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FINITE FREE RESOLUTIONS

JURGEN HERZOG

INTRODUCTION

With these lectures we aim to give a survey on the theory of finite free resolutions. We
will treat the Buchsbaum-Eisenbud acyclicity criterion, discuss upper and lower bounds
for Betti-numbers, including the Evans-Giriffith syzygy theorem, and compare the graded
Betti-numbers of an ideal and with those of its generic initial ideal.

1. LECTURE BASIC CONCEPTS ACYCLICITY CRITERIA

Throughout these lecturéR, m, k) denotes either a Noetherian local ring or a standard
gradedk-algebra with graded maximal ideal All modules considered in these lectures
will be finitely generated, and will be gradedRfis graded.

Let M be anR-module,my, ..., my, a minimal system of (homogeneous) generators of
M. Let Fy be a freeR-module with basisy,...,e, and lete: Fp — M be surjective
R-module homomorphismus defined bgg ) = m; fori = 1,...,r. Nakayama’s lemma
implies thatKer(e) C mFy. SinceR is NoetherianKer(¢) is finitely generated, and there
is again a freeR-moduleF; and an epimorphisri; — Ker(¢), whose kernel is a sub-
module ofmF;. Composingr; — Ker(€) with the inclusion magKer(g) C Fy, we get a
homomorphisn®; : F1 — Fy such that

R R M 0
is exact andm(¢1) C mF,. Proceeding this way one constructs an exact sequence
Fo op = 02 F 01 = € M 0
Definition 1.1. Let M be anR-module. A complex
Fioo — o Fy R-".fr " R 0
of finitely generated freB-modules is called eninimal freeR-resolution ofM, if
(i) ¢(F) C mF,;

(i) Ho(F) =M andH;(F) =0fori > 0.

A minimal free resolution always exist as we have just seen. It is called minimal since
for eachi the basis elements &f are mapped to a minimal set of generator&efe; 1.

Any two minimal free resolutions d¥l are isomorphic, that is, if andG are minimal
free resolutions oM, then there is an isomorphism of comple¥% G.

If (I, ¢) is a minimal free resolution d¥1, then

syz(M) = Im(¢i)
is called thath syzygy module oM.



In the graded case, by choosing in each step of the construction of the minimal free
resolution a minimal system dfomogeneougenerators oKer ¢;, one obtains a graded
minimal free resolutions, that is, a minimal free resolutibsuch that

(i) F=; R(—j)Bi for all i;

(iv) ¢i: F — F_1is homogeneous of degrée
Definition 1.2. Let F be a minimal free resolution &l. Then; = rankF is called the
ith Betti-number oM.

Remark 1.3. (a) In the graded cas§;, = 3 ; B for all i. The numberg;; are called the
gradedBetti-numbers oM;
(b) LetF be a minimal free resolution &fl. Since

Tor}(M,k) = Hi(F® k) = F o k= F/mF,

it follows that3; = dimy Tor; (M, k).
In the graded casd@or(M, k) is a graded-vector space, anfj = dim, Tor}(M,k);.

Let F be the minimal free resolution &fl. We say thaM has dfinite free resolutionif
there exists an integésuch thats = 0.

Note thatM has finite free resolution if one of the equivalent conditions are satisfied:
there exists an integesuch that

(a) Fj=0forall j > i,
(b) Tori(M,k) =0;
(c) Torj(M,k) =Oforall j >i.

Suppose thatl has a finite free resolution. The maximal numbeith Tor;(M,k) # O
is called theprojective dimension d¥l, and denotegrojdimM.

If Ris regular, therall modules have a finite free resolution. Indeedxlet x,. .., Xy
be a regular system of parameterd0fin the graded cas® is the polynomial ring, and
for x we may choose the variables.

Let K be the Koszul complex attached xo ThenK is exact, since is a regular
sequence. ThuK is a minimal free resolution &, and hence

Tori(M,k) =H{(M®K) forall i.
SinceKy,1 = 0, we see thator,;1(M,k) = 0. Hence we conclude that
projdimM < n=dimR

for all R-modulesM.
In these lectures we are mostly interested in finite free resolutions. The following
natural question arises:

What can be said about the Betti-numbers?
To be more specific we ask:

(1) What can be said about the projective dimension?

(2) Given a finite complex of fre®-modules. When is it exact?

(3) Fix certain data like the projective dimension or, in the graded case, the Hilbert-
function. Are there lower or upper bounds for the Betti-numbers for such mod-

ules?
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(4) SupposeRis a polynomial ring and C Ris a graded ideal. Given a term order.
How are the Betti numbers d¢fand its initial ideain(l) related to each other?

(5) What can be said about the graded Betti-numbers of a monomial ideal? In the

context of (4) this question is of interest.
The answer to question (1) is classical

Theorem 1.4(Auslander-BuchsbaumBupposéM has a finite free resolution. Then
projdimM + depthM = depthR.
In particular, projdimM < depthR.

Proof. We proceed by induction oa:= depthR — depthM. Suppose < 0 and lett =
depthR. Then there exists a sequence X,...,% which is regular orR andM.
_ Suppose thgtrojdimM = p > 0, and letF be the minimal free resolution . Then
F = F/(x)F is a minimal free resolution df1/(x)M, and hencep,, : F, — Fy_1 is in-
jective. However, sincelepthF, = O, there existsa € Fp, a # 0 with ma = 0. Since
$p(Fp) C mFp_4, it follows that¢,(a) = 0, contradiction.

Suppose now that> 0. Thendepthsyz(M) = depthM + 1, so that

depthR— depthsyz(M) =c—1.

By induction hypothesis, we hay®ojdimsyz (M) + depthsyz(M) = depthR. Hence,
sinceprojdimM = projdimsyz (M) — 1, the assertion follows.
O

Now we will deal with the second question. Supp@sis a finite complex of fredk-
modules, and suppose we want to prove it is acyclicH;&F) = 0 for i > 0. Assuming
it is not acyclic, we could localize at a suitable prime idéauch that after localization,
Hi(F) is finite length module for all > 0. In this situation we can apply

Theorem 1.5(Lemme d’acyclicié, Peskine-Szpir@g]). Let

¢p ¢p—l $1

F:0 Fo A Fb —— 0

be finite complex of freB-modules withp < depthR, and suppose thatepthH; (F) = 0
for all i > 0. ThenF is acyclic.

prl

Proof. We may assume that> 0, and prove by induction onthatHp_;(F) = 0.

Fori =0, Hp(IF) is submodule of, of depth 0. SincelepthF, > 0, this submodule
must be zero.

Now giveni with 0 < i < p. By induction hypothesis we have thag(F) = Hp_1(F) =
Hp-i+1(F) = 0. Hence

O—Fp—Fp1— - —Fpiy1—IM(Ppit1) —0

is exact. It follows thatepthIn{¢p_i;1) =deptiR—(i—1) > p—i+1>1.
Suppose thakly_i(F) # 0. ThendeptiH,_;(F) = 0, and sincedepthKe(¢p_;) > 0,
the exact sequence
0— Im(¢p-i+1) — Ker(¢pp—i) — Hp_i(F) — 0

implies thatdepthIn(¢,_i;+1) = 1, a contradiction. O
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In the proof of Theorerd.Sit was not important that the modul&sare free, and one
could have replaced them by any other modules satisfgegh > i, and would have
obtained the same conclusion.

Let Q be the ring of fractions oR. An R-moduleM hasrankr if M ® Q is free of rank
r. Itis easy to see thatl has rank, if and only if M, is free of rankr for all p € Ass(R).

The rank is additive on short exact sequences: suppesdJ — M — N — 0 is an
exact sequence étmodules. If two of the moduldg, M or N have a rank, then the third
does, anadankM = rankU + rankN.

The additivity of rank implies

Proposition 1.6. SupposéV has a finite free resolutioR. Then

rankM = (-1)'B.

Corollary 1.7. Letl # 0 be an ideal with finite free resolution. Thércontains a non-
zerodivisor.

Proof. By Propositioril.€, | has a rank, andankl +rankR/l = rankR = 1. Sincel # 0
andl ® Q — R® Q = Q is injective, it follows thatrankl = 1. ThereforerankR/I = 0,
and soR/I is annihilated by a non-zerodivisor. O

Let¢: M — N be anR-module homomorphism. We say thiathas rankr, if Im¢ has
rankr.

An R-module homomorphisn : F — G of finite freeR-modules is given by a matrix
A with respect to bases &f andG. We denote by;(¢) the ideal generated by aH
minors of¢, and set(¢) =I;(¢), if r is the rank ofp. We also sek(¢) =Rif t <Oand
lt(¢) = 0if t > min{rankF,rankG}. The definitions do not depend on the chosen bases
of F andG.

For the next theorem we shall need the following facts:

Proposition 1.8. Let¢ : F — G be homomorphism of finite fréémodules, ang a prime
ideal. Then

(@) 1t(¢) Z p <= (Im¢), contains a free direct summand@f of
rankt;

(b) kk(¢) Z pandli;1(¢), =0<«= (Im¢), is a free direct summand @&, of
rankt;

(c) rank¢ =r <= gradd,(¢) > 1andl; 1(¢) =0.

Theorem 1.9(Buchsbaum-Eisenbud g]). Let
F:0 F, o1 F1 Fo —— 0
be a finite complex of frd@-modules, and let =y j; (—1))~"rankFj. Then the following
conditions are equivalent:
(a) F is acyclic;
(b) gradd,, (¢;) >ifori=1,...,p;
(c) (i) rankFR = ranke; +rankg; 1 fori=1,...p;
(i) gradd(¢i) >ifori=1,...,p.
4
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Proof. (a) = (b): The acyclicity ofF and the additivity of rank imply that; = ranke;.
Therefore, Propositioid.8 implies thatgradd,, (¢;) > 1 for i = 1,...,p. Hence there
exists a non-zerodivisot which is contained in all the idealg(¢;). If x is a unit, then
I, (¢i) = Rfor all i and we are done. Otherwisec m, andx is non-zerodivisor on all
F and onim(¢1). Let denote residue classes modwlo Then0 — Fp — Fyp_1 —
...— R — F; — 0is acyclic. By induction we havgradd, (¢i) > i — 1. Hence, since
I, (¢i) = Iy, (¢i), we conclude thagradd,, (¢;) >ifori=2,....p.

(b) = (a): By induction onp, may assume th&— F, — --- — F; — Ois acyclic, and
have to show thatl;(F) = 0.

SetM; = Coker(¢; 1) fori =1,...,p. We first show by descending induction that
depti(Mj), > min{i,depthR,} for all p € SpeRandi =1,...,p.

The assertion is trivial for= p, sinceM, = Fp. Now leti < p and consider the exact
sequenc® — Mj; 1 — F — M; — 0.

If depthR, > i+ 1, then our induction hypothesis implies tragptiM; 1), > i+ 1,
and hencelepth{M;), > i.

If depthR, <'i, then (b) implies thaty,,,(¢i+1) ¢ p, and sincerankM 1 = riy1 we
haveli(¢i+1) = 0fort > riy1. Thus Propositioil.€ implies that(M;), is free, and hence
depti(M;), = depthR,.

Now assume thatl(IF) # 0, and letp € AssH;(IF). If depthR, > 1, thendepti{My), >
1, and henceepthiH,(FF), > 1, sinceH;(F) = Ker(M; — Fp). This is a contradiction.

On the other hand, diepthR, = 0, thenl, (¢1) ¢ p and

U :=1m((¢1)p) = IM((M1)p, — (Fo)p)

contains a free direct summand @), of rankri, seel.8 However sincgMy), is
a free module ofankry, the surjective magM;), — U must be an isomorphism, i.e.
H1(F), = 0. This is again a contradiction.
(@), (b)=- (c): SinceF is acyclic, the sequenc&s— Im¢;,1 — F — Im¢; — 0 are
exact. Thus the additivity of rank implies condition (c)(i).
As noticed in (a)= (b), we have; =rankg; fori =1,..., p. Hence (b) implies (c)(ii).
(c) = (b): It follows from (c)(i) thatr; = rank¢;. Hence (ii) implies (b). O

As an application we prove

Theorem 1.10(Hilbert-Burch) Letl be an ideal with free resolution

0 R4 Rl ! 0.
Then there exista € Rsuch that = aln(¢). Moreover, ifgradd > 2, thenl = 1,(¢) and
gradd = 2.

Proof. Let ¢ be given by then+ 1) x n matrix A with respect to the canonical bases of
R" andR™1, and letrr: R*! — R the homomorphism which sends the canonical basis
elements to (—1)'&, whered denotes the minor ok with theith row deleted. LeB be

the (n+ 1) x (n+ 1)-matrix which is obtained from by adding thej the column ofA to
Aas an(n+ 1)th column. TherB has two equal columns, and her=B = 0. Expanding
detB with respect to thén+ 1)th column we therefore get

0= aj(-1)s.
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This shows that

(1) 0 R R TR 0
is a complex.

Since we assume th@t— R" — R™! — | — 0 is exact, Theorerd.g implies that
graddn(¢) > 2. Therefore, sincé;(m) = In(¢), it follows from Theorenil.S that com-
plex (1) is exact. Hencé,(¢) = Cokerg = |. Composing this isomorphism with the in-
clusion mapg C Rwe obtain a monomorphisiq(¢) — R. However sincgraddn(¢) >
2, we haveHomg(Ih(¢),R) = R. Thus the monomorphisia(¢) — R is multiplication
by an elemené € R. It follows thatl = al,(¢). By Corollary1.7 the element must be
a non-zerodivisor.

Suppose now thajradd > 2. Then, sincd = aln(¢) C (a), it follows thata is unit,
andl = Iy(¢). Finally, sincegradd < projdimR/l = 2, we getgradd = 2. O

2. SECOND LECTURE LOWER BOUNDS

In our discussion on the question which are the possible Betti-numbers of a module of
finite projective dimension, we will concentrate in this section on lower bounds.
The following simple result gives us a hint what kind of bounds could be expected.

Proposition 2.1. Supposeris regular, and let C R be a radical ideal of gradeg. Then
Bi(R/) = (7).
Proof. Let p be a minimal prime ideal of. ThenR, is a regular local ring of dimension
> g with maximal ideabR,. Sincel is a radical ideal it follows thatR, = pR,.

Let F be a minimal free resolution d&?/1. Since localization is an exact functdt, is
a resolution of(R/1),. This resolution may not be minimal. Nevertheless we conclude
thatBi(R/1) > Bi(R,/pRy) > (¥). The last inequality follows sincgR, is generated by a
regular sequence of lengthg. O

Corollary 2.2. LetRbe the polynomial ring andC Ra monomial ideal of gradg. Then
B(R/M) = (9).

Proof. Let ug,...,un be the minimal set of monomial generatorsl payu; = [
and letSbe the polynomial ring in the new set of variablgs

The monomial; = I_lrj]:ll_liilxjk is called the polarization afi, and the ideal? =
(V1,...Vm) C Sthe polarization of.

It is a basic fact12, Lemma 4.2.16] that the sequence of linear forps— Xjk with
j=1,...,nandk=23,... form aregular sequenc¢eonS/IP, and thal{S/1P)/¢(S/IP) =
R/1. In particular,Bi(R/1) = Bi(S/1P). Sincegradd = graddP, and sincdP is a radical
ideal, the conclusion follows. OJ

Ny i
X

These results indicate that the following may be true

Conjecture 2.3. Let M be anR-module of gradey with finite free resolution. Then
B(M) > (9).
In caseR s regular andM is a module of finite length, this conjecture is known as the

Buchsbaum-Eisenbud and Horrocks conjecture.
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The conjecture is widely open. There are few cases in which the conjectured lower
bound for the Betti numbers is known:

(a) (Buchsbhaum-Eisenbudl{]) Ris regularM = R/l has finite length, and the free
resolutionF of R/l has an algebra structure;

(b) (Huneke-Ulrich, R5]) R is regular,M = R/I, andl is in the linkage class of a
complete intersection;

(c) (Herzog-Hibi-Kuhl, [22] and 21]) Ris regular andV is componentwise linear.

The argument of Buchsbaum-Eisenbud is as follows: choose a regular segquence
X1,...,%, with all x; € 1. We may assume that> 1. Let K be the Koszul complex of
x with K; = @@{'Re andd(g) = x. Then the inclusior{x) C | can be lifted to a linear
map ai: K — F; such thatgs(a1(e)) = x for all i. Now for each integek > 1 let
ax: Kx — K be defined by

ajle, N...A& ) =ai(e,) ... -ai(e,).

Thena: K — F is an algebra and complex homomorphism, whose kernel is a graded
ideala in K.

Supposex # 0. Leta € a be a non-zero element of degrgeThen there exidh € K|
with bAa# 0. SincebAa € a it follows thata, # 0. We identify K, with R. Then
the image ofay, is a cyclic submodule of', which is isomorphic tdR/an. SinceRis a
domain the annihilator of a non-zero submodBjgis zero. It follows thaR/a, = 0, so
that a, = 0. The canonical epimorphisiR/(x) — R/l with kernel, sayC, induces the
exact sequence

Extt (C,R) —— Ext(R/I,R) —— Exty(R/(X),R).

Here the homomorphisi is induced byar,, and hence is the zero map, @xt"1(C,R) =
0, sinceC is of dimension zero. It follows thd&xt"(R/1,R) = 0, a contradiction.
Thus we conclude that= 0. Thereforeq is injective, and it follows that

Gi(R/1) = rankF > rankK; = (T) forall i.

Unfortunately, not all finite minimal free resolutions admit an algebra structurdl] In [
Avramov discovered obstructions to the existence of such structures, and later Srinivasan
[31] showed that despite the vanishing of the obstructions defined by Avramoy, a finite
minimal free resolution still may not admit an algebra structure.

Discussion of(c): In [21] componentwise linear modules are introduced: a grdgled
module is calleccomponentwise lineaf for all j the submoduléV;, generated by the
jth componenM; of M has a linear resolution.

By assumptionR = K[x1,...,Xn] is the polynomial ring. We may assume thais
infinite. Then for a generic choice of linear forms...,y, one has for=1,..., nthat

A =Ker(M/(y1,....yi- )M —2— M/(y1,...,yi-1)M)
is a module of finite length. We set
ai = L(A),

and calla, ..., a, thegeneric annihilation numbers of.
7



It will be shown in the next section (see Coroll@)2 and Theoren3.5) that

B < nfl (?:i) aj,

=1
with equality if and only ifM is componentwise linear.
For the proof of (c) we need the following

Lemma 2.4. With the notation and assumptions introduced supposediathM =t, and
letas,...,an be the generic annihilation numbersif Thena; =0fori <t, anda; #0
fori>t.

Proof. SupposedepthM > 0. Then a generic linear form is a non-zerodivisor. This
shows thatrj = Ofori <t.

In order to prove thatrj # O for i > t, it suffices to show: idepthM = 0, andy is a
generic linear form, then (i)0 :m y) # O, and (ii)depthM /yM = 0.

Statement (i) is obvious. For the proof of (ii) we consider for dtle map

Yy IM/YM — yM/y M

induced by multiplication by.

Let C; be the kernel of this map, and let-y'M < C;. Thenc = y'~ta with ac M and
there existd € M such thatyc= y'a = y"*1h. Hencey(c—y'b) = 0, and som"c € y'M
for somen, sincey is a generic linear form. This shows tiGtis a finite length module
for all i.

Suppose now thadepthVi /yM > 0. We show by induction om, thaty' M /y'M —
y'M /y'*1M is an isomorphism. In fact, for eachve have the exact sequence

0—C — Yy M/YM — yM/y+M — 0.

Fori =1, depthM /yM > 0 and/C; < . This implies thaC; = 0. ThereforeM /yM —
yM/y?M is an isomorphism.

Now leti > 0. By induction we may assume thgt M /yIM = yiM /yi+IM for all
j <i. In particular, it follows thatM /yM = y=IM/y'M, so thatdepthy' M /y'M >
0. However sincgCj < », the above exact sequence shows againGhat 0 and that
y~IM/yM — y'M /y*1M is an isomorphism.

On the other hand, sinaepthM = 0, there existg € M, ¢ # 0, such thayc= 0. Leti
be such that € y =M\ y'M. Thenc+y'M # 0 buty(c+y'M) = 0. This is a contradiction
sinceC; = 0. O

Now statement (c) will be a consequence of the following stronger result.

Theorem 2.5. Let R be the polynomial ring, an®¥l a componentwise lineaR-module
with projdimM = p. Theni (M) > ().

Proof. Lett = depthM. Thent = n— p, by the Auslander-Buchsbaum formula. There-

fore,a; >0fori=n—p+1,...,n, by Lemma2.4 Thus, sinceM is componentwise
8



linear,

O

In view of this result one may hope that for aRymoduleM of projective dimensiom
one hag(M) > (P). However by a theorem of Brungg, Satz 3], ifN is anith syzygy
module of a module of finite projective dimension, thens also theth syzygy module
of an ideal generated by 3 elements. In particulal i the second syzygy module of
a module of projective dimensign then there exists an idelabenerated by 3 elements
whose second syzygy moduleNs one hag3,(R/1) =3 < (§),if p> 3.

The following concrete very simple example was communicated to us by Conca: let
| = (—XgX2 + XgXa, X3, X2) C R= K[X1,%2,%3,X4]. ThenR/I has the resolution

0—>R—>R4—>R5—>R3—>R—>R/| — 0.

The theorem of Bruns also tells us that the resolution of an ideal generated by 3 ele-
ments can have arbitrary high projective dimension. On the other hand, it is conjectured
by Stillman that if we fix a sequence of numbeis. . ., d;, then there is a numbgrsuch
that any ideal in a polynomial (over a fieki) which is generated by forms of degree
di,...,dr has projective dimensiof p. This conjecture is known to be true only in a few
special cases.

For monomial ideals the strong lower bound for the Betti-numbers holds. More generally
one has the following result9] Theorem 1.1])

Theorem 2.6(Brun, Rdmer) LetM be aZ"-graded module witlprojdimM = p. Then
B(M) > (D).
There is a strengthening of ConjectZ.€in a different direction

Conjecture 2.7. LetM be anR-module of grade with finite projective dimension. Then
ranksyz(M) > (9-7).

Of course the additivity of rank yields that Conject2.@ implies Conjectur.3.
The best known general result concerning lower bounds for the syzygy modules is the
famous

Theorem 2.8 (Evans-Griffith [L9]). Suppose thaR contains a field. LeM be anR-
module withprojdimM = p. Thenranksyz(M) >ifori=1,...,p—1.

Of course we must exclude= p in the statement of the theorem, since for example the
pth syzygy module of a regular sequence of lengik only of rank 1.

Since the rank is additive we immediately obtain
9



Corollary 2.9. With the assumptions @t8 one has

2i+1, fori=0,...,p—,
BI(M) Z p7 for I = p_17
1, fori=np.

For the proof of Theorer.8 we follow the presentation given id?] and in the paper
[11] of Bruns. This requires some preparations:Nebe anR-module, and € M. Then

0(x) ={¢(x): ¢ € Homr(M,R)},

is an ideal, the so-callearder ideal ofx.

Suppose for example thd = F is free with basisy,...,e,, and thatx e F. Then
x=Yi_18;§ for somea; € R. Since the linear formg; : F — Rwith ¢i(ej) = §;j generate
Homg(F, R), and sincepi(x) = g fori =1,...,n, it follows that in this case

O(X) = (ag,...,an).
We have

Lemma 2.10.LetM be anR-modulex € M andp € Spe¢R). Thenx € M generates a
free direct summand ofl, if and only if &'(x) ¢ p.

Proof. The order ideal’(x) localizes sincédomg(M, R),, is naturally isomorphic to
Homg, (M, R;). Thus we assume that=m, and henc&'(x) ¢ mifand only if &/(x) = R.
This is equivalent to say that there exigtsM — Rwith ¢ (x) = 1.
SupposeM = Rx@ N, then the projection to the first summand composed with the
isomorphismRx— R, x — 1, yields¢ : M — Rwith ¢ (x) = 1. Conversely, given suc
we haveM = Rx® Ker¢. O

The next result is one important step in the proof of Thec2eén

Theorem 2.11. SupposeR contains a field. Let

bp ¢1

F: 0 Fo Fp_1 = FF—— 0
be a complex of finitely freB-modules such thdm(¢;) C mF_; for all i. Lett > 0 be
an integer and setj = ZJF’:i(—l)J*' rankFj. Suppose thatodimly, (¢i) > i+t for all i.
Then, forj =1,..., pand evere € Fj \ mFj, one hagodim&(¢j(e)) > j+t.

Proof. LetJ = &(¢;(e)). We may assume thdtC m. We setR=R/J andF =F@R.
Theng; (&) = 0, andlr, (i) = (Ir, () +3)/3.
Assume thatodimJ < j+t — 1. Then we obtain
dim(R/1r, (1)) < dim(R/l;;(¢i)) < dimR—i—t <dimR—i+j—1,

which implies thatodimly, (i) >i— j+1foralli> j.
Let

Wp—j+1 yn

G:0 — Gp,j+1 E— Gp_j —_— - Gl Go O,

with Gj = F_|+j—l and g = 47i+j_1. ThenG is a complex withcodimly, (i) > i for
i=1..p—j+1 If we would havegradd, (¢;) > i for all i, then the Eisenbud-

Buchsbaum acyclicity criterion would imply thé&t is acyclic. In order to remedy this
10




defect, we choose a balanced big Cohen-Macaulay modulR &md consider the com-
plex G ® M. This is precisely the step in the proof where we need Bhabntains a
field, because in this case it is known that there exists a balanced big Cohen-Macaulay
R-module, that is, a Cohen-MacaulRymodule (not necessarily finitely generated) such
that every system of parametershis anM-regular sequence, se&2] Corollary 8.5.3].
It follows thatgrad€l,, (i),M) > i for all i. An obvious modification of the Eisenbud-
Buchsbaum acyclicity criterion then implies tlatx M is acyclic.

Sincey(e) = 0, it follows that(yy @ M)(e® M) = 0. However, sincé& @ M is acyclic
it follows thatKer(gn @ M) = Im(gpr®M). ThereforexM C Im(gr@M) C m(G1@M).

On the other hand, sin@z mG;, it follows that the image of® M under the canonical
epimorphismG; @ M — (G1 ® M)/m(G1 ® M) = G1/mG; ® M/mM is isomorphic to
M/mM = 0. This implies thae®@ M ¢ mG; ® M, a contradiction. OJ

For the inductive proof of the Evans-Giriffith theorem we need the following technical

Lemma 2.12. LetM be anR-module. Then there exists a frRBemoduleF and a homo-
morphismg : M — F with the following property: If is a prime ideal andN C M,, is free
directR,-summand, thet, (N) is a free direct summand & with rankg, (N) = rankN.

Proof. Denote byW*, the R-dual of anR-modulesW. We choose & a freeR-module
and an epimorphisnr: G — M*, and leth: M — M** be the canonical homomorphism.
ThenF = G* and¢ = " o h have the desired property. Indeed, sifidie Noetherian and
all modules are finitely generated, the constructiof-aind ¢ localize. Thus we may
assume theR = R;. SinceN is a free direct summand M, there exisyy,...,gr € Nand
ai,...,ar € M* such thatai(gj) = &j. ChooseB € G with () = aj fori=1,...,r.

Then
¢(9i)(Bj) = h(g)(1(Bj)) = h(gi)(aj) = aj(gi) = &;.
This proves thap (N) is a free direct summand &f with rankN = rank¢ (N). O

Proof of Theorer2.8 We prove more generally the following statement let
p 2 ¢1

F: 0 Fo A Fb —— 0

be a complex of finitely generated fré&modules such thaim(¢i) C mF_; for all i,
and setr; = z'-o:i(—l)l" rankFj. Suppose that there exists an integer O such that
codimly, (¢;) >i+tforalli. Thenr; >i+tfori=1,...,p—1.
Let M be a balanced big Cohen-Macaulay moduleRofSincecodiml,, (¢i) > i, there
exists a sequence,...,X in I, (¢;) which is part of a system of parametersRfand
hence a regular sequence Mn This implies thagradd$;,M) > i for all i. ThusF® M
is acyclic. In particularr; > 1fori=1,...,p.

We prove(x) by induction onp. If p= 1, then there is nothing to show. Suppose now
thatp > 1, and consider the complex

G:0 —— Gp1 2L Gy oy G % G 0,

with G = Fyq andy; = ¢ip1 fork=1,...,p—1. Lets = Z'ﬁ_l(l)j*i rankGj. Then
codimls (¢%) > i+ (1+t) for all i. Hence by induction hypothesis, we haye; = s >
(i+1)+tfori=1,...,p—1

Fp_]_
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Thus it remains to show that > 1+t. We show this by induction on The assertion is
clear ift = 0. Suppose now that> 0. We choose € F; \ mF, replacer; by F| = F;/Re
and¢; by the induced map,: F, — F;. Furthermore, we choo$g andCokerg;, — F;
as described in Lemma.12 This yields a mapp;: F{ — F;, so that we obtain the
complex

F': 0 Fo Fp1 F2
We show (i)codimlr/z(dJé) >t+1and (i) codimlr/l(cpi) >t. ThenF’ satisfies the hy-
potheses ofx) with t — 1 instead ot.

It may be thaim ¢; ¢ mF,. In this case one can split off a direct summand without
affecting (i) ansd (ii). Applying our induction hypothesis to this cancelled complex, we
obtainr’1 >1t, and hence; >t + 1, as desired.

Proof of (i): letp be a prime ideal witttodimp <t. Thenly,(¢i) Z p, so thatF ® R,
is split acyclic. In particular(Fy), = (Im ¢2), ® (Cokergz), with rank(Im ¢2), = ro and
rank(Cokerg,), = r1. Moreover, by Theorer2.11 we havecodim&(¢1(e)) >t + 1.
Therefore Lemm&.10implies that¢(e) generates a non-zero free summandFj,.
Consequently, the imageof e under the residue class m&p — Cokerg, generates a
non-zero free direct summand @Cokerg,),. Hence(Cokerg,), = (Cokerg,),/R,eis
free of rankr] =r1 — 1, and the exact sequence

K 0.

0— (Im¢3), — (Fi), — (Cokergs), — 0

splits. In particular(Im¢5), is free direct summand @f; ), of rankr,. Thus Proposition
1.8implies thatlrxz(¢§) ¢ p, as desired.

Proof of (ii): We choose as before. We have already seen tf@bkergs), is free
of rankr]. As ¢; is constructed as described in Lem®4Zz (Cokerd;), is mapped
isomorphically onto a free direct summand f. This implies thaﬂrfl(rpi) ¢ p, and

showscodimlrfl(cpi) > 1+t, which is even more than required. O

3. LECTURE UPPER BOUNDS

In the remaining sections, unless otherwise staRed, k|1, ..., Xy] is the polynomial
ring, andM is a finitely generated graddttmodule. As indicated in Section 1 we want
to relate the Betti-numbel$ (M) of M to the generic annihilator numbems(M) of M.

Lety=vi,...,yn be generic linear forms. Then

Aj=((y1,---,Yj-OM mYj)/ (Y1, -, Yj-1)M
is a module of finite length. We set
ai(M) =£¢(A).

We denote byH;(j;M) the Koszul homologyHi(ys,...,yj;M) of the partial sequence
Y1,...,Yj, and sehj(j;M) =dimg Hi(j; M). If there is no danger of confusion, we simply
write B, o, Hi(j) andh;(j) for Bi(M), ai(M), Hi(j;M) andh;(j; M) respectively.

12



Attached withy there are long exact sequences

S HG-D P H( -1 —— H() —— Hia(j- D)
—— o= 1) P Ho(j-1) —— Ho() — O

Here @i j_1: Hi(j —1) — Hi(j — 1) is the map given by multiplication witky;. Note
thatA| is the Kernel of the magyo ;1. We conclude
(>l<) hl(j) = hl(j — l) + aj— dimK Im ¢1,j71 fori=1;
(ex) hi(j) =hi(j—1)+hi_1(j —1) —dimg Im@; j_1 — dimk Im ¢;_1 j_1 fori > 1.
With the notation introduced we now have:
Proposition 3.1. Given integerd < i < j we define the set
Cj={(ab)eN?:1<b<j—landmaxi—j+b1) <a<i}.
Thenwe have
@hi(j) < zi;'fl (f:'l‘) agforalli>1andj > 1;
(b) For giveni > 1 and j > 1 the following conditions are equivalent:
() hi(j) = sk () aw
(i) ¢ap=0forall (a,b) €C;j;
(iif) mHa(b) =0forall (a,b) € G ;.

Proof. By induction onj and using equations (*) and (**) one proves that

ik i—b\ ..
h(i)= > <i_1)ajk— > <i_a)d|mK|m¢a,b
(a,b)eCi

k=1

Then(a) and the equivalence @f) and (ii) in (b) follow immediately. For the equiva-
lence of(ii ) and(iii ) we notice that a generic linear form annihilatégb) if and only if
mHa(b) = 0. 0

By taking ] = n we obtain the following upper bound

Corollary 3.2. 3 < z?;il“ ("D aj forall i > 1.

When this upper bound is reached is described in the next corollary in terms of vanish-
ing of Koszul homology

Corollary 3.3. (a) For a given integer the following conditions are equivalent:
M) B=315()a;,
(i) mHa(b) =0for all (a,b) € G n;
(b) The following conditions are equivalent:
i) B=3"4"(1))aj foralli > 1,
(i) mHa(b) =0for all band for alla > 1.

We now want to discuss when condition (b)(ii) is satisfied. We first note that it implies

thatys,...,yn is a proper sequence in the senseld] [
13



Definition 3.4. Let Rbe an arbitrary commutative ring, aMlandR-module. A sequence
y1,...,Yr Of elements oRis called gproperM-sequence
if yj+aHi(j;M) =0foralli >1andj=0,...,r -1

In [26] Khl proved the following remarkable fact: The sequenge..,y; is a proper
M-sequence if and only if
Yj+1H1(j;M)=0 for j=0,...,r—-1.
Now we have
Theorem 3.5(Conca-Herzog-Hibi)Letl C Rbe a graded ideal, and Igt=1vy;,...,y, be
a sequence of generic linear forms. The following conditions are equivalent:
(a) R/l has maximal Betti numbers, i.e.
n—i+1 n—j .
Gi(R/I) = ,Zl (i _1>aj(R/I) forall i>1,
(b) yis a properR/I-sequence;
(c) I is componentwise linear.

Proof. Let z be a generic linear form. TheH (p) = 0 if and only if mH;(p) = 0. Thus
the equivalence of (a) and (b) follows fra8n3 (b). The equivalence of (b) and (c) can be
found in 16, Theorem 4.5]. O

Another important method to obtain upper bounds for resolutions is to compare the reso-
lution of an ideall with the resolution of its initial ideah(l) with respect to some term
order< onR. The basic fact is the following

Theorem 3.6.Letl C Rbe a graded ideal. Then for any term orderone has
Bij(R/1) < Bij(R/inc(1)) forall i,j.

Proof. Let R be thek[t]-algebraR[t], wheret is an indeterminate of degree 0. EY7]
Theorem 15.17] there exists a graded ideal R such that th&[t]-algebraR/I is a free
k[t]-module (and thus flat oveéxit]), and such that

() (R/N)/L(R/T) = R/in(l),
and
3) (R/T) = (R/1) @cklt,t 1],

as graded-algebras. The idedlc F~2~is constructed by means of a weight function.
Let IF be the minimal graded fregresolution ofIi/IN. Then @) implies thatF /tF is a
graded minimal fre®-resolution ofR/I, so thatB;; (R/T) = Bi;(R/in(1)) for all i and]j,
and @) implies that the localized complé¥ is a graded (not necessarily minimal) free
Rk Kt,t~1] resolution of R/I) @k K[t,t 1. Thus,Bij(R/1) = Bij (R/1) @k K[t,t71]) <
Bij(R/I), as desired. O

Let M be a finitely generated gradé&imodule. Theregularity of M is defined to be
the numbereg M) = max{j —i: (M) # 0}. As an immediate consequence3f we

have
14



Corollary 3.7. Letl C Rbe a graded ideal. Then for any term orderone has:
(a) projdimR/I < projdimR/in_(I).
(b) depthR/I > depthR/in(1).
(c) If R/in(l) is Cohen-MacaulayGorenstein, then so isS/I.
(d) regR/I <regR/in(l).

We shall see in the next section that all inequalitie8.gfbecome equalities, ih (1)
is replaced by the generic initial ide@in(l) with respect to the reverse lexicographic
order.

We fix a term order< satisfyingx; > Xo > ... > X,. Letl C R be an ideal. The
generic initial idealGin(l) with respect to this term order is defined as followsGé{n)
denote the general linear group with coefficient&.ilny ¢ = (a;) € GL(n) induces an
automorphism of the gradddalgebraR, again denoted by, namely

¢(f(Xe,..., %)) = f(_ia,-lxi,...,iamxi) forall feR

For the proof of the following result we refer t@q, Theorem 15.18]

Theorem 3.8(Galligo, Bayer and Stillman)Let| C R be a graded ideal. Then there is
a nonempty Zariski open set C GL(n) such thatin(¢ (1)) does not depend o € U.
Moreover,U meets non trivially the Borel subgroup &fL(n) consisting of all upper
triangular invertible matrices.

For ¢ € U the monomial ideain(¢(1)) is called thegeneric initial ideal ofl, and will
be denotedin(l).

A monomial ideall is calledstrongly stableif xj(u/x;) € | for all monomialsu < I, all
Xj that dividesu, and alli < j. The ideall is calledstable if X (u/Xyw)) € | for all
monomialsu € |, and alli < m(u). Herem(u) = max{i: x; dividesu}.

For a monomial idedl it is customary to denote the unique minimal set of monomial
generators bys(1). It is easy to see thatis strongly stable ik;(u/x;) € | for all mono-
mialsu € G(1), all x; that dividesu, and alli < j. A similar statement holds for stable
ideals.

Stable monomial ideals were introduced by Eliahou and Kervagvho also gave
an explicit resolution of such ideals. Such ideals are important because of the following
result [L7, Theorem 15.23]

Theorem 3.9. Suppose thathark = 0, and letl C Rbe a graded ideal. Then the generic
initial ideal Gin(1) of | with respect to the reverse lexicographical order is strongly stable.

Also in positive characteristiGin(l) has a nice (but much more complicated) combi-
natorial structure.

The Koszul homology of a stable monomial idéatan be easily computed. We let
¢: R— R/I be the canonical epimorphism, and skt u/Xqy ) for all u € G(1).

Theorem 3.10.Let| C R be a stable ideal. For all =1,...,nandi > 0, the Koszul
homologyHi(X;, ..., Xn) is annihilated bym = (x1,...,%n). In other words, all these ho-

mology modules ark-vector spaces. A basis bf(xj,...,%n) is given by the homology
15



classes of the cycles
e(U)es Nepuy, ueG(l), |o]=i-1, j<min(g), maxo)<m(u).

Proof. We proceed by induction on— j. For j = n, we only have to considetl;(x,)
which is obviously minimally generated by the homology classes of the elemg@njs,
with u € G(1) such tham(u) = n. Since by the definition of stable ideads’ € | for all i,
we see thaH;(xn) is ak-vector space.

Now assume that< n, and that the assertion is proved for 1. ThenxjH;(Xj+1,...,X%)) =
Oforalli > O, so that the long exact sequence

A, Hi(Xj+1,---, %) — Hi(Xj,..., %) — Hi—1(Xj+1,...,%n)
A, Hi—1(Xj+1,- s %) — Hi—1(Xj, ..., Xn) — -

splits into the exact sequences

4) 0 — Hy(Xj41,- - Xn) — Ha(Xj ..., %) — Rj/l] = Ry/I|

and

(5)  O0—Hi(Xj+1,---:%) — Hi(Xj,...,%n) — Hi—1(Xj4+1,.--,%) — O.

for i > 0. HereR; is the polynomial ringk[xs,...,Xj], |j the ideal inR; generated by
the monomialau € G(I) which are not divisible by any; with i > j, in other words,
li=1NS;.

] In seqLJJenceél), Kerx; is minimally generated by the residues of the monomiaisith
ue G(l) andm(u) = j. Note that the setfu € G(I): m(u) = j} and{u € G(lj): m(u) =
j} are equal, and that is a stable ideal ifR;. ThereforeKer; is ak-vector space.

We now consider the short exact sequence

(6) 0 — Hi(Xj+1,.--,%) — Hu(X;,...,Xn) — Kerxj — 0.

It is clear that the elemen&gu’)ej, U’ € G(I), m(u) = j are cycles irKy(Xj, ..., %) such
thatd([e(U)gj]) = U + 1. Therefore, by) and our induction hypothesis, it follows that
the set” = {[e(U)e]: ue G(I),m(u) =i > j} generate$H;(Xj,...,Xn). Sincel is a
stable ideal we see thaf[e(u)g] =0forall j=1,...,nand all[e(u)g] € .. In other
words, Hi(Xj,...,Xn) is ak-vector space. Finally, since the number of elements/of
equalsdimgHy(Xj11,. . .,%n) +dimKerx;, we conclude that” is a basis oH(Xj,...,Xn).

In order to prove our assertion for> 1 we consider the exact sequencgs (By
induction hypothesis the homology modwHig_1(Xj+1,...,X%,) iS ak-vector space with
basis

[e(U)eg Aemyl, ueG(l), |of=i-2, j+1<min(g), maxo)<m(u).
Given such a homology class, consider the elensgute;j A eg A ey,)- Itis clear that
this element is a cycle iKi(xj,...,%n), and that
O([e(U)ej N eg Aemy)] = £[e(U)er Aemy)]-
Thus from the exact sequenc®) @nd our induction hypothesis it follows that the ho-

mology classes of the cycles described in the theorem gendréatg. .., x,). Again

the stability of the ideal implies thatm annihilates all these homology classes, so that
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Hi(xj,...,%n) is aK-vector space. Finally, just as foe 1, a dimension argument shows
that these homology classes form a basibli¢kj, . .., Xn). O

Let | be a monomial ideal. We denote k(1); the set of monomial generators lof
of degreej. The following result of Eliahou and Kervair&8] follows immediately from
3.10

Corollary 3.11. Letl C SRbe a stable ideal. Then

@) Bi+i(1) = Yueaq), (MU,
(b) projdimR/l = max{m(u): ue G(1)};
(c) regl) = max{dequ): ue G(l)}.

If we consider upper bounds for the Betti-numbers of an ideal we have to fix a€laks
ideals and to ask if there is an upper bound for the Betti-numbers of the ideals within this
class. We have already seen that the class of ideals whose residue class ring has a given
sequence of annihilator numbers has such an upper bound.

Here we now consider the clags of ideals with given Hilbert function. Within this
class there is a distinguished ideal. In fact,}ebe the lexicographical monomial order
induced byx; > x> > --- > xn. Recall that a monomial ide&lC Ris called alexsegment
ideal, if for each monomiab € I, all monomialsy > u belong tol as well.

Let B C Ry be a set of monomials. Thdis called dexsegmenit with eachu € B we
havev € B for all v > uin the lexicographical order. A lexsegment ideal is an ideal which
is spanned in each degree by a lexsegment set of monomials.

We denote byShadB) theshadowof B, i.e. the set of monomials

{Xg,....,xn}B={xu:ueB,i=1...,n}.

The setB is called a(strongly) stableset of monomials if the ideal generated Bys
(strongly) stable. _

We letmy(B) the number of elementsc B with m(u) =i, and setn<i(B) = 3 _; m;(B).
Then we have

Lemma 3.12.LetB C My be a stable set of monomials. Then

(@) m(ShadB)) = m<i(B);
(b) [ShadB)| = 5L, m<i(B).

Proof. (b) is of course a consequence of (a). For the proof of (a) we note that the map
¢: {ueB: mu) <i} —{ueShadB): m(u) =i}, U ux

is a bijection. In factg is clearly injective. To see thgt is surjective, we let € ShadB)
with m(v) =i. Sincev € ShadB), there existsv € B with v = x;w for somej <i. It
follows thatm(w) <. If j =i, then we are done. Otherwise< i andm(w) =i. Hence,
sinceB is stable it follows thati = (x;j/x;)w € B. The assertion follows, sinae=ux. O

The following result is crucial.

Theorem 3.13(Bayer B]). LetL C Ry be a lexsegment, ar8l C Ry be a stable set of
monomials witHL| < |B|. Thenm;(L) < m<;(B) fori=1,...,n.
17



We denote byB'®* the unique lexsegment set of monomials Wi*| = |B|. Now
Lemma3.12and Theoren3.13imply

Corollary 3.14. LetB C Ry a be stable set of monomials, thgghadB'®¥)| < | ShadB))|.
Using all this we now get

Theorem 3.15.Letl C Rbe a graded ideal. Then there exists a unique lexsegment ideal
in R, denoted'®X, such thaR/I andR/1'®* have the same Hilbert function.

Proof. Let < be any monomial order. It is easy to see tBAt andS/in-(l) have the
same Hilbert function. Hence we may replddey in- (1), and thus may assume tHais

a monomial ideal. Then for any fieldthe Hilbert function ofL[xy,...,xn|/(G(l)) does
not depend oh.. Thus we may replaceby L if necessary, and thus may as well assume
thatchark = 0. Then by Theorer8.9 the generic initial ideaGin(l) of | with respect to
the reverse lexicographical order is strongly stable.

For eachd let Iy be spanned by the set of monomiblg ThenNjy is a strongly stable
set of monomials. Lef{f* be the subspace & spanned by We set!® = @y (1,
and show that'® is an ideal, in other words, thdiky, ..., X, HP* C 11X, for all d.

By Corollary3.14 one has|ShadN/®)| < |ShadNg)| < |[Ngy1| = [N |. On the
other hand, sincéhac{N('fX) and N('ﬁxl are both lexsegments, this inequality implies
ShadNy™) ¢ NI, as desired.

It is obvious from the construction thRY/| andR/1'®* have the same Hilbert function.

0

Bigatti [8] and Hulett P4] proved independently the following theorem if the base field
k of Ris of characteristi©. A proof in arbitrary characteristic was later given by Pardue
[27] using a suitable polarization argument.

Theorem 3.16(Bigatti, Hulett, Pardue)Let| C Rbe a graded ideal. Then
Bi(1) < B;(1I"™) foralliandj.

In particular, among all ideals with a given Hilbert function, the unique lexsegment ideal
with this given Hilbert function has the largest Betti-numbers.

Proof. We outline the proof in casehark) = 0. By Theorem3.€ we havef;j(l) <
Bij(Gin(l)) for all i and j, whereGin(l) denotes the generic initial ideal dfwith re-
spect to the reverse lexicographical order. Since we assumetthgk) = 0, it follows
from TheorenB.SthatGin(l) is a strongly stable ideal. We may therefore assumelthat
itself is a a strongly stable monomial ideal. TH&(1) = Suecq), (™ 1), by Corollary

3.11(a). A similar formula holds fol'®X, sincel'® is also strongly stable. These formulas
for the Betti-numbers can be rewritten in terms of the numberg!) m<;(1'®). Then
using Bayer’s theorerfi.13according to whichm;(l) < mc;(1'®¥) for all i, one obtains
the desired inequalities. O

4. LECTURE STABILITY

In this section we assume that= k[xi, ..., x| is the polynomial ring over an infinite

field K, andl C Ris a graded ideal. In the previous section we have seen that for any term
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order one hag;j(l) < Bj(in(l)). One may ask on what conditions on the term order or
on the ideal one obtains more precise information in this comparison. A classical result in
this direction is the theorem of Bayer-Stillméfj jvhich asserts thaeg(l) =reg(Gin(l)).

Here and throughout this secti@in(l) denotes the generic initial ideal with respect to
the reverse lexicographical order.

A remarkable extension of the Bayer-Stillman theorem, which we want to discuss next,
was proved by Bayer, Charalambous and Popesc@]inljet M be a finitely generated
gradedS-module. A Betti numbefyy;m 7# 0 of M is calledextremalif Gii,.j = O for all
(i,]) # (k,m) withi > kandj > m.

The following picture displays the Betti diagram of a graded free resolution in the form
of a MACAULAY output. The entry with coordinates, j) is the Betti numbefii ;. In
our picture the outside corners of the dashed line give the positions of the extremal Betti
numbers.

Let M be a finitely generated grad&module, and ley = y1,...,y, be generic linear
forms. As in Section 3 we séti(j) = Hi(ys,...,yj;M), and
A] = (y17 cee 7ijl)M ‘M yJ/(y17 cee 7yj*l)M'

All Hi(j) as well as allA; are R-modules of finite length and sindd is a gradeds
module, allH;(j) and all Aj are naturally graded, and there are graded isomorphisms
Hi(n); = Tor(k,M); for all i and j.

Let N be an Artinian graded module. We set

R

Now we introduce the following numbers attachedvtand the sequence=ys,...,¥n.
We set

ri=max{s(Hi(j))—i:i>1} and sj=s(A;) for j=1,...
and putrg = 0. Observe thateg M) = max{rn,S(M/mM)}.
We quote the following technical result froif][

n

7t

Theorem 4.1. With the hypotheses and notation introduced we have
(@) rj =max{sy,...,sj} for j=1,...,n. In particular,r; <rp, <... <rp.
(b) Let Z ={j1,...,J1}1, 1< j1 < j2<...< i <n, be the set of elemenjsc [n|
such thatrj —rj_1 # 0. Then for allt with 1 <t < and all j with j; < j we have
(i) Hi(j)izs=0fors>rj_, andi > j— ji+1;
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(“) Hj_jt-i‘l(j)j_jt'f'l-i-l’jt = (Ajt—l)rjt'

This result yields a characterization of the extremal Betti-numbers in terms of Koszul

homology

Corollary 4.2. Letthe numberg be defined as id.1, and sek =n— ji+1andm =rj;.
Then the graded Betti numbgj_, j of M is extremal if and only if

(i,]) € {(k,m):t=1,...,1}.
Moreover,By k+m = dimk (Aj)s, fort=1,... 1.

Let| C R be a graded ideal. We want to compare the graded Betti-numbéRgl of
andR/Gin(l). Choosing generic coordinates we may assumeittiht = Gin(l), and
thatxn, Xn—1,-..,X1 IS @ generic sequence f&/1. For the reverse lexicographical order
induced byx; > x2 > ... > X, one has

in((Xj,...,%) +1) = (Xj,...,%) +in(l)
and

in((Xj,.., %) +1) :Xj—1) = ((Xj,..., %) +in(l)) - Xj_1.

It follows that

(X)) +1) X1/ ((Xjs - X0) +1)
and

((Xiy-- s Xn) +In(1)) 1 %-1/((Xiy - - -, Xn) +iN(1))

have the same Hilbert function.

Let Aj be the module defined before in case tMat R/I. Then
Aj = ((Xj,-- %)+ 1) Xj—1/((Xj, ..., %) +1).
We set
A’jk =((Xi,--, %) +In(1)) 1 %i—1/((Xi, ..., Xn) +in(1)),
andaj = ((Aj), aj = L(A]), sj = s(Aj) andsj = s(Aj) for j=1,...,n.
The preceding considerations now yield

Lemma 4.3. The modulesA; and Aj have the same Hilbert functions. In particular,
aj=aj andsj=s;jfor j=1,....n

Combining this result with Theoredh1and Corollary4.2 we obtain

Theorem 4.4 (Bayer-Charalambous-S.Popesclgt | C R be a graded ideal, and let
Gin(l) be the generic initial ideal of with respect to the reverse lexicographic order.
Then for any two integeris j € N one has
(a) theijth Betti number oR/I is extremal if and only if théjth Betti number of
R/Gin(l) is extremal;
(b) the corresponding extremal Betti numberdgf andR/ Gin(l) are equal.

This theorem implies in particular

Corollary 4.5. Let| C R be a graded idealGin(l) the generic initial ideal ofl with

respect to the reverse lexicographic order. Then
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(a) (Bayer-Stillmanyeg(l) = reg(Gin(l));
(b) projdimR/I = projdimR/ Gin(l);
(c) R/l is Cohen-Macaulay, if and only R/ Gin(l ) is Cohen-Macaulay.

Under which circumstances do all the graded Betti-numberanéiGin(l ) agree? The
answer is given by

Theorem 4.6 (Aramova-Herzog-Hibi) Supposechark = 0, and letl C R be a graded
ideal. The following conditions are equivalent:

(@) Biitj(1) = Bii+j(Gin(1)) for all i and j;
(b) 1 is componentwise linear.

For the proof of this theorem we need some preparation. We Wjitéor the ideal
generated by all homogeneous polynomials of degrbelonging tol. Moreover, we
write -4 for the ideal generated by all homogeneous polynomialswifiose degree is
greater than or equal th

The Betti-numbers o&in(l) have the following properties

Proposition 4.7. Letl C Rbe a graded ideal generated in deg@eThen we have:

(@) if Bi,i+j(Gin(l)) # O, thenBy i, j(Gin(l)) # O for all i' < i;
(b) if Bo,j(Gin(l)) # 0, thenBy ;/(Gin(l)) #Oforalld < j’ < j.

Proof. Since the generic initial ideal is strongly stable, statement (a) follows from Corol-
lary3.11(a).

Let g1,...,0m be the generators dfof degreed. Suppose thaBp j—1(Gin(l)) = 0.
Then consider the ided}_,. SinceGin(l>j_2) = Gin(l)>j_2, we may assume that
Bo.d+1(Gin(l)) = 0. We have to show thain(l) is generated in degrek It follows from
Bo.d+1(Gin(l)) = 0 that all Spolynomials of degred + 1 reduce to zero with respect to
{01,-..,9m}- Since(in(g1),...,in(gm)) is a strongly stable ideal, its first syzygy module
is generated in degreg+ 1, the fact that theS-polynomials of this degree reduce to
zero, implies tha{gs,...,gm} is a Gibbner basis of. From this it follows thaGin(l) is
generated in degree O

We shall also need

Lemma 4.8.Letl andJ be graded ideals dR generated in degreg with the same graded
Betti numbers. Theh.q;1 andJ-q4.1 have the same graded Betti numbers.

Proof. The exact sequence

0 —— lsgs1 k(—d)Pos —— 0

induces the long exact sequence

- = Tori1 (K I>d+1) 1)+ (j—1) — TOM+1(K, D) (i4-2)4(j—1) — Tori+a(k, k)ﬁofl)ﬂ_(dﬂ)

— Tori(K, I>d4+1)i+j — Tori(k, 1)i+j — Tori(k, k)iﬁﬁ’?_d — e
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It then follows thatf;iyj(l>d+1) = Bii+j(l) for all i and for all j # d,d+ 1. Also,
Bii+j(l=d+1) =01if j <d. Now, if j =d+1, then the above long exact sequence be-
comes

0 — Toriy1(K, )iy1+d — Torip1(k, k)BO’d — Tori(K,1>d+1)i+d+1 — Tor (K, 1 )itd+1 — O.

i+1
Hence B i+dr1(1>d+1) = Bii+dr1(1) + (i5'1) Boa (1) — Bisvisa+d(l).
The same formulae are valid @ j(J). This completes the proof. O

We are now in the position to give a proof of Theorér6.

Proof of4.6. First, suppose thatis componentwise linear. The following formula for the
graded Betti numbers of a componentwise linear idleaknown 21]:

Bii+i(l) = Bl( ) Bi(m|<j—1>)-

Herem is the irrelevant maximal idedks,...,xs) of R. Since a strongly stable ideal
is componentwise linear and sin@n(l) is strongly stable, the same formula is valid
for Gin(l). Therefore, it suffices to prove tha(l ;) = Bi(Gin(l)j,) andBi(mlj_1)) =
B(mGin(l)j_1)).

Sincel ;) has alinear resolution, it follows from the Bayer—Stillman theorem (Corollary
4.9), thatGin(l;y) = Gin(l) ;). Sincelj, andGin(l;y) have the same Hilbert function,
and since the Betti numbers of a module with linear resolution are determined by its
Hilbert function, the first equality follows. To prove the second one, we notenthat
has again a linear resolution and that, by the same reason as hefGie(l ) _q, =
Gln(ml<]_1>)

Second, suppose thatand Gin(l) have the same graded Betti numbers. inetx(1)
(resp.min(l)) denote the maximal (resp. minimal) degree of a homogeneous generator
of I. To show that is componentwise linear, we work with induction ba- max(l) —
min(l). Setd = min(l).

Letr =0. Sincel andGin(l) have the same graded Betti numbers, it follows Giat | )
is generated in degrek SinceGin(l) is a strongly stable ideal, we have tl@in(l) has
a linear resolution, hendehas a linear resolution.

Now, suppose that > 0. SinceGin(l->q+1) = Gin(l)>q+1, our induction hypothesis
and Lemmad.8imply thatl- 4.1 is componentwise linear. Thus, it suffices to prove that
l,g) has a linear resolution. Suppose this is not the case. Then, by the Bayer—Stillman
theorem,Gin(l,4)) has regularity> d. Moreover, sinceGin(lg)) is strongly stable, its
regularity equalsnaxGin(l qy)). It follows from Theoren#.7thatGin(lq)) has a gener-
ator of degree@ + 1. Now,

Bod+1(l) = dimlgg —dim(mlig)ai1
dimlg 1 —dim(lg) )d+1,

and
Boa+1(Gin(l)) = dimGin(l)g+1 —dim(mGin(l) g))d-+1
= dlmGln(I)dH—dim(mGin(I<d>))d+l
> dlmGln(I)dH—dimGin(I<d>)d+1,



becausém Gin(l qy))q1 is properly contained iGin(lg))q+1. Hence

Bod+1(Gin(l)) > Bogra(l),

a contradiction. This completes our proof. O

We note that Theore®.€ and Theorena.7 (b) are not valid in positive characteristic.
Indeed, if characteristip > 0, thenl = (xP,yP) provides a counterexample.

In the proof of Theorer.6 (a) = (b) we only used thaB;(l) = Bo;(Gin(l)) for all j.
Thus this condition implies thg (1) = B (Gin(l)) for alli . This was first noted by Conca
in [16, Theorem 1.2]. We now generalize this observation and first show

Theorem 4.9 (Conca-Herzog-Hibi) Let M be a gradedR-module. Supposfi(M) =
> (1)) aj(M) for somei. Then

Bc(M) = n_§k+1 (n j) (M) forall k>i
= a; ora |
K & k—1) !

Proof. It is enough to prove the statementfo=i+ 1. Lety=ys,...,y, be a sequence
of generic linear forms and denote bl (b) the associated Koszul homologig(b; M).
By Propositior3.1(b) we have to show thatH,(b) = 0 for all (a,b) € Ci , implies that
mHa(b) = Ofor all (a,b) € Ci;1n. But

Thus it suffices to show: iH;(b) = O for all b, thenmH;, 1(b) = 0 for all b.

We use the theorem of il quoted before Theorel@.5. The theorem implies: if
mHj(b;M) = 0 for all b, thenmH;(b;M) = Ofor all ban alli > 1.

Now assume that we hawvé (b;M) = 0 for giveni > 1 and allb. ThenH;(b;M) =
Hi(b;syz_,(M)) andHi_1(b;M) = Hy(b;syz_4(M)). Assuming thatmH;(b;M) = 0 for
all b implies thatmH; (b;syz_,(M)) = 0 for all b. Then the theorem of #hl implies that
0=mHy(b;syz_;(M)) = mHi11(b;M), as desired. O

Corollary 4.10. Assumechark) = 0, and letl C R be a graded ideal. Suppose that
Gi(1) = Bi(Gin(l)) for some. Then

Bk(1) = Bx(Gin(l)) forall k>i.
Proof. Since we assumehark) = 0 the idealGin(l) is strongly stable and hence compo-

nentwise linear. It follows fror@.5that
n—i+2

paa/enm) = 5 (")) aw/cina)

=1
By Lemma4.2 and our assumption this implies that
n—i+2 n—j
pa® = 3 ("))

=1
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Now we apply Theorem.€and again Lemma4.3to conclude that

n—k+2 i
Bl) =Ba(R/1) = <nkj)0’j(R/|)

=

n—k+2 o
> (" )airicint)

=1
= B (R/GIn(l)) = B(Gin(1))
fork=i,...,n—1. O
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