School on Commutative Algebra and Interactions with Algebraic Geometry and Combinatorics

(24 May - 11 June 2004)

Finite free resolutions

J. Herzog
Universität Duisburg-Essen
Fachbereich Mathematik und Informatik
D-45117 Essen
Germany

FINITE FREE RESOLUTIONS

JÜRGEN HERZOG

Introduction

With these lectures we aim to give a survey on the theory of finite free resolutions. We will treat the Buchsbaum-Eisenbud acyclicity criterion, discuss upper and lower bounds for Betti-numbers, including the Evans-Griffith syzygy theorem, and compare the graded Betti-numbers of an ideal and with those of its generic initial ideal.

1. LECTURE: BASIC CONCEPTS; ACYCLICITY CRITERIA

Throughout these lectures (R, \mathfrak{m}, k) denotes either a Noetherian local ring or a standard graded k-algebra with graded maximal ideal \mathfrak{m}. All modules considered in these lectures will be finitely generated, and will be graded if R is graded.

Let M be an R-module, m_{1}, \ldots, m_{r} a minimal system of (homogeneous) generators of M. Let F_{0} be a free R-module with basis e_{1}, \ldots, e_{r}, and let $\varepsilon: F_{0} \rightarrow M$ be surjective R-module homomorphismus defined by $\varepsilon\left(e_{i}\right)=m_{i}$ for $i=1, \ldots, r$. Nakayama's lemma implies that $\operatorname{Ker}(\varepsilon) \subset \mathfrak{m} F_{0}$. Since R is Noetherian, $\operatorname{Ker}(\varepsilon)$ is finitely generated, and there is again a free R-module F_{1} and an epimorphism $F_{1} \rightarrow \operatorname{Ker}(\varepsilon)$, whose kernel is a submodule of $\mathfrak{m} F_{1}$. Composing $F_{1} \rightarrow \operatorname{Ker}(\varepsilon)$ with the inclusion map $\operatorname{Ker}(\varepsilon) \subset F_{0}$, we get a homomorphism $\varphi_{1}: F_{1} \rightarrow F_{0}$ such that

$$
F_{1} \xrightarrow{\varphi_{1}} F_{0} \longrightarrow M \longrightarrow 0
$$

is exact and $\operatorname{Im}\left(\varphi_{1}\right) \subset \mathfrak{m} F_{o}$. Proceeding this way one constructs an exact sequence

$$
\cdots \longrightarrow F_{p} \xrightarrow{\varphi_{p}} \cdots \longrightarrow F_{2} \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \xrightarrow{\varepsilon} M \longrightarrow 0
$$

Definition 1.1. Let M be an R-module. A complex

$$
\mathbb{F}: \cdots \longrightarrow F_{p} \xrightarrow{\varphi_{p}} \cdots \longrightarrow F_{2} \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \longrightarrow 0
$$

of finitely generated free R-modules is called a minimal free R-resolution of M, if
(i) $\varphi(\mathbb{F}) \subset \mathfrak{m} \mathbb{F}$;
(ii) $H_{0}(\mathbb{F}) \cong M$ and $H_{i}(\mathbb{F})=0$ for $i>0$.

A minimal free resolution always exist as we have just seen. It is called minimal since for each i the basis elements of F_{i} are mapped to a minimal set of generators of $\operatorname{Ker} \varphi_{i-1}$.

Any two minimal free resolutions of M are isomorphic, that is, if \mathbb{F} and \mathbb{G} are minimal free resolutions of M, then there is an isomorphism of complexes $\mathbb{F} \cong \mathbb{G}$.

If (\mathbb{F}, φ) is a minimal free resolution of M, then

$$
\operatorname{syz}_{i}(M)=\operatorname{Im}\left(\varphi_{i}\right)
$$

is called the i th syzygy module of M.

In the graded case, by choosing in each step of the construction of the minimal free resolution a minimal system of homogeneous generators of $\operatorname{Ker} \varphi_{i}$, one obtains a graded minimal free resolutions, that is, a minimal free resolution \mathbb{F} such that
(iii) $F_{i}=\bigoplus_{j} R(-j)^{\beta_{i j}}$ for all i;
(iv) $\varphi_{i}: F_{i} \rightarrow F_{i-1}$ is homogeneous of degree 0 .

Definition 1.2. Let \mathbb{F} be a minimal free resolution of M. Then $\beta_{i}=\operatorname{rank} F_{i}$ is called the i th Betti-number of M.

Remark 1.3. (a) In the graded case, $\beta_{i}=\sum_{j} \beta_{i j}$ for all i. The numbers $\beta_{i j}$ are called the graded Betti-numbers of M;
(b) Let \mathbb{F} be a minimal free resolution of M. Since

$$
\operatorname{Tor}_{i}^{R}(M, k)=H_{i}(\mathbb{F} \otimes k)=F_{i} \otimes k=F_{i} / \mathfrak{m} F_{i}
$$

it follows that $\beta_{i}=\operatorname{dim}_{k} \operatorname{Tor}_{i}(M, k)$.
In the graded case, $\operatorname{Tor}_{i}^{R}(M, k)$ is a graded k-vector space, and $\beta_{i j}=\operatorname{dim}_{k} \operatorname{Tor}_{i}^{R}(M, k) j$.
Let \mathbb{F} be the minimal free resolution of M. We say that M has a finite free resolution, if there exists an integer i such that $F_{i}=0$.

Note that M has finite free resolution if one of the equivalent conditions are satisfied: there exists an integer i such that
(a) $F_{j}=0$ for all $j \geq i$;
(b) $\operatorname{Tor}_{i}(M, k)=0$;
(c) $\operatorname{Tor}_{j}(M, k)=0$ for all $j \geq i$.

Suppose that M has a finite free resolution. The maximal number i with $\operatorname{Tor}_{i}(M, k) \neq 0$ is called the projective dimension of M, and denoted $\operatorname{proj} \operatorname{dim} M$.

If R is regular, then all modules have a finite free resolution. Indeed, let $\mathbf{x}=x_{1}, \ldots, x_{n}$ be a regular system of parameters of R. In the graded case, R is the polynomial ring, and for x we may choose the variables.

Let \mathbb{K} be the Koszul complex attached to \mathbf{x}. Then \mathbb{K} is exact, since \mathbf{x} is a regular sequence. Thus \mathbb{K} is a minimal free resolution of k, and hence

$$
\operatorname{Tor}_{i}(M, k)=H_{i}(M \otimes \mathbb{K}) \quad \text { for all } \quad i
$$

Since $\mathbb{K}_{n+1}=0$, we see that $\operatorname{Tor}_{n+1}(M, k)=0$. Hence we conclude that

$$
\text { proj } \operatorname{dim} M \leq n=\operatorname{dim} R
$$

for all R-modules M.
In these lectures we are mostly interested in finite free resolutions. The following natural question arises:

What can be said about the Betti-numbers?

To be more specific we ask:
(1) What can be said about the projective dimension?
(2) Given a finite complex of free R-modules. When is it exact?
(3) Fix certain data like the projective dimension or, in the graded case, the Hilbertfunction. Are there lower or upper bounds for the Betti-numbers for such modules?
(4) Suppose R is a polynomial ring and $I \subset R$ is a graded ideal. Given a term order. How are the Betti numbers of I and its initial ideal in (I) related to each other?
(5) What can be said about the graded Betti-numbers of a monomial ideal? In the context of (4) this question is of interest.
The answer to question (1) is classical
Theorem 1.4 (Auslander-Buchsbaum). Suppose M has a finite free resolution. Then

$$
\operatorname{proj} \operatorname{dim} M+\operatorname{depth} M=\operatorname{depth} R .
$$

In particular, $\operatorname{proj} \operatorname{dim} M \leq \operatorname{depth} R$.
Proof. We proceed by induction on $c:=\operatorname{depth} R-\operatorname{depth} M$. Suppose $c \leq 0$ and let $t=$ depth R. Then there exists a sequence $\mathbf{x}=x_{1}, \ldots, x_{t}$ which is regular on R and M.

Suppose that projdim $M=p>0$, and let \mathbb{F} be the minimal free resolution of M. Then $\overline{\mathbb{F}}=\mathbb{F} /(\mathbf{x}) \mathbb{F}$ is a minimal free resolution of $M /(\mathbf{x}) M$, and hence $\bar{\varphi}_{p}: \bar{F}_{p} \rightarrow \bar{F}_{p-1}$ is injective. However, since depth $\bar{F}_{p}=0$, there exists $a \in \bar{F}_{p}, a \neq 0$ with $\mathfrak{m} a=0$. Since $\bar{\varphi}_{p}\left(\bar{F}_{p}\right) \subset \mathfrak{m} \bar{F}_{p-1}$, it follows that $\bar{\varphi}_{p}(a)=0$, contradiction.

Suppose now that $c>0$. Then depth $\operatorname{syz}_{1}(M)=\operatorname{depth} M+1$, so that

$$
\operatorname{depth} R-\operatorname{depth} \operatorname{syz}_{1}(M)=c-1
$$

By induction hypothesis, we have $\operatorname{proj} \operatorname{dim} \operatorname{syz}_{1}(M)+\operatorname{depth} \operatorname{syz}_{1}(M)=\operatorname{depth} R$. Hence, since $\operatorname{proj} \operatorname{dim} M=\operatorname{proj} \operatorname{dimsyz} \mathrm{si}_{1}(M)-1$, the assertion follows.

Now we will deal with the second question. Suppose \mathbb{F} is a finite complex of free R modules, and suppose we want to prove it is acyclic, i.e. $H_{i}(\mathbb{F})=0$ for $i>0$. Assuming it is not acyclic, we could localize at a suitable prime ideal P such that after localization, $H_{i}(\mathbb{F})$ is finite length module for all $i>0$. In this situation we can apply

Theorem 1.5 (Lemme d'acyclicité, Peskine-Szpiro [28]). Let

be finite complex of free R-modules with $p \leq \operatorname{depth} R$, and suppose that $\operatorname{depth} H_{i}(\mathbb{F})=0$ for all $i>0$. Then \mathbb{F} is acyclic.

Proof. We may assume that $p>0$, and prove by induction on i that $H_{p-i}(\mathbb{F})=0$.
For $i=0, H_{p}(\mathbb{F})$ is submodule of F_{p} of depth 0 . Since depth $F_{p}>0$, this submodule must be zero.

Now given i with $0<i<p$. By induction hypothesis we have that $H_{p}(\mathbb{F})=H_{p-1}(\mathbb{F})=$ $H_{p-i+1}(\mathbb{F})=0$. Hence

$$
0 \rightarrow F_{p} \longrightarrow F_{p-1} \longrightarrow \cdots \longrightarrow F_{p-i+1} \longrightarrow \operatorname{Im}\left(\varphi_{p-i+1}\right) \longrightarrow 0
$$

is exact. It follows that depth $\operatorname{Im}\left(\varphi_{p-i+1}\right)=\operatorname{depth} R-(i-1) \geq p-i+1>1$.
Suppose that $H_{p-i}(\mathbb{F}) \neq 0$. Then depth $H_{p-i}(\mathbb{F})=0$, and since depth $\operatorname{Ker}\left(\varphi_{p-i}\right)>0$, the exact sequence

$$
0 \longrightarrow \operatorname{Im}\left(\varphi_{p-i+1}\right) \longrightarrow \operatorname{Ker}\left(\varphi_{p-i}\right) \longrightarrow H_{p-i}(\mathbb{F}) \longrightarrow 0
$$

implies that depth $\operatorname{Im}\left(\varphi_{p-i+1}\right)=1$, a contradiction.

In the proof of Theorem 1.5 it was not important that the modules F_{i} are free, and one could have replaced them by any other modules satisfying depth $F_{i} \geq i$, and would have obtained the same conclusion.

Let Q be the ring of fractions of R. An R-module M has rank r if $M \otimes Q$ is free of rank r. It is easy to see that M has rank r, if and only if $M_{\mathfrak{p}}$ is free of rank r for all $\mathfrak{p} \in \operatorname{Ass}(R)$.

The rank is additive on short exact sequences: suppose $0 \rightarrow U \rightarrow M \rightarrow N \rightarrow 0$ is an exact sequence of R-modules. If two of the modules U, M or N have a rank, then the third does, and $\operatorname{rank} M=\operatorname{rank} U+\operatorname{rank} N$.

The additivity of rank implies
Proposition 1.6. Suppose M has a finite free resolution \mathbb{F}. Then

$$
\operatorname{rank} M=\sum_{i}(-1)^{i} \beta_{i} .
$$

Corollary 1.7. Let $I \neq 0$ be an ideal with finite free resolution. Then I contains a nonzerodivisor.

Proof. By Proposition 1.6, I has a rank, and $\operatorname{rank} I+\operatorname{rank} R / I=\operatorname{rank} R=1$. Since $I \neq 0$ and $I \otimes Q \rightarrow R \otimes Q=Q$ is injective, it follows that $\operatorname{rank} I=1$. Therefore $\operatorname{rank} R / I=0$, and so R / I is annihilated by a non-zerodivisor.

Let $\varphi: M \rightarrow N$ be an R-module homomorphism. We say that φ has rank r, if $\operatorname{Im} \varphi$ has rank r.

An R-module homomorphism $\varphi: F \rightarrow G$ of finite free R-modules is given by a matrix A with respect to bases of F and G. We denote by $I_{t}(\varphi)$ the ideal generated by all t minors of φ, and set $I(\varphi)=I_{r}(\varphi)$, if r is the rank of φ. We also set $I_{t}(\varphi)=R$ if $t \leq 0$ and $I_{t}(\varphi)=0$ if $t>\min \{\operatorname{rank} F, \operatorname{rank} G\}$. The definitions do not depend on the chosen bases of F and G.

For the next theorem we shall need the following facts:
Proposition 1.8. Let $\varphi: F \rightarrow G$ be homomorphism offinite free R-modules, and \mathfrak{p} a prime ideal. Then
(a) $I_{t}(\varphi) \not \subset \mathfrak{p} \Longleftrightarrow(\operatorname{Im} \varphi)_{\mathfrak{p}}$ contains a free direct summand of $G_{\mathfrak{p}}$ of rankt;
(b) $I_{t}(\varphi) \not \subset \mathfrak{p}$ and $I_{t+1}(\varphi)_{\mathfrak{p}}=0 \Longleftrightarrow(\operatorname{Im} \varphi)_{\mathfrak{p}}$ is a free direct summand of $G_{\mathfrak{p}}$ of rankt;
(c) $\operatorname{rank} \varphi=r \Longleftrightarrow \operatorname{grade} I_{r}(\varphi) \geq 1$ and $I_{r+1}(\varphi)=0$.

Theorem 1.9 (Buchsbaum-Eisenbud [13]). Let

$$
\mathbb{F}: 0 \longrightarrow F_{p} \xrightarrow{\varphi_{p}} F_{p-1} \xrightarrow{\varphi_{p-1}} \cdots \longrightarrow F_{1} \xrightarrow{\varphi_{1}} F_{0} \longrightarrow 0
$$

be a finite complex offree R-modules, and let $r_{i}=\sum_{j \geq i}(-1)^{j-i} \operatorname{rank} F_{j}$. Then the following conditions are equivalent:
(a) \mathbb{F} is acyclic;
(b) grade $I_{r_{i}}\left(\varphi_{i}\right) \geq i$ for $i=1, \ldots, p$;
(c) (i) $\operatorname{rank} F_{i}=\operatorname{rank} \varphi_{i}+\operatorname{rank} \varphi_{i+1}$ for $i=1, \ldots p$;
(ii) $\operatorname{grade} I\left(\varphi_{i}\right) \geq i$ for $i=1, \ldots, p$.

Proof. (a) $\Rightarrow(\mathrm{b})$: The acyclicity of \mathbb{F} and the additivity of rank imply that $r_{i}=\operatorname{rank} \varphi_{i}$. Therefore, Proposition 1.8 implies that grade $I_{r_{i}}\left(\varphi_{i}\right) \geq 1$ for $i=1, \ldots, p$. Hence there exists a non-zerodivisor x which is contained in all the ideals $I_{r_{i}}\left(\varphi_{i}\right)$. If x is a unit, then $I_{r_{i}}\left(\varphi_{i}\right)=R$ for all i and we are done. Otherwise $x \in \mathfrak{m}$, and x is non-zerodivisor on all F_{i} and on $\operatorname{Im}\left(\varphi_{1}\right)$. Let ${ }^{-}$denote residue classes modulo x. Then $0 \rightarrow \bar{F}_{p} \rightarrow \bar{F}_{p-1} \rightarrow$ $\ldots \rightarrow \bar{F}_{2} \rightarrow \bar{F}_{1} \rightarrow 0$ is acyclic. By induction we have grade $I_{r_{i}}\left(\bar{\varphi}_{i}\right) \geq i-1$. Hence, since $I_{r_{i}}\left(\varphi_{i}\right)^{-}=I_{r_{i}}\left(\bar{\varphi}_{i}\right)$, we conclude that grade $I_{r_{i}}\left(\varphi_{i}\right) \geq i$ for $i=2, \ldots, p$.
(b) \Rightarrow (a): By induction on p, may assume that $0 \rightarrow F_{p} \rightarrow \cdots \rightarrow F_{1} \rightarrow 0$ is acyclic, and have to show that $H_{1}(\mathbb{F})=0$.

Set $M_{i}=\operatorname{Coker}\left(\varphi_{i+1}\right)$ for $i=1, \ldots, p$. We first show by descending induction that $\operatorname{depth}\left(M_{i}\right)_{\mathfrak{p}} \geq \min \left\{i, \operatorname{depth} R_{\mathfrak{p}}\right\}$ for all $\mathfrak{p} \in \operatorname{Spec} R$ and $i=1, \ldots, p$.

The assertion is trivial for $i=p$, since $M_{p}=F_{p}$. Now let $i<p$ and consider the exact sequence $0 \rightarrow M_{i+1} \rightarrow F_{i} \rightarrow M_{i} \rightarrow 0$.

If depth $R_{\mathfrak{p}} \geq i+1$, then our induction hypothesis implies that depth $\left(M_{i+1}\right)_{\mathfrak{p}} \geq i+1$, and hence $\operatorname{depth}\left(M_{i}\right)_{\mathfrak{p}} \geq i$.

If depth $R_{\mathfrak{p}} \leq i$, then (b) implies that $I_{r_{i+1}}\left(\varphi_{i+1}\right) \not \subset \mathfrak{p}$, and since $\operatorname{rank} M_{i+1}=r_{i+1}$ we have $I_{t}\left(\varphi_{i+1}\right)=0$ for $t>r_{i+1}$. Thus Proposition 1.8 implies that $\left(M_{i}\right)_{\mathfrak{p}}$ is free, and hence $\operatorname{depth}\left(M_{i}\right)_{\mathfrak{p}}=\operatorname{depth} R_{\mathfrak{p}}$.

Now assume that $H_{1}(\mathbb{F}) \neq 0$, and let $\mathfrak{p} \in \operatorname{Ass} H_{1}(\mathbb{F})$. If depth $R_{\mathfrak{p}} \geq 1$, then depth $\left(M_{1}\right)_{\mathfrak{p}} \geq$ 1 , and hence depth $H_{1}(\mathbb{F})_{\mathfrak{p}} \geq 1$, since $H_{1}(\mathbb{F})=\operatorname{Ker}\left(M_{1} \rightarrow F_{0}\right)$. This is a contradiction.

On the other hand, if depth $R_{\mathfrak{p}}=0$, then $I_{r_{1}}\left(\varphi_{1}\right) \not \subset \mathfrak{p}$ and

$$
U:=\operatorname{Im}\left(\left(\varphi_{1}\right)_{\mathfrak{p}}\right)=\operatorname{Im}\left(\left(M_{1}\right)_{\mathfrak{p}} \rightarrow\left(F_{0}\right)_{\mathfrak{p}}\right)
$$

contains a free direct summand of $\left(F_{0}\right)_{\mathfrak{p}}$ of rank r_{1}, see 1.8. However since $\left(M_{1}\right)_{\mathfrak{p}}$ is a free module of rank r_{1}, the surjective map $\left(M_{1}\right)_{\mathfrak{p}} \rightarrow U$ must be an isomorphism, i.e. $H_{1}(\mathbb{F})_{\mathfrak{p}}=0$. This is again a contradiction.
(a), (b) \Rightarrow (c): Since \mathbb{F} is acyclic, the sequences $0 \rightarrow \operatorname{Im} \varphi_{i+1} \rightarrow F_{i} \rightarrow \operatorname{Im} \varphi_{i} \rightarrow 0$ are exact. Thus the additivity of rank implies condition (c)(i).

As noticed in (a) \Rightarrow (b), we have $r_{i}=\operatorname{rank} \varphi_{i}$ for $i=1, \ldots, p$. Hence (b) implies (c)(ii). (c) \Rightarrow (b): It follows from (c)(i) that $r_{i}=\operatorname{rank} \varphi_{i}$. Hence (ii) implies (b).

As an application we prove
Theorem 1.10 (Hilbert-Burch). Let I be an ideal with free resolution

$$
0 \longrightarrow R^{n} \xrightarrow{\varphi} R^{n+1} \longrightarrow I \longrightarrow 0 .
$$

Then there exists $a \in R$ such that $I=a I_{n}(\varphi)$. Moreover, if grade $I \geq 2$, then $I=I_{n}(\varphi)$ and grade $I=2$.

Proof. Let φ be given by the $(n+1) \times n$ matrix A with respect to the canonical bases of R^{n} and R^{n+1}, and let $\pi: R^{n+1} \rightarrow R$ the homomorphism which sends the canonical basis element e_{i} to $(-1)^{i} \delta_{i}$, where δ_{i} denotes the minor of A with the i th row deleted. Let B be the $(n+1) \times(n+1)$-matrix which is obtained from A by adding the j the column of A to A as an $(n+1)$ th column. Then B has two equal columns, and hence $\operatorname{det} B=0$. Expanding $\operatorname{det} B$ with respect to the $(n+1)$ th column we therefore get

$$
0=\sum_{i} a_{i j}(-1)^{j} \delta_{i} .
$$

This shows that

$$
\begin{equation*}
0 \longrightarrow R^{n} \xrightarrow{\varphi} R^{n+1} \xrightarrow{\pi} R \longrightarrow 0 \tag{1}
\end{equation*}
$$

is a complex.
Since we assume that $0 \rightarrow R^{n} \rightarrow R^{n+1} \rightarrow I \rightarrow 0$ is exact, Theorem 1.9 implies that grade $I_{n}(\varphi) \geq 2$. Therefore, since $I_{1}(\pi)=I_{n}(\varphi)$, it follows from Theorem 1.9 that complex (1) is exact. Hence $I_{n}(\varphi) \cong \operatorname{Coker} \varphi \cong I$. Composing this isomorphism with the inclusion map $I \subset R$ we obtain a monomorphism $I_{n}(\varphi) \rightarrow R$. However since grade $I_{n}(\varphi) \geq$ 2, we have $\operatorname{Hom}_{R}\left(I_{n}(\varphi), R\right)=R$. Thus the monomorphism $I_{n}(\varphi) \rightarrow R$ is multiplication by an element $a \in R$. It follows that $I=a I_{n}(\varphi)$. By Corollary 1.7 the element a must be a non-zerodivisor.

Suppose now that grade $I \geq 2$. Then, since $I=a I_{n}(\varphi) \subset(a)$, it follows that a is unit, and $I=I_{n}(\varphi)$. Finally, since grade $I \leq \operatorname{proj} \operatorname{dim} R / I=2$, we get grade $I=2$.

2. Second Lecture: Lower bounds

In our discussion on the question which are the possible Betti-numbers of a module of finite projective dimension, we will concentrate in this section on lower bounds.

The following simple result gives us a hint what kind of bounds could be expected.
Proposition 2.1. Suppose R is regular, and let $I \subset R$ be a radical ideal of grade g. Then $\beta_{i}(R / I) \geq\binom{ g}{i}$.
Proof. Let \mathfrak{p} be a minimal prime ideal of I. Then $R_{\mathfrak{p}}$ is a regular local ring of dimension $\geq g$ with maximal ideal $\mathfrak{p} R_{\mathfrak{p}}$. Since I is a radical ideal it follows that $I R_{\mathfrak{p}}=\mathfrak{p} R_{\mathfrak{p}}$.

Let \mathbb{F} be a minimal free resolution of R / I. Since localization is an exact functor, $\mathbb{F}_{\mathfrak{p}}$ is a resolution of $(R / I)_{\mathfrak{p}}$. This resolution may not be minimal. Nevertheless we conclude that $\beta_{i}(R / I) \geq \beta_{i}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right) \geq\binom{ g}{i}$. The last inequality follows since $\mathfrak{p} R_{\mathfrak{p}}$ is generated by a regular sequence of length $\geq g$.

Corollary 2.2. Let R be the polynomial ring and $I \subset R$ a monomial ideal of grade g. Then $\beta_{i}(R / I) \geq\binom{ g}{i}$.
Proof. Let u_{1}, \ldots, u_{m} be the minimal set of monomial generators of I, say $u_{i}=\prod_{j}^{n} x_{j}^{a_{i j}}$, and let S be the polynomial ring in the new set of variables $x_{i j}$.
The monomial $v_{i}=\prod_{j=1}^{n} \prod_{k=1}^{a_{i j}} x_{j k}$ is called the polarization of u_{i}, and the ideal $I^{p}=$ $\left(v_{1}, \ldots v_{m}\right) \subset S$ the polarization of I.

It is a basic fact [12, Lemma 4.2.16] that the sequence of linear forms $x_{j 1}-x_{j k}$ with $j=1, \ldots, n$ and $k=2,3, \ldots$ form a regular sequence ℓ on S / I^{p}, and that $\left(S / I^{p}\right) / \ell\left(S / I^{p}\right) \cong$ R / I. In particular, $\beta_{i}(R / I)=\beta_{i}\left(S / I^{p}\right)$. Since grade $I=\operatorname{grade} I^{p}$, and since I^{p} is a radical ideal, the conclusion follows.

These results indicate that the following may be true
Conjecture 2.3. Let M be an R-module of grade g with finite free resolution. Then $\beta_{i}(M) \geq\binom{ g}{i}$.

In case R is regular and M is a module of finite length, this conjecture is known as the Buchsbaum-Eisenbud and Horrocks conjecture.

The conjecture is widely open. There are few cases in which the conjectured lower bound for the Betti numbers is known:
(a) (Buchsbaum-Eisenbud, [14]) R is regular, $M=R / I$ has finite length, and the free resolution \mathbb{F} of R / I has an algebra structure;
(b) (Huneke-Ulrich, [25]) R is regular, $M=R / I$, and I is in the linkage class of a complete intersection;
(c) (Herzog-Hibi-Kühl, [22] and [21]) R is regular and M is componentwise linear.

The argument of Buchsbaum-Eisenbud is as follows: choose a regular sequence $\mathbf{x}=$ x_{1}, \ldots, x_{n} with all $x_{i} \in I$. We may assume that $n>1$. Let \mathbb{K} be the Koszul complex of \mathbf{x} with $K_{1}=\bigoplus_{i}^{n} R e_{i}$ and $\partial\left(e_{i}\right)=x_{i}$. Then the inclusion $(\mathbf{x}) \subset I$ can be lifted to a linear map $\alpha_{1}: K_{1} \rightarrow F_{1}$ such that $\varphi_{1}\left(\alpha_{1}\left(e_{i}\right)\right)=x_{i}$ for all i. Now for each integer $k \geq 1$ let $\alpha_{k}: K_{k} \rightarrow F_{k}$ be defined by

$$
\alpha_{j}\left(e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}\right)=\alpha_{1}\left(e_{i_{1}}\right) \cdot \ldots \cdot \alpha_{1}\left(e_{i_{k}}\right) .
$$

Then $\alpha: \mathbb{K} \rightarrow \mathbb{F}$ is an algebra and complex homomorphism, whose kernel is a graded ideal \mathfrak{a} in \mathbb{K}.

Suppose $\mathfrak{a} \neq 0$. Let $a \in \mathfrak{a}$ be a non-zero element of degree j. Then there exist $b \in K_{n-j}$ with $b \wedge a \neq 0$. Since $b \wedge a \in \mathfrak{a}$ it follows that $\mathfrak{a}_{n} \neq 0$. We identify K_{n} with R. Then the image of α_{n} is a cyclic submodule of \mathbb{F}_{n} which is isomorphic to R / \mathfrak{a}_{n}. Since R is a domain the annihilator of a non-zero submodule \mathbb{F}_{n} is zero. It follows that $R / \mathfrak{a}_{n}=0$, so that $\alpha_{n}=0$. The canonical epimorphism $R /(\mathbf{x}) \rightarrow R / I$ with kernel, say C, induces the exact sequence

$$
\operatorname{Ext}_{R}^{n-1}(C, R) \longrightarrow \operatorname{Ext}_{R}^{n}(R / I, R) \xrightarrow{\psi} \operatorname{Ext}_{R}^{n}(R /(\mathbf{x}), R) .
$$

Here the homomorphism ψ is induced by α_{n}, and hence is the zero map, and $\operatorname{Ext}^{n-1}(C, R)=$ 0 , since C is of dimension zero. It follows that $\operatorname{Ext}^{n}(R / I, R)=0$, a contradiction.

Thus we conclude that $\mathfrak{a}=0$. Therefore α is injective, and it follows that

$$
\beta_{i}(R / I)=\operatorname{rank} F_{i} \geq \operatorname{rank} K_{i}=\binom{n}{i} \quad \text { for all } i .
$$

Unfortunately, not all finite minimal free resolutions admit an algebra structure. In [4] Avramov discovered obstructions to the existence of such structures, and later Srinivasan [31] showed that despite the vanishing of the obstructions defined by Avramov, a finite minimal free resolution still may not admit an algebra structure.

Discussion of (c): In [21] componentwise linear modules are introduced: a graded R module is called componentwise linear if for all j the submodule $M_{\langle j\rangle}$ generated by the j th component M_{j} of M has a linear resolution.

By assumption, $R=k\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring. We may assume that k is infinite. Then for a generic choice of linear forms y_{1}, \ldots, y_{n} one has for $i=1, \ldots, n$ that

$$
A_{i}=\operatorname{Ker}\left(M /\left(y_{1}, \ldots, y_{i-1}\right) M \xrightarrow{y_{i}} M /\left(y_{1}, \ldots, y_{i-1}\right) M\right)
$$

is a module of finite length. We set

$$
\alpha_{i}=\ell\left(A_{i}\right)
$$

and call $\alpha_{1}, \ldots, \alpha_{n}$ the generic annihilation numbers of M.

It will be shown in the next section (see Corollary 3.2 and Theorem 3.5) that

$$
\beta_{i} \leq \sum_{j=1}^{n-i+1}\binom{n-j}{i-1} \alpha_{j}
$$

with equality if and only if M is componentwise linear.
For the proof of (c) we need the following
Lemma 2.4. With the notation and assumptions introduced suppose that $\operatorname{depth} M=t$, and let $\alpha_{1}, \ldots, \alpha_{n}$ be the generic annihilation numbers of M. Then $\alpha_{i}=0$ for $i \leq t$, and $\alpha_{i} \neq 0$ for $i>t$.

Proof. Suppose depth $M>0$. Then a generic linear form y is a non-zerodivisor. This shows that $\alpha_{i}=0$ for $i \leq t$.

In order to prove that $\alpha_{i} \neq 0$ for $i>t$, it suffices to show: if depth $M=0$, and y is a generic linear form, then (i) $\left(0:_{M} y\right) \neq 0$, and (ii) depth $M / y M=0$.

Statement (i) is obvious. For the proof of (ii) we consider for all i the map

$$
y^{i-1} M / y^{i} M \rightarrow y^{i} M / y^{i+1} M
$$

induced by multiplication by y.
Let C_{i} be the kernel of this map, and let $c+y^{i} M \in C_{i}$. Then $c=y^{i-1} a$ with $a \in M$ and there exists $b \in M$ such that $y c=y^{i} a=y^{i+1} b$. Hence $y\left(c-y^{i} b\right)=0$, and so $\mathfrak{m}^{n} c \in y^{i} M$ for some n, since y is a generic linear form. This shows that C_{i} is a finite length module for all i.

Suppose now that depth $M / y M>0$. We show by induction on i, that $y^{i-1} M / y^{i} M \rightarrow$ $y^{i} M / y^{i+1} M$ is an isomorphism. In fact, for each i we have the exact sequence

$$
0 \longrightarrow C_{i} \longrightarrow y^{i-1} M / y^{i} M \longrightarrow y^{i} M / y^{i+1} M \longrightarrow 0
$$

For $i=1$, depth $M / y M>0$ and $\ell C_{1}<\infty$. This implies that $C_{1}=0$. Therefore $M / y M \rightarrow$ $y M / y^{2} M$ is an isomorphism.

Now let $i>0$. By induction we may assume that $y^{j-1} M / y^{j} M \cong y^{j} M / y^{j+1} M$ for all $j<i$. In particular, it follows that $M / y M \cong y^{i-1} M / y^{i} M$, so that depth $y^{i-1} M / y^{i} M>$ 0 . However since $\ell C_{i}<\infty$, the above exact sequence shows again that $C_{i}=0$ and that $y^{i-1} M / y^{i} M \rightarrow y^{i} M / y^{i+1} M$ is an isomorphism.

On the other hand, since $\operatorname{depth} M=0$, there exists $c \in M, c \neq 0$, such that $y c=0$. Let i be such that $c \in y^{i-1} M \backslash y^{i} M$. Then $c+y^{i} M \neq 0$ but $y\left(c+y^{i} M\right)=0$. This is a contradiction since $C_{i}=0$.

Now statement (c) will be a consequence of the following stronger result.
Theorem 2.5. Let R be the polynomial ring, and M a componentwise linear R-module with $\operatorname{proj} \operatorname{dim} M=p$. Then $\beta_{i}(M) \geq\binom{ p}{i}$.
Proof. Let $t=\operatorname{depth} M$. Then $t=n-p$, by the Auslander-Buchsbaum formula. Therefore, $\alpha_{i}>0$ for $i=n-p+1, \ldots, n$, by Lemma 2.4. Thus, since M is componentwise
linear,

$$
\begin{aligned}
\beta_{i}(M) & =\sum_{j=n-p+1}^{n-i+1}\binom{n-j}{i-1} \alpha_{j} \geq \sum_{j=n-p+1}^{n-i+1}\binom{n-j}{i-1} \\
& =\sum_{j=i-1}^{p-1}\binom{j}{i-1}=\binom{p}{i} .
\end{aligned}
$$

In view of this result one may hope that for any R-module M of projective dimension p one has $\beta_{i}(M) \geq\binom{ p}{i}$. However by a theorem of Bruns [10, Satz 3], if N is an i th syzygy module of a module of finite projective dimension, then N is also the i th syzygy module of an ideal generated by 3 elements. In particular, if N is the second syzygy module of a module of projective dimension p, then there exists an ideal I generated by 3 elements whose second syzygy module is N, one has $\beta_{2}(R / I)=3<\binom{p}{2}$, if $p>3$.
The following concrete very simple example was communicated to us by Conca: let $I=\left(-x_{1} x_{2}+x_{3} x_{4}, x_{2}^{2}, x_{3}^{2}\right) \subset R=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Then R / I has the resolution

$$
0 \longrightarrow R \longrightarrow R^{4} \longrightarrow R^{5} \longrightarrow R^{3} \longrightarrow R \longrightarrow R / I \longrightarrow 0
$$

The theorem of Bruns also tells us that the resolution of an ideal generated by 3 elements can have arbitrary high projective dimension. On the other hand, it is conjectured by Stillman that if we fix a sequence of numbers d_{1}, \ldots, d_{r}, then there is a number p such that any ideal in a polynomial (over a field K) which is generated by forms of degree d_{1}, \ldots, d_{r} has projective dimension $\leq p$. This conjecture is known to be true only in a few special cases.

For monomial ideals the strong lower bound for the Betti-numbers holds. More generally one has the following result ([9, Theorem 1.1])

Theorem 2.6 (Brun, Römer). Let M be a \mathbb{Z}^{n}-graded module with $\operatorname{proj} \operatorname{dim} M=p$. Then $\beta_{i}(M) \geq\binom{ p}{i}$.

There is a strengthening of Conjecture 2.3 in a different direction
Conjecture 2.7. Let M be an R-module of grade g with finite projective dimension. Then $\operatorname{ranksyz} \mathrm{Z}_{i}(M) \geq\binom{ g-1}{i-1}$.

Of course the additivity of rank yields that Conjecture 2.7 implies Conjecture 2.3
The best known general result concerning lower bounds for the syzygy modules is the famous

Theorem 2.8 (Evans-Griffith [19]). Suppose that R contains a field. Let M be an R module with proj $\operatorname{dim} M=p$. Then $\operatorname{ranksyz}_{i}(M) \geq i$ for $i=1, \ldots, p-1$.

Of course we must exclude $i=p$ in the statement of the theorem, since for example the p th syzygy module of a regular sequence of length p is only of rank 1 .

Since the rank is additive we immediately obtain

Corollary 2.9. With the assumptions of $[2.8$ one has

$$
\beta_{i}(M) \geq \begin{cases}2 i+1, & \text { for } i=0, \ldots, p- \\ p, & \text { for } i=p-1 \\ 1, & \text { for } i=p\end{cases}
$$

For the proof of Theorem [2.8 we follow the presentation given in [12] and in the paper [11] of Bruns. This requires some preparations: let M be an R-module, and $x \in M$. Then

$$
\mathscr{O}(x)=\left\{\varphi(x): \varphi \in \operatorname{Hom}_{R}(M, R)\right\}
$$

is an ideal, the so-called order ideal of x.
Suppose for example that $M=F$ is free with basis e_{1}, \ldots, e_{n}, and that $x \in F$. Then $x=\sum_{i=1} a_{i} e_{i}$ for some $a_{i} \in R$. Since the linear forms $\varphi_{i}: F \rightarrow R$ with $\varphi_{i}\left(e_{j}\right)=\delta_{i j}$ generate $\operatorname{Hom}_{R}(F, R)$, and since $\varphi_{i}(x)=a_{i}$ for $i=1, \ldots, n$, it follows that in this case

$$
\mathscr{O}(x)=\left(a_{1}, \ldots, a_{n}\right) .
$$

We have
Lemma 2.10. Let M be an R-module, $x \in M$ and $\mathfrak{p} \in \operatorname{Spec}(R)$. Then $x \in M$ generates a free direct summand of $M_{\mathfrak{p}}$ if and only if $\mathscr{O}(x) \not \subset \mathfrak{p}$.
Proof. The order ideal $\mathscr{O}(x)$ localizes since $\operatorname{Hom}_{R}(M, R)_{\mathfrak{p}}$ is naturally isomorphic to $\operatorname{Hom}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}, R_{\mathfrak{p}}\right)$. Thus we assume that $\mathfrak{p}=\mathfrak{m}$, and hence $\mathscr{O}(x) \not \subset \mathfrak{m}$ if and only if $\mathscr{O}(x)=R$. This is equivalent to say that there exists $\varphi: M \rightarrow R$ with $\varphi(x)=1$.

Suppose $M=R x \oplus N$, then the projection to the first summand composed with the isomorphism $R x \rightarrow R, x \mapsto 1$, yields $\varphi: M \rightarrow R$ with $\varphi(x)=1$. Conversely, given such φ we have $M=R x \oplus \operatorname{Ker} \varphi$.

The next result is one important step in the proof of Theorem 2.8
Theorem 2.11. Suppose R contains a field. Let

$$
\mathbb{F}: 0 \longrightarrow F_{p} \xrightarrow{\varphi_{p}} F_{p-1} \longrightarrow \cdots \longrightarrow F_{1} \xrightarrow{\varphi_{1}} F_{0} \longrightarrow 0
$$

be a complex of finitely free R-modules such that $\operatorname{Im}\left(\varphi_{i}\right) \subset \mathfrak{m} F_{i-1}$ for all i. Let $t \geq 0$ be an integer and set $r_{i}=\sum_{j=i}^{p}(-1)^{j-i} \operatorname{rank} F_{j}$. Suppose that $\operatorname{codim} I_{r_{i}}\left(\varphi_{i}\right) \geq i+t$ for all i. Then, for $j=1, \ldots, p$ and every $e \in F_{j} \backslash \mathfrak{m} F_{j}$, one has $\operatorname{codim} \mathscr{O}\left(\varphi_{j}(e)\right) \geq j+t$.
Proof. Let $J=\mathscr{O}\left(\varphi_{j}(e)\right)$. We may assume that $J \subset \mathfrak{m}$. We set $\bar{R}=R / J$ and $\overline{\mathbb{F}}=\mathbb{F} \otimes \bar{R}$. Then $\bar{\varphi}_{j}(\bar{e})=0$, and $I_{r_{i}}\left(\bar{\varphi}_{i}\right)=\left(I_{r_{i}}\left(\varphi_{i}\right)+J\right) / J$.

Assume that $\operatorname{codim} J \leq j+t-1$. Then we obtain

$$
\operatorname{dim}\left(\bar{R} / I_{r_{i}}\left(\bar{\varphi}_{i}\right)\right) \leq \operatorname{dim}\left(R / I_{r_{i}}\left(\varphi_{i}\right)\right) \leq \operatorname{dim} R-i-t \leq \operatorname{dim} \bar{R}-i+j-1
$$

which implies that codim $I_{r_{i}}\left(\bar{\varphi}_{i}\right) \geq i-j+1$ for all $i \geq j$.
Let

$$
\mathbb{G}: 0 \longrightarrow G_{p-j+1} \xrightarrow{\psi_{p-j+1}} G_{p-j} \longrightarrow \cdots \longrightarrow G_{1} \xrightarrow{\psi_{1}} G_{0} \longrightarrow 0
$$

with $G_{i}=\bar{F}_{i+j-1}$ and $\psi_{i}=\bar{\varphi}_{i+j-1}$. Then \mathbb{G} is a complex with $\operatorname{codim} I_{r_{i}}\left(\psi_{i}\right) \geq i$ for $i=1, \ldots p-j+1$. If we would have grade $I_{r_{i}}\left(\psi_{i}\right) \geq i$ for all i, then the EisenbudBuchsbaum acyclicity criterion would imply that \mathbb{G} is acyclic. In order to remedy this
defect, we choose a balanced big Cohen-Macaulay module for \bar{R} and consider the complex $\mathbb{G} \otimes M$. This is precisely the step in the proof where we need that \bar{R} contains a field, because in this case it is known that there exists a balanced big Cohen-Macaulay \bar{R}-module, that is, a Cohen-Macaulay \bar{R}-module (not necessarily finitely generated) such that every system of parameters of \bar{R} is an M-regular sequence, see [12, Corollary 8.5.3]. It follows that grade $\left(I_{r_{i}}\left(\psi_{i}\right), M\right) \geq i$ for all i. An obvious modification of the EisenbudBuchsbaum acyclicity criterion then implies that $\mathbb{G} \otimes M$ is acyclic.

Since $\psi_{1}(\bar{e})=0$, it follows that $\left(\psi_{1} \otimes M\right)(\bar{e} \otimes M)=0$. However, since $\mathbb{G} \otimes M$ is acyclic it follows that $\operatorname{Ker}\left(\psi_{1} \otimes M\right)=\operatorname{Im}\left(\psi_{2} \otimes M\right)$. Therefore $\bar{e} \otimes M \subset \operatorname{Im}\left(\psi_{2} \otimes M\right) \subset \mathfrak{m}\left(G_{1} \otimes M\right)$.

On the other hand, since $\bar{e} \notin \mathfrak{m} G_{1}$, it follows that the image of $\bar{e} \otimes M$ under the canonical epimorphism $G_{1} \otimes M \rightarrow\left(G_{1} \otimes M\right) / \mathfrak{m}\left(G_{1} \otimes M\right)=G_{1} / \mathfrak{m} G_{1} \otimes M / \mathfrak{m} M$ is isomorphic to $M / \mathfrak{m} M \neq 0$. This implies that $\bar{e} \otimes M \not \subset \mathfrak{m} G_{1} \otimes M$, a contradiction.

For the inductive proof of the Evans-Griffith theorem we need the following technical
Lemma 2.12. Let M be an R-module. Then there exists a free R-module F and a homomorphism $\varphi: M \rightarrow F$ with the following property: If \mathfrak{p} is a prime ideal and $N \subset M_{\mathfrak{p}}$ is free direct $R_{\mathfrak{p}}$-summand, then $\varphi_{\mathfrak{p}}(N)$ is a free direct summand of $F_{\mathfrak{p}}$ with $\operatorname{rank} \varphi_{\mathfrak{p}}(N)=\operatorname{rank} N$.
Proof. Denote by W^{*}, the R-dual of an R-modules W. We choose a G a free R-module and an epimorphism $\pi: G \rightarrow M^{*}$, and let $h: M \rightarrow M^{* *}$ be the canonical homomorphism. Then $F=G^{*}$ and $\varphi=\pi^{*} \circ h$ have the desired property. Indeed, since R is Noetherian and all modules are finitely generated, the construction of F and φ localize. Thus we may assume that $R=R_{\mathfrak{p}}$. Since N is a free direct summand of M, there exist $g_{1}, \ldots, g_{r} \in N$ and $\alpha_{1}, \ldots, \alpha_{r} \in M^{*}$ such that $\alpha_{i}\left(g_{j}\right)=\delta_{i j}$. Choose $\beta_{i} \in G$ with $\pi\left(\beta_{i}\right)=\alpha_{i}$ for $i=1, \ldots, r$. Then

$$
\varphi\left(g_{i}\right)\left(\beta_{j}\right)=h\left(g_{i}\right)\left(\pi\left(\beta_{j}\right)\right)=h\left(g_{i}\right)\left(\alpha_{j}\right)=\alpha_{j}\left(g_{i}\right)=\delta_{i j} .
$$

This proves that $\varphi(N)$ is a free direct summand of F with $\operatorname{rank} N=\operatorname{rank} \varphi(N)$.
Proof of Theorem [2.8. We prove more generally the following statement (*): let

$$
\mathbb{F}: 0 \longrightarrow F_{p} \xrightarrow{\varphi_{p}} F_{p-1} \longrightarrow \cdots \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \longrightarrow 0
$$

be a complex of finitely generated free R-modules such that $\operatorname{Im}\left(\varphi_{i}\right) \subset \mathfrak{m} F_{i-1}$ for all i, and set $r_{i}=\sum_{j=i}^{p}(-1)^{j-i} \operatorname{rank} F_{j}$. Suppose that there exists an integer $t \geq 0$ such that $\operatorname{codim} I_{r_{i}}\left(\varphi_{i}\right) \geq i+t$ for all i. Then $r_{i} \geq i+t$ for $i=1, \ldots, p-1$.
Let M be a balanced big Cohen-Macaulay module of R. Since $\operatorname{codim} I_{r_{i}}\left(\varphi_{i}\right) \geq i$, there exists a sequence x_{1}, \ldots, x_{i} in $I_{r_{i}}\left(\varphi_{i}\right)$ which is part of a system of parameters of R, and hence a regular sequence on M. This implies that grade $\left(\varphi_{i}, M\right) \geq i$ for all i. Thus $\mathbb{F} \otimes M$ is acyclic. In particular, $r_{i} \geq 1$ for $i=1, \ldots, p$.
We prove $(*)$ by induction on p. If $p=1$, then there is nothing to show. Suppose now that $p>1$, and consider the complex

$$
\mathbb{G}: 0 \longrightarrow G_{p-1} \xrightarrow{\psi_{p-1}} G_{p-2} \longrightarrow \cdots \longrightarrow G_{1} \xrightarrow{\psi_{1}} G_{0} \longrightarrow 0,
$$

with $G_{i}=F_{i+1}$ and $\psi_{i}=\varphi_{i+1}$ for $k=1, \ldots, p-1$. Let $s_{i}=\sum_{j_{i}}^{p-1}(1)^{j-i} \operatorname{rank} G_{j}$. Then $\operatorname{codim} I_{s_{i}}\left(\psi_{i}\right) \geq i+(1+t)$ for all i. Hence by induction hypothesis, we have $r_{i+1}=s_{i} \geq$ $(i+1)+t$ for $i=1, \ldots, p-1$.

Thus it remains to show that $r_{1} \geq 1+t$. We show this by induction on t. The assertion is clear if $t=0$. Suppose now that $t>0$. We choose $e \in F_{1} \backslash \mathfrak{m} F_{1}$, replace F_{1} by $F_{1}^{\prime}=F_{1} / R e$ and φ_{2} by the induced map $\varphi_{2}^{\prime}: F_{2} \rightarrow F_{1}^{\prime}$. Furthermore, we choose F_{0}^{\prime} and $\operatorname{Coker} \varphi_{2}^{\prime} \rightarrow F_{0}^{\prime}$ as described in Lemma 2.12. This yields a map $\varphi_{1}^{\prime}: F_{1}^{\prime} \rightarrow F_{0}^{\prime}$, so that we obtain the complex

$$
\mathbb{F}^{\prime}: 0 \longrightarrow F_{p} \xrightarrow{\varphi_{p}} F_{p-1} \longrightarrow \cdots \longrightarrow F_{2} \xrightarrow{\varphi_{2}^{\prime}} F_{1}^{\prime} \xrightarrow{\varphi_{1}^{\prime}} F_{0}^{\prime} \longrightarrow 0
$$

We show (i) $\operatorname{codim} I_{r_{2}^{\prime}}\left(\varphi_{2}^{\prime}\right) \geq t+1$ and (ii) $\operatorname{codim} I_{r_{1}^{\prime}}\left(\varphi_{1}^{\prime}\right) \geq t$. Then \mathbb{F}^{\prime} satisfies the hypotheses of $(*)$ with $t-1$ instead of t.

It may be that $\operatorname{Im} \varphi_{1}^{\prime} \notin \mathfrak{m} F_{0}^{\prime}$. In this case one can split off a direct summand without affecting (i) ansd (ii). Applying our induction hypothesis to this cancelled complex, we obtain $r_{1}^{\prime} \geq t$, and hence $r_{1} \geq t+1$, as desired.

Proof of (i): let \mathfrak{p} be a prime ideal with $\operatorname{codimp} \leq t$. Then $I_{r_{i}}\left(\varphi_{i}\right) \not \subset \mathfrak{p}$, so that $\mathbb{F} \otimes R_{\mathfrak{p}}$ is split acyclic. In particular, $\left(F_{1}\right)_{\mathfrak{p}} \cong\left(\operatorname{Im} \varphi_{2}\right)_{\mathfrak{p}} \oplus\left(\operatorname{Coker} \varphi_{2}\right)_{\mathfrak{p}}$ with $\operatorname{rank}\left(\operatorname{Im} \varphi_{2}\right)_{\mathfrak{p}}=r_{2}$ and $\operatorname{rank}\left(\operatorname{Coker} \varphi_{2}\right)_{\mathfrak{p}}=r_{1}$. Moreover, by Theorem 2.11 we have $\operatorname{codim} \mathscr{O}\left(\varphi_{1}(e)\right) \geq t+1$. Therefore Lemma 2.10 implies that $\varphi_{1}(e)$ generates a non-zero free summand of $\left(F_{0}\right)_{\mathfrak{p}}$. Consequently, the image \bar{e} of e under the residue class map $F_{1} \rightarrow \operatorname{Coker} \varphi_{2}$ generates a non-zero free direct summand of $\left(\operatorname{Coker} \varphi_{2}\right)_{\mathfrak{p}}$. Hence $\left(\operatorname{Coker} \varphi_{2}^{\prime}\right)_{\mathfrak{p}} \cong\left(\operatorname{Coker} \varphi_{2}\right)_{\mathfrak{p}} / R_{\mathfrak{p}} \bar{e}$ is free of rank $r_{1}^{\prime}=r_{1}-1$, and the exact sequence

$$
0 \longrightarrow\left(\operatorname{Im} \varphi_{2}^{\prime}\right)_{\mathfrak{p}} \longrightarrow\left(F_{1}^{\prime}\right)_{\mathfrak{p}} \longrightarrow\left(\operatorname{Coker} \varphi_{2}^{\prime}\right)_{\mathfrak{p}} \longrightarrow 0
$$

splits. In particular, $\left(\operatorname{Im} \varphi_{2}^{\prime}\right)_{\mathfrak{p}}$ is free direct summand of $\left(F_{1}^{\prime}\right)_{\mathfrak{p}}$ of rank r_{2}. Thus Proposition 1.8 implies that $I_{r_{2}^{\prime}}^{\prime}\left(\varphi_{2}^{\prime}\right) \not \subset \mathfrak{p}$, as desired.

Proof of (ii): We choose \mathfrak{p} as before. We have already seen that $\left(\operatorname{Coker} \varphi_{2}^{\prime}\right)_{\mathfrak{p}}$ is free of rank r_{1}^{\prime}. As φ_{1}^{\prime} is constructed as described in Lemma 2.12, $\left(\operatorname{Coker} \varphi_{2}^{\prime}\right)_{\mathfrak{p}}$ is mapped isomorphically onto a free direct summand of F_{0}^{\prime}. This implies that $I_{r_{1}^{\prime}}\left(\varphi_{1}^{\prime}\right) \not \subset \mathfrak{p}$, and shows codim $I_{r_{1}^{\prime}}\left(\varphi_{1}^{\prime}\right) \geq 1+t$, which is even more than required.

3. Lecture: Upper bounds

In the remaining sections, unless otherwise stated, $R=k\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring, and M is a finitely generated graded R-module. As indicated in Section 1 we want to relate the Betti-numbers $\beta_{i}(M)$ of M to the generic annihilator numbers $\alpha_{i}(M)$ of M.

Let $y=y_{1}, \ldots, y_{n}$ be generic linear forms. Then

$$
A_{j}=\left(\left(y_{1}, \ldots, y_{j-1}\right) M:_{M} y_{j}\right) /\left(y_{1}, \ldots, y_{j-1}\right) M
$$

is a module of finite length. We set

$$
\alpha_{i}(M)=\ell\left(A_{i}\right) .
$$

We denote by $H_{i}(j ; M)$ the Koszul homology $H_{i}\left(y_{1}, \ldots, y_{j} ; M\right)$ of the partial sequence y_{1}, \ldots, y_{j}, and set $h_{i}(j ; M)=\operatorname{dim}_{K} H_{i}(j ; M)$. If there is no danger of confusion, we simply write $\beta_{i}, \alpha_{i}, H_{i}(j)$ and $h_{i}(j)$ for $\beta_{i}(M), \alpha_{i}(M), H_{i}(j ; M)$ and $h_{i}(j ; M)$ respectively.

Attached with y there are long exact sequences

$$
\begin{aligned}
& \cdots \longrightarrow H_{i}(j-1) \xrightarrow{\varphi_{i, j-1}} H_{i}(j-1) \longrightarrow H_{i}(j) \longrightarrow H_{i-1}(j-1) \\
& \cdots \longrightarrow H_{0}(j-1) \xrightarrow{\varphi_{0, j-1}} H_{0}(j-1) \longrightarrow 0
\end{aligned}
$$

Here $\varphi_{i, j-1}: H_{i}(j-1) \rightarrow H_{i}(j-1)$ is the map given by multiplication with $\pm y_{j}$. Note that A_{j} is the Kernel of the map $\varphi_{0, j-1}$. We conclude
(*) $h_{1}(j)=h_{1}(j-1)+\alpha_{j}-\operatorname{dim}_{K} \operatorname{Im} \varphi_{1, j-1}$ for $i=1$;
(**) $h_{i}(j)=h_{i}(j-1)+h_{i-1}(j-1)-\operatorname{dim}_{K} \operatorname{Im} \varphi_{i, j-1}-\operatorname{dim}_{K} \operatorname{Im} \varphi_{i-1, j-1}$ for $i>1$.
With the notation introduced we now have:
Proposition 3.1. Given integers $1 \leq i \leq j$ we define the set

$$
C_{i, j}=\left\{(a, b) \in \mathbb{N}^{2}: 1 \leq b \leq j-1 \text { and } \max (i-j+b, 1) \leq a \leq i\right\}
$$

Then we have
(a) $h_{i}(j) \leq \sum_{k=1}^{j-i+1}\binom{j-k}{i-1} \alpha_{k}$ for all $i \geq 1$ and $j \geq 1$;
(b) For given $i \geq 1$ and $j \geq 1$ the following conditions are equivalent:
(i) $h_{i}(j)=\sum_{k=1}^{j-i+1}\binom{j-k}{i-1} \alpha_{k}$;
(ii) $\varphi_{a b}=0$ for all $(a, b) \in C_{i, j}$;
(iii) $\mathfrak{m} H_{a}(b)=0$ for all $(a, b) \in C_{i, j}$.

Proof. By induction on j and using equations $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ one proves that

$$
h_{i}(j)=\sum_{k=1}^{j-i+1}\binom{j-k}{i-1} \alpha_{j k}-\sum_{(a, b) \in C_{i, j}}\binom{j-b}{i-a} \operatorname{dim}_{K} \operatorname{Im} \varphi_{a, b}
$$

Then (a) and the equivalence of (i) and $(i i)$ in (b) follow immediately. For the equivalence of $(i i)$ and (iii) we notice that a generic linear form annihilates $H_{a}(b)$ if and only if $\mathfrak{m} H_{a}(b)=0$.

By taking $j=n$ we obtain the following upper bound
Corollary 3.2. $\beta_{i} \leq \sum_{j=1}^{n-i+1}\binom{n-j}{i-1} \alpha_{j}$ for all $i \geq 1$.
When this upper bound is reached is described in the next corollary in terms of vanishing of Koszul homology

Corollary 3.3. (a) For a given integer ithe following conditions are equivalent:
(i) $\beta_{i}=\sum_{j=1}^{n-i+1}\binom{n-j}{i-1} \alpha_{j}$,
(ii) $\mathfrak{m} H_{a}(b)=0$ for all $(a, b) \in C_{i, n}$;
(b) The following conditions are equivalent:
(i) $\beta_{i}=\sum_{j=1}^{n-i+1}\binom{n-j}{i-1} \alpha_{j}$ for all $i \geq 1$,
(ii) $\mathfrak{m} H_{a}(b)=0$ for all b and for all $a \geq 1$.

We now want to discuss when condition (b)(ii) is satisfied. We first note that it implies that y_{1}, \ldots, y_{n} is a proper sequence in the sense of [23].

Definition 3.4. Let R be an arbitrary commutative ring, and M and R-module. A sequence y_{1}, \ldots, y_{r} of elements of R is called a proper M-sequence, if $y_{j+1} H_{i}(j ; M)=0$ for all $i \geq 1$ and $j=0, \ldots, r-1$.

In [26] Kühl proved the following remarkable fact: The sequence y_{1}, \ldots, y_{r} is a proper M-sequence if and only if

$$
y_{j+1} H_{1}(j ; M)=0 \quad \text { for } \quad j=0, \ldots, r-1
$$

Now we have
Theorem 3.5 (Conca-Herzog-Hibi). Let $I \subset R$ be a graded ideal, and let $y=y_{1}, \ldots, y_{n}$ be a sequence of generic linear forms. The following conditions are equivalent:
(a) R / I has maximal Betti numbers, i.e.

$$
\beta_{i}(R / I)=\sum_{j=1}^{n-i+1}\binom{n-j}{i-1} \alpha_{j}(R / I) \quad \text { for all } \quad i \geq 1
$$

(b) y is a proper R / I-sequence;
(c) I is componentwise linear.

Proof. Let z be a generic linear form. Then $z H_{i}(p)=0$ if and only if $\mathfrak{m} H_{i}(p)=0$. Thus the equivalence of (a) and (b) follows from 3.3(b). The equivalence of (b) and (c) can be found in [16, Theorem 4.5].

Another important method to obtain upper bounds for resolutions is to compare the resolution of an ideal I with the resolution of its initial ideal in (I) with respect to some term order $<$ on R. The basic fact is the following

Theorem 3.6. Let $I \subset R$ be a graded ideal. Then for any term order $<$ one has

$$
\beta_{i j}(R / I) \leq \beta_{i j}\left(R / \mathrm{in}_{<}(I)\right) \quad \text { for all } \quad i, j .
$$

Proof. Let \tilde{R} be the $k[t]$-algebra $R[t]$, where t is an indeterminate of degree 0 . By [17, Theorem 15.17] there exists a graded ideal $\tilde{I} \subset \tilde{R}$ such that the $k[t]$-algebra \tilde{R} / \tilde{I} is a free $k[t]$-module (and thus flat over $k[t]$), and such that

$$
\begin{equation*}
(\tilde{R} / \tilde{I}) / t(\tilde{R} / \tilde{I}) \cong R / \mathrm{in}_{<}(I) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(\tilde{R} / \tilde{I})_{t} \cong(R / I) \otimes_{k} k\left[t, t^{-1}\right], \tag{3}
\end{equation*}
$$

as graded k-algebras. The ideal $\tilde{I} \subset \tilde{R}$ is constructed by means of a weight function.
Let \mathbb{F} be the minimal graded free \tilde{S}-resolution of \tilde{R} / \tilde{I}. Then (2) implies that $\mathbb{F} / t \mathbb{F}$ is a graded minimal free R-resolution of R / I, so that $\beta_{i j}(\tilde{R} / \tilde{I})=\beta_{i j}\left(R / \mathrm{in}_{<}(I)\right)$ for all i and j, and (3) implies that the localized complex \mathbb{F}_{t} is a graded (not necessarily minimal) free $R \otimes_{K} K\left[t, t^{-1}\right]$ resolution of $(R / I) \otimes_{K} K\left[t, t^{-1}\right]$. Thus, $\beta_{i j}(R / I)=\beta_{i j}\left((R / I) \otimes_{K} K\left[t, t^{-1}\right]\right) \leq$ $\beta_{i j}(\tilde{R} / \tilde{I})$, as desired.

Let M be a finitely generated graded S-module. The regularity of M is defined to be the number $\operatorname{reg}(M)=\max \left\{j-i: \beta_{i j}(M) \neq 0\right\}$. As an immediate consequence of 3.6 we have

Corollary 3.7. Let $I \subset R$ be a graded ideal. Then for any term order $<$ one has:
(a) $\operatorname{proj} \operatorname{dim} R / I \leq \operatorname{proj} \operatorname{dim} R / \mathrm{in}_{<}(I)$.
(b) depth $R / I \geq \operatorname{depth} R / \mathrm{in}_{<}(I)$.
(c) If $R / \mathrm{in}_{<}(I)$ is Cohen-Macaulay (Gorenstein), then so is S / I.
(d) $\operatorname{reg} R / I \leq \operatorname{reg} R / \operatorname{in}_{<}(I)$.

We shall see in the next section that all inequalities of 3.7 become equalities, if in ${ }_{<}(I)$ is replaced by the generic initial ideal $\operatorname{Gin}(I)$ with respect to the reverse lexicographic order.

We fix a term order $<$ satisfying $x_{1}>x_{2}>\ldots>x_{n}$. Let $I \subset R$ be an ideal. The generic initial ideal $\operatorname{Gin}(I)$ with respect to this term order is defined as follows: let $G L(n)$ denote the general linear group with coefficients in k. Any $\varphi=\left(a_{i j}\right) \in G L(n)$ induces an automorphism of the graded k-algebra R, again denoted by φ, namely

$$
\varphi\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=f\left(\sum_{i=1}^{n} a_{i 1} x_{i}, \ldots, \sum_{i=1}^{n} a_{i n} x_{i}\right) \quad \text { for all } \quad f \in R .
$$

For the proof of the following result we refer to [17, Theorem 15.18]
Theorem 3.8 (Galligo, Bayer and Stillman). Let $I \subset R$ be a graded ideal. Then there is a nonempty Zariski open set $U \subseteq G L(n)$ such that $\operatorname{in}(\varphi(I))$ does not depend on $\varphi \in U$. Moreover, U meets non trivially the Borel subgroup of $G L(n)$ consisting of all upper triangular invertible matrices.

For $\varphi \in U$ the monomial ideal $\operatorname{in}(\varphi(I))$ is called the generic initial ideal of I, and will be denoted $\operatorname{Gin}(I)$.
A monomial ideal I is called strongly stable, if $x_{i}\left(u / x_{j}\right) \in I$ for all monomials $u \in I$, all x_{j} that divides u, and all $i<j$. The ideal I is called stable, if $x_{i}\left(u / x_{m(u)}\right) \in I$ for all monomials $u \in I$, and all $i<m(u)$. Here $m(u)=\max \left\{i: x_{i}\right.$ divides $\left.u\right\}$.

For a monomial ideal I it is customary to denote the unique minimal set of monomial generators by $G(I)$. It is easy to see that I is strongly stable if $x_{i}\left(u / x_{j}\right) \in I$ for all monomials $u \in G(I)$, all x_{j} that divides u, and all $i<j$. A similar statement holds for stable ideals.

Stable monomial ideals were introduced by Eliahou and Kervaire [18] who also gave an explicit resolution of such ideals. Such ideals are important because of the following result [17, Theorem 15.23]

Theorem 3.9. Suppose that char $k=0$, and let $I \subset R$ be a graded ideal. Then the generic initial ideal $\operatorname{Gin}(I)$ of I with respect to the reverse lexicographical order is strongly stable.

Also in positive characteristic Gin (I) has a nice (but much more complicated) combinatorial structure.

The Koszul homology of a stable monomial ideal I can be easily computed. We let $\varepsilon: R \rightarrow R / I$ be the canonical epimorphism, and set $u^{\prime}=u / x_{m(u)}$ for all $u \in G(I)$.
Theorem 3.10. Let $I \subset R$ be a stable ideal. For all $j=1, \ldots, n$ and $i>0$, the Koszul homology $H_{i}\left(x_{j}, \ldots, x_{n}\right)$ is annihilated by $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$. In other words, all these homology modules are k-vector spaces. A basis of $H_{i}\left(x_{j}, \ldots, x_{n}\right)$ is given by the homology
classes of the cycles

$$
\varepsilon\left(u^{\prime}\right) e_{\sigma} \wedge e_{m(u)}, \quad u \in G(I), \quad|\sigma|=i-1, \quad j \leq \min (\sigma), \quad \max (\sigma)<m(u)
$$

Proof. We proceed by induction on $n-j$. For $j=n$, we only have to consider $H_{1}\left(x_{n}\right)$ which is obviously minimally generated by the homology classes of the elements $\varepsilon\left(u^{\prime}\right) e_{n}$ with $u \in G(I)$ such that $m(u)=n$. Since by the definition of stable ideals $x_{i} u^{\prime} \in I$ for all i, we see that $H_{1}\left(x_{n}\right)$ is a k-vector space.

Now assume that $j<n$, and that the assertion is proved for $j+1$. Then $x_{j} H_{i}\left(x_{j+1}, \ldots, x_{n}\right)=$ 0 for all $i>0$, so that the long exact sequence

$$
\begin{aligned}
\cdots \quad & \xrightarrow{x_{j}} H_{i}\left(x_{j+1}, \ldots, x_{n}\right) \longrightarrow H_{i}\left(x_{j}, \ldots, x_{n}\right) \longrightarrow H_{i-1}\left(x_{j+1}, \ldots, x_{n}\right) \\
& \xrightarrow{x_{j}} H_{i-1}\left(x_{j+1}, \ldots, x_{n}\right) \longrightarrow H_{i-1}\left(x_{j}, \ldots, x_{n}\right) \longrightarrow \cdots
\end{aligned}
$$

splits into the exact sequences

$$
\begin{equation*}
0 \longrightarrow H_{1}\left(x_{j+1}, \ldots, x_{n}\right) \longrightarrow H_{1}\left(x_{j} \ldots, x_{n}\right) \longrightarrow R_{j} / I_{j} \xrightarrow{x_{j}} R_{j} / I_{j} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \longrightarrow H_{i}\left(x_{j+1}, \ldots, x_{n}\right) \longrightarrow H_{i}\left(x_{j}, \ldots, x_{n}\right) \longrightarrow H_{i-1}\left(x_{j+1}, \ldots, x_{n}\right) \longrightarrow 0 \tag{5}
\end{equation*}
$$

for $i>0$. Here R_{j} is the polynomial ring $k\left[x_{1}, \ldots, x_{j}\right], I_{j}$ the ideal in R_{j} generated by the monomials $u \in G(I)$ which are not divisible by any x_{i} with $i>j$, in other words, $I_{j}=I \cap S_{j}$.

In sequence (4), $\operatorname{Ker} x_{j}$ is minimally generated by the residues of the monomials u^{\prime} with $u \in G(I)$ and $m(u)=j$. Note that the sets $\{u \in G(I): m(u)=j\}$ and $\left\{u \in G\left(I_{j}\right): m(u)=\right.$ $j\}$ are equal, and that I_{j} is a stable ideal in R_{j}. Therefore $\operatorname{Ker} x_{j}$ is a k-vector space.

We now consider the short exact sequence

$$
\begin{equation*}
0 \longrightarrow H_{1}\left(x_{j+1}, \ldots, x_{n}\right) \longrightarrow H_{1}\left(x_{j}, \ldots, x_{n}\right) \longrightarrow \operatorname{Ker} x_{j} \longrightarrow 0 \tag{6}
\end{equation*}
$$

It is clear that the elements $\varepsilon\left(u^{\prime}\right) e_{j}, u^{\prime} \in G(I), m(u)=j$ are cycles in $K_{1}\left(x_{j}, \ldots, x_{n}\right)$ such that $\delta\left(\left[\varepsilon\left(u^{\prime}\right) e_{j}\right]\right)=u^{\prime}+I_{j}$. Therefore, by (6) and our induction hypothesis, it follows that the set $\mathscr{S}=\left\{\left[\varepsilon\left(u^{\prime}\right) e_{i}\right]: u \in G(I), m(u)=i \geq j\right\}$ generates $H_{1}\left(x_{j}, \ldots, x_{n}\right)$. Since I is a stable ideal we see that $x_{j}\left[\varepsilon\left(u^{\prime}\right) e_{i}\right]=0$ for all $j=1, \ldots, n$ and all $\left[\varepsilon\left(u^{\prime}\right) e_{i}\right] \in \mathscr{S}$. In other words, $H_{1}\left(x_{j}, \ldots, x_{n}\right)$ is a k-vector space. Finally, since the number of elements of \mathscr{S} equals $\operatorname{dim}_{k} H_{1}\left(x_{j+1}, \ldots, x_{n}\right)+\operatorname{dim} \operatorname{Ker} x_{j}$, we conclude that \mathscr{S} is a basis of $H_{1}\left(x_{j}, \ldots, x_{n}\right)$.

In order to prove our assertion for $i>1$ we consider the exact sequences (5). By induction hypothesis the homology module $H_{i-1}\left(x_{j+1}, \ldots, x_{n}\right)$ is a k-vector space with basis

$$
\left[\varepsilon\left(u^{\prime}\right) e_{\sigma} \wedge e_{m(u)}\right], \quad u \in G(I), \quad|\sigma|=i-2, \quad j+1 \leq \min (\sigma), \quad \max (\sigma)<m(u)
$$

Given such a homology class, consider the element $\varepsilon\left(u^{\prime}\right) e_{j} \wedge e_{\sigma} \wedge e_{m(u)}$. It is clear that this element is a cycle in $K_{i}\left(x_{j}, \ldots, x_{n}\right)$, and that

$$
\delta\left(\left[\varepsilon\left(u^{\prime}\right) e_{j} \wedge e_{\sigma} \wedge e_{m(u)}\right]= \pm\left[\varepsilon\left(u^{\prime}\right) e_{\sigma} \wedge e_{m(u)}\right] .\right.
$$

Thus from the exact sequence (5) and our induction hypothesis it follows that the homology classes of the cycles described in the theorem generate $H_{i}\left(x_{j}, \ldots, x_{n}\right)$. Again the stability of the ideal I implies that \mathfrak{m} annihilates all these homology classes, so that
$H_{i}\left(x_{j}, \ldots, x_{n}\right)$ is a K-vector space. Finally, just as for $i=1$, a dimension argument shows that these homology classes form a basis of $H_{i}\left(x_{j}, \ldots, x_{n}\right)$.

Let I be a monomial ideal. We denote by $G(I)_{j}$ the set of monomial generators of I of degree j. The following result of Eliahou and Kervaire [18] follows immediately from 3.10

Corollary 3.11. Let $I \subset S R$ be a stable ideal. Then
(a) $\beta_{i i+j}(I)=\sum_{u \in G(I)_{j}}\binom{m(u)-1}{i}$;
(b) $\operatorname{proj} \operatorname{dim} R / I=\max \{m(u): u \in G(I)\}$;
(c) $\operatorname{reg}(I)=\max \{\operatorname{deg}(u): u \in G(I)\}$.

If we consider upper bounds for the Betti-numbers of an ideal we have to fix a class \mathscr{C} of ideals and to ask if there is an upper bound for the Betti-numbers of the ideals within this class. We have already seen that the class of ideals whose residue class ring has a given sequence of annihilator numbers has such an upper bound.

Here we now consider the class \mathscr{C} of ideals with given Hilbert function. Within this class there is a distinguished ideal. In fact, let $>$ be the lexicographical monomial order induced by $x_{1}>x_{2}>\cdots>x_{n}$. Recall that a monomial ideal $I \subset R$ is called a lexsegment ideal, if for each monomial $u \in I$, all monomials $v>u$ belong to I as well.

Let $B \subset R_{d}$ be a set of monomials. Then B is called a lexsegment if with each $u \in B$ we have $v \in B$ for all $v>u$ in the lexicographical order. A lexsegment ideal is an ideal which is spanned in each degree by a lexsegment set of monomials.

We denote by $\operatorname{Shad}(B)$ the shadow of B, i.e. the set of monomials

$$
\left\{x_{1}, \ldots, x_{n}\right\} B=\left\{x_{i} u: u \in B, i=1, \ldots, n\right\} .
$$

The set B is called a (strongly) stable set of monomials if the ideal generated by B is (strongly) stable.

We let $m_{i}(B)$ the number of elements $u \in B$ with $m(u)=i$, and set $m_{\leq i}(B)=\sum_{j=1}^{i} m_{j}(B)$. Then we have

Lemma 3.12. Let $B \subset M_{d}$ be a stable set of monomials. Then
(a) $m_{i}(\operatorname{Shad}(B))=m_{\leq i}(B)$;
(b) $|\operatorname{Shad}(B)|=\sum_{i=1}^{n} m_{\leq i}(B)$.

Proof. (b) is of course a consequence of (a). For the proof of (a) we note that the map

$$
\varphi:\{u \in B: m(u) \leq i\} \rightarrow\{u \in \operatorname{Shad}(B): m(u)=i\}, \quad u \mapsto u x_{i}
$$

is a bijection. In fact, φ is clearly injective. To see that φ is surjective, we let $v \in \operatorname{Shad}(B)$ with $m(v)=i$. Since $v \in \operatorname{Shad}(B)$, there exists $w \in B$ with $v=x_{j} w$ for some $j \leq i$. It follows that $m(w) \leq i$. If $j=i$, then we are done. Otherwise, $j<i$ and $m(w)=i$. Hence, since B is stable it follows that $u=\left(x_{j} / x_{i}\right) w \in B$. The assertion follows, since $v=u x_{i}$.

The following result is crucial.
Theorem 3.13 (Bayer [5]). Let $L \subset R_{d}$ be a lexsegment, and $B \subset R_{d}$ be a stable set of monomials with $|L| \leq|B|$. Then $m_{\leq i}(L) \leq m_{\leq i}(B)$ for $i=1, \ldots, n$.

We denote by $B^{l e x}$ the unique lexsegment set of monomials with $\left|B^{l e x}\right|=|B|$. Now Lemma 3.12 and Theorem 3.13 imply
Corollary 3.14. Let $B \subset R_{d}$ a be stable set of monomials, then $\left|\operatorname{Shad}\left(B^{l e x}\right)\right| \leq|\operatorname{Shad}(B)|$.
Using all this we now get
Theorem 3.15. Let $I \subset R$ be a graded ideal. Then there exists a unique lexsegment ideal in R, denoted $I^{l e x}$, such that R / I and $R / I^{\text {lex }}$ have the same Hilbert function.
Proof. Let $<$ be any monomial order. It is easy to see that S / I and $S / \mathrm{in}_{<}(I)$ have the same Hilbert function. Hence we may replace I by $\mathrm{in}_{<}(I)$, and thus may assume that I is a monomial ideal. Then for any field L the Hilbert function of $L\left[x_{1}, \ldots, x_{n}\right] /(G(I))$ does not depend on L. Thus we may replace k by L if necessary, and thus may as well assume that char $k=0$. Then by Theorem 3.9 the generic initial ideal $\operatorname{Gin}(I)$ of I with respect to the reverse lexicographical order is strongly stable.
For each d let I_{d} be spanned by the set of monomials N_{d}. Then N_{d} is a strongly stable set of monomials. Let $I_{d}^{l e x}$ be the subspace of R_{d} spanned by $N_{d}^{l e x}$. We set $I^{l e x}=\bigoplus_{d \geq 0} I_{d}^{l e x}$, and show that $I^{l e x}$ is an ideal, in other words, that $\left\{x_{1}, \ldots, x_{n}\right\} I_{d}^{l e x} \subset I_{d+1}^{l e x}$ for all d.

By Corollary 3.14 one has $\left|\operatorname{Shad}\left(N_{d}^{l e x}\right)\right| \leq\left|\operatorname{Shad}\left(N_{d}\right)\right| \leq\left|N_{d+1}\right|=\left|N_{d+1}^{l e x}\right|$. On the other hand, since $\operatorname{Shad}\left(N_{d}^{l e x}\right)$ and $N_{d+1}^{l e x}$ are both lexsegments, this inequality implies $\operatorname{Shad}\left(N_{d}^{l e x}\right) \subset N_{d+1}^{l e x}$, as desired.

It is obvious from the construction that R / I and $R / I^{l e x}$ have the same Hilbert function.

Bigatti [8] and Hulett [24] proved independently the following theorem if the base field k of R is of characteristic 0 . A proof in arbitrary characteristic was later given by Pardue [27] using a suitable polarization argument.

Theorem 3.16 (Bigatti, Hulett, Pardue). Let $I \subset R$ be a graded ideal. Then

$$
\beta_{i j}(I) \leq \beta_{i j}\left(I^{l e x}\right) \quad \text { for all } i \text { and } j .
$$

In particular, among all ideals with a given Hilbert function, the unique lexsegment ideal with this given Hilbert function has the largest Betti-numbers.

Proof. We outline the proof in case $\operatorname{char}(k)=0$. By Theorem 3.6 we have $\beta_{i j}(I) \leq$ $\beta_{i j}(\operatorname{Gin}(I))$ for all i and j, where $\operatorname{Gin}(I)$ denotes the generic initial ideal of I with respect to the reverse lexicographical order. Since we assume that $\operatorname{char}(k)=0$, it follows from Theorem 3.9 that $\operatorname{Gin}(I)$ is a strongly stable ideal. We may therefore assume that I itself is a a strongly stable monomial ideal. Then $\beta_{i j}(I)=\sum_{u \in G(I) j_{j}}\binom{m(u)-1}{i}$, by Corollary 3.11 (a). A similar formula holds for $I^{l e x}$, since $I^{l e x}$ is also strongly stable. These formulas for the Betti-numbers can be rewritten in terms of the numbers $m_{\leq i}(I) m_{\leq i}\left(I^{l e x}\right)$. Then using Bayer's theorem 3.13 according to which $m_{\leq i}(I) \leq m_{\leq i}\left(I^{l e x}\right)$ for all i, one obtains the desired inequalities.

4. Lecture: Stability

In this section we assume that $R=k\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring over an infinite field K, and $I \subset R$ is a graded ideal. In the previous section we have seen that for any term
order one has $\beta_{i j}(I) \leq \beta_{i j}(\operatorname{in}(I))$. One may ask on what conditions on the term order or on the ideal one obtains more precise information in this comparison. A classical result in this direction is the theorem of Bayer-Stillman [7] which asserts that reg $(I)=\operatorname{reg}(\operatorname{Gin}(I))$. Here and throughout this section $\operatorname{Gin}(I)$ denotes the generic initial ideal with respect to the reverse lexicographical order.

A remarkable extension of the Bayer-Stillman theorem, which we want to discuss next, was proved by Bayer, Charalambous and Popescu in [6]. Let M be a finitely generated graded S-module. A Betti number $\beta_{k k+m} \neq 0$ of M is called extremal if $\beta_{i i+j}=0$ for all $(i, j) \neq(k, m)$ with $i \geq k$ and $j \geq m$.
The following picture displays the Betti diagram of a graded free resolution in the form of a MACAULAY output. The entry with coordinates (i, j) is the Betti number $\beta_{i i+j}$. In our picture the outside corners of the dashed line give the positions of the extremal Betti numbers.

Let M be a finitely generated graded R-module, and let $y=y_{1}, \ldots, y_{n}$ be generic linear forms. As in Section 3 we set $H_{i}(j)=H_{i}\left(y_{1}, \ldots, y_{j} ; M\right)$, and

$$
A_{j}=\left(y_{1}, \ldots, y_{j-1}\right) M:_{M} y_{j} /\left(y_{1}, \ldots, y_{j-1}\right) M .
$$

All $H_{i}(j)$ as well as all A_{j} are R-modules of finite length and since M is a graded S module, all $H_{i}(j)$ and all A_{j} are naturally graded, and there are graded isomorphisms $H_{i}(n)_{j} \cong \operatorname{Tor}_{i}(k, M)_{j}$ for all i and j.

Let N be an Artinian graded module. We set

$$
s(N)= \begin{cases}\max \left\{s: N_{s} \neq 0\right\} & \text { if } \quad N \neq 0, \\ -\infty & \text { if } \quad N=0 .\end{cases}
$$

Now we introduce the following numbers attached to M and the sequence $y=y_{1}, \ldots, y_{n}$. We set

$$
r_{j}=\max \left\{s\left(H_{i}(j)\right)-i: i \geq 1\right\} \quad \text { and } \quad s_{j}=s\left(A_{j}\right) \quad \text { for } \quad j=1, \ldots, n,
$$

and put $r_{0}=0$. Observe that $\operatorname{reg}(M)=\max \left\{r_{n}, s(M / \mathfrak{m} M)\right\}$.
We quote the following technical result from [2].
Theorem 4.1. With the hypotheses and notation introduced we have
(a) $r_{j}=\max \left\{s_{1}, \ldots, s_{j}\right\}$ for $j=1, \ldots$, . In particular, $r_{1} \leq r_{2} \leq \ldots \leq r_{n}$.
(b) Let $\mathscr{J}=\left\{j_{1}, \ldots, j_{l}\right\}, 1 \leq j_{1}<j_{2}<\ldots<j_{l} \leq n$, be the set of elements $j \in[n]$ such that $r_{j}-r_{j-1} \neq 0$. Then for all t with $1 \leq t \leq l$ and all j with $j_{t} \leq j$ we have
(i) $H_{i}(j)_{i+s}=0$ for $s>r_{j_{t-1}}$ and $i>j-j_{t}+1$;
(ii) $H_{j-j_{t}+1}(j)_{j-j_{t}+1+r_{j_{t}}} \cong\left(A_{j_{t}-1}\right)_{r_{j_{t}}}$.

This result yields a characterization of the extremal Betti-numbers in terms of Koszul homology

Corollary 4.2. Let the numbers j_{t} be defined as in 4.1 and set $k_{t}=n-j_{t}+1$ and $m_{t}=r_{j_{t}}$. Then the graded Betti number $\beta_{i i+j}$ of M is extremal if and only if

$$
(i, j) \in\left\{\left(k_{t}, m_{t}\right): t=1, \ldots, l\right\}
$$

Moreover, $\beta_{k_{t}, k_{t}+m_{t}}=\operatorname{dim}_{K}\left(A_{j_{t}}\right)_{s_{j_{t}}}$ for $t=1, \ldots, l$.
Let $I \subset R$ be a graded ideal. We want to compare the graded Betti-numbers of R / I and $R / \operatorname{Gin}(I)$. Choosing generic coordinates we may assume that $\operatorname{in}(I)=\operatorname{Gin}(I)$, and that $x_{n}, x_{n-1}, \ldots, x_{1}$ is a generic sequence for R / I. For the reverse lexicographical order induced by $x_{1}>x_{2}>\ldots>x_{n}$ one has

$$
\operatorname{in}\left(\left(x_{j}, \ldots, x_{n}\right)+I\right)=\left(x_{j}, \ldots, x_{n}\right)+\operatorname{in}(I)
$$

and

$$
\left.\operatorname{in}\left(\left(x_{j}, \ldots, x_{n}\right)+I\right): x_{j-1}\right)=\left(\left(x_{j}, \ldots, x_{n}\right)+\operatorname{in}(I)\right): x_{j-1} .
$$

It follows that

$$
\left(\left(x_{j}, \ldots, x_{n}\right)+I\right): x_{j-1} /\left(\left(x_{j}, \ldots, x_{n}\right)+I\right)
$$

and

$$
\left(\left(x_{i}, \ldots, x_{n}\right)+\operatorname{in}(I)\right): x_{i-1} /\left(\left(x_{i}, \ldots, x_{n}\right)+\operatorname{in}(I)\right)
$$

have the same Hilbert function.
Let A_{j} be the module defined before in case that $M=R / I$. Then

$$
A_{j}=\left(\left(x_{j}, \ldots, x_{n}\right)+I\right): x_{j-1} /\left(\left(x_{j}, \ldots, x_{n}\right)+I\right)
$$

We set

$$
A_{j}^{*}=\left(\left(x_{i}, \ldots, x_{n}\right)+\operatorname{in}(I)\right): x_{i-1} /\left(\left(x_{i}, \ldots, x_{n}\right)+\operatorname{in}(I)\right),
$$

and $\alpha_{j}=\ell\left(A_{j}\right), \alpha_{j}^{*}=\ell\left(A_{j}^{*}\right), s_{j}=s\left(A_{j}\right)$ and $s_{j}^{*}=s\left(A_{j}^{*}\right)$ for $j=1, \ldots, n$.
The preceding considerations now yield
Lemma 4.3. The modules A_{j} and A_{j}^{*} have the same Hilbert functions. In particular, $\alpha_{j}=\alpha_{j}^{*}$ and $s_{j}=s_{j}^{*}$ for $j=1, \ldots, n$.

Combining this result with Theorem 4.1 and Corollary 4.2 we obtain
Theorem 4.4 (Bayer-Charalambous-S.Popescu). Let $I \subset R$ be a graded ideal, and let $\operatorname{Gin}(I)$ be the generic initial ideal of I with respect to the reverse lexicographic order. Then for any two integers $i, j \in \mathbb{N}$ one has
(a) the ijth Betti number of R / I is extremal if and only if the ijth Betti number of $R / \operatorname{Gin}(I)$ is extremal;
(b) the corresponding extremal Betti numbers of R / I and $R / \operatorname{Gin}(I)$ are equal.

This theorem implies in particular
Corollary 4.5. Let $I \subset R$ be a graded ideal, $\operatorname{Gin}(I)$ the generic initial ideal of I with respect to the reverse lexicographic order. Then
(a) $($ Bayer-Stillman) $\operatorname{reg}(I)=\operatorname{reg}(\operatorname{Gin}(I))$;
(b) $\operatorname{proj} \operatorname{dim} R / I=\operatorname{proj} \operatorname{dim} R / \operatorname{Gin}(I)$;
(c) R / I is Cohen-Macaulay, if and only if $R / \operatorname{Gin}(I)$ is Cohen-Macaulay.

Under which circumstances do all the graded Betti-numbers of I and $\operatorname{Gin}(I)$ agree? The answer is given by

Theorem 4.6 (Aramova-Herzog-Hibi). Suppose char $k=0$, and let $I \subset R$ be a graded ideal. The following conditions are equivalent:
(a) $\beta_{i, i+j}(I)=\beta_{i, i+j}(\operatorname{Gin}(I))$ for all i and j;
(b) I is componentwise linear.

For the proof of this theorem we need some preparation. We write $I_{\langle j\rangle}$ for the ideal generated by all homogeneous polynomials of degree j belonging to I. Moreover, we write $I_{\geq d}$ for the ideal generated by all homogeneous polynomials of I whose degree is greater than or equal to d.

The Betti-numbers of $\operatorname{Gin}(I)$ have the following properties
Proposition 4.7. Let $I \subset R$ be a graded ideal generated in degree d. Then we have:
(a) if $\beta_{i, i+j}(\operatorname{Gin}(I)) \neq 0$, then $\beta_{i^{\prime}, i^{\prime}+j}(\operatorname{Gin}(I)) \neq 0$ for all $i^{\prime}<i$;
(b) if $\beta_{0, j}(\operatorname{Gin}(I)) \neq 0$, then $\beta_{0, j^{\prime}}(\operatorname{Gin}(I)) \neq 0$ for all $d \leq j^{\prime}<j$.

Proof. Since the generic initial ideal is strongly stable, statement (a) follows from Corollary 3.11 (a).

Let g_{1}, \ldots, g_{m} be the generators of I of degree d. Suppose that $\beta_{0, j-1}(\operatorname{Gin}(I))=0$. Then consider the ideal $I_{\geq j-2}$. Since $\operatorname{Gin}\left(I_{\geq j-2}\right)=\operatorname{Gin}(I)_{\geq j-2}$, we may assume that $\beta_{0, d+1}(\operatorname{Gin}(I))=0$. We have to show that $\operatorname{Gin}(I)$ is generated in degree d. It follows from $\beta_{0, d+1}(\operatorname{Gin}(I))=0$ that all S-polynomials of degree $d+1$ reduce to zero with respect to $\left\{g_{1}, \ldots, g_{m}\right\}$. Since $\left(\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right)$ is a strongly stable ideal, its first syzygy module is generated in degree $d+1$, the fact that the S-polynomials of this degree reduce to zero, implies that $\left\{g_{1}, \ldots, g_{m}\right\}$ is a Gröbner basis of I. From this it follows that $\operatorname{Gin}(I)$ is generated in degree d.

We shall also need
Lemma 4.8. Let I and J be graded ideals of R generated in degree d with the same graded Betti numbers. Then $I_{\geq d+1}$ and $J_{\geq d+1}$ have the same graded Betti numbers.

Proof. The exact sequence

$$
0 \longrightarrow I_{\geq d+1} \longrightarrow I \longrightarrow k(-d)^{\beta_{0, d}} \longrightarrow 0
$$

induces the long exact sequence

$$
\begin{gathered}
\cdots \rightarrow \operatorname{Tor}_{i+1}\left(k, I_{\geq d+1}\right)_{(i+1)+(j-1)} \rightarrow \operatorname{Tor}_{i+1}(k, I)_{(i+1)+(j-1)} \rightarrow \operatorname{Tor}_{i+1}(k, k)_{(i+1)+j-(d+1)}^{\beta_{0, d}} \\
\rightarrow \operatorname{Tor}_{i}\left(k, I_{\geq d+1}\right)_{i+j} \rightarrow \operatorname{Tor}_{i}(k, I)_{i+j} \rightarrow \operatorname{Tor}_{i}(k, k)_{i+j-d}^{\beta_{0, d}} \rightarrow \cdots
\end{gathered}
$$

It then follows that $\beta_{i, i+j}\left(I_{\geq d+1}\right)=\beta_{i, i+j}(I)$ for all i and for all $j \neq d, d+1$. Also, $\beta_{i, i+j}\left(I_{\geq d+1}\right)=0$ if $j \leq d$. Now, if $j=d+1$, then the above long exact sequence becomes

$$
0 \rightarrow \operatorname{Tor}_{i+1}(k, I)_{i+1+d} \rightarrow \operatorname{Tor}_{i+1}(k, k)_{i+1}^{\beta_{0, d}} \rightarrow \operatorname{Tor}_{i}\left(k, I_{\geq d+1}\right)_{i+d+1} \rightarrow \operatorname{Tor}_{i}(k, I)_{i+d+1} \rightarrow 0
$$

Hence, $\beta_{i, i+d+1}\left(I_{\geq d+1}\right)=\beta_{i, i+d+1}(I)+\binom{n}{i+1} \beta_{0, d}(I)-\beta_{i+1, i+1+d}(I)$.
The same formulae are valid for $\beta_{i, i+j}(J)$. This completes the proof.
We are now in the position to give a proof of Theorem 4.6.
Proof of 4.6. First, suppose that I is componentwise linear. The following formula for the graded Betti numbers of a componentwise linear ideal I is known [21]:

$$
\beta_{i, i+j}(I)=\beta_{i}\left(I_{\langle j\rangle}\right)-\beta_{i}\left(\mathfrak{m} I_{\langle j-1\rangle}\right) .
$$

Here \mathfrak{m} is the irrelevant maximal ideal $\left(x_{1}, \ldots, x_{n}\right)$ of R. Since a strongly stable ideal is componentwise linear and since $\operatorname{Gin}(I)$ is strongly stable, the same formula is valid for $\operatorname{Gin}(I)$. Therefore, it suffices to prove that $\beta_{i}\left(I_{\langle j\rangle}\right)=\beta_{i}\left(\operatorname{Gin}(I)_{\langle j\rangle}\right)$ and $\beta_{i}\left(\mathfrak{m} I_{\langle j-1\rangle}\right)=$ $\beta_{i}\left(\mathfrak{m} \operatorname{Gin}(I)_{\langle j-1\rangle}\right)$.

Since $I_{\langle j\rangle}$ has a linear resolution, it follows from the Bayer-Stillman theorem (Corollary 4.5), that $\operatorname{Gin}\left(I_{\langle j\rangle}\right)=\operatorname{Gin}(I)_{\langle j\rangle}$. Since $I_{\langle j\rangle}$ and $\operatorname{Gin}\left(I_{\langle j\rangle}\right)$ have the same Hilbert function, and since the Betti numbers of a module with linear resolution are determined by its Hilbert function, the first equality follows. To prove the second one, we note that $\mathfrak{m} I_{\langle j-1\rangle}$ has again a linear resolution and that, by the same reason as before, $\mathfrak{m} \operatorname{Gin}(I)_{\langle j-1\rangle}=$ $\operatorname{Gin}\left(\mathfrak{m} I_{\langle j-1\rangle}\right)$.

Second, suppose that I and $\operatorname{Gin}(I)$ have the same graded Betti numbers. Let max (I) (resp. $\min (I)$) denote the maximal (resp. minimal) degree of a homogeneous generator of I. To show that I is componentwise linear, we work with induction on $r=\max (I)-$ $\min (I)$. Set $d=\min (I)$.

Let $r=0$. Since I and $\operatorname{Gin}(I)$ have the same graded Betti numbers, it follows that $\operatorname{Gin}(I)$ is generated in degree d. Since $\operatorname{Gin}(I)$ is a strongly stable ideal, we have that $\operatorname{Gin}(I)$ has a linear resolution, hence I has a linear resolution.

Now, suppose that $r>0$. Since $\operatorname{Gin}\left(I_{\geq d+1}\right)=\operatorname{Gin}(I)_{\geq d+1}$, our induction hypothesis and Lemma 4.8 imply that $I_{\geq d+1}$ is componentwise linear. Thus, it suffices to prove that $I_{\langle d\rangle}$ has a linear resolution. Suppose this is not the case. Then, by the Bayer-Stillman theorem, $\operatorname{Gin}\left(I_{\langle d\rangle}\right)$ has regularity $>d$. Moreover, since $\operatorname{Gin}\left(I_{\langle d\rangle}\right)$ is strongly stable, its regularity equals $\max \left(\operatorname{Gin}\left(I_{\langle d\rangle}\right)\right)$. It follows from Theorem 4.7 that $\operatorname{Gin}\left(I_{\langle d\rangle}\right)$ has a generator of degree $d+1$. Now,

$$
\begin{aligned}
\beta_{0, d+1}(I) & =\operatorname{dim} I_{d+1}-\operatorname{dim}\left(\mathfrak{m} I_{\langle d\rangle}\right)_{d+1} \\
& =\operatorname{dim} I_{d+1}-\operatorname{dim}\left(I_{\langle d\rangle}\right)_{d+1},
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{0, d+1}(\operatorname{Gin}(I)) & =\operatorname{dim} \operatorname{Gin}(I)_{d+1}-\operatorname{dim}\left(\mathfrak{m} \operatorname{Gin}(I)_{\langle d\rangle}\right)_{d+1} \\
& =\operatorname{dim} \operatorname{Gin}(I)_{d+1}-\operatorname{dim}\left(\mathfrak{m} \operatorname{Gin}\left(I_{\langle d\rangle}\right)\right)_{d+1} \\
& >\operatorname{dim} \operatorname{Gin}(I)_{d+1}-\operatorname{dim} \operatorname{Gin}\left(I_{\langle d\rangle}\right)_{d+1},
\end{aligned}
$$

because $\left(\mathfrak{m} \operatorname{Gin}\left(I_{\langle d\rangle}\right)\right)_{d+1}$ is properly contained in $\operatorname{Gin}\left(I_{\langle d\rangle}\right)_{d+1}$. Hence

$$
\beta_{0, d+1}(\operatorname{Gin}(I))>\beta_{0, d+1}(I),
$$

a contradiction. This completes our proof.
We note that Theorem 4.6 and Theorem 4.7 (b) are not valid in positive characteristic. Indeed, if characteristic $p>0$, then $I=\left(x^{p}, y^{p}\right)$ provides a counterexample.

In the proof of Theorem $4.6(\mathrm{a}) \Rightarrow(\mathrm{b})$ we only used that $\beta_{0 j}(I)=\beta_{0 j}(\operatorname{Gin}(I))$ for all j. Thus this condition implies that $\beta_{i}(I)=\beta_{i}(\operatorname{Gin}(I))$ for all i. This was first noted by Conca in [16, Theorem 1.2]. We now generalize this observation and first show

Theorem 4.9 (Conca-Herzog-Hibi). Let M be a graded R-module. Suppose $\beta_{i}(M)=$ $\sum_{j=1}^{n-i+1}\binom{n-j}{i-1} \alpha_{j}(M)$ for some i. Then

$$
\beta_{k}(M)=\sum_{j=1}^{n-k+1}\binom{n-j}{k-1} \alpha_{j}(M) \quad \text { for all } \quad k \geq i
$$

Proof. It is enough to prove the statement for $k=i+1$. Let $y=y_{1}, \ldots, y_{n}$ be a sequence of generic linear forms and denote by $H_{a}(b)$ the associated Koszul homology $H_{a}(b ; M)$. By Proposition 3.1(b) we have to show that $\mathfrak{m} H_{a}(b)=0$ for all $(a, b) \in C_{i, n}$ implies that $\mathfrak{m} H_{a}(b)=0$ for all $(a, b) \in C_{i+1, n}$. But

$$
C_{i+1, n} \backslash C_{i, n}=\{(i+1, b): b \leq n-1\} .
$$

Thus it suffices to show: if $\mathfrak{m} H_{i}(b)=0$ for all b, then $\mathfrak{m} H_{i+1}(b)=0$ for all b.
We use the theorem of Kühl quoted before Theorem 3.5, The theorem implies: if $\mathfrak{m} H_{1}(b ; M)=0$ for all b, then $\mathfrak{m} H_{i}(b ; M)=0$ for all b an all $i \geq 1$.

Now assume that we have $H_{i}(b ; M)=0$ for given $i>1$ and all b. Then $H_{i}(b ; M) \cong$ $H_{1}\left(b ; \operatorname{syz}_{i-1}(M)\right)$ and $H_{i+1}(b ; M) \cong H_{2}\left(b ; \operatorname{syz}_{i-1}(M)\right)$. Assuming that $\mathfrak{m} H_{i}(b ; M)=0$ for all b implies that $\mathfrak{m} H_{1}\left(b ; \operatorname{syz}_{i-1}(M)\right)=0$ for all b. Then the theorem of Kühl implies that $0=\mathfrak{m} H_{2}\left(b ; \operatorname{syz}_{i-1}(M)\right)=\mathfrak{m} H_{i+1}(b ; M)$, as desired.

Corollary 4.10. Assume $\operatorname{char}(k)=0$, and let $I \subset R$ be a graded ideal. Suppose that $\beta_{i}(I)=\beta_{i}(\operatorname{Gin}(I))$ for some i. Then

$$
\beta_{k}(I)=\beta_{k}(\operatorname{Gin}(I)) \quad \text { for all } \quad k \geq i
$$

Proof. Since we assume $\operatorname{char}(k)=0$ the ideal $\operatorname{Gin}(I)$ is strongly stable and hence componentwise linear. It follows from 3.5 that

$$
\beta_{i+1}(R / \operatorname{Gin}(I))=\sum_{j=1}^{n-i+2}\binom{n-j}{i} \alpha_{j}(R / \operatorname{Gin}(I))
$$

By Lemma 4.3 and our assumption this implies that

$$
\beta_{i+1}(R / I)=\sum_{j=1}^{n-i+2}\binom{n-j}{i} \alpha_{j}(R / I)
$$

Now we apply Theorem 4.9 and again Lemma 4.3 to conclude that

$$
\begin{aligned}
\beta_{k}(I)=\beta_{k+1}(R / I) & =\sum_{j=1}^{n-k+2}\binom{n-j}{k} \alpha_{j}(R / I) \\
& =\sum_{j=1}^{n-k+2}\binom{n-j}{k} \alpha_{j}(R / \operatorname{Gin}(I)) \\
& =\beta_{k+1}(R / \operatorname{Gin}(I))=\beta_{k}(\operatorname{Gin}(I))
\end{aligned}
$$

for $k=i, \ldots, n-1$.

References

[1] A. Aramova and J. Herzog, Koszul cycles and Eliahou-Kervaire type resolutions. J. Alg. 181 (1996), $347-370$.
[2] A. Aramova and J. Herzog, Almost regular sequences and Betti numbers. Amer. J. Math. 122(4) (2000), 689-719.
[3] A. Aramova, J. Herzog and T. Hibi, Ideals with stable Betti numbers. Adv. Math. 152(1) (2000), 72-77.
[4] L. Avramov, Obstruction to the existence of multiplicative structures on minimal free resolutions. Amer. J. Math. 103 (1981), 1-37.
[5] D. Bayer, The division algorithm and the Hilbert scheme. PhD Thesis, Harvard University, 1982.
[6] D. Bayer, H. Charalambous, and S. Popescu, Extremal Betti numbers and Applications to Monomial Ideals. J. Alg. 221(2) (1999), 497 - 512.
[7] D. Bayer and M. Stillman, A criterion or detecting m-regularity. Invent. Math. 87(1) (1987), 1-11.
[8] A. Bigatti, Upper bounds for Betti numbers of a given Hilbert function. Comm. Alg. 21(7) (1993), 2317-2334.
[9] M. Brun and T. Römer, Betti-numbers of \mathbb{Z}^{n}-graded modules. Preprint 2003.
[10] W. Bruns, "Jede" endliche freie Auflösung ist freie Auflösung eines von drei Elmenten erzeugten Ideals. J. Alg. 39(2) (1976), 429-439.
[11] W. Bruns, The Evans-Griffith Syzygy Theorem and Bass numbers. Proc. Amer. Math. Soc. 115(4) (1992), 939-946.
[12] W. Bruns and J. Herzog, Cohen-Macaulay rings. Revised Edition, Cambridge University Press. Cambridge, 1996.
[13] D. Buchsbaum and D. Eisenbud, What makes a complex exact? J. Alg. 25 (1973), 259-268.
[14] D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Amer. J. Math. 99 (1977), 447-485.
[15] H. Charalambous, Lower bounds for Betti-numbers of multigraded modules. J. Algebra 137 (1991), 491-500.
[16] A. Conca, Koszul homology and extremal properties of Gin and Lex. To appear in Trans. Amer. Math. Soc.
[17] D. Eisenbud, Commutative Algebra with a view to Algebraic geometry. Springer Verlag, 1995.
[18] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals. J. Algebra 129 (1990), 1-25.
[19] E. G. Evans and P. Griffith, The syzygy problem. Ann. Math. 114 (1981), 323-333.
[20] E. G. Evans and P. Griffith, Syzygies. LMS Lect. Notes Series 106, Cambridge University Press, 1985.
[21] J. Herzog and T. Hibi, Componentwise linear ideals. Nagoya Math. J. 153 (1999), 141-153.
[22] J. Herzog and M. Kühl, On the Betti-numbers of finite pure and linear resolutions. Comm. Alg. 12 (1984), 1627-1646.
[23] J. Herzog, A. Simis and W. Vasconcelos, Approximation complexes of blowing-up rings. II. J. Alg. 82(1) (1983), 53-83.
[24] H. Hulett, Maximal Betti numbers of homogeneous ideals with a given Hilbert function. Comm. Alg. 21(7) (1993), 2335-3250.
[25] C. Huneke and B. Ulrich, The structure of linkage. Ann. Math. 126 (1987), 277-334.
[26] M. Kühl, On the symmetric Algebra of an Ideal. Manuscripta math. 7 (1982), 49-60.
[27] K. Pardue, Deformation of classes of graded modules and maximal Betti numbers. Ill. J. Math. 40(4) (1996), 564 - 585.
[28] C. Peskine and L. Spiro. Dimension projective finie et cohomologie locale. Publ. Math. I.H.E.S. 42 (1972), 47-119.
[29] T. Römer, PhD Thesis. Universität Essen, 2000.
[30] T. Römer, Bounds for Betti numbers. J. Algebra 249(1) (2002), 20-37.
[31] H. Srinivasan, The non-existence of minimal algebra resolutions despite the vanishing of Avramov obstructions. J. Alg. 146(2) (1992), 251-266.

[^0]
[^0]: Jürgen Herzog, Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, 45117 Essen, Germany

 E-mail address: juergen.herzog@uni-essen.de

