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ON THE EQUATIONS DEFINING THE AFFINE CURVES

LucIiAN BADESCU

INTRODUCTION

The aim of these notes is to determine the minimal number of equations needed to
define a given curve in the 3-dimensional affine space A®> over an algebraically closed
field K. To be more precise we need some definitions. Let A := K[Xy,..., X,] be the
K-algebra of polynomials in the n indeterminates Xi,...,X,. To every I C A one can
associate the subset V(I) C A™ defined by

V(I) := {(21, ;&) € A" | P(21,...,2z0) = 0, VP € I}.

The subsets of A of the form V(I), with I an arbitrary ideal of A, are called algebraic
subsets of A”. On the other hand, to every subset V C A™ one can associate the ideal
Z(V) C A" defined by

I(V):={P € A| P(z1,....,x5) =0, Y(z1,...,2n) € V}.

The ideal Z(V) is called the ideal of V. The well-known Hilbert Nullstellensatz states
that for every ideal I of A the following equality holds: Z(V(I)) =+/I, where

VIi={PecA|In=n, >0 : a" €I}.

Let now V := V(I) be an algebraic subset of A". If J is an ideal of A such that
V(I) = V(J), then Hilbert’s Nullstellensatz yieldsv/T =+/J (and conversely). By the
a famous theorem of Hilbert the ring A is Noetherian, so that the ideal J is finitely
generated. Let {f1,..., fm} be a system of generators of the ideal J. Then fi,..., fm are
called equations defining the algebraic subset V set-theoretically in A™. In other words
one has the equality

(*) V=A(z1,....,2n) € A" | fi(z1,....,20) =0, Vi=1,...,m}.

The general problem we want to study is the following: assuming we are given the
algebraic subset V = V(I) C A", determine the minimal number of equations that define
V set-theoretically. In other words, determine the minimal number m = m(V') € N such
that there exist fi,..., fm € A such that the equality (*) holds, i.e.
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2 AFFINE CURVES

A general standard fact shows that the number m = m(V) satisfies the following
inequality:

(**) m > n — dim(V).

If in (**) the equality holds, one says that V is set-theoretically a complete intersection
n A",

If V is a hypersuface, i.e. dim(V') = n — 1, the answer to this question is very simple
because in this case the ideal I = Z(V) is principal. This follows from the fact that
the polynomial K-algebra A = K[Xi,...,X,] is factorial (or UFD); if for example the
hypersurface V is irreducible then [ is a prime ideal of height one, and thus I is a
principal ideal because A is factorial.

But if dim(V') < n — 2 the problem becomes a lot more complicated and in fact is
an open question for n > 4. Here we shall restrict ourselves to the case n = 3 and
dim(V') = 1, i.e. to the case of affine space curves. Our aim is to present (following
[K]), and in large part also to prove, the algebraic results which lead to the proof of the
following fundamental:

Main theorem. (Serre-Ferrand-Szpiro)Let V be an affine algebraic curve in the affine
3-dimensional space A®. If V is a local complete intersection in A® (for example, if V
is smooth) then V is a set-theoretic complete intersection in A3, i.e. V is given (set-
theoretically) by two equations in A®.

Here are the main ingredients of the proof of this result:

1) A criterion due to Serre to recognize when an ideal I which is locally a complete
intersection in a Cohen-Macaulay ring A is generated by two elements (see Corollary 4
of section 2).

2) A result of Serre which states that, given a commutative ring A and two projective
A-modules P and L such that rank(P) > dim(A4) and rank(L) = 1, then there exists a
surjective homomorphism of A-modules ¢ : P — L (see Corolary 5 of section 2).

3) A duality theorem concerning the A-module Ext} (I, A), where I C A is an ideal
of projective dimension < 1 (see Theorem 4 of section 3).

4) A construction (due to Ferrand) which allows one, starting with an ideal I C A,
to produce another ideal J “with small number of generators” and such thatv/J =+/T
(see (3.3) and Theorema 6 of section 4).

5) A fundamental result (conjectured by Serre and) proved independently by Quillen
and Suslin which states that every projective module of finite type over the polynomial
K-algebra A = k[X1, ..., X,] is free (this is the only ingredient not proved in this paper).

We included a preliminary section 1 which presents the main concepts and general
results of commutative and homological algebra needed in the subsequent sections. The
proof of the main theorem can be found in section 4.

We also inluded three additional sections 5, 6 and 7. In section 5 we prove, following
[EE], a result due to Kneser-Eisenbud-Evans according to which every closed algebraic
subset of A" or of P™ is the set-theoretic intersection of n hypersurfaces (of A" or of P").
In section 6 we prove (following [G] and [H3]) that there some topological constraint for
an algebraic subset X of dimension > 2 of A to be a set-theoretic complete intersection.
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The material of these two sections complements nicely the above main theorem. Finally,
in the last section we use a topological Lefschetz-type theorem for integral homology
to produce more examples of subvarieties of the complex projective space that are not
set-theoretic complete intersections.
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1. PRELIMINARIES

(1.1) Free modules. All rings considered are commutative and unitary (with 1 # 0).
If M and N are two A-modules, we shall denote by Hom 4(M, N) the A-module of
all homomorphisms of A-modules defined on M with values in N. An element of
Hom 4(M, N) will be called simply homomorphism, if no danger of confusion is possible.
A subset B of an A-module M will be called basis of M if B is linearly independent
over A as well as a system generators of the A-module M. In other words,

(1.1.1) For every family {\; }seB of elements of A of finite support such that ) g Az =
0, then necessarly A\, = 0 Vz € B (the linear independence).

(1.1.2) For every element m € M there exists a family {\;}.ep of elements of A of
finite support such that m =37 Azz (generatedness).

If B is a basis of the A-module M then every element m € M can be uniquely
expressed as a linear combination of elements of B (with coefficients in A) as (1.1.2).
An A-module M is called free if M has a basis. For example the A-module A™ (with

n > 1) is free because the subset
B :={(,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1)}

is a basis of A™. On the other hand, taking A = Z, then the Z-modules (= the abelian
groups) M = Z/nZ (with n > 2), or M = Q are not free; indeed, in the first case
every subset of M linearly dependent, while in the second, every two elements of M are
linearly dependent (over Z).

If A is a commutative unitary ring and if X is an arbitrary non-empty set, then
there exists a a pair (Lx,px) consisting of a free A-module Lx and of a function
¢x : X — Lx, with the following properties:

(1.1.3) For every other function ¢ : X — M, with M an arbitrary A-module, there
exists a unique homomorphism 1’ € Hom 4(M, N) such that ¢’ o px = 7.

A pair (Lx,px) satisfying (1.1.3) is called the free A-module of basis X. Any two
free A-modules of basis X are canonically isomorphic (as one can easily see). On the
other hand, given A and X, we can construct Lx as the set of all functions y : X — A4
of finite support (i.e. x(z) # 0 only for finitely many 2 € X). The operations on Lx are
defined by (x + x')(z) = x(z) + x'(z) and (Ax)(z) = Ax(z), Ve € X and VA € A. Then
the function ¢ x : X — Lx is defined in the following way: for every z € X, ¢x(z) is
the characteristic function of z, i.e. [px(z)](y) =0 Vy # = and [px(z)](z) = 1. Then
it is a simple exercise to check that the pair (Lx,¢x) satisfies (1.1.3).

(1.2) Projective modules. Let P be an A-module over the commutative unitary ring
A. We say that P is a projective A-module if for every surjective homomorphism ¢ €
Hom 4 (M, M") and for every f € Hom (P, M'"), there exists a (not necessarly unique)
homomorphism g € Hom 4 (P, M) such that f = ¢ 0 g. In other words, P is projective
if for every surjective homomorphism ¢ : M — M" the induces homomorphism ¢’ :
Hom (P, M) — Homu (P, M'") defined by ¢'(g9) = ¢ 0 g, Vg € Hom4(P, M), is again

surjective.
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Proposition 1. Every free A-module is projective.

Proof. Let P be a free A-module of basis B, ¢ : M — M" a surjective homomorphism,
and f : P — M" a arbitrary homomorphism. Consider the family {f(z)}cep of el-
ements of M'"'; since ¢ is surjective, there exists a family {ms},ep of elements of M
such that ¢(m;) = f(z), Yo € B. In this way we get the function B — M defined by
z — mg. Since B is a basis of the A-module P, this function can be extended to a
unique homomorphism of A-modules g : P — M. Then by construction, f =¢pog. O

Proposition 2. (i) Every A-module M is a quotient of a free A-module, i.e. there
exists a free A-module L and a surjective homomorphism of A-modules f : L — M.
Moreover, L can be chosen finitely generated if M is finitely generated.

(17) Every projective finitely generated A-module P is a direct summand of a free A-
module of finite rank. Conversely, if a finitely generated A-module P is a direct sum-
mand of a free A-module of finite rank then P is a projective A-module.

Proof. (i) Let G C M be a system of generators of the A-module M, and let L := Lg
be the free A-module of basis G. Since G C M, by the universal property (1.1.3), there
exists a unique homomorphism f : L — M such that f(g) = g, Vg € G. Since G is
a system of generators of A-module M, the homomorphism f is surjective. If M is a
finitely generated A-module we can choose G finite, so that the free A-module L = Lg
is also finitely generated. '

(i1) Let P be a projective A-module. By (i) there exists a free A-module L and
a surjective homomorphism ¢ : L — P. Taking f = idp and using the fact that P
is projective, we deduce the existence of a homomorphism ¢ € Hom4(P, L) such that
po =idp.

Conversely, assume that P is a direct summand of the free A-module of finite rank
L, i.e. there exist two homomorphisms ¢ € Homa(L,P) and ¢ € Homu(P, L) such
that ¢ 09 = idp. Let u : M — M" be an arbitrary surjective homomorphism, and
let f: P — M" be an arbitrary homomorphism. We have to show that there exists a
homomorphism ¢ : P — M such that f = u o0 g. Since L is free, by Proposition 1, L is
projective, so that there exists a homomorphism ¢’ : L — M such that uo g’ = fo.
Setting g := g’ 0 ¥, one immediately checks (using ¢ 09 =idp) that uog=f. O

(1.3) Remark. The converse of Proposition 1 is in general false. For example, consider
the ring A = Z/nZ x Z /nZ, with n > 2. Let P := Z[nZ, viewed as an A-module via
the second projection py : A = Z/nZ. In other words, the scalar multiplication on P
is given by (a,b) - ¢ = bz, V(a,b) € A, Vo € P. Then P is a direct summand of the
free A-module A (of rank one); indeed if ¢ : P — A is the homomorphism z — 0, 2),
then py 09 = idp. On the other hand, P cannot be a free A-module, because otherwise
P would have a basis consisting of m elements, and so P would have (n?)™ = n?™
elements, which is obviously impossible (since P has only n elements).

However, in the “local case” we have the following converse of Proposition 1:

Prososition 3. Let A be a local Noetherian ring and M a finitely generated A-module.
Then M is a projective A-module if and only if M is a free A-module.
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Proof. If M is free then M is projective by Proposition 1. Assume therefore that M
projective. Let us denote by m 4 the maximal ideal of A and by k = A/m 4 the residue
field of A. Clearly we may assume M # 0. Choose a minimal system of generators
G := {z1,...,2n} of the A-module M and consider the homomorphism ¢ : A" — M
defined by ¢(a1,...,an) = a121 + -+ + anz,. We shall prove that ¢ is in fact an
isomorfism of A-modules (which obviously will prove our proposition). The fact that G
is a set of generators is equivalent is equivalent to the surjectivity of ¢. Thus it remains
to prove the injectivity of . To this end consider the exact sequence

0K —>A"—> M — 0,

where K := Ker(p). Since M is projective, there exists a homomorphism 3 : M — A"
such that ot = idypy, i.e. the above exact sequence splits (in other words, A” = M K).
Since the tensor product is an additive functor (which in particular commutes with the
finite direct sums) it follows that the sequence

0 > KQuk > A"Qak > M4k —0
is also a split exact sequence, where the third arrow is the homomorphism
wRak: A" ®Ak%k”—)M®Ak"£M/mAM

induced by ¢.

On the other hand, the minimality of G implies that the map ¢ ®k is an isomorphism
of k-vector spaces. Then from the second exact sequence it follows K/maK &2 KQ sk =
0. Since A is Noetherian, K is a finitely generated A-module (as a submodule of the
finitely generated A-module A™). By Nakayama’s Lemma we infer that K = 0, i.e. ¢
is an isomorphism. [J

Proposition 4. Let M be a finitely generated A-module over the Noetherian ring A.
Then M is a projective A-module if and only if for every maximal ideal m of A the
A -module M, is free, where A, (resp. My,) is the localization of A (resp. of M)
with respect to m (i.e. Am (resp. Mp) is the fractions ring of A (resp. the fractions
module of M) with respect to the multiplicative set Sy, := A\ m).

Proof. The direct implication is a consequence of Proposition 3. Conversely, assume
that M, is a free A,,-module for every maximal ideal m al lui A. To prove that M
is projective we have to prove that for every surjective homomorphism of A-modules
@ : N — N", the homomorphism ¢’ : Hom4(M, N) — Hom4 (M, N') is also surjective,
where ¢’ is defined by the formula ¢'(f) := ¢ o f. To prove the surjectivity of ¢’ we
need the following:

Claim. Let f: L — L' be a homomorphism of A-modules. Then f is surjective if and
only if the induced homomorphisms of A,,-modules f,, : L,, — L, are surjective for
every maximal ideal m of A.

Taking this claim for granted for a while, it follows that all we have to prove is the
surjectivity of the homomorphisms of A,,-modules

@' Homa(M, N),, — Homa(M,N'),,,
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for every maximal ideal m of A. But using a general property (see the exercise below),
we have natural identifications

HOIIIA(M, N)m = HOmAm (M'm7 Nm)7

Hom4(M,N'),, = Homa,, (M, N),).

It follows that the surjectivity of ¢!, is equivalent to the surjectivity of the following
maps

Homy,, (Mm,Nm) — Homy,, (M, Nr,n)’

for all maximal ideals m of A. But this latter fact is quivalent to the projectivity of the
A -module M,,, for every maximal ideal m al lui A (M, is projective because A, is
free by proposition 1). Thus Proposition 4 is proved modulo the above claim.

Proof of the claim. The “only if” implication is a simple consequence of the general
fact that the localization functor is exact. Assume therefore that f,, is surjective for
every maximal ideal m of A. Let ' € L’ be an arbitrary element of L'. We want to
find an element = € L such that f(z) = z’. Since for every m the map f,, is surjective,
there are an elements z,, € L and s,, € A\ m such that

! 7
fm(j—: = xT, or else, fizn) = ff

Therefore for every m there is an s;,, € A\ m such that s (f(zm) — smz’) = 0, or else,
f(zm) = tma', where x,,, = 80, 2m and t,, = s),8m € A\ m (because m is a maximal
ideal). Now the ideal I generated by all elements ¢, (where m runs the set Max(A) of
all maximal ideals of A) coincides with A. Indeed, this follows from an general result of
Krull because I (by its construction) cannot be contained in any maximal ideal m of A
(tm € I\ m). It follows that there are finitely many maximal ideals my,...,m, of A and
elements a,...an such that > | aitm; = 1. Setting z := )| aiTm,, we have

fz) = f(z AiTm;) = Zaif(xm,.) = Zaitm#ﬂ' = 2.
=1 =1 i=1

This proves the claim, and thereby Proposition 4. 0O

Corollary 1. Let P be a finitely generated projective A-module, with A a Noetherian
ring. Then the dual Hom4(P, A) of P is also a finitely generated projective A-module,
and the canonical map ap : P — P** into the bidual is an isomorphism.

Proof. For the first statement one applies Proposition 4. For the second, one observes
that the verification of the bijectivity of ap is a local question, therefore we may assume
that A is a local ring. Then by Proposition 3, P is free of finite rank, and in this case
the bijectivity of ap is well known. O
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Lemma 1. Let A be a local Noetherian ring of maximal ideal m = my4, and M a
free A-module of finite rank. Let * € M be an element such that * ¢ mM. Then the
A-module M /Az is also free.

Proof. Consider the non-zero vector ¢ := ¢ mod mM in the finite dimensional k-vector
space M/mM, with k = A/m. Then there is a basis &, 45,...,4n of M/mM, with
z; E M,Vi=1,...,n,si z; = z. By Nakayama’s lemma, z; = z, 22, ..., 5 is a system of
generators of the A-module M. On the other hand, let y1,...,y, be a basis of the free
A-module M. Then 4i,...,Yp is a basis of the k-vector space M/mM. In particular,
p = n. Since yi,..., Y, is a basis of M, there exists an n X n-matrix A == |aijli j=1,...n
with entries in A such that

n
T; = E ajyj, Ve=1,...,n.
i=1

Since z1,...,T, is a system of generators of M, there exists a n X n-matrix B =
|bijli,j=1,...,n With entries in A such that

n
Yi = ij,'a:j, YVi=1,...,n.
i=1

Comparing these equalities we get:

n n n

yi=) bjirj= > by > iy = Z(Z aijbji)yr, Yi=1,..,n.
j=1

j=1 =1 =1 j=1
Because y1, ..., yn is a basis of the A-module M we get:
n
Zaljbj,‘ =0y, Vi,i=1,...,n.
i=1

In other words we get the equality AB = I, of matrices, or else, B = A~!. Since
Y1,...,Yn 1s a basis of M, it follows that z; = z,z2, ..., z, is also a basis of M. Thus

zo mod zM,...,z, mod M

is a basis of the A-module M/Az, i.e. M/Az is a free A-module. O

(1.4) Definition. Let M be an A-module. A projective resolution of M is by definition
a sequence of projective A-modules {Pp}n>0, a surjective homomorphism ¢ : Py —
M and a sequence of homomorphisms {f, : P, — Pn—l}nzl such that the following
sequence of A-modules and homomorphisms of A-modules

fn fn—l fl

fnta Jo €
Pnii > P, y P > Py >y M

~
=
-

is exact, i.e. Ker(f,) = Im(fnt1), Yn=0,1,... and Ker(e) = Im(fo).
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Corollary 2. Every A-module M possesses at least a projective resolution. If more-
over the ring A is Noetherian and M is finitely generated over A, then M possesses a
projective resolution as in definition (1.4) such that P, is a projective finitely generated

A-module Vn > 0.

Proof. By Proposition 2 there exists a surjective homomorphism ¢ : Py — M, with Py a
free A-module (hence projective, by Proposition 1). Again by Proposition 1 there exists
a surjective homomorphism go : Py — Ker(¢), with Py projective A-module. If fy is the
composition of the inclusion Ker(e) C Py with go, it follows that the sequence

PP s M0

is exact. Repeting this procedure, there exists a surjective homomorphism ¢; : P, —
Ker(fo) = Ker(go), with P, projective A-module. Denoting by f; the composition of
the inclusion Ker(fo) C P; cu g1, we get the exact sequence

€

p, — p » Py y M — 0
with Py, Py, P; projective A-modules. Continuing in this way we get by induction the
first statement of the proposition.

For the second statement, because M is finitely generated, by Proposition 2 we can
choose the projective A-module Py also finitely generated. Since A is Noetherian and
P, finitely generated peste A, Ker(e) is also finitely generated. Repeting the same
argument we can choose the surjective homomorphism ¢; : P, — Ker(e), with P; a
projective and finitely generated A-module. By induction we get that for every n > 1
the A-module P, is projective and finitely generated. [

(1.5) Let w : M' — M be a homomorphism of A-modules. If N is an arbitrary
A-module we shall denote by

u' := Hom4(N,u) : Homa(N,M') — Hom4(N, M),

u" := Hom4(u, N) : Homa(M,N) — Hom4(M', N)

the homomorphisms of A-modules defined by u/(f) := wo f and u”(g9) = gowu, Vf €
Hom (N, M') and Vg € Hom (M, N).

Let
(1.5.1) 0O — M —2> M 25 M' —— 0,
(1.5.2) 0 y N L s N Ly N » 0

be two exact sequences of A-modules.



10 AFFINE CURVES

Proposition 5. () In the notation of (1.5), for every exact sequence of the form (1.5.1)
and for every A-module N the following sequence

0 — Homa(M",N) —"— Homa(M,N) —~— Hom(M', N)

is exact.
(12) For every exact sequence of the form (1.5.2) and for every A-module M the following
sequence

0 — Homa(M,N') —— Homa(M,N) —L— Homa(M, N")
1s exact.

Proof. The verification is completely straightforward. O

(1.6) Remark. For a given A-module M it is not true in general that for every sur-
jective homomorphism g : N — N’ the map

g =Homa(M,g) : Homa(M,N) — Homa(M,N")

is still surjective. The A-modules M enjoying the property that ¢’ is surjective for every
surjective homomorphism g : N — N are exactly the projective A-modules (in fact
this is precisely the definition of projective modules).
Similarly, it is not true in general that for every injective homomorphismu : M’ — M
the map
u"” = Homu(u, N) : Hom4(M,N) — Hom4(M', N)

is surjective. The A-modules N enjoying the property that the map u” is surjective for
every injective homomorphism u : M’ — M are called injective modules. Although very
important in homological algebra, the injective modules will not be used in this paper.

(1.7) The functors Ezt*.
Let M and N be two arbitrary A-modules and let

(1.71) "’_>Pn+1 fn N Pn .fn—l\ . )Pl .fO )PO € )M__>0

be a projective resolution of the A-module M. The existence of projective resolutions
is ensured by Corollary 2. Then we can consider the sequence of A-modules and homo-
morphisms of A-modules

0 — Homa(Po,N) —° Homa(P1,N) —— Homa(Ps,N) — ---

n- " £
. f—1——> Hom 4(Pn, N) f—> Hom(Pp41,N) e L,

in which the homomorphisms are

fr:==Homa(fn,N) : Homs (P, N) = Homa(Pp41,N), ¥n >0,
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and f! =0, Vn < 0. Since f, 0 fr—1 = 0 then by functoriality we get f/o f//_; =0, i.e.
Im(f)/_1) € Ker(f)), Vn € Z. Then we put by definition:
(1.7.2) Ext’, (M, N) := Ker(f,)/Im(f,_,), ¥Yn>0.

One can prove that the definition (1.7.2) of Ext™(M,N) depends only on the A-
modules M and N, and not on the choice of the projective resolution (1.7.1) of the
A-module M. For every n > 0, Ext"(M, N) is an A-module, and Ext"(M,N) = 0 for

every n < 0.
If the A-module M admits a projective resolution

(L711) 90— p, Ity py T2y Pty > 0,

in other words, if P,, = 0, Vm > n, we will say that the A-module M has the projective
dimension < n, and will shall write dha(M) < n. In general, the projective dimension,
dha(M), of an A-module M is defined as the minimum of all non-negative integers
n > 0 for which there exists a projective resolution (1.7.1.1) with P, # 0. In such a case
we shall write dh4(M) = n. For example dh4(M) = 0 if and only if M is a projective
A-module. However, it might well happen that for a given A-module M a projective
resolution (1.7.1) for which P, = 0 for for some m > 0, does not exist. In such a case
we shall write dh4(M) = oo, and we will say that M has infinite projective dimension.
Clearly, if dha(M) < n, Ext’}y (M, N) = 0, for every m > n and for every A-module N.
Moreover, dh4(M) = 0 if and only if M is a projective module, and an A-module M
has projective dimension < 1 (i.e. dha(M) < 1) if and only if M admits a projective
projective resolution of the form

fo

€

0 y Py s Py s M » 0

The A-modules M with dh4 (M) = 1 will play a crucial role in the proof of the Main
Theorem of the introduction. First examples of such A-modules can be found at (2.2).

Properties of the functors Ezt". For every two A-modules M and N, Ext’; (M, N)
is an A-module and

(1.7.3) Ext% (M, N) = Homa (M, N).

(1.7.3) follows immediately from the definitions and from proposition 5.
(1.7.4) For every homomorphism f € Hom4(M’, M) and for every n > 0 there exists
a well defined homomorphism of A-modules

Ext%(f,N) € Homa(Ext’, (M, N),Ext%(M’', N)),

such that Ext’i(ida, N) = idgxin (m,n), and if g € Hom4(M", M’) is another homo-
morphism, then

Exti(f og,N) =Ext%(g,N) o Ext(f, N).
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In other words, for every A-module N and for every n > 0 the assignment
M — Ext3(M,N)
defines a contravariant functor on the category of A-modules in itself.

(1.7.5) For every homomorphism u € Hom 4 (N, N') and for every n > 0 there exists
a well-defined homomorphism

Ext’ (M, u) € Homa(Ext(M,N),Ext, (M,N"))

such.that Ext’y(M,idn) = idgxin (m,N), and if » € Hom4(N', N") is.another homop-. . .

morfism, the following equality holds:
Ext (M,v ou) = Ext’ (M, v) o Ext’y (M, u).
In other words, for every A-module M and for every n > 0 the assignment
N — Ext (M, N)
defines a covariant functor on the category of A-modules in itself.

We shall explain how to get the homomorphisms Ext"(f, N) and Ext" (M, u) of (1.7.4)
and (1.7.5) below (when we shall introduce the concept of cochain complexes).

(1.7.6) For every projective A-module M and for every A-module NV, one has
Ext%(M,N) =0, Vn> 1.
Indeed, if M is projective, one can take the projective resolution

s M > 0,

€

0 > P()
with Py = M and ¢ = idy,;.

(1.7.7) For every exact sequence of A-modules

0 — s M —* s M —2 5 M'" — 0

for every A-module N, and for every n > 0 there exists a canonical homomorphism
(called the boundary homomorphism)

6n : Ext%(M',N) = Ext%t1(M" N),

such that the first exact sequence of proposition 5 fits into a long exact sequence of
cohomology

0 — Homa(M",N) — Hom4(M,N) — Hom4(M',N) —
— ExtL (M",N) — ExtYy, (M, N) — Ext',(M',N) -
— Ext%(M",N) — Ext%(M,N) — Ext}(M', A) — -
o = Ext Y (M',N) — BExt(M",N) = Ext}(M,N) = ---,

in which the arrows are those obtained by functoriality from u and v (see (1.7.4)) or
the boundary homomorphisms &,.

We sketch now the idea of how to get this cohomology exact sequence. For this we
need some preparatory lemae.
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Lemma 2. (Snake’s lemma.) Let

0 —— M —* s M —" s M —3 0

r| 7| |

0 —— N/ 5 N >N”—>0

be a commutative diagram of A-modules and homomorphisms of A-modules, with exact
rows. Then the homomorphisms u,v, f', f, f',w,t induce a canonical exact sequence

0 —— Ker(f') v, Ker(f) LA Ker(f") LA

— %, Coker(f') —“— Coker(f) —— Coker(f") — 0

Proof. We restrict ourselves to defining the homomorphism ¢ : Ker(f"") — Coker(f")
(the rest of the proof consisting in a straightforward verification). Let then z'' €
Ker(f"). Since v is surjective, there exists an ¢ € M such that v(z) = 2”. From
the commutativity of the second square it follows that f(z) € Ker(t) = Im(w). Thus
there exists a (unique) y’ € N’ such that w(y’) = f(z). Then we put by definition

§(z") := y' mod Im(f") € N'/Im(f") = Coker(f").

The definition of § is correct because if z; € M is another element of M such that
v(z1) = 2", then v(z — z1) =0, i.e. z —z1 € Ker(v) = Im(u). Thus there exists an
element z' € M’ such that u(z’) =z — ;. If y§ € N’ is such that w(y]) = f(z1), from
the commutativity of the first square we get y' —y; = f'(z'), i.e. the elements y’ si y}
define the same class in N'/Im(f’) = Coker(f'). O

Lemma 3. Let

0 s M —>s M —2 5 M" s 0

be an exact sequence of A-modules. Assume that there are projective resolutions:

7] 1
&

0 , Pl 1 p! . M
fll €/l

0 » P » Py » M"

o

~
o=
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Then there exists a commutative diagram of A-modules with exact rows and the colums

0 0 0

0——p L o p = s M — 50
u

0 —— P L P =y M — 0
v

0 ——pr L s pr < om0

in which the middle horizontal rcew is a projective resolution of M. In particular,

dhA(M) < 1.

Proof. Set Py := P} & P{' and consider the exact sequence
0— Py — Py — Py —0,

in which the map P — P is given by 2 — (z,0), and the map Py — P} by (z,y) — y.
Since P and P§' are projective, Py = P§ @ P{ is also projective. We have to show
that there exists homomorphism ¢ : Py — M which makes the two right squares of the
diagram commutative. Since P} is a projective A-module and v is surjective, there exists
a homomorphism 7 : P§’ — M such that v on = €”. Then define the homomorphism
€: Py — M by e(z,y) = u(e'(z)) +n(y). One checks immediately the commutativity of
the two squares. Then set P; := Ker(¢). By the snake lemma (Lemma 2) the (already
constructed) commutative diagram containing the two right squares yields the exact
sequence
0P — P —P'—0,

which makes commutative also the two left squares. Moreover, since P and P;’ are
projective A-modules, from this exact sequence it follows that P; is also projective. [

Remark. Lemma 3 holds true in a more general form (with essentially the same proof),
namely starting with two projective resolutions

Py 5 P - Py — M —0,

PV 5 PI' 5 P M" 0,

one can construct a projective resolution

Py 5P, - Py — M —0,
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which can be included in a commutative diagram, similar to the one of Lemma 3. In
other words, one gets the exact sequence of projective resolutions

0— P, — P, — P! —0.

Taking into account that for every n > 0 the exact sequence (which is nothing but the
component of order n of the above exact sequence of resolutions)

0—- P, —P,—P!—0

consists only of projective modules, this latter exact sequence splits. This observation
allows one to deduce the exactness of the following sequence

0 — Homyu(P,),N) — Homa(P,,N) — Hom (P, N) — 0.
It follows that we get the exact sequence of cochain complexes (see the definition below)
(1.7.7.1) 0 — Homa(P),N) = Homy4 (P, N) = Homa(P,,N) — 0.

Since by definition Ext% (M, N) is the cohomology of the chain complex Hom 4(Ps, N),
the cohomology exact sequence comes from a general technical result. To state it we
need some further definitions and notation. Let us denote by X* the following sequence
of A-modules and homomorphisms of A-modules

d d dn_ dn dn
0 —— X0 22 Xt 2 ... X Ty Xl i,

We will say that X* is a cochain complex if for every n € Z one has d,od,—; = 0, where
by convention we put d, = 0 if n < 0. An element of X™ is called cochain of dimension
n of X*. The condition that d, o d,—1 = 0 is equivalent to Im(d,—1) C Ker(dy,).
If X* is a cochain complex and n is a fixed integer we put Z*(X*) := Ker(d,) and
B™"(X*) := Im(d,—1). An element of Z™(X*) is called cocycle of dimension n of X*,
while an element of B®(X*) is called coboundary of dimension n of the cochain complex
X*. We have B*"(X*) C Z"(X*), Vn € Z. Thus it makes sense to associate to every
cochain complex X* the following A-modules

HYX*):=Z"(X")/B"(X™), forevery n € Z.

Then H™(X*) is called the cohomology module of dimension n of the cochain complex
X* (n € Z). From the definition we see that H"(X*) measures the “deviation” from
the exactness of the complex X* at X™. For example, the projective resolution (1.7.1)
of the A-module M produces the cochain complex X*, with X" := Homy(P,, N) and
dn = f], = Homa(fn,N), Vn € Z (see (1.7.2)). Therefore the cohomology module of
dimension n of this cochain complex is just Ext’ (M, N).

Let X* = {X",dX : X" —» X"}, czand Y* = {Y™, dY : Y™ — Y"1}, ¢z be
two cochain complexes. A homomorphism f : X* — Y* of cochain complexes is by
definition a sequence {f,}nez of homomorphisms of A-module f, : X™ — Y™ such
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that fry10dX =dY o fn, Vn € Z. One verifies immediately that every homomorphism
f: X* = Y™ of cochain complexes induces a well defined homomorphism

H™(f) : H*(X*) = H*(Y*), Vn€ Z.

In fact, if ¢,, is an element of H™(X*) represented by the cocycle z, € Z*(X*), then by
definition H™(f)(cn) is the class of fn(25,) modulo B™(Y*); indeed, from fp410dX =
dY o f, it follows that dY (fn(2n)) = Fat+1(dX(2n)) = fr+1(0) = 0,ie. fo(zn) € Z™(Y*).

At this point we can explain how to get the functorial homomorphism Ext’ (f, N) :
Ext" (M,N) — Ext’; (M', N) associated to an arbitrary f € Homs(M’, N) (see (1.7.4)).
To this extent, choose projective resolutions

[ ' B
a; o

. —— P} s P} » P, ——— M’ » 0>

ai ag 5
s Py s P sy Py s M s 0

of M' and M respectively. We claim that there exists a sequence {fy }rn>0 of homomor-
phisms f, € Hom4(P),, P,) such that the following diagram

1] ' '
@y a9

s P y P} y P, ——— M’ s 0
(f) lf2 lfl lfo lf
s P —2 s P —2 s P — 3 M s 0

is commutative. Indeed, since Pj is projective and e surjective, there exists a (not nec-
essarily unique) homomorphism fo € Hom 4(Pj, Py) such that eo fo = foe’. Moreover,
sinceco fooay = fo(e'oah)=fo0=0,Im(fyoap) C Ker(e) = Im(ap). Then, using
the fact that P; is projective and the surjection ag : Py — Im(ag), we infer that there
exists a (not necessarily unique) fi € Homu(P{, P1) such that ap o f1 = fo 0 aj (here
we used the fact that Im(fy o aj) € Im(ao)!). Continuing in this way by induction we
proved the claim.

Now, the commutative diagram (f) yields the homomorphism of cochain complexes

F:X*:=Homu(Ps,N) = Y* := Homa(P],N),
whose component of order n is
F, := Homa(fn,N) : X" = Homy(P,,N) = Y" = Homu(P,,N).
Then, according to the definition of Ext’s, the desired homomorphism Ext’ (f, N) :
Ext, (M,N) — Ext% (M', N) is by definition the map H"(f): H"(X*) - H*(Y*). Of

course, here one has to check that this definition is correct in the sense that it does not
depend of several choices (resolutions, the maps f,, see [CE] for details).
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The definition of the map Ext’y(M,u) : Ext) (M, N) — Ext"(M, N') associated to
an arbitrary homomorphism v € Hom4(N, N') (see (1.7.5)) is even simpler. In fact,
one choose a projective resolution

ai 3

y Py y P, —° 4 P, s M » 0
of M as above, and then we get the homomorphism of cochain complexes

U:X*:=Homa(P:,N) = Y"* := Homu(P:,N'),

whose component of order n is U, := Hom(P,,u) : Hom4(P,,N) — Hom4(P,,N').
Then, according to the definition of Ext’s, the desired map Ext%(M,u) is H*(U) :
H™(X*) —» H™(Y™*).

Let now X*, Y* gi Z* be three cochain complexes and f = {fp,}, : X* — Y* and
g = {gn}tn : Y* = Z* two homomorphisms of cochain complexes. One says that the
sequence

0 — s x* I s yr 9, g«

> 0
is exact if for every n € Z the sequence
0 — xn —Joyyn I, zn > 0

is an exact sequence of A-modules. With these definitions one has:

Proposition 6. Let

0 — X+ L vy 25 7+ » 0
be an exact sequence of cochain complexes of A-modules. Then for every n € Z there

exists a canonical homomorphism &, : H"(Z*) — H™t1(X*) such that the following
sequence of A-modules and homomorphisms of A-modules

A 61).—1 H"’(X*) Hn(.f) Hn(Y*) Hn(g) Hn(Z*) 6~n
n+1 n+1
on Hn+1(X*) H (6] Hn+1(Y*) H (9) Hn+1(Z*) Ont1

is exact.

Proof. We only indicate how to get the maps §, (n € Z). Consider the commutative
diagram with exact rows

0 , xn-1 f"—1} ynr-1 gn—1 Zmn—1 s 0

| e =

.fn+1 Yn+1 In+1

% | | |

fn gn
+2} y n+2 +2} Zn+2 s 0
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Let £, € H™"(Z*) be an arbitrary cohomology class, which is represented by a cocycle
zn € Z™(Z*). Since g, is surjective, there is an element y, € Y™ such that g,(yn) = 2zn.
Then

gnt1(dy (yn)) = d2(gn(yn)) = d7 (2n) = 0,
and therefore d}:(yn) € Ker(gnt+1) = Im(fny1). Thus there is a (unique) element
Tni1 € X" such that fry1(2at1) = dY (yn)-
Now, one observes that di,;(znt+1) = 0, Tny1 € Z"T(X*). Indeed, since fris is
injective this is equivalent to frt2(dixy;(znt1)) = 0. But

Frr2(dip1(Tnt1)) = iy 1 (Frotr (Tng1)) = di i1 (dY (yn)) = 0,

because dy_; o dY = 0. Then we put by definition
6n(€n) :=class of z,4y in H"MH(X*) = Z"P(X*)/B"TH(X™).

A simple diagram chase over the above diagram shows that if we take another y!, € Y,
such that gn(y,) = gn(yn) = zn, then the element z7,,, got in a similar way has the
property that z/,,; — Tp41 € Im(dX) = Z"*(X*), whence 2/, and z,41 define the
same class in H™"T1(X*).

The rest of the proof is a somehow long (but rather straightforward) verification of
the exactness. 0O

Definition. The long exact sequence from Proposition 6 is called the cohomology ezact
sequence associated to the short exact sequence cochain complexes (of Proposition 6).

Combining Proposition 6 with Lemma 3 (under the form of the remark following it,
especially the exact sequence (1.7.7.1)) we get the cohomology exact sequence (1.7.7)
of the Ext’s.

(1.7.8) For every exact sequence of A-modules

0 — > N — L v N s Nt 0

for every A-module M and for every n > 0, there exists a canonical homomorphism
dp : Exty(M,N") = Ext’ (M, N'),

such that the second exact sequence of Proposition 5 can be included in the following
(second) cohomology exact sequence of Ext’s:

0 — Homa(M,N') = Hom (M, N) — Hom4(M,N"") —
— Exty (M, N") = Exty, (M, N) — Extl,(M,N") -
— Ext% (M, N') = Ext(M,N) = Ext%(M,N") — ---
oo = BExt® N (M,N") = Ext%(M,N') = Ext3(M,N) — -,
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in which the rest of the arrows are induced by f and ¢ (using the functoriality). The
proof is similar and is based on again on Proposition 6. Specifically, let

P,: -3 P PP —-M=0
be a projective resolution of M. Then we get the complexes of cochains
X* =Homa(Ps,N'): 0— Homu(Po,N') - Homa(P;,N') - Homy(Pz, N') — - --
Y* =Homa(Ps,N): 0 — Homy(Py,N) - Homu(P1,N) — Homuy(P;,N) — ---,
Z* = Homa(Ps,N"): 0— Homa(Po,N") = Homa(Py,N") — Homa(Py, N") = --- |

Moreover, we also get (by functoriality) the maps X* — Y™ and Y* — Z* of complexes
such that the sequence of cochain complexes

0=-X">Y"-2Z2"=>0

is exact. The exactness in dimension n amounts to the verification of the exactness of
the following exact sequence

0 = Hom (P, N') = Homu (P, N) — Homyu(P,,N") = 0,
which follows from Proposition 5, (i¢), and from the fact that the A-module P, is
projective. Then one applies Proposition 6.

An interpretation of Ext (M, N). Let M be an A-module, let ¢ : P — M be a
surjective homomorphism from a projective A-module P (Proposition 2, (z)), and set
M' :=Ker(e). We get an exact sequence

(1.7.9) 0 y M —L s p <, M y 0

In particular, if M is an A-module such that dh4(M) < 1, there exists even a projective
resolution of M of the form

(1.7.10) 0 y P, 10 s p = s M s 0

Then writing a part of the cohomology exact sequence (1.7.7) associated to (1.7.9) we
get the exact sequence for every A-module N:

Homa(P,N) —~— Homa(M',N) —* s Extl(M,N) — Ext\(P,N)-

Since P is projective, Exty (P, N) = 0 by (1.7.6). Therefore get the exact sequence

(L7.11)  Homu(P,N) —L— Homa(M’',N) —22 Ext!(M,N) — 0,

where f" := Homa(f,N) : Homa(P,N) — Homu(M’, N) is the homomorphism in-
duced by f. If there is a resolution of the form (1.7.10), we can write (1.7.11) by taking

M' = P;. The exact sequence (1.7.11) gives in particular a direct definition of the
A-module ExtY (M, N) (as the cokernel of the map f").
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Ext" and localisation. Let M, N be two finitely generated A-modules over the Noe-
therian ring A. If S is a multiplicative system of A then for every n > 0 one has a
canonical isomorphism

1.7.12 ST Ext% (M, N) = Ext%_, ,(S™*M,S7IN).
A S—-1A

For every Noetherian ring A let us denote by Max(A) the set of all maximal ideals of
A. Then we have the following formula (see e.g. [CE], or [S2]):

(1.7.13) dhA(M) = sup dhAm(Mm).
m€EMax(A)

In particular, if for a natural number n we have the inequalities dhy  (M,,) < n for
every m € Max(A) then one also has dhs(M) < n. We are going to prove (1.7.13) in
a special case, which will be enough for our purposes (see (3.1)). Namely, assume that
dhga,, (Mp) <1 for all m € Max(A). Then we claim that for every exact sequence

(1.7.14) 0—-X—>F—M-=—D0,

with Py projective (such an exact sequence always exists by Proposition 2), then X is
necessarily a projective A-module.
Indeed for every A-module N the exact sequence (1.7.14) yields the following coho-
mology sequence of Ext’s (see (1.7.7)):
Extl(Py, N) — Ext}(X,N) —2— Ext%(M,N) —— Ext?(Py, N),

in which the extreme A-modules vanish because P, is projective (see (1.7.6)). It follows
that the map
bo : ExtYy (X, N) — Ext?(M, N)

is an isomorphism. On the other hand, Ext% (M, N) = 0. Indeed, it will be sufficient to
show that Ext? (M, N), = 0 for every m € Max(4). But by (1.7.12),

Ext% (M, N)p 2 Ext’ (Mm,Nm),

and since the right hand side vanishes for every m € Max(A) (because by hypothesis
dha,, (M) < 1), we get that Ext% (M, N),, = 0, as stated. Therefore Ext% (M, N) =0,

and since dp is an isomorphism we also get that
(1.7.15) ExtY(X,N) =0 for every A-module N.

Finally, (1.7.15) implies that X is a projective A-module. Indeed, for every exact
sequence of A-modules
0N - N-=N'-0

we get the cohomology sequence of Ext’s (see (1.7.8))
0 — Hom (X, N') — Homa(X, N) — Hom (X, N") — Ext, (X, N') = 0,

which proves that X is projective.
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(1.8) Fibered sum of modules. We recall that, given two homomorphisms of A-
modules f : M — P and g : M — N (both defined on the same A-module M), the
fibered sum P Uy N of P and N with respect to f and g is by definition an A-module
P Up N together with two homomorphisms of A-modules a : P — P Uy N and
B : N — PUp N such that ao f = og, which verify the following universal property:
for every two homomorphisms of A-modules o’ : P — X and 3’ : N — X such that
o'of = ' og, then there exists a unique homomorphism of A-modules u : PUy N — X
such that uoa =o' and uo 8 =g

Proposition 7. Let'f : M — P and g :-M- — N be two homomorphisms of-A-modules: - ~

Then there exists a fibered sum P Uy N of P and N with respect to f and g.
Proof. Set S’ := P @® N, and set

E :={(f(m),—g(m)) | m € M}.

Then E is an A-submodule of S’. If we put PUy N :=(P® N)/E,a: P — PlUpy P
and §: N — P Up N the homomorphisms defined by

a(p) := (p,0) mod E, p(n):=(0,n) mod E,

then it is easy to see that the triple (P Ups N, , ) verifies the universal property of the
fibered sum. 0O

Corollary 3. Assume that S = P Up N is the fibered sum of P and N with respect
tof : M —+Pandg: M — N,andleta: P — S and B : N — S be the canonical
homomorphisms. Then

(z) S =a(P)+ B(N).

(17) Ker(a) = f(Ker(g)) and Ker(8) = g(Ker(f)). In particular, if g is one-to-one then

a is also one-to-one.

Proof. Everything is a straightforward verification. O

(1.9) Ezt! and extensions. Let M’ and M" be two A-modules. An eztension of

M" by M’ is by definition an exact sequence (of A-modules and homomorphisms of
A-modules)

(1.9.1) 0 — s M —* s M —> s M'" — 0

One says that the extension (1.9.1) and the extension

f

0 —— M’ s N —2 5 M" — 5 0

(of M" by M') are isomorphic if there exists homomorphism of A-modules such that
the following diagram

0 — s M —2 s M ——— M' —5 0

idM,l (Pl lidM”

0 —— M’ s N s M" —— 0

-
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is commutative. Then it follows easily that ¢ is an isomorphism of A-modules. This
fact explains the terminology.

We shall denote by Ex 4(M", M') the set of all isomorphism classes of extensions of
M'" by M'. We define a canonical map

w:Exs(M", M") — Exty(M", M')

in the following way. Consider an isomorphism class of extensions e € Ex4(M", M") of
M" by M’ which is represented by the exact sequence (1.9.1). In the cohomology exact
sequence.(1.7.7). associated. to (1.9.1).we have the boundary homomorphism. ... .

60 : Homa(M', M') — Extly(M", M").
Then define
(1.9.2) w(e) 1= do(idpr)-
Then we have the following result which will be used in the sequel:

Theorem 2. In the above notation and hypotheses, the canonical map w defined by
(1.9.2) is bijective.

Proof. To check the bijectivity of w one constructs its inverse
B :Extl(M" M') = Exa(M",M")

using the interpretation of Ext' (M, M') given at (1.7.11). Specifically pick an exact
sequence

0 »y N —=—» P =5 M' —— 0,

with P a projective A-module. Then we get the exact sequence of cohomology

(1.93)  Homa(P,M') —*— Homu(N,M') — Ext%,(M",M') —— 0-

Let now ¢ be an element of ExtY (M", M') which is represented (via (1.9.3)) by the
class of a map g € Hom4(N, M'). Then we put M, := PUy M’ via the mapsa : N — P
and g : N — M'. In other words we get the commutative square

N 2 P

| [

M —— M,
Ug

By Corollary 3 the map u, is injective because « is so. Using the mapse : P — M" and
0: M — M" together with the universal property of the fibered sum we get a unique
map vy : My — M". One easily verifies that in this way we get the following diagram

0—s N %P s s M s 0

S R

0 —— M —2* M, —2— M" > 0
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which is commutative with exact rows. So the bottom exact sequence of this diagram
defines an extension e(g) € Exa(M"',M"). We put by definition

(&) = e(g)-
We have to check that this definition does not depend on the representative g of £.
Assume therefore £ = § = h, with h € Hom(N, M’). Then (1.9.4) implies that there
exists an f € Hom 4 (P, M') such that h — g = o*(f) = f o a. Let

(e(h)) 0 — M —* s M, —2 M" s 0

be the extension associated. (similatly).to.h..We have to constenct.amap. f: My = My, .. . .

such that the following diagram

u Vg

0 —— M —— M, > M" > 0
idM/J( ¢l lidM//
0 —— M 22y M, —22 s M" s 0

is commutative. For this let ¢’ : P@® M’ — P & M’ be the homomorphism defined by

¢'(p,m') == (p,m' — f(p)), VY(p,m') € P M
Clearly ¢ is a homomorphism of A-modules such that

p(a(n), —g(n)) = (a(n), —g(n) — f(a(n)) = (a(n), —h(r)), Vn € N.
Then using the definition of the fibered sum, ¢’ yields the desired homomorphism ¢ :
M, — M} which makes the last diagram commutative. This shows that the extensions
e(g) and e(h) are isomorphic, which proves that the definition of 3 is correct. The
verification that 3 is the inverse of o is straightforward and is left to the reader (cf.

[CE], chap. XIV, Theorem 1.1). O

(1.10) Definition. Let A be a commutative unitary ring and let fi,...,f € A be r
elements of A. We shall say that {fi,..., fr} is an A-sequence if f; is not a zero-divisor
of A, and for every 7 such that 1 < ¢ < r —1, fiy1 mod Af; +---+ Af; is not a
zero-divisor A/Af; +---+ Af;.

For example, let A := K[X}, ..., X,] be the polynoamial K-algebra (with K a field) in
n indeterminates and let fy, f2 € A be two non-constant polynomials. Then, using the
factoriality of A (Gauss’ theorem) one immediately checks that fi, f2 is an A-sequence
if and only if f; si f2 have no common prime factors.

(1.11) Definition. Let A be a local Noetherian ring of maximal ideal m. We define
the depth of A, denoted depth(A), as the maximal integer r > 0 for which there exists
an A-sequence fi, ...,, fr € m. In general we have the inequality depth(4) < dim(A). A
local ring (A, m) is called Cohen-Macaulay if depth(A) = dim(A4). If A is an arbitrary
commutative Noetherian ring, A is called Cohen-Macaulay if for every m € Max(A),
the local ring A,, is Cohen-Macaulay. Let ¢1,...,94 € m be d elements belonging to
the maximal ideal of a local Noetherian ring A of dimension d. Then ¢, ...gq is called
system of parameters of A if\/Ag1 +--- + Agq = m, i.e. every element of m raised to a
certain power belongs to the ideal Agy +---+ Agq. A general result concerning the local
Cohen-Macaulay rings shows that A is Cohen-Macaulay if and only if every system of
parameters of A is an A-sequence (see e.g. [AM]).
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2. TWO THEOREMS OF SERRE

The first theorem of Serre proved in this section is the following important criterion
to recognize when the middle A-module in an extension (see (1.9.1)) is free. Precisely
we have the following:

Theorem 3. (Serre) Let A be a local Noetherian ring, I C A an ideal of A which
admits a projective (free) resolution of the form

0 s AP sy A1 — 2 5 T s 0

Let e € Ext’, (I, A) be the element associated (via the bijective map w of theorem 2) to
the extension given by an exact sequence of the form

(2.0) 0 v A -2 s M 2 g y 0

Then M is a free A-module if and only if the element e generates the A-module
Ext} (I, 4).

Proof. The exact sequence (2.0) yields by (1.7.7) the cohomology sequence of Ext’s

Homa(A, A) —2— Extly(I,A) —— Ext)(M,A) — Extl(A4, A)-

By definition e = do(id4) (cf (1.9)). On the other hand, A is a free A-module (whence
projective, by proposition 1), whence by (1.7.6)

ExtY (4, 4) = 0.

Taking into account that Hom4(A,A) = A, from the above cohomology sequence it
follows that e generates Ext'(I, A) if and only if Ext!,(M,A) = 0. Then the proof of
our theorem is a consequence of the following:

Claim. Ext!,(M, A) = 0 if and only if M is a free A-module.

It remains therefore to prove the claim. If M is free then ExtY (M, A) = 0 by (1.7.6).
Conversely, assume that Extil(M ,A) = 0. Since the A-module A7 is projective, from

the surjective homomorphism 3 : M — I we infer the existence of a homomorphism
® € Hom 4 (A%, M) such that ¢ = 80 ®. Then define the homomorphism

P AD AT = AT 5 M

by the formula ¢(z,y) = a(z) + ®(y), V(z,y) € A A?. In this way we get the

commutative diagram with exact rows:

0 s A —1 y ATHL T 4 Ag s 0
(2.1) idAl «/Jl lw
0 s A —2 & M o, » 0
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in which the homomorphisms ¢ and n are defined by i(z) = (z,0) and #(z,y) =
Vz € A and Vy € A?. Applying the snake’s lemma (Lemma 2) to the diagram (2.1) w
get:

¢}

Ker(y) = Ker(p) = AP,

as well as the surjectivity of 1. In other words, we get an exact sequence of the form
0 — AP — AT M — 0.

Now, the hypothesis that Ext} (M, A) = 0 implies that Ext’, (M, AP) = 0, because the
functor X — Ext'(M, X) is additive and commutes with finite direct sums. Therefore
the above exact sequence yields the cohomology exact sequence (see (1.7.8))

Hom (M, A1) — ™ Homy (M, M) —2 s Extl (M, A?) = 0.

It follows that the homomorphism 7 : Hom 4 (M, A7) — Hom 4 (M, M) is surjective. In
particular, there exists an homomorphism u € Hom 4(M, A7"1) such that ¥ o u = idyy,
i.e. the A-module M is a direct summand of the free A-module 497!, By Proposition 2
it follows then that M is a projective A-module. Finally, since A is a local Noetherian
ring and M is a finitely generated A-module, the fact that M is projective implies that
M is free by Proposition 3. [

(2.2) Example. Let A be alocal Noetherian ring and I an ideal of A which is generated
by the A-sequence { f1, f2} (consisting of two elements, see the definition (1.9)). We shall
produce a free (in particular, projective) resolution of the form

(2:2.1) 0 y A —Y s 42 4 y 0

of the ideal I. To this end, consider the (obviously surjective) homomorphism ¢ :
A? — ] given by ¢(a,b) = afi + bfa, ¥(a,b) € A%. Consider also the homomorphism
Y : A — A? given by ¥(c) = (—cfa,cf1), Ve € A. Clearly, 1 is injective and ¢ 0 3 = 0.
In particular, Im(¢) C Ker(p). Let now (a,b) € Ker(yp), i.e. afi +bfs = 0. From
the equality bf; = —af; it follows (taking into account that f> is not a zero-divisor of
A/Af1) that there is ¢ € A such that b = ¢f;. Then the euqality af; +bfz = 0 becomes
fi(a+ cf2) = 0, and since f; is not a zero-divisor of A, we get a + cfo = 0. Therefore
(0,) = (~cfar o) = $(c) € ().

In this way we checked the exactness of the sequence (2.2.1), which in particular is
a concrete example of a free resolution of I. This resolution is in fact a very special
case of a general resolution, known as the Koszul complez that can be associated to an
A-sequence {f1,..., fr} of arbitrary length r > 2.

(2.3) Definition. Let p C A be a prime ideal of a commutative ring A. A strictly
increasing sequence of prime ideals

(2.3.1) po Cp1 C--- Cpr
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(r > 0) is said to be saturated either if r = 0, or if » > 1 and for every 1 = 0,1,...,r — 1
the only prime ideals containing p; and contained in p;4+; are p; and p;+1. The number
r of a chain of prime ideals (2.3.1) is called the length of the chain. The height of a
prime ideal p of A is the maximum of the lengths r of all saturated prime ideals of type
(2.3.1) such that p, = p. Let now A be a Cohen-Macaulay (not necessarily local) ring,
and let I C A (I # A) be an ideal of A. We sall say that I has height  if all minimal
prime ideals of A containing I have height r. The ideal I of height » > 1 is said to be
local complete intersection if for every maximal ideal m of A such that I C m, the ideal
I, = IA,, is generated by an A,,-sequence {fi,..., fr} of length r.

An important consequence of theorem 3 is the following global result:

Corollary 4. Let A be a Cohen-Macaulay (not necessarily local) ring, and let I C A be
an ideal of height 2 which is a local complete intersection. Assume that every projective
A-module of rank < 2 is free. Then the following two conditions are equivalent:

(2) The ideal I is generated by two elements.

(43) The A-module Ext',(I, A) is generated by one element.

Proof. Assume that (¢¢) holds, and let u be a generator of ExtY (I, A). Then by Theorem
2, u corresponds to an extension I by A of the form

(2.2.2) 0>A—-M-—>1—-0.
Let m be an arbitrary maximal ideal of A. Then by (1.9.1),
Exth(I,A)m 2 Extly (I, Am).

In particular, the latter A,,-module is generated by one element. If I C m then by
hypothesis I, is generated by an A,,-sequence {f1, f2}, and therefore by example (2.2),
there exists a resolution of the form

0— Am — A2 — I, = 0.

Then we can apply Theorem 3 to the local ring A,, and to the ideal I,,, and deduce that
in the extension

00— A, - M, -1, —0

the A,,-module M, is free. If I € m then I, = A,,, whence M, is free also in this
case. In fact, in this case we get the exact sequence

0> A, > M, —> A, —0,

which splits because the third non-zero A,,-module is free. Applying Proposition 4 we
infer that M is a projective A-module (of rank 2). Then by hypotheses M is a free
A-module, i.e. M = A?. Then the exact sequence (2.2.2) together with this latter
isomorphism imply that I is generated by two elements.

Conversely, assume that (z) holds, i.e. the ideal I is generated by two elements f;
and f,. Then we may consider the homomorphism ¢ : A? — I defined by ¢(a1,az) =
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a1 f1 + azfa. Since f; and fy generate I, ¢ is surjective. We can also consider the
homomorphism ¥ : A — A? defined by ¥(c) = (—cf2,cf1). Then it is easy to see that
t is injective (this is obvious if A is a domain, which will the case in which we will
apply Corollary 4; but the injectivity holds in general, check this!). Therefore we get
the following (a prior: not necessarily exact) sequence (analogous to (2.2.1)):

(2.2.3) 0 y A % s 42 % T s O

in which 1 is injective, ¢ is surjective and ¢ o9 = 0 (i.e. Im(%) C Ker(yp)).

Since I is a local complete intersection ideal of A of height 2 in the Cohen-Macaulay
ring A it follows that for every maximal ideal m of A containing I, the ideal I, of
the local ring A,, of height two, which is generated by f; and f;. Since A,, is also
Cohen-Macaulay, this implies that {f1, f2} is an A,,-sequence. Then applying Example
(2.2) we infer that the sequence (2.2.3) localized at m is exact.

On the other hand, for obvious reasons (2.2.3) becomes exact also when is localized
at a maximal ideal m such that I ¢ m. Indeed, in this case I, = A,,, and since I, is
generated by f1 and f3, either f1 or f; is invertible in A,,. Assume for example that f;
is invertible in A,,. Then we can easily prove that Ker(¢.,) € Im(¢., ). Indeed, pick an
arbitrary (a1,az) € Ker(¢m). Then a; fi + a2 f; = 0, whence a; = —(azfl_l)fz. Taking
c:=ayf] ' we get a; = —cf, and a2 = cf;. In other words, (a1,az) = ¥(c) € Im()).

In conclusion the sequence (2.2.3) is exact. Then we write a part of the cohomology
exact sequence (1.7.7) associated to (2.2.3) to get the exact sequence

Homa(A, A) = A — Extly (I, A) — ExtY (42, A).

Since A? is a free A-module, Ext)(A42, A) = 0 (see (1.7.6)). It follows that Ext!,(I, A)
is a quotient of Hom 4 (A, A) = A, and therefore is generated by one element. O

(2.4) Remark. If I is an ideal of A, then the exact sequence
0I—>A—A/I -0
induces the cohomologie exact sequence (see (1.7.7))
Exty(A,A) —— ExtL(I,A) —>— Ext%(A/I,A) —— Ext%(4,A).

Since A is a free A-module, the first and the fourth Ext are zero (see (1.7.6)), therefore
for every ideal I of A there exists a canonical isomorphism

(2.4.1) o : Extl (I, A) = Ext% (A/I, A).

Proposition 8. Le A be a Cohen-Macaulay ring and let I C A be an ideal which is a
local complete intersection of height 2. Then ExtY, (I, A) is a projective A/I-module of
rank one.

Proof. By remark (2.4), Ext! (I, A) = Ext%(A/I, A), and since the second A-module has
a structure of an A/I-module, it follows that Ext,(I, A) becomes an A/I-module. To
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prove that this A/I-module is projective of rank one, by Proposition 4 it will be sufficient
to show that for every maximal ideal m of A/I, ExtY (I, A)p, = Exty (Im,Amn) is a
free (A/I)m-module of rank 1. In other words, we may assume that A is local and I
is generated by an A-sequence {f1, f2}. Then I has the free resolution (2.2.1), and so
applying (1.7.11) we get the exact sequence

(A2 ¥, a4+ » Extl(l,A) — Ext!(A2,4) =0,

where by M* we denoted the dual Hom4(M,A) of an A-module M. Recalling the
definition of %, it follows immediately that the dual map

P (A%) =A% 5 AT A

can be identified to the map (a1,a2) — —aifz + azf1, and therefore Im(y*) = I, i.e.
Extl([,4A)= A/I. O

We shall also need another result due to Serre:

Theorem 4. (Serre) Let A be a reduced finitely generated K-algebra over the al-
gebraically closed field K, and let P be a projective finitely generated A-module of
constant rank r (i.e. for every maximal ideal m of A one has r = dimy()P ®4 k(m),
where k(m) = A/m). Assume r > dim(A). Then there is a surjective homomorphism
of A-modules P — A (in particular, A este un sumand direct al lui P).

Proof. Let p1,...,pn be aminimal system of generators of the A-module P (in particular,
p1,...,pN are linearly independent over K), and denote by ¢ : AN — P the surjective
homomorphism defined by ¢(ay,...,,an) = Zfil a;p;. Set P’ := Ker(p). Then we get
the exact sequence

0 N s AN %2 4 p s 0.

Since P is projective, there exist an N > 0 and a homomorphism 3 : P — AY such
that p ot = idp. It follows that AN =2 P@ P’. By Proposition 2, P’ is also a projective
A-module. Moreover, rank(P’) = N —rank(P) = N —r, i.e. P'is aprojective A-module
of constant rank s := N —r.

Let E (resp. E') be the sheaf on X = Spec(A) associated to the A-module P
(resp. P'). Then E and E’ are locally free sheaves of constant ranks r and s = N —r
respectively. Geometrically speaking, E’ is a vector subbundle of rank s of the trivial
vector bundle X x V of rank N over X (where V is the K-vector space Kp;+- -+ Kpn)
such that the quotient bundle (X x V)/E’ is isomorphic to E. Set d := dim(V'). Since
the canonical evaluation morphism X xV — E, defined by ¢(z, s) := s(z), is a surjective
smooth morphism such that every fibre of ¢ is a k-vector subspace of V' of dimension
N —r.

Let C be the zero section of the canonical projection 7 : E — X, so that C' = X, and
in particular, dim(C) = dim(X) = d. By dimension theorem, ¢~1(C) = {(z, s) | s(z) =
0} is a closed irreducible subset of X x V' of dimension d+ N —r, and since by hypothesis
d < r, we get dim(¢™!(C)) < N.
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Let p: X x V — V = A" be the second projection of X x V, and let us denote by
Y the closure of p(¢™1(C)) in V. Then dim(Y) < dim(¢~*(C)) < N, by the dimension
theorem. In particular, Y # V. Then taking t = a1p; + -+ anpny € V \ Y (and this
happens for a general point a = (ay, ...,an) € K¥), it follows that p~1(t) N~ (C) = 0.
Since on the other hand p~!(¢) N~ *(C) = {z € X | t(z) = 0}, it follows that #(z) # 0
for every closed point (i.e. maximal ideal of A) z € X.

Set M := At C P. By construction, t € M, M = A, and t(z) # 0, i.e. t & m M,,
for every closed point z € Spec(A4) (i.e. for every maximal ideal of A). Since P is a
projective A-module , P, is a free Az-module for every closed point € Spec(A4), and
therefore, by Lemma 1, P, /M, is a free Ay;-module. Then by Proposition 4 we infer
that P/M is a projective A-module. In particular, P = (P/M) & M, whence there
exists a surjective homomorphism P - M = A. O

Corollary 5. Let P be a finitely generated projective module of constant rank r over
the finitely generated K-algebra A such that r > dim(A). Let L be a finitely generated
projective A-module of rank 1. Then there exists a surjective homomorphism of A-
modules ¢ : P — L.

Proof. Set Py := P ® L*, where L* := Homy(L, A) is the dual of L. Then P; is a
(finitely generated) projective A-module of constant rank r (one applies Proposition 3
together with the fact that for every maximal ideal m of A, L,, & A,,, because L is of
rank 1). Therefore by Theorem 3 there exists a surjective homomorphism of A-modules
P; — A. Tensorizing by L, taking into account that the tensor product is a right
exact functor and using the canonical isomorphism L ® L* & A, we get a surjective
homomorphism of A-modules P — L. O
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3. THREE FUNDAMENTAL RESULTS

(3.1) Let A be a Cohen-Macaulay domain and I C A (I # A) a local complete
intersection ideal of height 2 of A. Then by Example (2.2) and (1.7.13) there exists
projective resolution of the ideal I of length < 1 of the form

(3.1.1) 0 y P, —2 P —— I > 0

Set
E(I) := ExtY(I, A).

From the cohomology sequence of Ext’s (see (1.7.7)) together with (1.7.6) (or just take
M =1T1and N = Ain (1.7.11)), we get the following exact sequence

(3.1.2) 0 y [* ——— P —2— Py y E(I) — 0

where M* := Hom4(M, A) is the dual of an A-module M, and if u : M — N is a
homomorphism of A-modules, then u* : N* — M* is the dual homomorphism of u
defined by u*(f) = fou, Vf € N*. By Corollary 1 the A-modules P§ and P are both

projective.
The first fundamental result of this section is the following duality result:

Theorem 5. In the notation of (3.1), the A-module K := Im(a*) admits a projective
resolution of length < 1 and E(K) := ExtY,(K, A) is isomorphic to A/I.

Proof. Step 1. If ¢ : I — A is the inclusion of I in A, then 1* = id 4, with ¢* is the dual
of 7.

Indeed, by Proposition 5 we get the exact sequence

0 — (A/I)* y A — S I

Since I contains non-zero divisors, (A/I)* = 0, whence ¢* is one-to-one. It remains to
prove that 7* is also onto. Since this verification is a local problem, we may localize
at an arbitrary maximal ideal m of A. If I € m, then I, = A,, and we have nothing
to verify in this case. If I C m then I, is generated by an A,,-sequence {f1,f2}. In
other words, we have to prove that every linear form A : I,, — A,, is the multiplication
by a suitable r € A,,. This follows in the following way: from the obvious equality
fiM(f2) — f2A(f1) = 0 (with fi, f2 an A, -sequence) we get that there exists an r € A,
such that A(f;) = rfi, 1 = 1,2. It follows that X is the restriction to I, of the map
r: Amn — An of multiplication by r. Step 1 is proved.

An immediate consequence of step 1 is that the canonical map I — I** into bidual
can be identified to the inclusion I C A.

Step 2. By step 1, the exact sequence (3.1.2) yields the exact sequence

(3.1.3) 0-I"2A— P - K—0,
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and taking into account that P is a projective A-module, (3.1.3) becomes a projective
resolution of K of length < 1. Dualizing (3.1.3) and taking into account of the definition
of E(K), we get the commutative diagram with exact rows

0 > P sy PBh —— I — 0
0 s K* y Pj* —— I™ —— E(K) —— 0

in which the vertical arrows are the canonical maps into biduals. The first vertical map
is by Corollary 1 an isomorphism, and the second vertical map is by step 1 identified
with the inclusion I C A. This proves the last part of the theorem. [

(3.2) The second fundamental result used in the sequel is the following:

Theorem 6. (Quillen-Suslin) Let K[X}, ..., X,] be the polynomial K -algebra in n inde-
terminates over a field K. Then every projective finitely generated K[X, ..., X]-module
1s free.

Theorem 6, which had been conjectured by Serre in [S1] in 1955, has been proved
independently by Quillen and Suslin in 1976. We shall not prove this result here, but
we refer the reader to [K] for a proof. Geometrically, theorem 6 says that every vector
bundle of rank r > 1 on the affine space A™(K) is trivial.

Proposition 9. Let A be a Cohen-Macaulay ring and I C A a local complete inter-
section ideal of A of height 2. Then the A/I-module I/I? is projective of constant rank
2.

Proof. Clearly, the A-module I/I? has the property that A -2 = 0, VA € I and
Vi € I/I?. Therefore the A-module structure of I/I? yields a natural A/I-module
structure of I/I?. To prove that I/I? is actually a projective A/I-module of constant
rank 2 it will be sufficient to show that for every maximal ideal m of A which contains
I (i.e. for every maximal ideal of A/I) the A,,/IA,-module (I/1?)y, & I,,/I2, is free
of rank 2 (see Proposition 4). Then the proof of proposition 9 will be a consequence the
following more precise and general result:

Lemma 4. Let A be a commutative unitary ring and I an ideal of A generated by an
A-sequence f1,..., fr. Then fi1,..., fr is a basis of the A/I-module I/I2.

Proof. Since I is generated by f1, ..., fr, I/I? is generated (as an A-module, whence also
as an A/I-module) by Fiyees fr, with fi := fi mod I2,Vi=1,...,r.

It remains to prove that fl, ey fr are linearly independent over A/I. To do this we
proceed by induction on r. If r = 1, from @ - fl = 0, with @ = @ mod I, it follows that
af; = bf?, with b € A. Since f; is not a zero-divisor of A, we get a = bfy, i.e. @ =0.

Assume now that r > 2 and the statement true for the A-sequence fy, ..., fr—1. Let
ai,...,ar € A be such that y.._, @ - f; = 0in I/I?. We may assume that Yoiiaifi=0
in A because otherwise Z:=1 a; fi = Z;l u;fi, with u; € I, and we can replace a; by
a; — u; (without changing @;).
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Since f is not a zero-divisor in the ring A/Af;+-- -+ Af,_1, from a, f, = — Z;:ll a;f;
it follows that there exist by, ...,b,—1 € A such that a, = E;:ll b;fi (with b; € A), whence
Z::ll (a; + bifr)fi = 0. By the induction hypothesis, a; + b;f, € Afy +--- + Afr_1,
Vi=1,...,r — 1, from which it follows that a; € I, 1.e. a; = 0, for every 1 = 1,...,r — 1.
Since a, = Z:;ll b; fi, we have @, = 0 as well. [

(3.3) A fundamental construction. Let I C A be an ideal of the Cohen-Macaulay
ring A, P a finitely generated projective A/I-module of rank 1, and « : I/I? — P
a surjective homomorphism-of A/I-modules. . Then it makes sense to.speak abcut-the
fibered sum S := P U2 A/I 2 with respect to the homomorphisms of A-modules
7 : I/I? — P and the canonical inclusion 1 : I/I? — A/I?. Let

0 —— I/I? —— A/I? —=— A/l —— 0
be the canonical exact sequence of A-modules. Since co: = 0, by the universal property
of the fibered sum, there exists a unique homomorphism of A-modules v : S — A/I such
that uoa = ¢ and uo3 = 0, where o : A/I? — S and 8 : P — S are the canonical maps
into the fibered sum. Since ¢ is surjective, u is also surjective. Moreover, by Corollary
3, B is injective (since ¢ is injective), and one easily checks that Im(3) = Ker(u). In
other words, we get the commutative diagram with exact rows

(3

0 —— I/I? —— A/I? —= 4 A]l —— 0

L e

0—— P —— § —— Al ——0

Then by the snake’s lemma (Lemma 2), since the first and the third vertical maps are
surjective, the map « is also surjective. It follows that there exists an ideal J C A such
that S = A/J and I? C J C I. In particular, V(I) = V(J), where for every ideal I' C A
we set

V(I') :={m € Max(A4) | I' C m}.

Proposition 10. In the hypotheses and notation of (3.3), assume that the ideal I is
a local complete intersection of height r. Then the ideal J is also a local complete
intersection of height r.

Proof. The problem being local, we can replace A by the localisation A,, (with m a
maximal ideal of A), and therefore we may assume that A is a local ring with the ideal I
generated by an A-sequence f1,...,, fr, where r is the height of I (= dim(A)—dim(A/I),
because A is Cohen-Macaulay). Then by Lemma 4, I/I? is a free A/I-module (generated
by fi,..., f,.) Since P is a free A/I-module of rank 1 and the homomorphism 7 : I/I1? —
P is surjective, we can choose a system of generators gy, ..., g, of the ideal I such that
g1, ---, Gr is a basis of I/I? and gs, ..., , g is a basis of Ker(w) over A/I(here we implicitly
used Nakayama’s lemma). Since I = Ag; + -+ + Ag, and r is the height of I, we get
in particular that ¢1,...,9, is a part of a system of parameters A. Recalling that A
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is Cohen-Macaulay, it follows that g1, ..., g9, 1s an A-sequence. On the other hand, by
Corolary 5 (or also by the snake’s lemma) we have

J/I* = Ker(A/I* — S) = Ker(n),
whence J = Agy + -+ + Ag, + I? = Ag? + Agy +--- + Agyr. Since I and J have the

same height r, and g2, g2, ..., g» is an A-sequence (because g1, ..., g, is an A-sequence),
J is a local complete intersection of height r. [
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4. Applications to the affine space curves

(4.1) We will apply the fundamental construction from (3.3) to the following situation
(that will be assumed throughout this section): A a finitely generated Cohen-Macaulay
K-algebra of dimension 3 for which every projective A-module of rank < 2 is free
(with K an algebraically closed field), and I C A a local complete intersection ideal
of height 2. (The standard example one should keep in mind is the polynomial K-
algebra A = K[X}, X5, X3] in three variables; then by Theorem 6 of Quillen-Suslin,

every projective A-module of finite rank is free.)

By Proposition 4 the A/I-module I/I”is projective of rank-2:- Also; by Proposition= *

8 the A/I-module E(I) := ExtY (I, A) is projective of rank 1. Since I/I? is a projective
A/I-module of rank 2, dim(A/I) = dim(A) — ht(I) = 3 — 2 = 1 (where by ht(I) we
denoted the height of the ideal I); moreover, since E(I) is a projective A/I-module of
rank 1, we may apply Corollary 5 to deduce that there exists a surjective homomorphism
n:I/I? — E(I) of A/I-modules.

In other words we may apply the fundamental construction from (3.3) to deduce that
there exists an ideal J C A such that 1?2 C J C I, which yields the exact sequence

0> E()—A/J—A/I —0.

In particular, E(I) = I/J. Now we are in position to prove the the following funda-
mental result (from which the Main Theorem of the introduction follows):

Theorem 7. Under the hypotheses and notation of (4.1), for every local complete
intersection ideal I C A of height 2 of the finitely generated Cohen-Macaulay K -algebra
A for which every projective A-module of rank < 2 is free, the ideal J (coming from
the fundamental construction (3.3)) is generated by two elements. In particular, there

exist two elements fi, fo € I such thatv/I =v/(f1, fa).

Proof. Since I? C J C I and the height of I is two, the height of J is also two. By
Proposition 10 the ideal J is a local complete intersection. Then by (1.7.13) and the
example (2.2), we deduce that dhs(J) < 1. In particular, there exists a projective
resolution of J of the form

0—>Gy -Gy —J—0.

To prove that J is generated by two elements we shall apply Serre’s criterion (Corollary
4), according to which it is sufficient to check that E(J) := Ext’,(J, A) is generated by
one element.

On the other hand, if

0 y P —— Py > 1 > 0

is a projective resolution of I, we may consider the exact sequence
0—-K—»F=P' —-EI)—0

given by Theorem 5, where K is the image of the dual homomorphism v* : P§ — Pj.
Then by Theorem 5, dhs(K) <1 and E(K) = A/I.
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At this point we can consider the commutative diagram with exact rows and colums

0 0 0
0 s Gy —s Gy —— J —— 0
B
0 y Fy sy Fow Gy —— I ——— 0
0 >y K y F —— E(I) —— 0
0 0 0

which can be obtained exactly as in the proof of Lemma 3. More precisely, the map ¢
can be constructed as in the proof of Lemma 3, and F; := Ker(e). Since dh4(I) < 1 and
Fy® Gy is projective, F) is also projective. In particular, it follows that the first column
is a projective resolution of K, provided it is an exact sequence. But by construction
all the three lines and the last two columns are exact sequences. Then the exactness of
the first column follows from the snake’s lemma (Lemma 2).

Dualizing we get the commutative diagram with exact rows and colums:

0 0
Fy K*
0 y I* » Fgo Gy —— Ff — E(I) —— 0
ﬂ*
0 . J* S G 2 Gt —— B(J) —— 0
0 E(K)
0

Since Im(a*) C Im(B3*), the surjective map G7 — E(K) yields the surjective map
Yo : E(J) = E(K) = A/I. Denote by ¢ : E(J) — A/I the surjective map gotten by
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composition. Since E(J) and A/I are A/J-modules, there exists a homomorphism of

A/J-modules x : A/J — E(J) (not necessarily unique) such that the canonical homo-
morphism c¢: A/J — A/I (given by the inclusion J C I) coincides to the composition

A)] —X EB(J) — A/I

Indeed, since 1 is surjective there exists an element ¢ € E(J) such that ¢(z) is the
class of 1 in A/I. Since E(J) is an A/J-module, J annihilates z, and then we can take

x the unique homomorphism of A/J-modules-x.: A/J — E(J) which maps.the clazs ofe, oo oo

lin A/J in z.

To finish the proof of the theorem it will be sufficient to show that the map y is
an isomorphism (of A-modules). Since the bijectivity of x is a local problem, we may
replace A by A,,, for an arbitrary maximal ideal m of A, and therefore we may assume
that A is a local ring. Then by Proposition 10, J is generated by an A-sequence of
length two (because I is generated by an A-sequence of length two), and therefore by
Proposition 8 we deduce that E(J) =2 A/J. In other words, the canonical surjective
homomorphism ¢ : A/J — A/I can be decomposed as ¢ = o x, with ¢ : A/J — A/I
and x : A/J — A/J. If x would not be an isomorphism (i.e. if x(1) would be non-
invertible in A/J), then ¥(x(1)) = ¢(1) = 1 would be non-invertible in A/I (because
A is local), a contradiction. Therefore (1) is invertible in A/J. This implies that the
map ¢ : A/J — E(J) is (globally) an isomorphism, i.e. E(J) is an A-module generated
by one element. [

(4.2) Theorem 7 can be applied to every local complete intersection ideal I of height 2
of the polynomial K-algebra A = K[X;, X3, X3] in three variables over an algebraically
closed field K. Indeed, by the result of Quillen-Suslin (theorem 6), in this case every
projective A-module of finite rank is free. Geometrically speaking, the local complete
intersection ideals I C A of height 2 correspond to the affine curves contained in the
affine 3-dimensional space A*> = A3(K), which are locally complete intersection in A3.
For example, every irreducible smooth curve C of A® are example of such curves. This
follows from the following elementary result of local algebra (exercise, or see [AM] for
the algebraic formulation, or [Sh], or [H1] for the geometric formulation):

Proposition 11. Let A be a regular local ring of dimension n > 2, and let I C A be
an ideal of A such that the quotient ring A/I is regular of dimension d. Then there
exists an A-sequence fy,...,fn—q € I such that I = Afi +---+ Afn—4.

Theorem 7 implies therefore the Main Theorem of the introduction:

Theorem 8. (Serre-Ferrand-Szpiro) Let K be an algebrically closed field and let C' be a
local complete intersection curve of the affine 3-dimensional space A*> = A*(K). Then C
is defined by two equations in A%, i.e. there exist two polynomials f,g € K[X1, Xo, X3]
such that

C = {(.’L’],.’Ez,l:}) € A3 I f($17x2a$3) = g(mla ,56275133) = 0}

In particular, every smooth irreducible affine curve C' in A? is defined by two equations.
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(4.3) Remark. Theorem 8 of Serre-Ferrand-Szpiro says nothing about the number of
generators of the ideal Z(C) of a local complete intersection curve C in A3, where Z(C')
is the ideal defined by:

I(C) = {P S K[Xl,,Xz,X3] | P(:L') = 0, Vz S C}

This result only asserts that there exists an ideal J of K[X;, X5, X3] which is generated
by two polynomials of K[Xi, X3, X;3] such that Z(C)? C J C Z(C). These inclusions
imply that the zero locus V(J) of J coincides to V(Z(C)) = C. In other words, the local
complete intersection curve C of A% is given only set-theoretically A® by two polynomials.
The curves C of A® with this latter property are called set-theoretic complete intersection
affine space curves. A curve C of A for which even the ideal Z(C) is generated by two
polynomials is called a scheme-theoretic complete intersection affine space curve.
Finally, we should emphasize that the hypothesis that C is a local complete inter-
section curve in A? is essential in theorem 8. Indeed, there are examples of (non local
complete intersection) curves in A® that are not given by two equations in A3.

(4.4) Remark. The analogous problem concerning the number of (homogeneous) equa-
tions defining a (smooth) projective curve C of the 3-dimensional projective space P2 is
completely open. In other words, it is not known whether every smooth irreducible pro-
jective curve C of P? can be given by two (homogeneous) equations (i.e. homogeneous
polynomials of the polynomial K-algebra K[Xg, X1, X2, X3]).
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