not\subset \mathfrak{p}$ and

$$U := \operatorname{Im}((\varphi_1)_{\mathfrak{p}}) = \operatorname{Im}((M_1)_{\mathfrak{p}} \to (F_0)_{\mathfrak{p}})$$

contains a free direct summand of $(F_0)_{\mathfrak{p}}$ of rank r_1 , see 1.8. However since $(M_1)_{\mathfrak{p}}$ is a free module of rank r_1 , the surjective map $(M_1)_{\mathfrak{p}} \to U$ must be an isomorphism, i.e. $H_1(\mathbb{F})_{\mathfrak{p}} = 0$. This is again a contradiction.

(a), (b) \Rightarrow (c): Since \mathbb{F} is acyclic, the sequences $0 \rightarrow \text{Im } \varphi_{i+1} \rightarrow F_i \rightarrow \text{Im } \varphi_i \rightarrow 0$ are exact. Thus the additivity of rank implies condition (c)(i).

As noticed in (a) \Rightarrow (b), we have $r_i = \operatorname{rank} \varphi_i$ for i = 1, ..., p. Hence (b) implies (c)(ii). (c) \Rightarrow (b): It follows from (c)(i) that $r_i = \operatorname{rank} \varphi_i$. Hence (ii) implies (b).

As an application we prove

Theorem 1.10 (Hilbert-Burch). Let I be an ideal with free resolution

 $0 \longrightarrow R^n \xrightarrow{\varphi} R^{n+1} \longrightarrow I \longrightarrow 0.$

Then there exists $a \in R$ such that $I = aI_n(\varphi)$. Moreover, if grade $I \ge 2$, then $I = I_n(\varphi)$ and grade I = 2.

Proof. Let φ be given by the $(n+1) \times n$ matrix A with respect to the canonical bases of \mathbb{R}^n and \mathbb{R}^{n+1} , and let $\pi: \mathbb{R}^{n+1} \to \mathbb{R}$ the homomorphism which sends the canonical basis element e_i to $(-1)^i \delta_i$, where δ_i denotes the minor of A with the *i*th row deleted. Let B be the $(n+1) \times (n+1)$ -matrix which is obtained from A by adding the j the column of A to A as an (n+1)th column. Then B has two equal columns, and hence det B = 0. Expanding det B with respect to the (n+1)th column we therefore get

$$0 = \sum_{i} a_{ij} (-1)^j \delta_i.$$

This shows that

$$0 \longrightarrow R^n \xrightarrow{\varphi} R^{n+1} \xrightarrow{\pi} R \longrightarrow 0$$

is a complex.

(1)

Since we assume that $0 \to \mathbb{R}^n \to \mathbb{R}^{n+1} \to I \to 0$ is exact, Theorem 1.9 implies that grade $I_n(\varphi) \ge 2$. Therefore, since $I_1(\pi) = I_n(\varphi)$, it follows from Theorem 1.9 that complex (1) is exact. Hence $I_n(\varphi) \cong \operatorname{Coker} \varphi \cong I$. Composing this isomorphism with the inclusion map $I \subset \mathbb{R}$ we obtain a monomorphism $I_n(\varphi) \to \mathbb{R}$. However since grade $I_n(\varphi) \ge 2$, we have $\operatorname{Hom}_R(I_n(\varphi), \mathbb{R}) = \mathbb{R}$. Thus the monomorphism $I_n(\varphi) \to \mathbb{R}$ is multiplication by an element $a \in \mathbb{R}$. It follows that $I = aI_n(\varphi)$. By Corollary 1.7 the element a must be a non-zerodivisor.

Suppose now that grade $I \ge 2$. Then, since $I = aI_n(\varphi) \subset (a)$, it follows that *a* is unit, and $I = I_n(\varphi)$. Finally, since grade $I \le \operatorname{projdim} R/I = 2$, we get grade I = 2.

2. Second lecture: Lower bounds

In our discussion on the question which are the possible Betti-numbers of a module of finite projective dimension, we will concentrate in this section on lower bounds.

The following simple result gives us a hint what kind of bounds could be expected.

Proposition 2.1. Suppose *R* is regular, and let $I \subset R$ be a radical ideal of grade *g*. Then $\beta_i(R/I) \ge {g \choose i}$.

Proof. Let \mathfrak{p} be a minimal prime ideal of I. Then $R_{\mathfrak{p}}$ is a regular local ring of dimension $\geq g$ with maximal ideal $\mathfrak{p}R_{\mathfrak{p}}$. Since I is a radical ideal it follows that $IR_{\mathfrak{p}} = \mathfrak{p}R_{\mathfrak{p}}$.

Let \mathbb{F} be a minimal free resolution of R/I. Since localization is an exact functor, \mathbb{F}_p is a resolution of $(R/I)_p$. This resolution may not be minimal. Nevertheless we conclude that $\beta_i(R/I) \ge \beta_i(R_p/pR_p) \ge {g \choose i}$. The last inequality follows since pR_p is generated by a regular sequence of length $\ge g$.

Corollary 2.2. Let *R* be the polynomial ring and $I \subset R$ a monomial ideal of grade *g*. Then $\beta_i(R/I) \ge {g \choose i}$.

Proof. Let u_1, \ldots, u_m be the minimal set of monomial generators of *I*, say $u_i = \prod_{j=1}^n x_j^{a_{ij}}$, and let *S* be the polynomial ring in the new set of variables x_{ij} .

The monomial $v_i = \prod_{j=1}^n \prod_{k=1}^{a_{ij}} x_{jk}$ is called the polarization of u_i , and the ideal $I^p = (v_1, \dots, v_m) \subset S$ the polarization of I.

It is a basic fact [12, Lemma 4.2.16] that the sequence of linear forms $x_{j1} - x_{jk}$ with j = 1, ..., n and k = 2, 3, ... form a regular sequence ℓ on S/I^p , and that $(S/I^p)/\ell(S/I^p) \cong R/I$. In particular, $\beta_i(R/I) = \beta_i(S/I^p)$. Since grade $I = \text{grade } I^p$, and since I^p is a radical ideal, the conclusion follows.

These results indicate that the following may be true

Conjecture 2.3. Let *M* be an *R*-module of grade *g* with finite free resolution. Then $\beta_i(M) \ge {g \choose i}$.

In case R is regular and M is a module of finite length, this conjecture is known as the Buchsbaum-Eisenbud and Horrocks conjecture.

The conjecture is widely open. There are few cases in which the conjectured lower bound for the Betti numbers is known:

- (a) (Buchsbaum-Eisenbud, [14]) *R* is regular, M = R/I has finite length, and the free resolution \mathbb{F} of R/I has an algebra structure;
- (b) (Huneke-Ulrich, [25]) R is regular, M = R/I, and I is in the linkage class of a complete intersection;
- (c) (Herzog-Hibi-Kühl, [22] and [21]) *R* is regular and *M* is componentwise linear.

The argument of Buchsbaum-Eisenbud is as follows: choose a regular sequence $\mathbf{x} = x_1, \ldots, x_n$ with all $x_i \in I$. We may assume that n > 1. Let \mathbb{K} be the Koszul complex of \mathbf{x} with $K_1 = \bigoplus_{i=1}^{n} Re_i$ and $\partial(e_i) = x_i$. Then the inclusion $(\mathbf{x}) \subset I$ can be lifted to a linear map $\alpha_1 \colon K_1 \to F_1$ such that $\varphi_1(\alpha_1(e_i)) = x_i$ for all *i*. Now for each integer $k \ge 1$ let $\alpha_k \colon K_k \to F_k$ be defined by

$$\alpha_i(e_{i_1} \wedge \ldots \wedge e_{i_k}) = \alpha_1(e_{i_1}) \cdot \ldots \cdot \alpha_1(e_{i_k}).$$

Then $\alpha \colon \mathbb{K} \to \mathbb{F}$ is an algebra and complex homomorphism, whose kernel is a graded ideal \mathfrak{a} in \mathbb{K} .

Suppose $a \neq 0$. Let $a \in a$ be a non-zero element of degree *j*. Then there exist $b \in K_{n-j}$ with $b \wedge a \neq 0$. Since $b \wedge a \in a$ it follows that $a_n \neq 0$. We identify K_n with *R*. Then the image of α_n is a cyclic submodule of \mathbb{F}_n which is isomorphic to R/\mathfrak{a}_n . Since *R* is a domain the annihilator of a non-zero submodule \mathbb{F}_n is zero. It follows that $R/\mathfrak{a}_n = 0$, so that $\alpha_n = 0$. The canonical epimorphism $R/(\mathbf{x}) \to R/I$ with kernel, say *C*, induces the exact sequence

$$\operatorname{Ext}_R^{n-1}(C,R) \longrightarrow \operatorname{Ext}_R^n(R/I,R) \xrightarrow{\Psi} \operatorname{Ext}_R^n(R/(\mathbf{x}),R).$$

Here the homomorphism ψ is induced by α_n , and hence is the zero map, and $\operatorname{Ext}^{n-1}(C, R) = 0$, since *C* is of dimension zero. It follows that $\operatorname{Ext}^n(R/I, R) = 0$, a contradiction.

Thus we conclude that a = 0. Therefore α is injective, and it follows that

$$\beta_i(R/I) = \operatorname{rank} F_i \ge \operatorname{rank} K_i = \binom{n}{i}$$
 for all *i*

Unfortunately, not all finite minimal free resolutions admit an algebra structure. In [4] Avramov discovered obstructions to the existence of such structures, and later Srinivasan [31] showed that despite the vanishing of the obstructions defined by Avramov, a finite minimal free resolution still may not admit an algebra structure.

Discussion of (c): In [21] componentwise linear modules are introduced: a graded *R*-module is called *componentwise linear* if for all *j* the submodule $M_{\langle j \rangle}$ generated by the *j*th component M_j of *M* has a linear resolution.

By assumption, $R = k[x_1, ..., x_n]$ is the polynomial ring. We may assume that k is infinite. Then for a generic choice of linear forms $y_1, ..., y_n$ one has for i = 1, ..., n that

$$A_i = \operatorname{Ker}(M/(y_1, \dots, y_{i-1})M \xrightarrow{y_i} M/(y_1, \dots, y_{i-1})M)$$

is a module of finite length. We set

$$\alpha_i = \ell(A_i),$$

and call $\alpha_1, \ldots, \alpha_n$ the generic annihilation numbers of M.

It will be shown in the next section (see Corollary 3.2 and Theorem 3.5) that

$$eta_i \leq \sum_{j=1}^{n-i+1} {n-j \choose i-1} lpha_j,$$

with equality if and only if *M* is componentwise linear.

For the proof of (c) we need the following

Lemma 2.4. With the notation and assumptions introduced suppose that depth M = t, and let $\alpha_1, \ldots, \alpha_n$ be the generic annihilation numbers of M. Then $\alpha_i = 0$ for $i \le t$, and $\alpha_i \ne 0$ for i > t.

Proof. Suppose depth M > 0. Then a generic linear form y is a non-zerodivisor. This shows that $\alpha_i = 0$ for $i \le t$.

In order to prove that $\alpha_i \neq 0$ for i > t, it suffices to show: if depthM = 0, and y is a generic linear form, then (i) $(0:_M y) \neq 0$, and (ii) depthM/yM = 0.

Statement (i) is obvious. For the proof of (ii) we consider for all *i* the map

$$y^{i-1}M/y^iM \to y^iM/y^{i+1}M$$

induced by multiplication by y.

Let C_i be the kernel of this map, and let $c + y^i M \in C_i$. Then $c = y^{i-1}a$ with $a \in M$ and there exists $b \in M$ such that $yc = y^i a = y^{i+1}b$. Hence $y(c - y^i b) = 0$, and so $\mathfrak{m}^n c \in y^i M$ for some *n*, since *y* is a generic linear form. This shows that C_i is a finite length module for all *i*.

Suppose now that depth M/yM > 0. We show by induction on *i*, that $y^{i-1}M/y^iM \rightarrow y^iM/y^{i+1}M$ is an isomorphism. In fact, for each *i* we have the exact sequence

$$0 \longrightarrow C_i \longrightarrow y^{i-1}M/y^iM \longrightarrow y^iM/y^{i+1}M \longrightarrow 0.$$

For i = 1, depth M/yM > 0 and $\ell C_1 < \infty$. This implies that $C_1 = 0$. Therefore $M/yM \rightarrow yM/y^2M$ is an isomorphism.

Now let i > 0. By induction we may assume that $y^{j-1}M/y^jM \cong y^jM/y^{j+1}M$ for all j < i. In particular, it follows that $M/yM \cong y^{i-1}M/y^iM$, so that depth $y^{i-1}M/y^iM > 0$. However since $\ell C_i < \infty$, the above exact sequence shows again that $C_i = 0$ and that $y^{i-1}M/y^iM \to y^iM/y^{i+1}M$ is an isomorphism.

On the other hand, since depth M = 0, there exists $c \in M$, $c \neq 0$, such that yc = 0. Let *i* be such that $c \in y^{i-1}M \setminus y^iM$. Then $c + y^iM \neq 0$ but $y(c + y^iM) = 0$. This is a contradiction since $C_i = 0$.

Now statement (c) will be a consequence of the following stronger result.

Theorem 2.5. Let *R* be the polynomial ring, and *M* a componentwise linear *R*-module with projdim M = p. Then $\beta_i(M) \ge {p \choose i}$.

Proof. Let t = depth M. Then t = n - p, by the Auslander-Buchsbaum formula. Therefore, $\alpha_i > 0$ for i = n - p + 1, ..., n, by Lemma 2.4. Thus, since M is componentwise

linear,

$$\begin{split} \beta_i(M) &= \sum_{j=n-p+1}^{n-i+1} \binom{n-j}{i-1} \alpha_j \geq \sum_{j=n-p+1}^{n-i+1} \binom{n-j}{i-1} \\ &= \sum_{j=i-1}^{p-1} \binom{j}{i-1} = \binom{p}{i}. \end{split}$$

 \square

In view of this result one may hope that for any *R*-module *M* of projective dimension *p* one has $\beta_i(M) \ge {p \choose i}$. However by a theorem of Bruns [10, Satz 3], if *N* is an *i*th syzygy module of a module of finite projective dimension, then *N* is also the *i*th syzygy module of an ideal generated by 3 elements. In particular, if *N* is the second syzygy module of a module of projective dimension *p*, then there exists an ideal *I* generated by 3 elements whose second syzygy module is *N*, one has $\beta_2(R/I) = 3 < {p \choose 2}$, if p > 3.

The following concrete very simple example was communicated to us by Conca: let $I = (-x_1x_2 + x_3x_4, x_2^2, x_3^2) \subset R = k[x_1, x_2, x_3, x_4]$. Then R/I has the resolution

$$0 \longrightarrow R \longrightarrow R^4 \longrightarrow R^5 \longrightarrow R^3 \longrightarrow R \longrightarrow R/I \longrightarrow 0.$$

The theorem of Bruns also tells us that the resolution of an ideal generated by 3 elements can have arbitrary high projective dimension. On the other hand, it is conjectured by Stillman that if we fix a sequence of numbers d_1, \ldots, d_r , then there is a number p such that any ideal in a polynomial (over a field K) which is generated by forms of degree d_1, \ldots, d_r has projective dimension $\leq p$. This conjecture is known to be true only in a few special cases.

For monomial ideals the strong lower bound for the Betti-numbers holds. More generally one has the following result ([9, Theorem 1.1])

Theorem 2.6 (Brun, Römer). Let *M* be a \mathbb{Z}^n -graded module with projdim M = p. Then $\beta_i(M) \geq {p \choose i}$.

There is a strengthening of Conjecture 2.3 in a different direction

Conjecture 2.7. Let *M* be an *R*-module of grade *g* with finite projective dimension. Then rank syz_i(*M*) $\geq \binom{g-1}{i-1}$.

Of course the additivity of rank yields that Conjecture 2.7 implies Conjecture 2.3.

The best known general result concerning lower bounds for the syzygy modules is the famous

Theorem 2.8 (Evans-Griffith [19]). Suppose that *R* contains a field. Let *M* be an *R*-module with projdim M = p. Then rank syz_i $(M) \ge i$ for i = 1, ..., p - 1.

Of course we must exclude i = p in the statement of the theorem, since for example the *p*th syzygy module of a regular sequence of length *p* is only of rank 1.

Since the rank is additive we immediately obtain

Corollary 2.9. With the assumptions of 2.8 one has

$$\beta_i(M) \ge \begin{cases} 2i+1, & \text{for } i = 0, \dots, p-, \\ p, & \text{for } i = p-1, \\ 1, & \text{for } i = p. \end{cases}$$

For the proof of Theorem 2.8 we follow the presentation given in [12] and in the paper [11] of Bruns. This requires some preparations: let M be an R-module, and $x \in M$. Then

 $\mathscr{O}(x) = \{ \varphi(x) \colon \varphi \in \operatorname{Hom}_{R}(M, R) \},\$

is an ideal, the so-called *order ideal of x*.

Suppose for example that M = F is free with basis e_1, \ldots, e_n , and that $x \in F$. Then $x = \sum_{i=1}^{n} a_i e_i$ for some $a_i \in R$. Since the linear forms $\varphi_i \colon F \to R$ with $\varphi_i(e_j) = \delta_{ij}$ generate $\operatorname{Hom}_R(F, R)$, and since $\varphi_i(x) = a_i$ for $i = 1, \ldots, n$, it follows that in this case

$$\mathscr{O}(x) = (a_1, \ldots, a_n)$$

We have

Lemma 2.10. Let M be an R-module, $x \in M$ and $\mathfrak{p} \in \operatorname{Spec}(R)$. Then $x \in M$ generates a free direct summand of $M_{\mathfrak{p}}$ if and only if $\mathcal{O}(x) \not\subset \mathfrak{p}$.

Proof. The order ideal $\mathscr{O}(x)$ localizes since $\operatorname{Hom}_R(M, R)_{\mathfrak{p}}$ is naturally isomorphic to $\operatorname{Hom}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, R_{\mathfrak{p}})$. Thus we assume that $\mathfrak{p} = \mathfrak{m}$, and hence $\mathscr{O}(x) \not\subset \mathfrak{m}$ if and only if $\mathscr{O}(x) = R$. This is equivalent to say that there exists $\varphi \colon M \to R$ with $\varphi(x) = 1$.

Suppose $M = Rx \oplus N$, then the projection to the first summand composed with the isomorphism $Rx \to R$, $x \mapsto 1$, yields $\varphi \colon M \to R$ with $\varphi(x) = 1$. Conversely, given such φ we have $M = Rx \oplus \text{Ker } \varphi$.

The next result is one important step in the proof of Theorem 2.8

Theorem 2.11. Suppose R contains a field. Let

$$\mathbb{F}: 0 \longrightarrow F_p \xrightarrow{\phi_p} F_{p-1} \longrightarrow \cdots \longrightarrow F_1 \xrightarrow{\phi_1} F_0 \longrightarrow 0$$

be a complex of finitely free *R*-modules such that $\operatorname{Im}(\varphi_i) \subset \mathfrak{m}F_{i-1}$ for all *i*. Let $t \geq 0$ be an integer and set $r_i = \sum_{j=i}^p (-1)^{j-i} \operatorname{rank} F_j$. Suppose that $\operatorname{codim} I_{r_i}(\varphi_i) \geq i+t$ for all *i*. Then, for j = 1, ..., p and every $e \in F_j \setminus \mathfrak{m}F_j$, one has $\operatorname{codim} \mathscr{O}(\varphi_j(e)) \geq j+t$.

Proof. Let $J = \mathcal{O}(\varphi_j(e))$. We may assume that $J \subset \mathfrak{m}$. We set $\overline{R} = R/J$ and $\overline{\mathbb{F}} = \mathbb{F} \otimes \overline{R}$. Then $\overline{\varphi}_j(\overline{e}) = 0$, and $I_{r_i}(\overline{\varphi}_i) = (I_{r_i}(\varphi_i) + J)/J$.

Assume that $\operatorname{codim} J \leq j + t - 1$. Then we obtain

$$\dim(\bar{R}/I_{r_i}(\bar{\varphi}_i)) \leq \dim(R/I_{r_i}(\varphi_i)) \leq \dim R - i - t \leq \dim \bar{R} - i + j - 1,$$

which implies that $\operatorname{codim} I_{r_i}(\bar{\varphi}_i) \ge i - j + 1$ for all $i \ge j$.

Let

$$\mathbb{G}: 0 \longrightarrow G_{p-j+1} \xrightarrow{\psi_{p-j+1}} G_{p-j} \longrightarrow \cdots \longrightarrow G_1 \xrightarrow{\psi_1} G_0 \longrightarrow 0,$$

with $G_i = \overline{F}_{i+j-1}$ and $\psi_i = \overline{\varphi}_{i+j-1}$. Then \mathbb{G} is a complex with $\operatorname{codim} I_{r_i}(\psi_i) \ge i$ for $i = 1, \ldots, p - j + 1$. If we would have $\operatorname{grade} I_{r_i}(\psi_i) \ge i$ for all *i*, then the Eisenbud-Buchsbaum acyclicity criterion would imply that \mathbb{G} is acyclic. In order to remedy this

defect, we choose a balanced big Cohen-Macaulay module for \overline{R} and consider the complex $\mathbb{G} \otimes M$. This is precisely the step in the proof where we need that \overline{R} contains a field, because in this case it is known that there exists a balanced big Cohen-Macaulay \overline{R} -module, that is, a Cohen-Macaulay \overline{R} -module (not necessarily finitely generated) such that every system of parameters of \overline{R} is an *M*-regular sequence, see [12, Corollary 8.5.3]. It follows that grade($I_{r_i}(\psi_i), M$) $\geq i$ for all *i*. An obvious modification of the Eisenbud-Buchsbaum acyclicity criterion then implies that $\mathbb{G} \otimes M$ is acyclic.

Since $\psi_1(\bar{e}) = 0$, it follows that $(\psi_1 \otimes M)(\bar{e} \otimes M) = 0$. However, since $\mathbb{G} \otimes M$ is acyclic it follows that $\operatorname{Ker}(\psi_1 \otimes M) = \operatorname{Im}(\psi_2 \otimes M)$. Therefore $\bar{e} \otimes M \subset \operatorname{Im}(\psi_2 \otimes M) \subset \mathfrak{m}(G_1 \otimes M)$.

On the other hand, since $\bar{e} \notin \mathfrak{m}G_1$, it follows that the image of $\bar{e} \otimes M$ under the canonical epimorphism $G_1 \otimes M \to (G_1 \otimes M)/\mathfrak{m}(G_1 \otimes M) = G_1/\mathfrak{m}G_1 \otimes M/\mathfrak{m}M$ is isomorphic to $M/\mathfrak{m}M \neq 0$. This implies that $\bar{e} \otimes M \notin \mathfrak{m}G_1 \otimes M$, a contradiction.

For the inductive proof of the Evans-Griffith theorem we need the following technical

Lemma 2.12. Let M be an R-module. Then there exists a free R-module F and a homomorphism $\varphi \colon M \to F$ with the following property: If \mathfrak{p} is a prime ideal and $N \subset M_{\mathfrak{p}}$ is free direct $R_{\mathfrak{p}}$ -summand, then $\varphi_{\mathfrak{p}}(N)$ is a free direct summand of $F_{\mathfrak{p}}$ with rank $\varphi_{\mathfrak{p}}(N) = \operatorname{rank} N$.

Proof. Denote by W^* , the *R*-dual of an *R*-modules *W*. We choose a *G* a free *R*-module and an epimorphism $\pi : G \to M^*$, and let $h: M \to M^{**}$ be the canonical homomorphism. Then $F = G^*$ and $\varphi = \pi^* \circ h$ have the desired property. Indeed, since *R* is Noetherian and all modules are finitely generated, the construction of *F* and φ localize. Thus we may assume that $R = R_p$. Since *N* is a free direct summand of *M*, there exist $g_1, \ldots, g_r \in N$ and $\alpha_1, \ldots, \alpha_r \in M^*$ such that $\alpha_i(g_j) = \delta_{ij}$. Choose $\beta_i \in G$ with $\pi(\beta_i) = \alpha_i$ for $i = 1, \ldots, r$. Then

$$\varphi(g_i)(\beta_j) = h(g_i)(\pi(\beta_j)) = h(g_i)(\alpha_j) = \alpha_j(g_i) = \delta_{ij}.$$

This proves that $\varphi(N)$ is a free direct summand of F with rank $N = \operatorname{rank} \varphi(N)$.

Proof of Theorem 2.8. We prove more generally the following statement (*): let

$$\mathbb{F}: 0 \longrightarrow F_p \xrightarrow{\phi_p} F_{p-1} \longrightarrow \cdots \xrightarrow{\phi_2} F_1 \xrightarrow{\phi_1} F_0 \longrightarrow 0$$

be a complex of finitely generated free *R*-modules such that $\text{Im}(\varphi_i) \subset \mathfrak{m}F_{i-1}$ for all *i*, and set $r_i = \sum_{j=i}^p (-1)^{j-i} \operatorname{rank} F_j$. Suppose that there exists an integer $t \geq 0$ such that $\operatorname{codim} I_{r_i}(\varphi_i) \geq i+t$ for all *i*. Then $r_i \geq i+t$ for $i = 1, \ldots, p-1$.

Let *M* be a balanced big Cohen-Macaulay module of *R*. Since $\operatorname{codim} I_{r_i}(\varphi_i) \ge i$, there exists a sequence x_1, \ldots, x_i in $I_{r_i}(\varphi_i)$ which is part of a system of parameters of *R*, and hence a regular sequence on *M*. This implies that $\operatorname{grade}(\varphi_i, M) \ge i$ for all *i*. Thus $\mathbb{F} \otimes M$ is acyclic. In particular, $r_i \ge 1$ for $i = 1, \ldots, p$.

We prove (*) by induction on p. If p = 1, then there is nothing to show. Suppose now that p > 1, and consider the complex

$$\mathbb{G}: 0 \longrightarrow G_{p-1} \xrightarrow{\psi_{p-1}} G_{p-2} \longrightarrow \cdots \longrightarrow G_1 \xrightarrow{\psi_1} G_0 \longrightarrow 0,$$

with $G_i = F_{i+1}$ and $\psi_i = \varphi_{i+1}$ for k = 1, ..., p-1. Let $s_i = \sum_{j_i}^{p-1} (1)^{j-i} \operatorname{rank} G_j$. Then $\operatorname{codim} I_{s_i}(\psi_i) \ge i + (1+t)$ for all *i*. Hence by induction hypothesis, we have $r_{i+1} = s_i \ge (i+1) + t$ for i = 1, ..., p-1.

Thus it remains to show that $r_1 \ge 1+t$. We show this by induction on t. The assertion is clear if t = 0. Suppose now that t > 0. We choose $e \in F_1 \setminus \mathfrak{m}F_1$, replace F_1 by $F'_1 = F_1/Re$ and φ_2 by the induced map $\varphi'_2 : F_2 \to F'_1$. Furthermore, we choose F'_0 and Coker $\varphi'_2 \to F'_0$ as described in Lemma 2.12. This yields a map $\varphi'_1 : F'_1 \to F'_0$, so that we obtain the complex

$$\mathbb{F}': 0 \longrightarrow F_p \xrightarrow{\phi_p} F_{p-1} \longrightarrow \cdots \longrightarrow F_2 \xrightarrow{\phi'_2} F'_1 \xrightarrow{\phi'_1} F'_0 \longrightarrow 0.$$

We show (i) $\operatorname{codim} I_{r'_2}(\varphi'_2) \ge t + 1$ and (ii) $\operatorname{codim} I_{r'_1}(\varphi'_1) \ge t$. Then \mathbb{F}' satisfies the hypotheses of (*) with t - 1 instead of t.

It may be that $\operatorname{Im} \varphi'_1 \notin \mathfrak{m} F'_0$. In this case one can split off a direct summand without affecting (i) ansd (ii). Applying our induction hypothesis to this cancelled complex, we obtain $r'_1 \ge t$, and hence $r_1 \ge t+1$, as desired.

Proof of (i): let \mathfrak{p} be a prime ideal with $\operatorname{codim} \mathfrak{p} \leq t$. Then $I_{r_i}(\varphi_i) \not\subset \mathfrak{p}$, so that $\mathbb{F} \otimes R_\mathfrak{p}$ is split acyclic. In particular, $(F_1)_\mathfrak{p} \cong (\operatorname{Im} \varphi_2)_\mathfrak{p} \oplus (\operatorname{Coker} \varphi_2)_\mathfrak{p}$ with $\operatorname{rank}(\operatorname{Im} \varphi_2)_\mathfrak{p} = r_2$ and $\operatorname{rank}(\operatorname{Coker} \varphi_2)_\mathfrak{p} = r_1$. Moreover, by Theorem 2.11 we have $\operatorname{codim} \mathscr{O}(\varphi_1(e)) \geq t + 1$. Therefore Lemma 2.10 implies that $\varphi_1(e)$ generates a non-zero free summand of $(F_0)_\mathfrak{p}$. Consequently, the image \overline{e} of e under the residue class map $F_1 \to \operatorname{Coker} \varphi_2$ generates a non-zero free direct summand of $(\operatorname{Coker} \varphi_2)_\mathfrak{p}$. Hence $(\operatorname{Coker} \varphi_2)_\mathfrak{p} \cong (\operatorname{Coker} \varphi_2)_\mathfrak{p}/R_\mathfrak{p}\overline{e}$ is free of rank $r'_1 = r_1 - 1$, and the exact sequence

$$0 \longrightarrow (\operatorname{Im} \varphi_2')_{\mathfrak{p}} \longrightarrow (F_1')_{\mathfrak{p}} \longrightarrow (\operatorname{Coker} \varphi_2')_{\mathfrak{p}} \longrightarrow 0$$

splits. In particular, $(\operatorname{Im} \varphi'_2)_{\mathfrak{p}}$ is free direct summand of $(F'_1)_{\mathfrak{p}}$ of rank r_2 . Thus Proposition 1.8 implies that $I_{r'_2}(\varphi'_2) \not\subset \mathfrak{p}$, as desired.

Proof of (ii): We choose \mathfrak{p} as before. We have already seen that $(\operatorname{Coker} \varphi'_2)_{\mathfrak{p}}$ is free of rank r'_1 . As φ'_1 is constructed as described in Lemma 2.12, $(\operatorname{Coker} \varphi'_2)_{\mathfrak{p}}$ is mapped isomorphically onto a free direct summand of F'_0 . This implies that $I_{r'_1}(\varphi'_1) \not\subset \mathfrak{p}$, and shows $\operatorname{codim} I_{r'_1}(\varphi'_1) \ge 1 + t$, which is even more than required.

3. LECTURE: UPPER BOUNDS

In the remaining sections, unless otherwise stated, $R = k[x_1, ..., x_n]$ is the polynomial ring, and *M* is a finitely generated graded *R*-module. As indicated in Section 1 we want to relate the Betti-numbers $\beta_i(M)$ of *M* to the generic annihilator numbers $\alpha_i(M)$ of *M*.

Let $y = y_1, \ldots, y_n$ be generic linear forms. Then

$$A_j = ((y_1, \dots, y_{j-1})M :_M y_j)/(y_1, \dots, y_{j-1})M$$

is a module of finite length. We set

$$\alpha_i(M) = \ell(A_i).$$

We denote by $H_i(j;M)$ the Koszul homology $H_i(y_1,...,y_j;M)$ of the partial sequence $y_1,...,y_j$, and set $h_i(j;M) = \dim_K H_i(j;M)$. If there is no danger of confusion, we simply write β_i , α_i , $H_i(j)$ and $h_i(j)$ for $\beta_i(M)$, $\alpha_i(M)$, $H_i(j;M)$ and $h_i(j;M)$ respectively.

Attached with *y* there are long exact sequences

$$\cdots \longrightarrow H_i(j-1) \xrightarrow{\varphi_{i,j-1}} H_i(j-1) \longrightarrow H_i(j) \longrightarrow H_{i-1}(j-1)$$
$$\cdots \longrightarrow H_0(j-1) \xrightarrow{\varphi_{0,j-1}} H_0(j-1) \longrightarrow H_0(j) \longrightarrow 0.$$

Here $\varphi_{i,j-1}$: $H_i(j-1) \to H_i(j-1)$ is the map given by multiplication with $\pm y_j$. Note that A_j is the Kernel of the map $\varphi_{0,j-1}$. We conclude

(*) $h_1(j) = h_1(j-1) + \alpha_i - \dim_K \operatorname{Im} \varphi_{1,i-1}$ for i = 1;

(**)
$$h_i(j) = h_i(j-1) + h_{i-1}(j-1) - \dim_K \operatorname{Im} \varphi_{i,j-1} - \dim_K \operatorname{Im} \varphi_{i-1,j-1}$$
 for $i > 1$.

With the notation introduced we now have:

Proposition 3.1. *Given integers* $1 \le i \le j$ *we define the set*

$$C_{i,j} = \{(a,b) \in \mathbb{N}^2 : 1 \le b \le j-1 \text{ and } \max(i-j+b,1) \le a \le i\}.$$

Then we have

- (a) $h_i(j) \leq \sum_{k=1}^{j-i+1} {j-k \choose i-1} \alpha_k$ for all $i \geq 1$ and $j \geq 1$; (b) For given $i \geq 1$ and $j \geq 1$ the following conditions are equivalent:
- (i) $h_i(j) = \sum_{k=1}^{j-i+1} {j-k \choose i-1} \alpha_k;$ (ii) $\varphi_{ab} = 0$ for all $(a,b) \in C_{i,j};$
- (iii) $\mathfrak{m}H_a(b) = 0$ for all $(a,b) \in C_{i,i}$.

Proof. By induction on j and using equations (*) and (**) one proves that

$$h_i(j) = \sum_{k=1}^{j-i+1} {j-k \choose i-1} \alpha_{jk} - \sum_{(a,b)\in C_{i,j}} {j-b \choose i-a} \dim_K \operatorname{Im} \varphi_{a,b}$$

Then (a) and the equivalence of (i) and (ii) in (b) follow immediately. For the equivalence of (*ii*) and (*iii*) we notice that a generic linear form annihilates $H_a(b)$ if and only if $\mathfrak{m}H_a(b) = 0.$

By taking j = n we obtain the following upper bound

Corollary 3.2. $\beta_i \leq \sum_{j=1}^{n-i+1} {n-j \choose i-1} \alpha_j$ for all $i \geq 1$.

When this upper bound is reached is described in the next corollary in terms of vanishing of Koszul homology

Corollary 3.3. (a) For a given integer i the following conditions are equivalent:

(i) $\beta_i = \sum_{j=1}^{n-i+1} {\binom{n-j}{i-1}} \alpha_j$,

(ii)
$$\mathfrak{m}H_a(b) = 0$$
 for all $(a,b) \in C_{i,n}$

(b) *The following conditions are equivalent:*

- (i) $\beta_i = \sum_{j=1}^{n-i+1} {n-j \choose i-1} \alpha_j$ for all $i \ge 1$, (ii) $\mathfrak{m}H_a(b) = 0$ for all b and for all $a \ge 1$.

We now want to discuss when condition (b)(ii) is satisfied. We first note that it implies that y_1, \ldots, y_n is a proper sequence in the sense of [23].

Definition 3.4. Let *R* be an arbitrary commutative ring, and *M* and *R*-module. A sequence y_1, \ldots, y_r of elements of *R* is called a *proper M-sequence*, if $y_{j+1}H_i(j;M) = 0$ for all $i \ge 1$ and $j = 0, \ldots, r - 1$.

In [26] Kühl proved the following remarkable fact: The sequence y_1, \ldots, y_r is a proper *M*-sequence if and only if

$$y_{i+1}H_1(j;M) = 0$$
 for $j = 0, \dots, r-1$.

Now we have

Theorem 3.5 (Conca-Herzog-Hibi). Let $I \subset R$ be a graded ideal, and let $y = y_1, ..., y_n$ be a sequence of generic linear forms. The following conditions are equivalent:

(a) R/I has maximal Betti numbers, i.e.

$$\beta_i(R/I) = \sum_{j=1}^{n-i+1} \binom{n-j}{i-1} \alpha_j(R/I) \quad \text{for all} \quad i \ge 1;$$

- (b) y is a proper R/I-sequence;
- (c) I is componentwise linear.

Proof. Let *z* be a generic linear form. Then $zH_i(p) = 0$ if and only if $\mathfrak{m}H_i(p) = 0$. Thus the equivalence of (a) and (b) follows from 3.3 (b). The equivalence of (b) and (c) can be found in [16, Theorem 4.5].

Another important method to obtain upper bounds for resolutions is to compare the resolution of an ideal I with the resolution of its initial ideal in(I) with respect to some term order < on R. The basic fact is the following

Theorem 3.6. Let $I \subset R$ be a graded ideal. Then for any term order < one has

$$\beta_{ij}(R/I) \leq \beta_{ij}(R/\operatorname{in}_{<}(I)) \quad for \ all \quad i, j.$$

Proof. Let \tilde{R} be the k[t]-algebra R[t], where t is an indeterminate of degree 0. By [17, Theorem 15.17] there exists a graded ideal $\tilde{I} \subset \tilde{R}$ such that the k[t]-algebra \tilde{R}/\tilde{I} is a free k[t]-module (and thus flat over k[t]), and such that

(2)
$$(\tilde{R}/\tilde{I})/t(\tilde{R}/\tilde{I}) \cong R/\operatorname{in}_{<}(I),$$

and

(3)
$$(\tilde{R}/\tilde{I})_t \cong (R/I) \otimes_k k[t,t^{-1}],$$

as graded k-algebras. The ideal $\tilde{I} \subset \tilde{R}$ is constructed by means of a weight function.

Let \mathbb{F} be the minimal graded free \tilde{S} -resolution of \tilde{R}/\tilde{I} . Then (2) implies that $\mathbb{F}/t\mathbb{F}$ is a graded minimal free *R*-resolution of R/I, so that $\beta_{ij}(\tilde{R}/\tilde{I}) = \beta_{ij}(R/\text{in}_{<}(I))$ for all *i* and *j*, and (3) implies that the localized complex \mathbb{F}_t is a graded (not necessarily minimal) free $R \otimes_K K[t,t^{-1}]$ resolution of $(R/I) \otimes_K K[t,t^{-1}]$. Thus, $\beta_{ij}(R/I) = \beta_{ij}((R/I) \otimes_K K[t,t^{-1}]) \leq \beta_{ij}(\tilde{R}/\tilde{I})$, as desired.

Let *M* be a finitely generated graded *S*-module. The *regularity* of *M* is defined to be the number $reg(M) = max\{j - i: \beta_{ij}(M) \neq 0\}$. As an immediate consequence of 3.6 we have

Corollary 3.7. *Let* $I \subset R$ *be a graded ideal. Then for any term order < one has:*

- (a) $\operatorname{proj} \operatorname{dim} R/I \leq \operatorname{proj} \operatorname{dim} R/\operatorname{in}_{<}(I)$.
- (b) depth $R/I \ge \operatorname{depth} R/\operatorname{in}_{<}(I)$.
- (c) If $R/in_{<}(I)$ is Cohen-Macaulay (Gorenstein), then so is S/I.
- (d) $\operatorname{reg} R/I \leq \operatorname{reg} R/\operatorname{in}_{<}(I)$.

We shall see in the next section that all inequalities of 3.7 become equalities, if $in_{<}(I)$ is replaced by the generic initial ideal Gin(I) with respect to the reverse lexicographic order.

We fix a term order < satisfying $x_1 > x_2 > ... > x_n$. Let $I \subset R$ be an ideal. The *generic initial ideal* Gin(*I*) with respect to this term order is defined as follows: let GL(n) denote the general linear group with coefficients in *k*. Any $\varphi = (a_{ij}) \in GL(n)$ induces an automorphism of the graded *k*-algebra *R*, again denoted by φ , namely

$$\varphi(f(x_1,\ldots,x_n)) = f(\sum_{i=1}^n a_{i1}x_i,\ldots,\sum_{i=1}^n a_{in}x_i) \quad \text{for all} \quad f \in R.$$

For the proof of the following result we refer to [17, Theorem 15.18]

Theorem 3.8 (Galligo, Bayer and Stillman). Let $I \subset R$ be a graded ideal. Then there is a nonempty Zariski open set $U \subseteq GL(n)$ such that $in(\varphi(I))$ does not depend on $\varphi \in U$. Moreover, U meets non trivially the Borel subgroup of GL(n) consisting of all upper triangular invertible matrices.

For $\varphi \in U$ the monomial ideal in($\varphi(I)$) is called the *generic initial ideal of I*, and will be denoted Gin(I).

A monomial ideal *I* is called *strongly stable*, if $x_i(u/x_j) \in I$ for all monomials $u \in I$, all x_j that divides *u*, and all i < j. The ideal *I* is called *stable*, if $x_i(u/x_{m(u)}) \in I$ for all monomials $u \in I$, and all i < m(u). Here $m(u) = \max\{i: x_i \text{ divides } u\}$.

For a monomial ideal *I* it is customary to denote the unique minimal set of monomial generators by G(I). It is easy to see that *I* is strongly stable if $x_i(u/x_j) \in I$ for all monomials $u \in G(I)$, all x_j that divides *u*, and all i < j. A similar statement holds for stable ideals.

Stable monomial ideals were introduced by Eliahou and Kervaire [18] who also gave an explicit resolution of such ideals. Such ideals are important because of the following result [17, Theorem 15.23]

Theorem 3.9. Suppose that $\operatorname{char} k = 0$, and let $I \subset R$ be a graded ideal. Then the generic initial ideal $\operatorname{Gin}(I)$ of I with respect to the reverse lexicographical order is strongly stable.

Also in positive characteristic Gin(I) has a nice (but much more complicated) combinatorial structure.

The Koszul homology of a stable monomial ideal *I* can be easily computed. We let $\varepsilon : R \to R/I$ be the canonical epimorphism, and set $u' = u/x_{m(u)}$ for all $u \in G(I)$.

Theorem 3.10. Let $I \subset R$ be a stable ideal. For all j = 1, ..., n and i > 0, the Koszul homology $H_i(x_j, ..., x_n)$ is annihilated by $\mathfrak{m} = (x_1, ..., x_n)$. In other words, all these homology modules are k-vector spaces. A basis of $H_i(x_j, ..., x_n)$ is given by the homology

classes of the cycles

$$\varepsilon(u')e_{\sigma} \wedge e_{m(u)}, \quad u \in G(I), \quad |\sigma| = i - 1, \quad j \le \min(\sigma), \quad \max(\sigma) < m(u).$$

Proof. We proceed by induction on n - j. For j = n, we only have to consider $H_1(x_n)$ which is obviously minimally generated by the homology classes of the elements $\varepsilon(u')e_n$ with $u \in G(I)$ such that m(u) = n. Since by the definition of stable ideals $x_iu' \in I$ for all *i*, we see that $H_1(x_n)$ is a *k*-vector space.

Now assume that j < n, and that the assertion is proved for j+1. Then $x_jH_i(x_{j+1},...,x_n) = 0$ for all i > 0, so that the long exact sequence

$$\cdots \qquad \xrightarrow{x_j} H_i(x_{j+1}, \dots, x_n) \longrightarrow H_i(x_j, \dots, x_n) \longrightarrow H_{i-1}(x_{j+1}, \dots, x_n)$$
$$\xrightarrow{x_j} H_{i-1}(x_{j+1}, \dots, x_n) \longrightarrow H_{i-1}(x_j, \dots, x_n) \longrightarrow \cdots$$

splits into the exact sequences

(4)
$$0 \longrightarrow H_1(x_{j+1}, \dots, x_n) \longrightarrow H_1(x_j, \dots, x_n) \longrightarrow R_j/I_j \xrightarrow{x_j} R_j/I_j$$

and

(5)
$$0 \longrightarrow H_i(x_{j+1}, \dots, x_n) \longrightarrow H_i(x_j, \dots, x_n) \longrightarrow H_{i-1}(x_{j+1}, \dots, x_n) \longrightarrow 0$$

for i > 0. Here R_j is the polynomial ring $k[x_1, ..., x_j]$, I_j the ideal in R_j generated by the monomials $u \in G(I)$ which are not divisible by any x_i with i > j, in other words, $I_j = I \cap S_j$.

In sequence (4), Ker x_j is minimally generated by the residues of the monomials u' with $u \in G(I)$ and m(u) = j. Note that the sets $\{u \in G(I) : m(u) = j\}$ and $\{u \in G(I_j) : m(u) = j\}$ are equal, and that I_j is a stable ideal in R_j . Therefore Ker x_j is a k-vector space.

We now consider the short exact sequence

(6)
$$0 \longrightarrow H_1(x_{j+1}, \ldots, x_n) \longrightarrow H_1(x_j, \ldots, x_n) \longrightarrow \operatorname{Ker} x_j \longrightarrow 0.$$

It is clear that the elements $\varepsilon(u')e_j$, $u' \in G(I)$, m(u) = j are cycles in $K_1(x_j, ..., x_n)$ such that $\delta([\varepsilon(u')e_j]) = u' + I_j$. Therefore, by (6) and our induction hypothesis, it follows that the set $\mathscr{S} = \{[\varepsilon(u')e_i] : u \in G(I), m(u) = i \ge j\}$ generates $H_1(x_j, ..., x_n)$. Since *I* is a stable ideal we see that $x_j[\varepsilon(u')e_i] = 0$ for all j = 1, ..., n and all $[\varepsilon(u')e_i] \in \mathscr{S}$. In other words, $H_1(x_j, ..., x_n)$ is a *k*-vector space. Finally, since the number of elements of \mathscr{S} equals dim_k $H_1(x_{i+1}, ..., x_n) + \dim \operatorname{Ker} x_j$, we conclude that \mathscr{S} is a basis of $H_1(x_j, ..., x_n)$.

In order to prove our assertion for i > 1 we consider the exact sequences (5). By induction hypothesis the homology module $H_{i-1}(x_{j+1},...,x_n)$ is a k-vector space with basis

$$[\varepsilon(u')e_{\sigma} \wedge e_{m(u)}], \quad u \in G(I), \quad |\sigma| = i-2, \quad j+1 \leq \min(\sigma), \quad \max(\sigma) < m(u).$$

Given such a homology class, consider the element $\varepsilon(u')e_j \wedge e_{\sigma} \wedge e_{m(u)}$. It is clear that this element is a cycle in $K_i(x_j, \ldots, x_n)$, and that

$$\delta([\varepsilon(u')e_j \wedge e_{\sigma} \wedge e_{m(u)}] = \pm [\varepsilon(u')e_{\sigma} \wedge e_{m(u)}].$$

Thus from the exact sequence (5) and our induction hypothesis it follows that the homology classes of the cycles described in the theorem generate $H_i(x_j, ..., x_n)$. Again the stability of the ideal *I* implies that m annihilates all these homology classes, so that $H_i(x_1, \ldots, x_n)$ is a K-vector space. Finally, just as for i = 1, a dimension argument shows that these homology classes form a basis of $H_i(x_1, \ldots, x_n)$.

Let I be a monomial ideal. We denote by $G(I)_i$ the set of monomial generators of I of degree *j*. The following result of Eliahou and Kervaire [18] follows immediately from 3.10.

Corollary 3.11. *Let* $I \subset SR$ *be a stable ideal. Then*

- (a) $\beta_{ii+j}(I) = \sum_{u \in G(I)_j} {m(u)-1 \choose i};$
- (b) projdim $R/I = \max\{m(u) : u \in G(I)\};$
- (c) $\operatorname{reg}(I) = \max\{\operatorname{deg}(u) : u \in G(I)\}.$

If we consider upper bounds for the Betti-numbers of an ideal we have to fix a class \mathscr{C} of ideals and to ask if there is an upper bound for the Betti-numbers of the ideals within this class. We have already seen that the class of ideals whose residue class ring has a given sequence of annihilator numbers has such an upper bound.

Here we now consider the class \mathscr{C} of ideals with given Hilbert function. Within this class there is a distinguished ideal. In fact, let > be the lexicographical monomial order induced by $x_1 > x_2 > \cdots > x_n$. Recall that a monomial ideal $I \subset R$ is called a *lexsegment ideal*, if for each monomial $u \in I$, all monomials v > u belong to I as well.

Let $B \subset R_d$ be a set of monomials. Then *B* is called a *lexsegment* if with each $u \in B$ we have $v \in B$ for all v > u in the lexicographical order. A lexsegment ideal is an ideal which is spanned in each degree by a lexsegment set of monomials.

We denote by Shad(B) the *shadow* of *B*, i.e. the set of monomials

$${x_1,\ldots,x_n}B = {x_i u : u \in B, i = 1,\ldots,n}.$$

The set B is called a (strongly) stable set of monomials if the ideal generated by B is (strongly) stable.

We let $m_i(B)$ the number of elements $u \in B$ with m(u) = i, and set $m_{\leq i}(B) = \sum_{i=1}^{i} m_i(B)$. Then we have

Lemma 3.12. Let $B \subset M_d$ be a stable set of monomials. Then

- (a) $m_i(\text{Shad}(B)) = m_{\leq i}(B);$
- (b) $|\text{Shad}(B)| = \sum_{i=1}^{n} m_{<i}(B).$

Proof. (b) is of course a consequence of (a). For the proof of (a) we note that the map

$$\varphi \colon \{u \in B \colon m(u) \le i\} \to \{u \in \text{Shad}(B) \colon m(u) = i\}, \quad u \mapsto ux_i$$

is a bijection. In fact, φ is clearly injective. To see that φ is surjective, we let $v \in \text{Shad}(B)$ with m(v) = i. Since $v \in \text{Shad}(B)$, there exists $w \in B$ with $v = x_i w$ for some $j \leq i$. It follows that $m(w) \le i$. If j = i, then we are done. Otherwise, j < i and m(w) = i. Hence, since *B* is stable it follows that $u = (x_i/x_i)w \in B$. The assertion follows, since $v = ux_i$. \Box

The following result is crucial.

Theorem 3.13 (Bayer [5]). Let $L \subset R_d$ be a lexsegment, and $B \subset R_d$ be a stable set of monomials with $|L| \leq |B|$. Then $m_{\leq i}(L) \leq m_{\leq i}(B)$ for i = 1, ..., n.

We denote by B^{lex} the unique lexsegment set of monomials with $|B^{lex}| = |B|$. Now Lemma 3.12 and Theorem 3.13 imply

Corollary 3.14. Let $B \subset R_d$ a be stable set of monomials, then $|\operatorname{Shad}(B^{lex})| \leq |\operatorname{Shad}(B)|$.

Using all this we now get

Theorem 3.15. Let $I \subset R$ be a graded ideal. Then there exists a unique lexsegment ideal in R, denoted I^{lex} , such that R/I and R/I^{lex} have the same Hilbert function.

Proof. Let < be any monomial order. It is easy to see that S/I and $S/\text{in}_{<}(I)$ have the same Hilbert function. Hence we may replace I by $\text{in}_{<}(I)$, and thus may assume that I is a monomial ideal. Then for any field L the Hilbert function of $L[x_1, \ldots, x_n]/(G(I))$ does not depend on L. Thus we may replace k by L if necessary, and thus may as well assume that char k = 0. Then by Theorem 3.9 the generic initial ideal Gin(I) of I with respect to the reverse lexicographical order is strongly stable.

For each *d* let I_d be spanned by the set of monomials N_d . Then N_d is a strongly stable set of monomials. Let I_d^{lex} be the subspace of R_d spanned by N_d^{lex} . We set $I^{lex} = \bigoplus_{d \ge 0} I_d^{lex}$, and show that I^{lex} is an ideal, in other words, that $\{x_1, \ldots, x_n\}I_d^{lex} \subset I_{d+1}^{lex}$ for all *d*.

By Corollary 3.14 one has $|\operatorname{Shad}(N_d^{lex})| \leq |\operatorname{Shad}(N_d)| \leq |N_{d+1}| = |N_{d+1}^{lex}|$. On the other hand, since $\operatorname{Shad}(N_d^{lex})$ and N_{d+1}^{lex} are both lexsegments, this inequality implies $\operatorname{Shad}(N_d^{lex}) \subset N_{d+1}^{lex}$, as desired.

It is obvious from the construction that R/I and R/I^{lex} have the same Hilbert function.

Bigatti [8] and Hulett [24] proved independently the following theorem if the base field k of R is of characteristic 0. A proof in arbitrary characteristic was later given by Pardue [27] using a suitable polarization argument.

Theorem 3.16 (Bigatti, Hulett, Pardue). Let $I \subset R$ be a graded ideal. Then

 $\beta_{ij}(I) \leq \beta_{ij}(I^{lex})$ for all *i* and *j*.

In particular, among all ideals with a given Hilbert function, the unique lexsegment ideal with this given Hilbert function has the largest Betti-numbers.

Proof. We outline the proof in case char(k) = 0. By Theorem 3.6 we have $\beta_{ij}(I) \leq \beta_{ij}(Gin(I))$ for all i and j, where Gin(I) denotes the generic initial ideal of I with respect to the reverse lexicographical order. Since we assume that Char(k) = 0, it follows from Theorem 3.9 that Gin(I) is a strongly stable ideal. We may therefore assume that I itself is a a strongly stable monomial ideal. Then $\beta_{ij}(I) = \sum_{u \in G(I)_j} {m(u)-1 \choose i}$, by Corollary 3.11(a). A similar formula holds for I^{lex} , since I^{lex} is also strongly stable. These formulas for the Betti-numbers can be rewritten in terms of the numbers $m_{\leq i}(I) \ m_{\leq i}(I^{lex})$. Then using Bayer's theorem 3.13 according to which $m_{\leq i}(I) \le m_{\leq i}(I^{lex})$ for all i, one obtains the desired inequalities.

4. Lecture: Stability

In this section we assume that $R = k[x_1, ..., x_n]$ is the polynomial ring over an infinite field *K*, and $I \subset R$ is a graded ideal. In the previous section we have seen that for any term

order one has $\beta_{ii}(I) \leq \beta_{ii}(in(I))$. One may ask on what conditions on the term order or on the ideal one obtains more precise information in this comparison. A classical result in this direction is the theorem of Bayer-Stillman [7] which asserts that reg(I) = reg(Gin(I)). Here and throughout this section Gin(I) denotes the generic initial ideal with respect to the reverse lexicographical order.

A remarkable extension of the Bayer-Stillman theorem, which we want to discuss next, was proved by Bayer, Charalambous and Popescu in [6]. Let M be a finitely generated graded S-module. A Betti number $\beta_{kk+m} \neq 0$ of M is called *extremal* if $\beta_{ii+i} = 0$ for all $(i, j) \neq (k, m)$ with i > k and j > m.

The following picture displays the Betti diagram of a graded free resolution in the form of a MACAULAY output. The entry with coordinates (i, j) is the Betti number β_{ii+j} . In our picture the outside corners of the dashed line give the positions of the extremal Betti numbers.

Let *M* be a finitely generated graded *R*-module, and let $y = y_1, \ldots, y_n$ be generic linear forms. As in Section 3 we set $H_i(j) = H_i(y_1, \dots, y_i; M)$, and

$$A_j = (y_1, \dots, y_{j-1})M :_M y_j/(y_1, \dots, y_{j-1})M.$$

All $H_i(j)$ as well as all A_j are *R*-modules of finite length and since *M* is a graded *S*module, all $H_i(j)$ and all A_j are naturally graded, and there are graded isomorphisms $H_i(n)_i \cong \operatorname{Tor}_i(k, M)_i$ for all *i* and *j*.

Let N be an Artinian graded module. We set

$$s(N) = \begin{cases} \max\{s \colon N_s \neq 0\} & \text{if } N \neq 0, \\ -\infty & \text{if } N = 0. \end{cases}$$

Now we introduce the following numbers attached to M and the sequence $y = y_1, \ldots, y_n$. We set

$$r_j = \max\{s(H_i(j)) - i: i \ge 1\}$$
 and $s_j = s(A_j)$ for $j = 1, ..., n$,

and put $r_0 = 0$. Observe that $reg(M) = max\{r_n, s(M/\mathfrak{m}M)\}$.

We quote the following technical result from [2].

Theorem 4.1. With the hypotheses and notation introduced we have

- (a) $r_i = \max\{s_1, ..., s_j\}$ for j = 1, ..., n. In particular, $r_1 \le r_2 \le ... \le r_n$.
- (b) Let $\mathcal{J} = \{j_1, ..., j_l\}, 1 \le j_1 < j_2 < ... < j_l \le n$, be the set of elements $j \in [n]$ such that $r_j - r_{j-1} \neq 0$. Then for all t with $1 \leq t \leq l$ and all j with $j_t \leq j$ we have (i) $H_i(j)_{i+s} = 0$ for $s > r_{j_{t-1}}$ and $i > j - j_t + 1$;

(ii)
$$H_{j-j_t+1}(j)_{j-j_t+1+r_{j_t}} \cong (A_{j_t-1})_{r_{j_t}}$$
.

This result yields a characterization of the extremal Betti-numbers in terms of Koszul homology

Corollary 4.2. Let the numbers j_t be defined as in 4.1, and set $k_t = n - j_t + 1$ and $m_t = r_{j_t}$. Then the graded Betti number β_{ii+j} of M is extremal if and only if

$$(i, j) \in \{(k_t, m_t) : t = 1, \dots, l\}.$$

Moreover, $\beta_{k_t,k_t+m_t} = \dim_K(A_{j_t})_{s_{j_t}}$ *for* t = 1,...,l.

Let $I \subset R$ be a graded ideal. We want to compare the graded Betti-numbers of R/Iand R/Gin(I). Choosing generic coordinates we may assume that in(I) = Gin(I), and that $x_n, x_{n-1}, \ldots, x_1$ is a generic sequence for R/I. For the reverse lexicographical order induced by $x_1 > x_2 > \ldots > x_n$ one has

$$\operatorname{in}((x_j,\ldots,x_n)+I)=(x_j,\ldots,x_n)+\operatorname{in}(I)$$

and

$$in((x_j,...,x_n)+I):x_{j-1}) = ((x_j,...,x_n)+in(I)):x_{j-1}$$

It follows that

$$((x_j,\ldots,x_n)+I):x_{j-1}/((x_j,\ldots,x_n)+I)$$

and

$$((x_i,\ldots,x_n)+\mathrm{in}(I)):x_{i-1}/((x_i,\ldots,x_n)+\mathrm{in}(I))$$

have the same Hilbert function.

Let A_i be the module defined before in case that M = R/I. Then

$$A_{j} = ((x_{j}, \dots, x_{n}) + I) : x_{j-1} / ((x_{j}, \dots, x_{n}) + I).$$

We set

$$A_{j}^{*} = ((x_{i}, \dots, x_{n}) + in(I)) : x_{i-1}/((x_{i}, \dots, x_{n}) + in(I)),$$

and $\alpha_{j} = \ell(A_{j}), \, \alpha_{j}^{*} = \ell(A_{j}^{*}), \, s_{j} = s(A_{j}) \text{ and } s_{j}^{*} = s(A_{j}^{*}) \text{ for } j = 1, \dots, n.$

The preceding considerations now yield

Lemma 4.3. The modules A_j and A_j^* have the same Hilbert functions. In particular, $\alpha_j = \alpha_j^*$ and $s_j = s_j^*$ for j = 1, ..., n.

Combining this result with Theorem 4.1 and Corollary 4.2 we obtain

Theorem 4.4 (Bayer-Charalambous-S.Popescu). Let $I \subset R$ be a graded ideal, and let Gin(I) be the generic initial ideal of I with respect to the reverse lexicographic order. Then for any two integers $i, j \in \mathbb{N}$ one has

- (a) the ijth Betti number of R/I is extremal if and only if the ijth Betti number of R/Gin(I) is extremal;
- (b) the corresponding extremal Betti numbers of R/I and R/Gin(I) are equal.

This theorem implies in particular

Corollary 4.5. Let $I \subset R$ be a graded ideal, Gin(I) the generic initial ideal of I with respect to the reverse lexicographic order. Then

- (a) (Bayer-Stillman) reg(I) = reg(Gin(I));
- (b) $\operatorname{proj} \operatorname{dim} R/I = \operatorname{proj} \operatorname{dim} R/\operatorname{Gin}(I)$;
- (c) R/I is Cohen-Macaulay, if and only if R/Gin(I) is Cohen-Macaulay.

Under which circumstances do all the graded Betti-numbers of I and Gin(I) agree? The answer is given by

Theorem 4.6 (Aramova-Herzog-Hibi). Suppose chark = 0, and let $I \subset R$ be a graded ideal. The following conditions are equivalent:

- (a) $\beta_{i,i+j}(I) = \beta_{i,i+j}(\operatorname{Gin}(I))$ for all *i* and *j*;
- (b) *I* is componentwise linear.

For the proof of this theorem we need some preparation. We write $I_{\langle j \rangle}$ for the ideal generated by all homogeneous polynomials of degree *j* belonging to *I*. Moreover, we write $I_{\geq d}$ for the ideal generated by all homogeneous polynomials of *I* whose degree is greater than or equal to *d*.

The Betti-numbers of Gin(I) have the following properties

Proposition 4.7. *Let* $I \subset R$ *be a graded ideal generated in degree d. Then we have:*

- (a) if $\beta_{i,i+i}(\operatorname{Gin}(I)) \neq 0$, then $\beta_{i',i'+i}(\operatorname{Gin}(I)) \neq 0$ for all i' < i;
- (b) if $\beta_{0,j}(\operatorname{Gin}(I)) \neq 0$, then $\beta_{0,j'}(\operatorname{Gin}(I)) \neq 0$ for all $d \leq j' < j$.

Proof. Since the generic initial ideal is strongly stable, statement (a) follows from Corollary 3.11(a).

Let g_1, \ldots, g_m be the generators of I of degree d. Suppose that $\beta_{0,j-1}(\operatorname{Gin}(I)) = 0$. Then consider the ideal $I_{\geq j-2}$. Since $\operatorname{Gin}(I_{\geq j-2}) = \operatorname{Gin}(I)_{\geq j-2}$, we may assume that $\beta_{0,d+1}(\operatorname{Gin}(I)) = 0$. We have to show that $\operatorname{Gin}(I)$ is generated in degree d. It follows from $\beta_{0,d+1}(\operatorname{Gin}(I)) = 0$ that all S-polynomials of degree d + 1 reduce to zero with respect to $\{g_1, \ldots, g_m\}$. Since $(\operatorname{in}(g_1), \ldots, \operatorname{in}(g_m))$ is a strongly stable ideal, its first syzygy module is generated in degree d + 1, the fact that the S-polynomials of this degree reduce to zero, implies that $\{g_1, \ldots, g_m\}$ is a Gröbner basis of I. From this it follows that $\operatorname{Gin}(I)$ is generated in degree d.

We shall also need

Lemma 4.8. Let I and J be graded ideals of R generated in degree d with the same graded Betti numbers. Then $I_{>d+1}$ and $J_{>d+1}$ have the same graded Betti numbers.

Proof. The exact sequence

 $0 \xrightarrow{} I_{\geq d+1} \xrightarrow{} I \xrightarrow{} k(-d)^{\beta_{0,d}} \xrightarrow{} 0$

induces the long exact sequence

$$\cdots \to \operatorname{Tor}_{i+1}(k, I_{\geq d+1})_{(i+1)+(j-1)} \to \operatorname{Tor}_{i+1}(k, I)_{(i+1)+(j-1)} \to \operatorname{Tor}_{i+1}(k, k)_{(i+1)+j-(d+1)}^{\beta_{0,d}}$$
$$\to \operatorname{Tor}_i(k, I_{\geq d+1})_{i+j} \to \operatorname{Tor}_i(k, I)_{i+j} \to \operatorname{Tor}_i(k, k)_{i+j-d}^{\beta_{0,d}} \to \cdots .$$

It then follows that $\beta_{i,i+j}(I_{\geq d+1}) = \beta_{i,i+j}(I)$ for all *i* and for all $j \neq d, d+1$. Also, $\beta_{i,i+j}(I_{\geq d+1}) = 0$ if $j \leq d$. Now, if j = d+1, then the above long exact sequence becomes

$$0 \to \operatorname{Tor}_{i+1}(k,I)_{i+1+d} \to \operatorname{Tor}_{i+1}(k,k)_{i+1}^{\beta_{0,d}} \to \operatorname{Tor}_i(k,I_{\geq d+1})_{i+d+1} \to \operatorname{Tor}_i(k,I)_{i+d+1} \to 0.$$

Hence, $\beta_{i,i+d+1}(I_{\geq d+1}) = \beta_{i,i+d+1}(I) + \binom{n}{i+1}\beta_{0,d}(I) - \beta_{i+1,i+1+d}(I)$. The same formulae are valid for $\beta_{i,i+j}(J)$. This completes the proof.

We are now in the position to give a proof of Theorem 4.6.

Proof of 4.6. First, suppose that *I* is componentwise linear. The following formula for the graded Betti numbers of a componentwise linear ideal *I* is known [21]:

$$\beta_{i,i+j}(I) = \beta_i(I_{\langle j \rangle}) - \beta_i(\mathfrak{m}I_{\langle j-1 \rangle}).$$

Here m is the irrelevant maximal ideal $(x_1, ..., x_n)$ of *R*. Since a strongly stable ideal is componentwise linear and since Gin(*I*) is strongly stable, the same formula is valid for Gin(*I*). Therefore, it suffices to prove that $\beta_i(I_{\langle j \rangle}) = \beta_i(\text{Gin}(I)_{\langle j \rangle})$ and $\beta_i(\mathfrak{m}I_{\langle j-1 \rangle}) = \beta_i(\mathfrak{m}\operatorname{Gin}(I)_{\langle j-1 \rangle})$.

Since $I_{\langle j \rangle}$ has a linear resolution, it follows from the Bayer–Stillman theorem (Corollary 4.5), that $\operatorname{Gin}(I_{\langle j \rangle}) = \operatorname{Gin}(I)_{\langle j \rangle}$. Since $I_{\langle j \rangle}$ and $\operatorname{Gin}(I_{\langle j \rangle})$ have the same Hilbert function, and since the Betti numbers of a module with linear resolution are determined by its Hilbert function, the first equality follows. To prove the second one, we note that $\mathfrak{m}I_{\langle j-1 \rangle}$ has again a linear resolution and that, by the same reason as before, $\mathfrak{m}\operatorname{Gin}(I)_{\langle j-1 \rangle} = \operatorname{Gin}(\mathfrak{m}I_{\langle j-1 \rangle})$.

Second, suppose that I and Gin(I) have the same graded Betti numbers. Let max(I) (resp. min(I)) denote the maximal (resp. minimal) degree of a homogeneous generator of I. To show that I is componentwise linear, we work with induction on r = max(I) - min(I). Set d = min(I).

Let r = 0. Since *I* and Gin(*I*) have the same graded Betti numbers, it follows that Gin(*I*) is generated in degree *d*. Since Gin(*I*) is a strongly stable ideal, we have that Gin(*I*) has a linear resolution, hence *I* has a linear resolution.

Now, suppose that r > 0. Since $\operatorname{Gin}(I_{\geq d+1}) = \operatorname{Gin}(I)_{\geq d+1}$, our induction hypothesis and Lemma 4.8 imply that $I_{\geq d+1}$ is componentwise linear. Thus, it suffices to prove that $I_{\langle d \rangle}$ has a linear resolution. Suppose this is not the case. Then, by the Bayer–Stillman theorem, $\operatorname{Gin}(I_{\langle d \rangle})$ has regularity > d. Moreover, since $\operatorname{Gin}(I_{\langle d \rangle})$ is strongly stable, its regularity equals $\max(\operatorname{Gin}(I_{\langle d \rangle}))$. It follows from Theorem 4.7 that $\operatorname{Gin}(I_{\langle d \rangle})$ has a generator of degree d + 1. Now,

$$\beta_{0,d+1}(I) = \dim I_{d+1} - \dim(\mathfrak{m}I_{\langle d \rangle})_{d+1}$$

= dim I_{d+1} - dim(I_{\langle d \rangle})_{d+1},

and

$$\beta_{0,d+1}(\operatorname{Gin}(I)) = \dim \operatorname{Gin}(I)_{d+1} - \dim (\mathfrak{m}\operatorname{Gin}(I)_{\langle d \rangle})_{d+1} = \dim \operatorname{Gin}(I)_{d+1} - \dim (\mathfrak{m}\operatorname{Gin}(I_{\langle d \rangle}))_{d+1} > \dim \operatorname{Gin}(I)_{d+1} - \dim \operatorname{Gin}(I_{\langle d \rangle})_{d+1},$$

because $(\mathfrak{m}\operatorname{Gin}(I_{\langle d \rangle}))_{d+1}$ is properly contained in $\operatorname{Gin}(I_{\langle d \rangle})_{d+1}$. Hence

$$\beta_{0,d+1}(\operatorname{Gin}(I)) > \beta_{0,d+1}(I),$$

a contradiction. This completes our proof.

We note that Theorem 4.6 and Theorem 4.7 (b) are not valid in positive characteristic. Indeed, if characteristic p > 0, then $I = (x^p, y^p)$ provides a counterexample.

In the proof of Theorem 4.6 (a) \Rightarrow (b) we only used that $\beta_{0j}(I) = \beta_{0j}(Gin(I))$ for all *j*. Thus this condition implies that $\beta_i(I) = \beta_i(Gin(I))$ for all *i*. This was first noted by Conca in [16, Theorem 1.2]. We now generalize this observation and first show

Theorem 4.9 (Conca-Herzog-Hibi). Let M be a graded R-module. Suppose $\beta_i(M) = \sum_{j=1}^{n-i+1} {n-j \choose i-1} \alpha_j(M)$ for some i. Then

$$\beta_k(M) = \sum_{j=1}^{n-k+1} \binom{n-j}{k-1} \alpha_j(M) \quad \text{for all} \quad k \ge i$$

Proof. It is enough to prove the statement for k = i + 1. Let $y = y_1, ..., y_n$ be a sequence of generic linear forms and denote by $H_a(b)$ the associated Koszul homology $H_a(b;M)$. By Proposition 3.1(b) we have to show that $\mathfrak{m}H_a(b) = 0$ for all $(a,b) \in C_{i,n}$ implies that $\mathfrak{m}H_a(b) = 0$ for all $(a,b) \in C_{i+1,n}$. But

$$C_{i+1,n} \setminus C_{i,n} = \{(i+1,b) : b \le n-1\}.$$

Thus it suffices to show: if $\mathfrak{m}H_i(b) = 0$ for all *b*, then $\mathfrak{m}H_{i+1}(b) = 0$ for all *b*.

We use the theorem of Kühl quoted before Theorem 3.5. The theorem implies: if $\mathfrak{m}H_1(b;M) = 0$ for all *b*, then $\mathfrak{m}H_i(b;M) = 0$ for all *b* an all $i \ge 1$.

Now assume that we have $H_i(b;M) = 0$ for given i > 1 and all b. Then $H_i(b;M) \cong H_1(b; \operatorname{syz}_{i-1}(M))$ and $H_{i+1}(b;M) \cong H_2(b; \operatorname{syz}_{i-1}(M))$. Assuming that $\mathfrak{m}H_i(b;M) = 0$ for all b implies that $\mathfrak{m}H_1(b; \operatorname{syz}_{i-1}(M)) = 0$ for all b. Then the theorem of Kühl implies that $0 = \mathfrak{m}H_2(b; \operatorname{syz}_{i-1}(M)) = \mathfrak{m}H_{i+1}(b;M)$, as desired. \Box

Corollary 4.10. Assume char(k) = 0, and let $I \subset R$ be a graded ideal. Suppose that $\beta_i(I) = \beta_i(Gin(I))$ for some *i*. Then

$$\beta_k(I) = \beta_k(\operatorname{Gin}(I))$$
 for all $k \ge i$.

Proof. Since we assume char(k) = 0 the ideal Gin(I) is strongly stable and hence componentwise linear. It follows from 3.5 that

$$\beta_{i+1}(R/\operatorname{Gin}(I)) = \sum_{j=1}^{n-i+2} \binom{n-j}{i} \alpha_j(R/\operatorname{Gin}(I))$$

By Lemma 4.3 and our assumption this implies that

$$\beta_{i+1}(R/I) = \sum_{j=1}^{n-i+2} \binom{n-j}{i} \alpha_j(R/I)$$

Now we apply Theorem 4.9 and again Lemma 4.3 to conclude that

$$\beta_k(I) = \beta_{k+1}(R/I) = \sum_{j=1}^{n-k+2} {n-j \choose k} \alpha_j(R/I)$$
$$= \sum_{j=1}^{n-k+2} {n-j \choose k} \alpha_j(R/\operatorname{Gin}(I))$$
$$= \beta_{k+1}(R/\operatorname{Gin}(I)) = \beta_k(\operatorname{Gin}(I))$$

for k = i, ..., n - 1.

REFERENCES

- A. Aramova and J. Herzog, Koszul cycles and Eliahou–Kervaire type resolutions. J. Alg. 181 (1996), 347 – 370.
- [2] A. Aramova and J. Herzog, Almost regular sequences and Betti numbers. Amer. J. Math. **122**(4) (2000), 689–719.
- [3] A. Aramova, J. Herzog and T. Hibi, Ideals with stable Betti numbers. Adv. Math. **152**(1) (2000), 72–77.
- [4] L. Avramov, Obstruction to the existence of multiplicative structures on minimal free resolutions. Amer. J. Math. 103 (1981), 1–37.
- [5] D. Bayer, The division algorithm and the Hilbert scheme. PhD Thesis, Harvard University, 1982.
- [6] D. Bayer, H. Charalambous, and S. Popescu, Extremal Betti numbers and Applications to Monomial Ideals. J. Alg. 221(2) (1999), 497 – 512.
- [7] D. Bayer and M. Stillman, A criterion or detecting *m*-regularity. Invent. Math. 87(1) (1987), 1–11.
- [8] A. Bigatti, Upper bounds for Betti numbers of a given Hilbert function. Comm. Alg. **21**(7) (1993), 2317–2334.
- [9] M. Brun and T. Römer, Betti-numbers of \mathbb{Z}^n -graded modules. Preprint 2003.
- [10] W. Bruns, "Jede" endliche freie Auflösung ist freie Auflösung eines von drei Elmenten erzeugten Ideals. J. Alg. 39(2) (1976), 429–439.
- [11] W. Bruns, The Evans-Griffith Syzygy Theorem and Bass numbers. Proc. Amer. Math. Soc. 115(4) (1992), 939–946.
- [12] W. Bruns and J. Herzog, *Cohen–Macaulay rings*. Revised Edition, Cambridge University Press. Cambridge, 1996.
- [13] D. Buchsbaum and D. Eisenbud, What makes a complex exact? J. Alg. 25 (1973), 259–268.
- [14] D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Amer. J. Math. 99 (1977), 447–485.
- [15] H. Charalambous, Lower bounds for Betti-numbers of multigraded modules. J. Algebra 137 (1991), 491–500.
- [16] A. Conca, Koszul homology and extremal properties of Gin and Lex. To appear in Trans. Amer. Math. Soc.
- [17] D. Eisenbud, Commutative Algebra with a view to Algebraic geometry. Springer Verlag, 1995.
- [18] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals. J. Algebra 129 (1990), 1–25.
- [19] E. G. Evans and P. Griffith, The syzygy problem. Ann. Math. 114 (1981), 323–333.
- [20] E. G. Evans and P. Griffith, Syzygies. LMS Lect. Notes Series 106, Cambridge University Press, 1985.
- [21] J. Herzog and T. Hibi, Componentwise linear ideals. Nagoya Math. J. 153 (1999), 141–153.
- [22] J. Herzog and M. Kühl, On the Betti-numbers of finite pure and linear resolutions. Comm. Alg. 12 (1984), 1627–1646.
- [23] J. Herzog, A. Simis and W. Vasconcelos, Approximation complexes of blowing-up rings. II. J. Alg. 82(1) (1983), 53–83.

- [24] H. Hulett, Maximal Betti numbers of homogeneous ideals with a given Hilbert function. Comm. Alg. 21(7) (1993), 2335–3250.
- [25] C. Huneke and B. Ulrich, The structure of linkage. Ann. Math. 126 (1987), 277–334.
- [26] M. Kühl, On the symmetric Algebra of an Ideal. Manuscripta math. 7 (1982), 49-60.
- [27] K. Pardue, Deformation of classes of graded modules and maximal Betti numbers. Ill. J. Math. 40(4) (1996), 564 – 585.
- [28] C. Peskine and L. Spiro. Dimension projective finie et cohomologie locale. Publ. Math. I.H.E.S. 42 (1972), 47–119.
- [29] T. Römer, PhD Thesis. Universität Essen, 2000.
- [30] T. Römer, Bounds for Betti numbers. J. Algebra 249(1) (2002), 20–37.
- [31] H. Srinivasan, The non-existence of minimal algebra resolutions despite the vanishing of Avramov obstructions. J. Alg. **146**(2) (1992), 251–266.

JÜRGEN HERZOG, FACHBEREICH MATHEMATIK UND INFORMATIK, UNIVERSITÄT DUISBURG-ESSEN, 45117 ESSEN, GERMANY

E-mail address: juergen.herzog@uni-essen.de