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Gradings

Begin at the beginning and go on till you come to the end; then stop.
(Lewis Carroll)

PROPOSITION 1.1. Let Γ be a monoid, and let γ1, . . . , γn ∈ Γ.

a) There exists exactly one Γ-grading on P such that the non-zero constant
polynomials are homogeneous of degree 0 and, for i = 1, . . . , n, the
indeterminate xi is homogeneous of degree γi.

b) Under this grading, the set {γ ∈ Γ | Pγ �= 0} is the submonoid of Γ
generated by {γ1, . . . , γn}.

EXAMPLE. Let P = K[x1, x2] be equipped with the Z-grading defined by
K ⊆ P0, x1 ∈ P−1, and x2 ∈ P1. Then dimK(P0) = ∞.

DEFINITION. A K-algebra R is called a standard graded K-algebra if it
is N-graded, satisfies R0 = K and dimK(R1) < ∞, and if R is generated by
the elements of R1 as a K-algebra.

REMARK. A standard graded K-algebra R is an algebra of the form R ∼= P/I,
where P = K[x1, . . . , xn] is N-graded such that K = P0, each xi is homogeneous
of degree one, and I is a homogeneous ideal in P .
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DEFINITION. Let m ≥ 1, and let the polynomial ring P = K[x1, . . . , xn]
be equipped with a Zm-grading such that K ⊆ P0 and x1, . . . , xn are
homogeneous elements.

a) For j = 1, . . . , n, let (w1j, . . . , wmj) ∈ Zm be the degree of xj. The matrix
W = (wij) ∈ Matm,n(Z) is called the degree matrix of the grading. In
other words, the columns of the degree matrix are the degrees of the
indeterminates. The rows of the degree matrix are called the weight
vectors of the indeterminates x1, . . . , xn.

b) Conversely, given a matrix W = (wij) ∈ Matm,n(Z), we can consider
the Zm-grading on P for which K ⊆ P0 and the indeterminates are
homogeneous elements whose degrees are given by the columns of W.
In this case, we say that P is graded by W.

c) Let d ∈ Zm. The set of homogeneous polynomials of degree d is denoted
by PW,d, or simply by Pd if it is clear which grading we are considering.
A polynomial f ∈ PW,d is also called homogeneous of degree d, and we
write degW (f) = d.
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Let us have a look at an easy example.

EXAMPLE. Let P = K[x1, x2, x3, x4] be graded by the matrix

W =


 1 1 1 1

1 1 0 0
1 0 1 0




and let f = x1x4 − x2x3. Then f is homogeneous of degree (2, 1, 1), because
W · log(x1x4)tr = W · log(x2x3)tr = (2, 1, 1)tr, and the principal ideal generated
by f is a homogeneous ideal.
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PROPOSITION 1.2. Let I be an ideal of P . Then the following
conditions are equivalent.

a) The ideal I is monomial.

b) There is a non-singular matrix W ∈ Matn(Z) such that I is homogeneous
with respect to the grading on P given by W .

c) For every m ≥ 1 and every matrix W ∈ Matm,n(Z), the ideal I is
homogeneous with respect to the grading on P given by W .

Proof. Since I is generated by terms, and terms are homogeneous with respect
to the gradings we are considering, we see that a) implies c). Obviously, b) is
a special case of c). Therefore is suffices to show that b) implies a). We take a
homogeneous polynomial f ∈ IW,d and show that there is only one term in its
support. Let t = xα1

1 · · ·xαn
n and t′ = xβ1

1 · · ·xβn
n be terms in the support of f .

Then d = degW (t) = degW (t′) implies W · (α1, . . . , αn)tr = W · (β1, . . . , βn)tr.
Since we have det(W ) �= 0, the Z-linear map defined by W is injective. We
obtain (α1, . . . , αn) = (β1, . . . , βn), and hence t = t′. �
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Let a Zm-grading on the polynomial ring P = K[x1, . . . , xn] be defined
by a matrix W ∈ Matm,n(Z), and let δ1, . . . , δr ∈ Zm. According to
Definition 1.7.6, we obtain an induced Zm-grading on the graded free P -module

F =
⊕r

i=1 P (−δi): this grading is given by Fd =
r⊕

i=1

PW, d−δi
for all d ∈ Zm.

Thus a term tei ∈ Tn〈e1, . . . , er〉, where i ∈ {1, . . . , r} and t ∈ Tn, is a
homogeneous element of F of degree degW (tei) = degW (t) + δi. In particular,
F is the graded free P -module such that degW (ei) = δi for i = 1, . . . , r.

DEFINITION. Let m ≥ 1, let P be graded by a matrix W of rank m in
Matm,n(Z), and let w1, . . . , wm be the rows of W .

a) The grading on P given by W is called of non-negative type if there
exist a1, . . . , am ∈ Z such that all entries of v = a1w1 + · · · + amwm are
non-negative and the entries of v corresponding to the non-zero columns
of W are positive. In this case, we shall also say that W is a matrix of
non-negative type.

b) We say that the grading on P given by W is of positive type if there exist
a1, . . . , am ∈ Z such that all entries of a1w1 + · · · + amwm are positive. In
this case, we shall also say that W is a matrix of positive type.
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Now we are ready to show that polynomial rings with gradings of positive
type and finitely generated graded modules over them have finite dimensional
homogeneous components.

PROPOSITION 1.3. Let P be graded by a matrix W ∈ Matm,n(Z) of
positive type, and let M be a finitely generated graded P -module.

a) We have P0 = K.

b) For all d ∈ Zm, we have dimK(Md) < ∞.

Proof. First we show a). Let V = (a1 a2 · · · am) ∈ Mat1,m(Z) be such that
V · W has positive entries only. We see that PW,0 ⊆ PV ·W,0. Now it suffices to
note that every term t �= 1 has positive V · W -degree.
In order to prove b), we choose a finite homogeneous system of generators
of M and consider the corresponding representation M ∼= F/N where N is a
graded submodule of F . It suffices to prove the claim for F . We do this by
showing it is true for each P (−δi). Since W is of positive type, there exists a
matrix V ∈ Mat1,m(Z) such that V · W has all entries positive. We see that
PW,d ⊆ PV ·W,V ·d. Hence we only have to show that the K-vector spaces PV ·W,i

are finite dimensional. Their bases {xα1
1 · · ·xαn

n | V · W · (α1, . . . , αn)tr = i} are
finite, since V · W has positive entries only. �
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A further advantage of considering finitely generated graded P -modules in the
case of gradings of positive type is that Nakayama’s Lemma applies to them.

DEFINITION. Let R be a ring and M a finitely generated R-module.

a) A finite system of generators of M is called a minimal system of
generators if its number of elements is minimal among all systems of
generators of M .

b) A system of generators of M is called an irredundant system of generators
if no proper subset generates M .

Clearly, minimal systems of generators are irredundant. Over arbitrary rings,
the two notions do not coincide. For instance, when R = Z and M is the
ideal generated by {2}, the system of generators {4, 6} is irredundant, but not
minimal.
One of the most important consequences of Nakayama’s Lemma is that, in
the case of gradings of positive type, irredundant systems of homogeneous
generators of finitely generated graded modules are minimal. This will be shown
in Proposition 1.5.
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To formulate our next result, we need two additional objects. Let P be graded
by W ∈ Matm,n(Z), and let M �= 0 be a graded P -module. Then the set
Γ = {d ∈ Zm | Pd �= 0} is clearly a submonoid of Zm, and we can define the
Γ-submonomodule Σ of Zm generated by {d ∈ Zm | Md �= 0}. It is easy to see
that Σ = {d ∈ Zm | Md �= 0} if M is a submodule of a graded free P -module.
If the grading on P is of non-negative type, these monomodules are well-ordered,
as the following proposition shows.

PROPOSITION 1.4 Let P be graded by a matrix W ∈ Matm,n(Z) of
non-negative type.

a) There exists a monoid ordering τ on Zm such that the restriction of τ
to Γ is a well-ordering.

b) For every finitely generated, graded P-module M , the restriction of τ to
the monomodule Σ is a well-ordering.

c) If W is of positive type, there exists a well-ordering τ on Γ such that the
set P+ =

⊕
d>τ0 Pd is the ideal generated by {x1, . . . , xn}.

Proof. See [KR2] . �
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Using this proposition, we see that the hypotheses of the Graded Version of
Nakayama’s Lemma 1.7.15 are satisfied for gradings of non-negative type. If
the grading is actually of positive type, we obtain the result we strived for.

PROPOSITION 1.5. Let P be graded by a matrix W ∈ Matm,n(Z) of
positive type, and let M �= 0 be a finitely generated graded P -module.

a) A set of homogeneous elements m1, . . . , ms generates the P -module M if
and only if their residue classes m1, . . . ,ms generate the K-vector space
M/(x1, . . . , xn)M .

b) Every homogeneous system of generators of M contains a minimal one.
All irredundant systems of homogeneous generators of M are minimal
and have the same number of elements.

Proof. By Proposition 1.4, there exists a well-ordering τ on Γ such that P+ =⊕
d>τ0 Pd = (x1, . . . , xn), and therefore P/P+

∼= K. Hence a) follows from
Corollary 1.7.16.a. Now we prove b). Since P0 = K is a field, Corollary 1.7.16.b
shows that every homogeneous system of generators of M contains a subset
which is minimal among the homogeneous systems of generators of M and
whose residue classes form a K-basis of M/(x1, . . . , xn)M . This subset is also
minimal among all systems of generators of M because, for any set of generators
of M , their set of residue classes generates M/(x1, . . . , xn)M . �
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This proposition is not true in general if W is of non-negative type.

EXAMPLE. Let P = Q[x, y] be graded by the matrix W = (0 1), and let
I = (xy, y − xy). Then W is of non-negative type, I is a homogeneous ideal,
and {xy, y − xy} is an irredundant homogeneous system of generators of I.
However, since I = (y), this system of generators is not minimal. Notice that
we have P+ = (y) and P/P+

∼= K[x] here.

We introduce the following notions which are useful for computing.

DEFINITION. Let W ∈ Matm,n(Z) be a matrix of rank m.

a) The grading on P defined by W is called non-negative if the first non-zero
element in each non-zero column of W is positive. In this case, we shall
also say that W is a non-negative matrix.

b) The grading on P defined by W is called positive if no column of W is
zero and the first non-zero element in each column is positive. In this
case, we shall also say that W is a positive matrix.
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Our next corollary shows that non-negative gradings are of non-negative type
and positive gradings are of positive type, as their names suggests.

PROPOSITION 1.6. Let P be graded by a matrix W ∈ Matm,n(Z).

a) If the grading defined by W is non-negative, it is of non-negative type.

b) If the grading defined by W is positive, it is of positive type.

Proof. To prove claim a), we let Ci denote for i = 1, . . . , m the set of all indices
j ∈ {1, . . . , n} such that the jth column of W has its first non-zero entry in the
ith row. If we add high enough multiples of the first row to the rows below,
the resulting matrix has strictly positive entries in the columns indexed by C1.
In particular, the second row of this matrix has strictly positive entries in the
columns indexed by C1 ∪ C2, and if we add high enough multiples of that row
to the rows below, rows 2, 3, . . . , m of the resulting matrix have strictly positive
entries in the columns indexed by C1∪C2. Continuing this way, we finally arrive
at a matrix whose last row has strictly positive entries in columns C1∪· · ·∪Cm,
i.e. in all non-zero columns. Claim b) follows in the same way, except that there
are no zero columns in W, so that the last row of the final matrix has positive
entries everywhere. �
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COROLLARY 1.7. Assume that W ∈ Matm,n(Z) defines a non-negative
grading on P . Let M be a finitely generated, graded P -module, and let Σ
be the set {d ∈ Zm | MW,d �= 0}. Then the relation Lex|Σ is a well-ordering.

Proof. (Hint) Combine Proposition 1.4. with the definition of a non-negative
grading. �

We conclude the first part with the following remark.

REMARK. Let P be graded by a matrix W ∈ Matm,n(Z).

a) If the grading defined by W is of non-negative type, then there exists a non-
singular matrix V ∈ Matm(Z) such that the grading defined by the matrix
W ′ = V · W is non-negative and PW ′,V ·d = PW,d for all d ∈ Zm.

b) Similarly, if the grading defined by W is of positive type, then there exists
a non-singular matrix V ∈ Matm(Z) such that the grading defined by the
matrix W ′ = V · W is positive and PW ′,V ·d = PW,d for all d ∈ Zm.
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Homogeneous Gröbner Bases

No problem is so formidable that you can’t walk away from it.
(Charles Schulz)

THEOREM 2.1 (The Homogeneous Buchberger Algorithm)
Let P = K[x1, . . . , xn] be positively graded by W ∈ Matm,n(Z), let M be a
graded submodule of F , and let V = (v1, . . . , vs) be a deg-ordered tuple of
non-zero homogeneous vectors which generate M . Furthermore, let σ be a
module term ordering on Tn〈e1, . . . , er〉. Consider the following sequence of
instructions.

1) Let B = ∅, W = V, G = ∅, and s′ = 0.

2) Let d be the smallest degree with respect to Lex of an element in B or
in W. Form the subset Bd of B, form the subtuple Wd of W, and delete
their entries from B and W, respectively.

3) If Bd = ∅, continue with step 6). Otherwise, choose a pair (i, j) ∈ Bd

and remove it from Bd.

4) Compute the S-vector Sij and its normal remainder S′
ij = NRσ,G(Sij).

If S′
ij = 0, continue with step 3).
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5) Increase s′ by one, append gs′ = S′
ij to the tuple G, and append the set

{(i, s′) | 1 ≤ i < s′, γi = γs′} to the set B. Continue with step 3).

6) If Wd = ∅, continue with step 9). Otherwise, choose a vector v ∈ Wd

and remove it from Wd.

7) Compute v′ = NRσ,G(v). If v′ = 0, continue with step 6).

8) Increase s′ by one, append gs′ = v′ to the tuple G, and append the set
{(i, s′) | 1 ≤ i < s′, γi = γs′} to the set B. Continue with step 6).

9) If B = ∅ and W = ∅, return the tuple G and stop. Otherwise, continue
with step 2).

This is an algorithm which returns a deg-ordered tuple G = (g1, . . . , gs′)
whose elements are a homogeneous σ-Gröbner basis of M .

Variants of this algorithm compute Truncated Gröbner Bases and Minimal
Systems of Generators, Minimal Presentations and Minimal Free Resolutions.
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EXAMPLE. Let P = Q[x1, x2, x3, x4] be graded by W =
(
1 1 1 1
0 1 3 4

)
, and let I

be the homogeneous ideal generated by {f1, f2, f3, f4} where f1 = x1x4 − x2x3,
f2 = x2

1x3−x3
2, f3 = x1x

2
3−x2

2x4, f4 = x2x
2
4−x3

3. Thus we have degW (f1) =
(
2
4

)
,

degW (f2) =
(
3
3

)
, degW (f3) =

(
3
6

)
, and degW (f4) =

(
3
9

)
.

The free resolution is

0 −→ P
( −(

5
10

)
) λ−→ P

( −(
4
6

)) ⊕ P
( −(

4
7

)) ⊕ P
( −(

4
9

)) ⊕ P
( −(

4
10

)) ψ−→
ψ−→ P

( −(
2
4

)) ⊕ P
( −(

3
3

)) ⊕ P
( −(

3
6

)) ⊕ P
( −(

3
9

)) ϕ−→ I −→ 0

Here ψ and λ are given by




x2
2 −x1x3 −x2x4 −x2

3

−x3 x4 0 0
x1 −x2 x3 x4

0 0 x1 x2




(−x4 − x3 − x2 x1)
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Hilbert Functions
Theorem: All positive integers are interesting.

Proof: Assume the contrary. Then there is a smallest non-interesting positive integer.
But, hey, that’s pretty interesting! A contradiction. QED

DEFINITION. A map f : Z −→ Z is called an integer function. Given an
integer function f : Z −→ Z, we define the following operators.

a) The integer function ∆f : Z −→ Z defined by ∆f(i) = f(i) − f(i − 1) for
i ∈ Z is called the (first) difference function of f .

b) Let ∆0f = f . For r ≥ 1, we define an integer function ∆rf : Z −→ Z by
∆rf = ∆(∆r−1f), and we call it the rth difference function of f .

c) Given a number q ∈ Z, we define an integer function ∆qf : Z −→ Z by
∆qf(i) = f(i)−f(i−q) for i ∈ Z and call it the q-difference function of f .

d) An integer function f : Z −→ Z is called an integer Laurent function if
there exists a number i0 ∈ Z such that f(i) = 0 for all i < i0.

e) Given an integer Laurent function f : Z −→ Z, we define another integer
Laurent function Σf : Z −→ Z by Σf(i) =

∑
j≤i f(j) and call it the

summation function of f .
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DEFINITION. A polynomial p ∈ Q[t] is called an integer valued polynomial
if we have p(i) ∈ Z for all i ∈ Z. The set of all integer valued polynomials
will be denoted by IP. Furthermore, for every r ≥ 0, we let IP≤r be the set
of all integer valued polynomials of degree ≤ r.

Some authors use the expression “numerical polynomial” to denote integer
valued polynomials. Clearly, for every r ≥ 0, the set IP≤r is a Z-submodule
of Q[t]. Notice that IP is not contained in Z[t], as evidenced by the integer
valued polynomial 1

2t(t + 1).

EXAMPLE. Let a, b ∈ Z with b ≥ 1, and let p ∈ Q[t] be the polynomial
defined by p(t) =

(
t+a

b

)
= 1

b!(t + a)(t + a − 1) · · · (t + a − b + 1). Then p is an
integer valued polynomial.
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PROPOSITION 3.1. (Basic Properties of Integer Valued Polynomials)
Let a ∈ Z, r ∈ N, and let (a0, a1, a2, . . .) be a sequence of integers.

a) For an integer valued polynomial p, we have deg(p) = r if and only if
∆rp(t) ∈ Z \ {0}. If this holds true, we have ∆rp(t) = LCDeg(p).

b) Let p be an integer valued polynomial of degree r, and let c = LCDeg(p).
Then q = p − c

(
t+a

r

)
is an integer valued polynomial of degree < r.

c) For every r ≥ 0, the set of polynomials {(t+ai
i

) | 0 ≤ i ≤ r} is a Z-basis
of IP≤r. Consequently, the set {(t+ai

i

) | i ∈ N} is a Z-basis of IP.

d) For a map f : Q −→ Q, the following conditions are equivalent.

1) There exists an integer valued polynomial p ∈ IP such that f(i) = p(i)
for all i ∈ Z.

2) There exist a number i0 ∈ Z and an integer valued polynomial q ∈ IP

such that f(i0) ∈ Z and ∆f(i) = q(i) for all i ∈ Z.

Proof. See KR2]. �
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DEFINITION. Let f : Z −→ Z be an integer function.

a) The map f : Z −→ Z is called an integer function of polynomial type if
there exists a number i0 ∈ Z and an integer valued polynomial p ∈ IP

such that f(i) = p(i) for all i ≥ i0. This polynomial is uniquely determined
and denoted by HPf .

b) For an integer function f of polynomial type, the number ri(f) =
min{i ∈ Z | f(j) = HPf(j) for all j ≥ i} is called the regularity index of f .
Whenever f(i) = HPf(i) for all i ∈ Z, we let ri(f) = −∞.

EXAMPLE. For every i ∈ N, we define a map bini : Z −→ Z by bini(j) =
(
j
i

)
for j ≥ i and by bini(j) = 0 for j < i.
Clearly, the map bini is an integer Laurent function of polynomial type. It
satisfies HPbini

(t) =
(
t
i

)
and ri(bini) = 0. Moreover, if i > 0, then ∆ bini(j) =

bini−1(j − 1) for all j ∈ Z.
But there is no integer valued polynomial p ∈ IP such that bini(j) = p(j) for all
j ∈ Z, because in this case we would get p = HPbini

and p(−1) =
(−1

i

)
= (−1)i,

in contradiction to bini(−1) = 0.
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DEFINITION. Let M be a finitely generated graded P -module and let W
define a grading of positive type on P . Then, Proposition 1.3 shows that
we have a well-defined map

HFM : Z −→ Z

i �−→ dimK(Mi)

This map is called the Hilbert function of M .

Henceforth, we assume that the grading on P is the standard grading.

• The Hilbert function of M is an invariant under homogeneous linear changes
of coordinates.

• For every i ∈ N, we have HFP (i) =
(
i+n−1
n−1

)
.
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PROPOSITION 3.2. (Basic Properties of Hilbert Functions)
Let M , M ′, and M ′′ be three finitely generated graded P -modules.

a) Let j ∈ Z. Then the Hilbert function of the module M(j) obtained by
shifting degrees by j is given by HFM(j)(i) = HFM(i + j) for all i ∈ Z.

b) Given a homogeneous exact sequence of graded P -modules

0 −→ M ′ −→ M −→ M ′′ −→ 0

we have HFM(i) = HFM ′(i) + HFM ′′(i) for all i ∈ Z.

c) Given finitely many finitely generated graded P -modules M1, . . . , Mr, we
have HFM1⊕···⊕Mr(i) = HFM1(i) + · · · + HFMr(i) for all i ∈ Z.

d) Let δ1, . . . , δr ∈ Z. Then the Hilbert function of the graded free
P -module F =

⊕r
j=1 P (−δj) is given by HFF (i) =

∑r
j=1 HFP (i − δj) =∑r

j=1 binn−1(i − δj + n − 1) for all i ∈ Z.

e) Given homogeneous generators {g1, . . . , gs} of M , we let δj = deg(gj) for
j = 1, . . . , s. Then we have HFM(i) ≤ ∑s

j=1 binn−1(i − δj + n − 1) for all
i ∈ Z. In particular, HFM is an integer Laurent function.
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Proof. Part a) follows from the definition of M(j), since we have M(j)i =
Mi+j for all i ∈ Z. Now we prove b). Since the P -linear maps in the exact
sequence are homogeneous, we have for every i ∈ Z an exact sequence of finite
dimensional K-vector spaces 0 −→ M ′

i −→ Mi −→ M ′′
i −→ 0. Counting

dimensions yields dimK(Mi) = dimK(M ′
i) + dimK(M ′′

i ), i.e. the claim.
Next we prove c) by induction on r. Since the case r = 1 is clear, we may
assume r > 1. Then the homogeneous exact sequence

0 −→ ⊕r−1
j=1 Mj −→ ⊕r

j=1 Mj −→ Mr −→ 0

together with b) and the induction hypothesis yields the claim.
Part d) follows by combining a) and c). Finally, claim e) is a consequence of d)
and of the fact that the P -linear map

⊕s
j=1 P (−δj) −→ M defined by ej �→ gj

for j = 1, . . . , s is homogeneous and surjective. �
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PROPOSITION 3.3. (The Multiplication Sequence)
Let M be a finitely generated graded P -module, and let f ∈ P be a non-zero
homogeneous polynomial of degree d.

a) There is a homogeneous exact sequence of graded P -modules

0 −→ [
M/(0 :

M
(f))

]
(−d)

ϕ−→ M −→ M/fM −→ 0
where the map ϕ is induced by multiplication by f .

b) For all i ∈ Z, we have HFM/fM(i) = HFM(i) − HFM/(0:
M

(f))(i − d).

c) The polynomial f is a non-zerodivisor for the module M if and only if
HFM/fM(i) = ∆d HFM(i) for all i ∈ Z.

COROLLARY 3.4. Let I be a homogeneous ideal in P , and let f ∈ P be
a non-zero homogeneous polynomial of degree d.
Then we have a homogeneous exact sequence
0 −→ [

P/(I :
P
(f))

]
(−d)

ϕ−→ P/I −→ P/(I + (f)) −→ 0
and then HFP/(I+(f))(i) = HFP/I(i) − HFP/(I:

P
(f))(i − d) for all i ∈ Z.

In particular, f is a non-zerodivisor for P/I if and only if we have
HFP/(I+(f))(i) = ∆d HFP/I(i) for all i ∈ Z.
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THEOREM 3.5. (Macaulay’s Theorem for Hilbert Functions)
Let δ1, . . . , δr ∈ Z, let F be the graded free P -module F =

⊕r
j=1 P (−δj),

let M be a graded submodule of F , and let σ be a module term ordering
on Tn〈e1, . . . , er〉. Then we have HFM(i) = HFLTσ(M)(i) for all i ∈ Z.

Proof. By Macaulay’s Basis Theorem 1.5.7, the residue classes of the terms
in Tn〈e1, . . . , er〉 \ LTσ{M} form a K-basis of both F/M and F/ LTσ(M). For
every i, the residue classes of the terms of degree i of Tn〈e1, . . . , er〉\LTσ{M} are
therefore K-bases of both (F/M)i and (F/ LTσ(M))i. Hence we get HFM(i) =
HFF (i) − HFF/M(i) = HFF (i) − HFF/ LTσ(M)(i) = HFLTσ(M)(i) for all i ∈ Z.

�
COROLLARY 3.6. Let M be a finitely generated graded P -module, and
let K ⊆ L be a field extension. Then we have HFM(i) = HFM⊗KL(i) for all
i ∈ Z.

Proof. We choose a homogeneous presentation M = F/N with a graded free
P -module F =

⊕r
j=1 P (−δj), where δ1, . . . , δr ∈ Z, and a graded submodule N

of F . Then we let P = L[x1, . . . , xn] and F =
⊕r

j=1 P (−δj). By definition, we
have M ⊗K L = F/N F . Since Lemma 2.4.16 yields LTσ{N} = LTσ{N F}, the
theorem shows HFN(i) = HFN F (i) for all i ∈ Z, and the claim follows. �
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DEFINITION. Let R be an integral domain and K its field of fractions.

a) The subring R[[z]] ∩K(z) of the field K[[z]]z is called the ring of rational
power series over R.

b) The localization R[[z]]z of the power series ring R[[z]] in the element z is
called the ring of Laurent series in one indeterminate z over R.

c) The ring R[z]z is called the ring of Laurent polynomials over R. It is
sometimes also denoted by R[z, z−1].

d) Let f be an integer Laurent function. The power series
∑

f(i)zi is called
the Hilbert Series associated to f and denoted by HSf .

PROPOSITION 3.7. Let f : Z −→ Z be a non-zero integer Laurent
function.

a) For every q ≥ 1, we have HS∆qf(z) = (1 − zq) · HSf(z).
In particular, we have HS∆f(z) = (1 − z) · HSf(z).

b) We have HSΣf(z) = HSf(z)/(1 − z).

Proof. To prove a), we calculate (1 − zq) HSf(z) = (1 − zq)
∑

i≥α f(i) zi =∑
i≥α f(i) zi−∑

i≥α+q f(i−q) zi = HS∆qf(z). Claim b) follows from a), because
we have HSf(z) = HS∆(Σf)(z) = (1 − z) HSΣf(z). �
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THEOREM 3.8. (Characterization of Laurent Series of Integer Functions
of Polynomial Type)
For a non-zero integer Laurent function f : Z −→ Z, the following conditions
are equivalent.

a) The integer function f is of polynomial type.

b) The associated Laurent series of f is of the form HSf(z) = p(z)
(1−z)n, where

n = deg(HPf(t)) + 1 and p(z) ∈ Z[z, z−1] is a Laurent polynomial over Z.

Proof. (Hint) First we prove that a) implies b). Let n = deg(HPf(t)) + 1.
The associated polynomial of the function ∆nf is HP∆nf(t) = ∆n HPf(t) = 0.
Thus the Laurent series p(z) = HS∆nf(z) is actually a Laurent polynomial, and
hence HSf(z) = p(z)/(1 − z)n.
Conversely, we observe that the associated Laurent series of ∆nf is the Laurent
polynomial HS∆nf(z) = p(z) ∈ Z[z, z−1]. In particular, we see that ∆nf(i) = 0
for large integers i. Thus ∆nf is an integer function of polynomial type, and
hence f itself is of polynomial type. �
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COROLLARY 3.9. Let f : Z −→ Z be a non-zero integer Laurent function
of polynomial type.

a) The associated Laurent series of f has the form HSf(z) = p(z)/(1 − z)n,
where n ∈ N and p(z) ∈ Z[z, z−1] is a Laurent polynomial of the form
p(z) =

∑β
i=α ciz

i with β ≥ α, cα, . . . , cβ ∈ Z, cα �= 0, and cβ �= 0.

b) If n > 0, then we have HPf(t) =
∑β

i=α ci

(
t−i+n−1

n−1

)
, and if n = 0, then we

have HPf(t) = 0.

c) We have ri(f) = β − n + 1.

Proof. In the light of the theorem, to prove a) we have to show that the Laurent
polynomial p(z) starts in degree α. Since we have p(z) = HS∆nf(z), this follows
from the fact that the first non-zero value of ∆nf is ∆nf(α).
In order to prove claim b), we note that the case n = 0 is trivially true. For

n > 0, we calculate HSf(z) = p(z) · (1 − z)−n =
( β∑

i=α

ciz
i
)( ∑

j≥1−n

(
j+n−1

n−1

)
zj

)

=
∑

i≥α+1−n

( min{β,i+n−1}∑
j=α

cj

(
i−j+n−1

n−1

))
zi. For i ≥ β + 1 − n, we therefore

get f(i) =
∑β

j=α cj

(
i−j+n−1

n−1

)
, and the claim follows. Claim c) follows from

ri(∆nf) = β + 1. �
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DEFINITION. For a finitely generated graded P -module M, the associated
Laurent series of the Hilbert function of M is called the Hilbert series of M
and is denoted by HSM . In other words, the Hilbert series of M is the
Laurent series HSM(z) =

∑
i≥α HFM(i) zi ∈ Z[[z]]z, where α is the initial

degree of M .

• The Hilbert series of P is given by HSP (z) = 1
(1−z)n.

PROPOSITION 3.10. (Basic Properties of Hilbert Series)
Let M, M ′, M ′′ be three finitely generated graded P -modules.

a) For all j ∈ Z, we have HSM(j)(z) = z−j HSM(z).

b) Given a homogeneous exact sequence 0 −→ M ′ −→ M −→ M ′′ −→ 0, we
have HSM(z) = HSM ′(z) + HSM ′′(z).

c) Given finitely generated graded P -modules M1, . . . , Mr such that M =
M1 ⊕ · · · ⊕ Mr, we have HSM(z) = HSM1(z) + · · · + HSMr(z).

d) For δ1, . . . , δr ∈ Z, the Hilbert series of the graded free module F =⊕r
j=1 P (−δi) is HSF (z) = (

∑r
j=1 zδj)/(1 − z)n.
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PROPOSITION 3.11. Let M be a finitely generated graded P -module,
and let f ∈ P \ {0} be a homogeneous polynomial of degree d. Then we
have HSM/fM(z) = HSM(z) − zd HSM/(0:

M
(f))(z).

In particular, the polynomial f is a non-zerodivisor for the module M if and
only if HSM/fM(z) = (1 − zd) HSM(z).

COROLLARY 3.12. Let M be a finitely generated graded P -module,
and let f1, . . . , f
 ∈ P be homogeneous polynomials of degrees d1, . . . , d


respectively.

a) The sequence f1, . . . , f
 is a regular sequence for M if and only if
HSM/(f1,...,f
)M(z) =

∏

i=1(1 − zdi) HSM(z).

b) The sequence f1, . . . , f
 is a regular sequence for M if and only if, for
every permutation σ(1), . . . , σ(
) of the sequence 1, . . . , 
, the sequence
fσ(1), . . . , fσ(
) is a regular sequence for M .
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THEOREM 3.13. (Macaulay’s Theorem for Hilbert Series)
Let δ1, . . . , δr ∈ Z, let M be a graded submodule of the graded free P -
module

⊕r
i=1 P (−δi), and let σ be a module term ordering on Tn〈e1, . . . , er〉.

Then we have
HSM(z) = HSLTσ(M)(z)

THEOREM 3.14. Let M be a non-zero finitely generated graded P -
module, and let α = min{i ∈ Z | Mi �= 0}. Then the Hilbert series of M has
the form

HSM(z) = zα HNM(z)
(1−z)n

where HNM(z) ∈ Z[z] and HNM(0) = HFM(α) > 0.
In particular, let I be a homogeneous ideal of P . Then

HSP/I(z) =
HNP/I(z)

(1−z)n
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Computation of Hilbert Functions

I think there is a world market for maybe five computers. (Thomas J. Watson, IBM, 1943)

Computers in the future may weigh no more than 1.5 tons. (Popular Mechanics, 1949)

640K ought to be enough for anybody. (William H. Gates, 1981)

Prediction is very difficult, especially about the future. (Niels Bohr)

THEOREM 4.1. (The Classical Hilbert Numerator Algorithm)
Let I be a non-zero proper monomial ideal in P . Consider the procedure
MonHN(I) defined by the following instructions.

1) Let {t1, . . . , ts} be the minimal monomial system of generators of I. If
s = 1, let d = deg(t1), return the result 1 − zd, and stop. Otherwise, let
p ∈ {t1, . . . , ts}, and let J be the ideal generated by {t1, . . . , ts} \ {p}.

2) Call the procedures MonHN(J) and MonHN(J :
P
(p)), and let f1(z) and f2(z)

be the polynomials which they return.

3) Let d = deg(p). Return the polynomial f1(z) − zdf2(z) and stop.

This is an algorithm which computes the Hilbert numerator HNP/I(z).
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Proof. First we prove finiteness. In step 2), the procedure MonHN(. . .) calls
itself twice. We show that in both instances the minimal number of generators
of the ideal passed as argument is smaller than s. This fact is clear for J , and
J :

P
(p) is the ideal generated by the terms lcm(ti, p)/p with ti �= p. Hence we

eventually reach s = 1, and the procedure stops in step 1).
To show correctness, we note that when the procedure reaches s = 1, we have
I = (t1) and the claim follows from Corollary 3.12.a. Now we use induction on
the minimal number of generators and assume that f1(z) = HNP/J(z) and
f2(z) = HNP/(J:

P
(p))(z). From Proposition 3.11, we get that HSP/I(z) =

HSP/J(z) − zd HSP/(J:
P

(p))(z). Thus the claim follows from the observation
that a P -module of the form P/I with a homogeneous proper ideal I has its
first non-zero homogeneous component in degree zero, and from Theorem 3.14.

�

33



A number of further algorithms for computing Hilbert numerators of monomial
ideals are based on the idea that we can use the formula

HSP/(I+(p))(z) = HSP/I(z) − zd HSP/(I:
P

(p))(z)

where p is a term and d = deg(p), in another way, namely by expressing
HNP/I(z) in terms of HNP/(I+(p))(z) and HSP/(I:

P
(p))(z).

In the following we refer to p as the pivot. Again we have to make sure that
this does not lead to an infinite loop. We need to show that the recursive calls
are applied to sets generating simpler ideals. The following notion will help us
achieve this.

DEFINITION. Let I be a monomial ideal and {t1, . . . , ts} its minimal
monomial set of generators. Then we define Σdeg(I) = deg(t1)+ · · ·+deg(ts)
and call it the total degree of I.

The recursion stops when we reach ideals I so simple the we know the
Hilbert numerator of P/I without further computation. These very simple
ideals are called the base cases. For instance, the base cases in the Classical
Hilbert Numerator Algorithm are the principal monomial ideals. For our more
general procedures a richer collection of base cases is provided by the following
proposition.
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PROPOSITION 4.2. Let I be a non-zero proper monomial ideal in P
whose minimal monomial generators {t1, . . . , ts} are pairwise coprime.
Then the Hilbert numerator of P/I is given by HNP/I(z) =

∏s
i=1(1−zdeg(ti)).

THEOREM 4.3. (Computing Hilbert Numerators Using Strategies)
Suppose there is a procedure Pivot(I) which applies to monomial ideals I
in P that are not monomial complete intersections, and which returns a
term p such that Σdeg(I:

P
(p)) < Σdeg(I) and Σdeg(I +(p)) < Σdeg(I). Let I

be a non-zero proper monomial ideal in P . Consider the procedure MonHN(I)
defined by the following instructions.

1) Check whether I is a monomial complete intersection. If it is, let
d1, . . . , ds be the degrees of the minimal monomial generators of I.
Return the result

∏s
i=1(1 − zdi) and stop. Otherwise, let p be the term

computed by Pivot(I).

2) Call the procedures MonHN(I:
P
(p)) and MonHN(I + (p)), and let f1(z) and

f2(z) be the polynomials which they return.

3) Let d = deg(p). Return the polynomial zd f1(z) + f2(z) and stop.

This is an algorithm which computes the Hilbert numerator HNP/I(z).
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The Indeterminate Strategy.
The procedure Pivot(I) chooses i ∈ {1, . . . , n} such that xi is a proper divisor
of one of the minimal monomial generators of I and returns p = xi.

The GCD Strategy.
Consider the following strategy which contains some “random” choice: Given
a monomial ideal I which is not a complete intersection, having a minimal
monomial system of generators {t1, . . . , ts}, choose an indeterminate xi such
that #{j | xi divides tj} is maximal. Then choose randomly two different
terms tj, tk which are divisible by xi, and return p = gcd(tj, tk).

The CoCoA Strategy.
As a compromise between the two previous strategies, we introduce the
following one. Given a monomial ideal I which is not a complete intersection,
let xi be one of the indeterminates occurring most often in the minimal
monomial generators {t1, . . . , ts} of I. Then choose randomly two (or three)
minimal generators tj, tk divisible by xi, and let p be the highest power of xi

dividing both tj and tk. Return p and stop.

36



Inflation’s down except for what you actually buy.
(Chad Hudson)

DEFINITION. In the Hilbert series HSM(z) = zα HNM(z)
(1−z)n , we simplify the

fraction by cancelling 1− z as often as possible. We obtain a representation
HSM(z) = zα hnM(z)

(1−z)d , where 0 ≤ d ≤ n and where hnM(z) ∈ Z[z] satisfies

hnM(0) > 0 and also hnM(1) �= 0.

a) The polynomial hnM(z) ∈ Z[z] is called the simplified Hilbert numerator
of M .

b) Let δ = deg(hnM(z)), and let hnM(z) = h0 + h1z + · · · + hδz
δ. Then the

tuple hv(M) = (h0, h1, . . . , hδ) ∈ Zδ+1 is called the h-vector of M .

c) The number dim(M) = d is called the dimension of M .

d) The number mult(M) = hnM(1) is called the multiplicity of M .
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PROPOSITION 4.4. For a finitely generated graded P -module M �= (0),
we have mult(M) > 0.

Proof. Let d = dim(M), and let hv(M) = (h0, . . . , hδ). We have HSM(z) =
zα hnM(z)

(1−z)d = zα (h0 + · · · + hδz
δ)

∑
i≥0

(
d+i−1

d

)
zi. For N � 0, the coefficient

of zα+N of this power series is h0

(
d+N−1

d−1

)
+· · ·+hδ

(
d+N−1−δ

d−1

)
. It is a polynomial

of degree d − 1 in N , and its leading form 1
(d−1)!(h0 + · · · + hδ)Nd is positive.

Thus we have mult(M) = hnM(1) = h0 + · · · + hδ > 0. �

DEFINITION. Let t be an indeterminate over Q.

a) The integer valued polynomial associated to HFM is called the Hilbert
polynomial of M and is denoted by HPM(t). We have HPM(t) ∈ IP ⊂ Q[t]
and HFM(i) = HPM(i) for i � 0.

b) The regularity index of HFM is called the regularity index of M and is
denoted by ri(M).
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Our next theorem says that the simplified Hilbert numerator hnM(z) can be
used to calculate the Hilbert polynomial of M .

THEOREM 4.5. (Computation of Hilbert Polynomials)
Let M be a non-zero finitely generated graded P -module with initial degree
α = min{i ∈ Z | Mi �= 0}, and let d = dim(M).

a) Let hnM(z) = h0 + h1z + · · · + hδz
δ, where h0 > 0 and hδ �= 0. We have

HPM(t) =
{ ∑δ

i=0 hi

(
t−α−i+d−1

d−1

)
if d > 0,

0 if d = 0.

b) We have dim(M) =
{

1 + deg(HPM(t)) if HPM(t) �= 0,
0 if HPM(t) = 0.

c) We have mult(M) =
{

(d − 1)! LCDeg(HPM(t)) if d > 0,
dimK(M) if d = 0.

d) The regularity index of M satisfies ri(M) = α + δ − d + 1.
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Next proposition provides some rules for the behaviour of Hilbert polynomials
under certain ideal-theoretic operations.

PROPOSITION 4.6. Let I and J be proper homogeneous ideals of P .

a) We have HPP/(I∩J)(t) = HPP/I(t) + HPP/J(t) − HPP/(I+J)(t).

b) If
√

J = P+, we have HPP/(I∩J)(t) = HPP/I(t).

Proof. (Hint) To prove a), it suffices to apply the additivity of Hilbert
polynomials to the appropriate exact sequences.
Now we show b). The assumption on J implies that

√
I + J = P+. Thus

dim(P/J) = dim(P/(I + J)) = dim(P/P+). On the other hand, it is clear
that HPP/P+

(t) = 0. Hence dim(P/P+) = 0, and consequently HPP/J(t) =
HPP/(I+J)(t) = 0. Now the conclusion follows from a). �
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General Hilbert Functions

In order to make an apple pie from scratch, you must first create the universe.
(Carl Sagan)

For the purpose of defining multivariate Hilbert series, the power series ring
R[[z1, . . . , zm]] is not big enough. As we shall see, we need to allow negative
exponents. Sometimes there will even be infinitely many terms having negative
exponents. The following object is big enough to contain all the series we need.

DEFINITION. The set RZm
is an R-module with respect to componentwise

addition and scalar multiplication. We shall denote an element (ai)i∈Zm

by
∑

i∈Zm ai zi, and the module by R[[z, z−1]]. We call it the module of
extended power series.

Unfortunately, the module of extended power series is not a ring with respect
to the usual multiplication.
For instance, the constant coefficient of the product (1+z1+z2

1 + · · ·) ·(1+z−1
1 +

z−2
1 + · · ·) would be an infinite sum. But it is important to be able to multiply

Hilbert series. Therefore we have to find a submodule of R[[z, z−1]] which is
both small enough to be a ring and big enough to contain all the Hilbert series
we need. The following definition gets us off the horns of this dilemma.
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DEFINITION. Let σ be a monoid ordering on Zm.

a) An extended power series f =
∑

i∈Zm ai zi is called a σ-Laurent series if
there exists a subset Σ ⊆ Zm such that ai = 0 for i /∈ Σ and such that
the restriction of σ to Σ is a well-ordering.

b) The set of all σ-Laurent series is called the σ-Laurent series ring over R
and will be denoted by R[[z, z−1]]σ.

PROPOSITION 5.1. Let σ be a monoid ordering on Zm. Then the set
R[[z, z−1]]σ of all σ-Laurent series is a ring with respect to componentwise
addition and with respect to the multiplication given by the formula

(
∑

i∈Zm
ai zi) · ( ∑

j∈Zm
bj zj) =

∑
k∈Zm

(
∑

i+j=k

aibj) zk

EXAMPLE. Let m = 1 and σ = Deg. Then the ring R[[z1, z
−1
1 ]]σ agrees with

the usual Laurent series ring R[[z1]]z1, since, for every f =
∑

i∈Z aiz
i
1 in the

ring R[[z1, z
−1
1 ]]σ, there exists an index i0 ∈ Z such that ai = 0 for i < i0.
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We let K be a field and P = K[x1, . . . , xn] a polynomial ring over K which
is graded by a matrix W ∈ Matm,n(Z) of positive type. It makes sense to
generalize the definition of Hilbert functions as follows.

DEFINITION. Let M be a finitely generated graded P -module. Then
the map HFM : Zm −→ Z given by (i1, . . . , im) �→ dimK(M(i1,...,im)) for all
(i1, . . . , im) ∈ Zm is called the multigraded Hilbert function of M . If we
want to make the dependence on the grading explicit, we shall also denote
it by HFM,W .
More generally, given any Zm-graded K-algebra R and any graded
R-module M which has finite dimensional homogeneous components, we
define the multigraded Hilbert function of M in the same way.

In order to actually use the rules for computing multigraded Hilbert functions
(which are essentially the same as in the standard case), we still need to know
the multigraded Hilbert function of the polynomial ring P = K[x1, . . . , xn].
Unfortunately, there is no simple formula as in the standard graded case.
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PROPOSITION 5.2. Let P = K[x1, . . . , xn] be graded by a matrix by W ∈
Matm,n(Z) of positive type, and let W = (wij), where wij ∈ Z for all
1 ≤ i ≤ m and 1 ≤ j ≤ n. For all (i1, . . . , im) ∈ Zm, the value HFP (i1, . . . , im)
of the multigraded Hilbert function of P is the number of solutions
(α1, . . . , αn) ∈ Zn of the Diophantine system of equations




w11y1 + · · · + w1nyn = i1
w21y1 + · · · + w2nyn = i2

... ... ...
wm1y1 + · · · + wmnyn = im

in the indeterminates y1, . . . , yn.

Proof. To show this claim, we note that dimK(P(i1,...,im)) is the number of
terms xα1

1 · · ·xαn
n of multidegree (i1, . . . , im). Using the definition, we see that

degW (xα1
1 · · ·xαn

n ) = W · (α1, . . . , αn)tr, and this equals (i1, . . . , im)tr if and only
if (α1, . . . , αm) solves the given Diophantine system of equations. �
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DEFINITION. Let P = K[x1, . . . , xn] be graded by W ∈ Matm,n(Z), a
matrix of positive type, and let M be a finitely generated graded P -module.
Then the extended power series

HSM(z1, . . . , zm) =
∑

(i1,...,im)∈Zm

HFM(i1, . . . , im) zi1
1 · · · zim

m ∈ Z[[z, z−1]]

is called the multivariate Hilbert series of M . We shall also denote it
by HSM(z), or by HSM,W (z) if we want to stress the underlying grading.
More generally, given any Zm-graded K-algebra R and any graded
R-module M which has finite dimensional homogeneous components, we
define the multivariate Hilbert series of M by the same formula.

REMARK. Let P be graded by a matrix W ∈ Matm,n(Z) of positive type.
Let τ be a monoid ordering on Zm constructed in the proof of Proposition 1.4.a.
In the proof of part b) of that proposition we saw that the restriction of τ to the
set {d ∈ Zm | MW,d �= 0} is a well-ordering for every finitely generated graded
P -module M. Therefore we have HSM(z) ∈ Z[[z, z−1]]τ , i.e. the Hilbert series
we are interested in are all contained in the ring of τ -Laurent series over Z.
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PROPOSITION 5.3. (Hilbert Series of Polynomial Rings)
Let P = K[x1, . . . , xn] be graded by W = (wij) ∈ Matm,n(Z), a matrix of
positive type. Then we have

HSP,W (z1, . . . , zm) =
1

n∏
j=1

(1 − z
w1j
1 · · · zwmj

m )

Proof. (Hint) For n = 1, we have degW (xi
1) = (iw11, . . . , iwm1). Therefore we

obtain HSP (z1, . . . , zm) =
∑

i≥0 ziw11
1 · · · ziwm1

m = 1/(1 − zw11
1 · · · zwm1

m ), i.e. the
formula holds. Then use induction on n. �
COROLLARY 5.4. For every finitely generated graded P -module M , the
multivariate Hilbert series of M has the form

HSM,W (z1, . . . , zm) =
zα1
1 · · · zαm

m · HNM(z1, . . . , zm)
n∏

j=1

(1 − z
w1j
1 · · · zwmj

m )

where (α1, . . . , αm) is the componentwise minimum of the degree sequence
of M , and where HNM(z1, . . . , zm) is a polynomial in Z[z1, . . . , zm]. We call
this polynomial the multivariate Hilbert numerator of M .
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THEOREM 5.5. (Computation of General Hilbert Series)
Let P = K[x1, . . . , xn] be graded by a matrix W = (wij) ∈ Matm,n(Z) of
positive type.
Given a non-zero proper monomial ideal I in P , consider the procedure
MultMonHN(I) defined by the following instructions.

a) Let {t1, . . . , ts} be the minimal monomial system of generators of I.
If s = 1, let degW (t1) = (d1, . . . , dm) ∈ Zm, return the following polynomial
1 − zd1

1 · · · zdm
m , and stop. Otherwise, let J = (t1, . . . , ts−1).

b) Call the procedures MultMonHN(J) and MultMonHN(J :P (ts)), and let
p1(z1, . . . , zm) and p2(z1, . . . , zm) be the polynomials which they return.

c) Let degW (ts) = (d1, . . . , dm). Return the following polynomial
p1(z1, . . . , zm) − zd1

1 · · · zdm
m p2(z1, . . . , zm) and stop.

This is an algorithm which computes a polynomial HNP/I(z1, . . . , zm)
in Z[z1, . . . , zm] such that the formula

HSP/I(z1, . . . , zm) = HNP/I(z1, . . . , zm) /
n∏

j=1

(1 − z
w1j
1 · · · zwmj

m )

holds true.
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EXAMPLE. Let P = Q[x1, x2, x3, x4] be graded by W =
(
1 2 3 4
0 0 5 8

)
, and let

I = (x2
1, x2, x

3
3). We want to compute the multivariate Hilbert series of P/I.

In the first step, we have to form J = (x2
1, x2).

In the second step, we have to compute the Hilbert numerators of P/J and of
P/(J :

P
(x3

3)) recursively, where J :
P

(x3
3) = (x2

1, x2) = J .
When we compute HNP/J(z1, z2), we have to form the ideals J ′ = (x2

1) and
J ′′ = J :

P
(x2) = (x2

1) and to apply the algorithm to them.
Since J ′ = J ′′ = (x2

1) is a principal ideal, the algorithm yields
HNP/J ′(z1, z2) = HNP/J ′′(z1, z2) = (1 − z2

1)
Then we find HNP/J(z1, z2) = HNP/J ′(z1, z2) − z2

1 HNP/J ′′(z1, z2) = (1 − z2
1)

2.
Thus the original algorithm computes

HNP/J(z1, z2) − z9
1z

15
2 HNP/(J:

P
(x3

3))
(z1, z2) = (1 − z2

1)
2(1 − z9

1z
15
2 ).

Altogether, we have

HSP/I(z1, z2) =
(1−z2

1)
2(1−z9

1z15
2 )

(1−z1)(1−z2
1)(1−z3

1z5
2)(1−z4

1z8
2)

=
(1+z1)(1+z3

1z5
2+z6

1z10
2 )

1−z4
1z8

2
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What happens to the Hilbert series when we change the grading? In particular,
what happens when we use a coarser grading than our original one?

Given a matrix W ∈ Matm,n(Z) which defines a grading on P and a matrix
A ∈ Mat
,m(Z), where 1 ≤ 
 ≤ m, the Z-linear map ϕ : Zm −→ Z
 whose
defining matrix is A yields a homomorphism of graded rings

(idP , ϕ) : (P, Zm) −→ (P, Z
)

Given a graded module M over (P, Zm), we can equip it with the structure of
a graded (P, Z
)-module by defining

MA·W,e =
{⊕

{d∈Zm|A·d=e} MW,d if e ∈ Im(ϕ),
0 otherwise.

We shall say that the graded module M =
⊕

e∈Z
 MA·W,e is obtained from
M =

⊕
d∈Zm MW,d by a change of grading.

49



PROPOSITION 5.6. Let be given two matrices W = (wij) ∈ Matm,n(Z),
and A = (aij) ∈ Mat
,m(Z) such that the gradings on P = K[x1, . . . , xn]
given by W and by A · W are both of positive type. Let M be a finitely
generated P -module which is graded with respect to the grading given
by W. Then the Hilbert series of M with respect to the grading given
by A · W is

HSM,A·W (z1, . . . , z
) = HSM,W (za11
1 · · · za
1


 , . . . , za1m
1 · · · za
m


 )

Proof. The assumption that both W and A · W define gradings of positive
type implies that rk(W ) = m and rk(A · W ) = 
. Therefore the matrix A
has maximal rank rk(A) = 
. By the definition of the grading, we
have HSM,A·W (z1, . . . , z
) =

∑
e∈Z


∑
{d∈Zm|A·d=e} dimK(MW,d) ze1

1 · · · ze


 . Now

we use ze1
1 · · · ze



 = za11d1+···+a1mdm
1 · · · za
1d1+···+a
mdm


 = (za11
1 · · · za
1


 )d1 · · ·
(za1m

1 · · · za
m

 )dm and get

HSM,A·W (z1, . . . , z
) =
∑

d∈Zm
HFM,W (d)(za11

1 · · · za
1

 )d1 · · · (za1m

1 · · · za
m

 )dm

= HSM,W (za11
1 · · · za
1


 , . . . , za1m
1 · · · za
m


 )

as claimed. �
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An important special case occurs when A · W is the submatrix of W which
consists of the first 
 rows of W . In this case we use the following terminology.

DEFINITION. Let P = K[x1, . . . , xn] be graded by W ∈ Matm,n(Z), a
matrix of positive type, let 
 ∈ {1, . . . , m}, and let W =

(
U
V

)
, where

U ∈ Mat
,n(Z) and V ∈ Matm−
,n(Z). Then we say that the grading on P
given by W refines the grading given by U , or that the the grading given
by W is a refinement of the grading given by U .

It is clear that we can represent a refinement by using the change of grading
defined by A = (I
 | 0) ∈ Mat
,m(Z). Thus Proposition 5.6 specializes
immediately to the following result.

COROLLARY 5.7. Let P be graded by W =
(

U
V

) ∈ Matm,n(Z) a matrix of
positive type, where U ∈ Mat
,n(Z) defines a grading of positive type and
V ∈ Matm−
,n(Z).

a) We have HSM,U(z1, . . . , z
) = HSM,W (z1, . . . , z
, 1, . . . , 1).

b) We have dimK(MU,d) =
∑

e∈Zm−
 dimK(M(d,e)) = HSMU,d
(1, . . . , 1) for

every d ∈ Z
.
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Applications

Bear in mind that 400 years ago, arithmetic was a difficult art!
So great an educator as Melanchton did not trust the average student

to penetrate into the secrets of fractions.
(Wolfgang Krull)

We do not have time to discuss applications. Nevertheless, I hope you have been
convinced that Hilbert Functions are a great tool. The efficiency of the new
algorithms for their computation allows us to use them in many areas inside
and outside Mathematics.

To give you an idea about some applications, let me mention a few topics taken
from the book [KR2].
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• Veronese Subrings

• Powers of Polynomials and Ehrhart Functions

• Hilbert Driven Gröbner Basis Computations

• Knight Moves and Chess Puzzles

• Photogrammetry

• Generic Initial Ideals

• Rees Rings

• Segre Products and Hadamard Series

• Hilbert Bases and Toric Ideals

• Magic Squares

• Ideals of Points and their Hilbert Functions

• Hilbert Functions of Primary Ideals

• Hilbert Functions and SAGBI Bases
In the end, everything is a gag.

(Charlie Chaplin)
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The Generating Function of Elements NOT in a Monoid

Let S ⊆ Nn be a finitely generated additive submonoid. How can we compute
the generating function of the “gaps” of S?
We construct the associated K-algebras and get

K[S] ⊆ K[Nn] = K[x1, . . . , xn]

We observe that the generating function of Nn, equivalently of the power
products in K[x1, . . . , xn], is 1Qn

i=1(1−zi)
.

To compute the generating function of the elements in S, equivalently of the
power products in K[S], we need to represent K[S] as a quotient algebra.

To this end, let s1, . . . , sr be generators of S, let y1, . . . yr be indeterminates,
and let W ∈ Matn,r(Z) be the matrix whose columns are the coordinates of
s1, . . . , sr respectively.

It is clear that S is naturally W -graded, and we can equip K[y1, . . . , yr] with
the W -grading so that the canonical homomorphism ϕ : K[y1, . . . , yr] −→ K[S]
is a W -graded homomorphism of K-algebras.
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The kernel of ϕ is by definition the toric ideal associated to s1, . . . , sr, and
it can be efficiently computed by smart algorithms which avoid elimination
techniques.
We compute the Hilbert series of R = K[y1, . . . , yr]/ Ker(ϕ), and hence we get
the generating function of S.
Observe that the number of rows in W is precisely n, therefore the Hilbert
series is a series in n indeterminates.

In conclusion, the answer to our problem is

1∏n
i=1(1 − zi)

− HSR,W (z1, . . . , zn)

For example, if S = 〈3, 4〉, we get 1
(1−z) − 1−z12

(1−z3)(1−z4)
= z + z2 + z5

Therefore the gaps of S = 〈3, 4〉 are 1, 2, 5.

EXERCISE: Prove that for a, b ∈ N>1 such that gcd(a, b) = 1, the “last” gap
of S = 〈a, b〉 is

ab − (a + b)

THE TRUE END
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