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ON THE THEORY OF LOCAL HOMOLOGY AND
COHOMOLOGY

PETER SCHENZEL

Abstract. As a certain generalization of regular sequences there is an
investigation of weakly proregular sequences. Let M denote an arbi-
trary J?-module. As the main result it is shown that a system of elements
x_ with bounded torsion is a weakly proregular sequence if and only if
the cohomology of the Cech complex Cx ® M is naturally isomorphic
to the local cohomology modules H'a(M) and if and only if the homol-
ogy of the co-Cech complex RHom(Cx,M) is naturally isomorphic to
LjAa(M), the left derived functors of the a-adic completion, where a de-
notes the ideal generated by the elements x_. This extends results known
in the case of R a Noetherian ring, where any system of elements
forms a weakly proregular sequence of bounded torsion. Moreover,
these statements correct results previously known in the literature for
proregular sequences.
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LOCAL COHOMOLOGY

1. Local cohomology

1.1. Weakly Proregular and Proregular Sequences. Let R de-
note a commutative ring. For a system of elements x_ = x\,...,xr let
K,(x) resp. K'(x) denote the Koszul complex resp. the Koszul cocom-
plex. For an arbitrary complex of ^-modules X we define

K.(x.;X) = K9(x)®X and K'(x_; X) = Hom(K.(x),X),

see [3, §9]. There are the following Koszul duality isomorphisms

K*(x.;X)~K'(x)®X and K.(x_; X) ~ Hom(K'(x), X).

Denote by / / , (x ;X) resp. H'(xi;X) the homology resp. cohomology of
the corresponding complexes.
For an integer n put x" = x",..., x". By the construction of the complexes
there are natural homomorphisms

K.(xm; X) -> K.(xn; X) and Km(xn; X) -+ K'(xm; X)

for all m > n > 0 such that {K.(xn; X)} resp. {K'(xn;X)} form an
inverse resp. a direct system of complexes. Clearly they induce inverse
systems resp. direct systems on the homology resp. cohomology modules.
In the following putx-, 1 < j < r, for the subsystem of elements x\,... ,Xj.
In particular x0 = 0 and x_r = x_.

Definition 1.1. The inverse system of i?-modules {Mn,(f)™} is called pro-
zero if for each n eN there is an m > n such that the map

<$>™:Mm^ Mn

is the zero homomorphism.

This definition is useful in order to elaborate on inverse limits as follows by
the next observation.

Proposition 1.2. a) Let {Mn,(p™} denote an inverse system that is pro-
zero. Then

WmMn = Wm1Mn = 0.

b) Let 0 —^ {M'n} —• {Mn} -+ {M^} —^ 0 denote a short exact sequence
of inverse systems of R-modules. Then the middle inverse system is pro-
zero if and only if the two outside ones are pro-zero.

Proof. For the proof of a) note that limMw and lim Mn are kernel and
cokernel of the following homomorphism

0 :

In the case {Mn, (f)™} is pro-zero it is easily seen that <P is an isomorphism,
i.e. Ker<£ = Coker<£ = 0.
The statement in b) is obviously true. •
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The previous statements prepare the following definition, in a certain sense
it is a generalization of the notion of a regular sequence.

Definition 1.3. A system of elements x_ = x\,... ,xr of R is called a
weakly proregular sequence if for each i = 1 , . . . , r the inverse system of
Koszul homology modules {Hi(x_n)} is pro-zero, i. e. for each n € N there
is an m > n such that the natural homomorphism Hjix™) -> Hi(x^) is
the zero homomorphism.

The next lemma provides the first couple of properties related to the homo-
logical applications we will study in the following.

Lemma 1.4. Let x_ — x\,... ,xr denote a system of elements of R. Then
the following conditions are equivalent:

(i) x_ is a weakly proregular sequence.
(ii) {Hj(x^; F)} is pro-zero for all i ^ 0 and each flat R-module F.
(iii) lim Hl{x^; I) — 0 for all i ^ 0 and for each injective R-module I.

Proof. While the implication (ii) => (i) is trivial we first show the reverse
implication in order to see that the first two conditions are equivalent. This
follows because

Hi(x_n) ® F ~ Hi(x\ F)
for all / since F is a flat 7?-module.
Now let us prove (i) => (iii). Since / is an injective i?-module

H\Hom(K.{xn), I)) ~ Hom(^(^w), /)

for all i. Therefore

lim i/ ' (xw ; / ) ~ lim Hom(i^(x"), / ) .

By the assumption {Hj(x_n)} is pro-zero for / ^ 0. Whence the direct limit
lim Hl{x?\ I) vanishes, as required.
In order to complete the proof we have to show that (iii) => (i). Let / :
Hj(x") —> / denote an injection into an injective i?-module / . Then

/ € Hom(Hi (x_n), I) ~ H^x"; I)

since / is an injective i?-module. Because of the assumption lim Hl(x^\ I) =

0. So there must be an integer m > n such that the image of / in
i / ' (x w ; / ) has to be zero. In other words, the composite of the map

Hdx™) - • Hi(xn) i /

is zero. Since / is an injection it follows that the first map has to be
zero. •

As an application of Lemma 1.4 let us derive a few more properties of
weakly proregular sequences, similar to those of a regular sequence.

Corollary 1.5. Let x_ = x\,...,xr denote a system of elements of R.
Then the following conditions are equivalent:
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(i) x is a weakly proregular sequence.

(ii) There is an m > 0 such that x_m is a weakly proregular sequence.

(iii) For any permutation a of {I,... ,r} the sequence x C T ( i ) , . . . , xCT(r)

is a weakly proregular sequence.

Proof. The equivalence of the first and the third condition follows since the
corresponding Koszul complexes are isomorphic. In order to complete the
proof one has to show that (ii) =>• (i). To this end note that

lim H^x"; I) ~ lim H^x!""; /) = 0

for any injective 7?-module. Then the claim follows by 1.4. •

The following notion of a proregular sequence was introduced by Green-
lees and May, see [4, Definition 1.8] It was also studied in [ 1 , Section 3].
We shall relate it to the definition of the weakly proregular sequence of
1.3. In fact it is a generalization of the notion of a regular sequence.

Definition 1.6. A system of elements x = x\,... ,xr of R is called a
proregular sequence if for each i = 1 , . . . , r and each n > 0 there is an
m > n such that

(x1 ,... ,xi_1)K .R x( c_ ( x l 9 . . .,xi_1)K .R xi

In the case R is a Noetherian ring for a fixed integer n the increasing
sequence of ideals

(vn n \ . m-n -^
pCj , . . . , xi_l) .R x{ , m > n,

will stabilize. Therefore in a Noetherian ring R any sequence of elements
forms a proregular sequence.
It follows by the definition that x is a proregular sequence if and only if
for each i — 1 , . . . , r and each n > 0 there exists an m > n such that the
multiplication map

xm~n

Xi /(X1 , . ..,Xi_1)K •

xm~"

J ( X j , . . . , x i _ 1 ) K . R Xj / ( X j , . . . , x i _ 1 ) K

is zero. This indicates the homological flavor of this notion related to that
of a weakly proregular sequence.

Lemma 1.7. Let x_ = x\,... ,xr denote a system of elements of R. Sup-
pose that it is a proregular sequence. Then it is also a weakly proregular
sequence.

Proof. We proceed by induction on r. For r — 0 there is nothing to prove.
Put y = xr+\. Then the Koszul homology provides the following diagram

0 - • HQ(ym;Ht(x
m)) -+ Hi(xm,ym) -+ Hx{ym; ^_ i (x w ) ) - • 0

0 - • HQ{yn;Hi{xn)) -+ Hi(x\yn) -+ Hx(y
n; ^_i(x")) -^ 0
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for each i € Z and any pair of integers m > n. The modules at the first
vertical map are derived by the following commutative diagram

Hi(xm) -> H0(y
m;Hi(x

m)) -> 0

Hi(xn) -> Ho(yn',Hi(xn)) -> 0.

By virtue of 1.2 b) and the inductive hypothesis it follows that the first
vertical map of the first diagram above is pro-zero for each / ^ 0.
The modules on the last vertical map of the diagram above are derived by
the following commutative diagram

0 -> H1(y
m;Hi_1(x

m)) -> Hi_x(x
m)

i X
0 -> H1(y

n;Hi_1(x
n)) -+ Hi_,(xn).

By the same argument as above the vertical map at the first place is pro-
zero for all / T^ 1. In the case / = 1 we have

Hx(y
n; H0(x_n)) ~ xnR :R yn/x_nR.

Therefore, by the assumption the vertical homomorphism is also pro-zero in
this case. Then by 1.2 b) the first diagram above implies that {Hj(x_n, yn)}
is essentially zero for each / ^ 0, completing the inductive step. •

Example 1.8. It is noteworthy to say that a weakly proregular sequence
is - in general - not proregular. The following example was kindly com-
municated by J. Lipman to the author, see [2]. Let R = ]~[w>0Z/2wZ
and x = (2 ,2 ,2 , . . . ) . Then it follows that i ^ ( x " ) = 0 for the sequence
x_ = x, 1 and all i e Z. Therefore x_ is weakly proregular. But it is not
proregular, while l , x is so. Whence the example shows also that a
proregular sequence is not permutable without any additional assumption.
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1.2. Cech complexes. Let x = x\,...,xr denote a sequence of ele-
ments of a commutative ring R. Then the direct limit of the Koszul cocom-
plexes lim K9(x_n) is called the Cech complex Cx of R with respect to x.

It is easily seen that C^_ — ®ri=\CXi, where CXi is the complex

CXi, : . . . - * 0 -> R -+ RXi -> 0 - * . . . ,

see e.g. [9, Section 1.1] for the details. In particular Cx is a bounded
complex of flat i^-modules.
Let a be an ideal of R. Then Fa denotes the section functor with respect to
a. That is, Fa is the subfunctor of the identity functor given by

Fa(M) = {meM : Supp Rm c V(a)}

for an 7?-module M. It extends to a functor on complexes of i?-modules.

Let X —> I be an injective resolution of X, see [1 1], for the details.
Then define RFa(X) = Fa(I), the right derived functor of Fa in the derived
category. In fact the construction is independent on the particular choice
of / , see [8] for the details.

Proposition 1.9. Let x = x\,..., xr be a system of elements of R and
a = x_R the ideal generated by it. For a complex X of R-modules there is
a functorial morphism

RFa(X) ^CX®X.

Proof. Let X —> I denote an injective resolution of X, see [11]. Then
RFa(X) resp. C^® X are - in the derived category - represented by Fa(I)
resp. by Cx ® / . In order to prove the claim we have to show that there is
a natural injection Fa(I) -+ CX®I. Since Fa{I

n) = Ker(/W - • / " ® C£)
for each n e Z the following diagram

commutes. The vertical map Fa(I)
n —> {Cx®I)n is induced by the natural

inclusion Fa(I
n) —> C® ® In = In by the natural inclusion. So there is an

injection

of complexes. This proves the morphism of the claim. It is easily seen
functorial and independent on the particular choice of / . D

Question. It is natural to ask whether the morphism of Proposition 1.9 is
an isomorphism. In particular this yields an isomorphism

for all /. This was shown to be true whenever R is a Noetherian ring, see
[5, Expose II] and [6].
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Theorem 1.10. Let x_ — x\,..., xr be a system of elements of R and
a — x_R. Then the following conditions are equivalent:

(i) x_ is a weakly proregular sequence.

(ii) Hl (Cx_ ® / ) = 0 for each i ^ 0 and each injective R-module I.
(iii) For each complex X the functorial morphism

is an isomorphism in the derived category.

Proof. The equivalence of (i) and (ii) is an easy consequence of Theorem
1.4. Note that lim is exact and \'\mK'(x_n) ~ Cx. The implication (iii)

=^ (ii) holds trivially since H'a(I) = 0 for each i ^ 0 and each injective
i?-module / .
Now let us prove (ii) =£> (iii). To this end take an injective resolution X —>

I of X, [11]. The y'-th column Cx ® P of the double complex

q.<g)/y, 0<i <m,j eZ,

is - by the assumption - an injective resolution of Fa(I^), so that the inclu-
sion

ra(i) -+c*®i
induces an isomorphism in cohomology. This completes the proof. •

The previous result was originated by [1] and [4]. In fact, the result was
claimed to be true for proregular sequences. There is an application con-
cerning another property of proregular sequences.

Corollary 1 . 1 1 . Let x_ — x\,..., xr resp. y — yi,...,ys denote two

systems of R such that Ra6x_R = Rad yR. Then x_ is a weakly proregular

sequence if and only if y is a weakly proregular sequence.

Proof. Let a = x_R and b = yR. Then Rra(X) = Rrb(X) for any complex
of i?-modules X since Rad a = Rad b. Therefore the claim follows by the
Theorems 1.10 and 1.4. •

As mentioned above, in a Noetherian ring R any system of elements forms
a weakly proregular sequence since it is proregular. Conversely it would
be of some interest to characterize those commutative rings for which any
finite system of elements forms a weakly proregular sequence.
In the following we will continue with a result concerning the composite of
two section functors. It is well known in the case of a Noetherian ring R.

Corollary 1.12. Letx_,y = x\,..., xr, y\,..., ys denote a weakly proreg-

ular sequence consisting of the two weakly proregular subsystems x_, y. Put

a = x_R resp. b = yR. Then there is a functorial isomorphism

Rra(Rrb(x)) % Rra+b(x))
for a complex of R-modules X.
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Proof. Since x_, y forms a weakly proregular sequence it follows that

Rra+b(x)) « 4 , z ® x,

see 1.10. Moreover both x_ and _y form a weakly proregular sequence by
the assumption. Furthermore, by the construction of the Cech complex we
have the isomorphism Cx,y — Cx ® Cy. So the claim is a consequence of
1.10 and the associativity of the tensor product. D

In the particular case that s = 1 and y consists of a single element y there
is a short exact sequence useful for an inductive increase of the number of
elements in local cohomology.

Corollary 1.13. Let x_ = x\,..., xr, y, and x_, y denote weakly proreg-
ular sequences. For each i e 7L there is a functorial short exact sequence

0 -> H^Hi-HX)) -> Hi+yR(X) -> H^iHKX)) -> 0,

where X denotes an arbitrary complex of R-modules. In fact it is part of
the long exact sequence

Proof. By the fact that x, y, and x, y form a weakly proregular sequence
resp. we may compute the right derived functor of the corresponding
section functors by the Cech complexes. Now C^,y is by construction the
mapping cone of the natural homomorphism Cx —> Cx® Ry. So the short
exact sequence of complexes

0 - • Cx_ <g> Ry[~ 1] - ) • Cx,y -* Q ->• 0

provides the exact sequences of the statement. Note that the localization
Ry is exact. •

In the case of a Noetherian ring R 1.1 3 has been shown in [9, Corollary
1.4]. The property of y being a weakly proregular sequence is equivalent
to saying that yR is of bounded yR-\ors\on.

2. Completion and co-Cech complexes

2.1. Projective Limits of Koszul complexes. In a certain sense -
which will become more precise in the following - completion is a construc-
tion dual to the local cohomology. While the local cohomology modules
are studied in several research papers not so much is known about the
derived functors of the completion.
The most significant papers to the present research are - first of all - the
work of Greenlees and May, see [4], and the papers [1] and [10]. For an
ideal o of R let Aa denote the a-adic completion functor \\rr\(R/an ® •)• F°r

an arbitrary complex X of i?-modules let F —> X denote a flat resolution
of X, see [1 1] for its existence.
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Definition 2 . 1 . In the derived category the left derived functor L1

of X is defined by Aa(F), where F —> X denotes a flat resolution.

In fact, this construction is functorial and independent of the choice of the
particular resolution F, see [1], [4], and [10] for the details.
Let x = x\,..., xr denote a system of elements of the ring R. Let X be an

arbitrary complex of /^-modules. Then the complex, the so-called co-Cech
complex,

in a certain sense the dual of C^ ® X, is of a great importance related

to the completion functor. While the complex C^ ® X is well-defined in

the category of modules, the co-Cech complex is an object in the derived

category. It is represented by Hom(C i , / ) , where X —> I denotes an

injective resolution of X. Another representative of RHom(Cx ,X) will be

constructed in the following.

Let x e R denote an element. The naturally defined short exact sequence

0 -> R[T] X-^> R[T] -> Rx -> 0

provides a free resolution of Rx as an i?-module. Let Px denote the
truncated resolution consisting of R[T] in degree 0 and -1 and zero else-
where. Let Lx denote the mapping cone of the natural homomorphism of

complexes R -> Px. Then it follows by the construction that Lx —> Cx is

a free resolution of the Cech complex Cx.
Now let x = xi,..., xr denote a system of elements of R. Then define

Clearly Lx —> Cx is a free resolution of the Cech complex Cx. Therefore,

in the derived category the complex RHom(C^, X) is represented by each

of the following complexes

H o m ( 4 , / ) ^ > Hom(Lx, I) and H o m ^ , X) - ^

where X —> I denotes an injective resolution of X.
We continue here with another property of a proregular sequence. It
requires the following definition concerning the torsion properties.

Definition 2 . 2 . Let a denote an ideal of R. Then R is said to be of
bounded a-torsion if the increasing sequence {0 :R am}m&n stabilizes.

Note that whenever x = x\,...,xr denotes a proregular sequence, R
is of bounded xii?-torsion. In the case of R a Noetherian ring it is of
bounded a-torsion for any ideal a.
Now note that RHom(CA:, X) is - in the derived category - also represented
by

Hom(Cx, I) ~ Hom(lim K'(xn), I) ~ lim K.(xn; I),
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where X —> I denotes an injective resolution of X. Here we are inter-
ested in the complex lim K,(x_n; I) and its cohomology.

Theorem 2.3. Let x_ = x\,...,xr denote a system of elements of R.
Then the following conditions are equivalent:

(i) R is of bounded Xj-torsion for each j = 1 , . . . , r.
(ii) For each injective R-module I and each j = 1 , . . . , r the multipli-

cation map I —• / becomes stable, i.e. there is an integer n such
that x1]I = xfl for all m > n.

(iii) The tower of inverse systems of complexes {K,(x_n; I)} satisfies the
Mittag-Leffler condition.

Proof. First we show the implication (i) =>• (ii). To this end let x e R denote
an arbitrary element. For each pair of integers m > n there is the following
diagram induced by multiplications

0 ^ 0:Rxn ^ R S- R — • R/xnR -> 0
| || \xm~n ixm-n

0 -+ 0:Rxm -+ R °Z R — • R/xmR -+ 0.

Since / is an injective .R-module it induces - as easily seen - a commutative
diagram of the following type

+ 0

+ 0,

where / is injective and g is surjective. Hence, the snake lemma provides
that Kerg = Coker/. In case R is of bounded x7?-torsion condition (ii) is
satisfied. Note that Kerg = 0 in this situation.
We proceed by an induction on r in order to prove (ii) => (iii). For r = 0
there is nothing to show. Suppose the claim is true for r. Now put y =
xr+\. We shall prove the claim for the system of r + 1 elements x_, y.
For each n and m > n the natural commutative diagram of Koszul com-
plexes

0 -+ I -+ K.(ym;I) -+ /[I] - • 0
II I I yvn-n

0 ^ / ^ K.(yn-I) -+ / [ I ] -^ 0,

induces the following commutative diagram

0 - • K.(xm;I) -+ K.(xm,ym;I) -+ K.(xm;I)[l] -+ 0

I I It?
0 -^ K.(x»;I) -+ K.(xn,yn-I) -+ K.(xn;I)[l] -+ 0.

The vertical map \(r™ at the right is the composite of the natural map

xml -

if
xnl -

> / -

II
> I -

> Hom(0

> Hom(0

'•R

[ g

•R

vm

x»,

I)

I)
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with the multiplication by ym n on K,(x_n;I). The tower of inverse sys-
tems of complexes on the left satisfies the Mittag-Leffler condition by the
induction hypothesis.
We claim now that the tower of inverse systems of complexes at the right
satisfies the Mittag-Leffler condition too. To this end put Kn = Kj(2£n; I).
Then we have to show that for each i and each n > 1 there is an integer
m such that the image of the homomorphisms \lr™+s : Km+S -> Kn are
the same for all s > 1. By the inductive hypothesis this is true for the
homomorphisms 0™ : Km —> Kn, i.e. for a given n there is an m > n
such that Im (/)™+s = Im 0™ for each s > 0.
For the fixed integer m consider now the multiplication map pys : Km ->
Km by ys. Since Km is an injective i?-module there exists - by the assump-
tion - an integer t such that Im pyt+s = Im pyt for each s > 1. Therefore

fo

= Im

_ ym-n+t

for all s > 0.
Now the above commutative diagram is split exact in each homological
degree. Both of the towers of complexes on the left and on the right
satisfy the Mittag-Leffler condition. By [7, 1 3.2.1] it follows that the tower
of complexes in the middle satisfies the Mittag-Leffler condition too. This
finishes the proof of (iii).
Finally we have to show the implication (ii) =>• (i). To this end let K
denote an injective co-generator of the category of i?-modules. That is,
for each i?-module M and an element 0 ^ m e M there is a homo-
morphism / € Hom(M, K) such that f(m) ^ 0. By the assumption
(iii) the inverse system {K\(x?; K)} satisfies the Mittag-Leffler condition.
Because of K\(x?;K) ~ ®r

i=lK and because of the homomorphism
Kx{x™; K) -+ Ki(x_n; K) which is the multiplication by xf~n on the y-th
component, j = 0 , . . . , r, it turns out that the multiplication map by xj"~w

on K is stable. By the above commutative diagram it follows that

Hom(0 :R x™, K) = Hom(0 :R xJ, K)

for a large n and all m > n. The corresponding short exact sequence
implies that Hom(0 \R x'p/O :R X " , ^ ) = 0. Since K is an injective
co-generator it follows that 0 \R xj1 = 0 :^ xj, i.e. R is of bounded
Xy-torsion. D

The previous result has an important application concerning the compu-
tation of the homology of the complex lim AT.(xw ; /) for a complex of
injective i?-modules / .
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Corollary 2 .4 . Let I denote a complex of injective R-modules. Let x_ —
x\,...,xr denote a system of elements such that R is of bounded Xj-
torsion for each j = 1 , . . . , r. Then there is a short exact sequence

^ ^ lim Hi(xn; I) - • 0

for each i € Z.

Proof. In order to show the claim take the homomorphism of complexes

as considered in the proof of 1.2. Because of the Mittag-Leffler condition
shown in 2.3 it induces a short exact sequence of complexes

0 -* Ijm K.(xn; I) -

The long exact cohomology sequence induces the short exact sequences
of the statement, see also [4] for some more details. •

2.2. Completion. There is a functorial homomorphism K,(x^;X) —>
X ® R/an for each n > 0. Whence, for each / it induces a functorial
homomorphism

where X —> I denotes an injective resolution of X. Recall that lim K.(x?; I)

is another representative of RHom(C i, X), where X —> I is an injective
resolution of X.

Theorem 2 .5 . Let x_ — x\,..., xr denote a system of elements of R. Sup-
pose that R is of bounded Xj -torsion for j = 1 , . . . , r. Then the following
conditions are equivalent:

(i) x_ is a weakly proregular sequence.

(ii) For each R-module M with M —> I its injective resolution the
homomorphism

Hi(\jmK.(xn;I)) ~ L^

is a functorial isomorphism.
(iii) For each bounded complex X the functorial morphism

is an isomorphism in the derived category.

(iv) Hi(RHom(Cx, F)) = 0 for each i ^ 0 and each flat R-module F.

Proof. Firstly we show the implication (i) =>• (ii). Since for each / e Z there
is a functorial isomorphism

Hi(\\m K.(xn; /)) ^ Hi(Hom(Px, M)) =: Ht{M)

it will be enough to show the following steps:
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1. H0(M) ~ l0A
a(M).

2. Hi(F) — 0 for each i ^ 0 and each flat i?-module F.
3. {Hi}i>o forms a connected sequence of functors.

The statement in 3. is true because Px is a bounded complex of free R-
modules such that Hom(P^, •) is a covariant functor that preserves quasi-
isomorphisms. In order to prove 2. note that for each i there is a short
exact sequence

0 -> lim lHi+i(x
n; J) -> Ht(F) -> lim Hi(xn; J) -> 0,

where F —> J denotes an injective resolution, see 2.3. Since Hi(x^; F) 2
i/ /(xw ; / ) and x forms a weakly proregular sequence the inverse system
of the family {-H/(xw; F)} is pro-zero, see 1.4. Therefore

v ' (Aa(F) ih=0,

which proves 2. Note that H0(x_n; F) ~ F/x_nF for each n > 0.
So the claim in 1. remains to prove. As shown above it is true for a flat
i?-module F. Let F\ —> FQ —>• M -^ 0 be a resolution of M by free
.R-modules Ff,i = 0 ,1 . Then it induces a commutative diagram

HoiFt) -+ H0(F0) -+ H0(M) -+ 0
~v ~v ~v

-+ 0.

Note that #_ i ( - ) = 0, as easily seen. Therefore HQ(M) ~ l0A
a(M), as

required.
Now the implication (ii) =>• (iii) is a consequence of the way-out techniques
by Hartshorne, see [8, Chapter I, §7]. More precisely for n e Z an integer
let

a>
Xn+1 -+ Xn+2 -+ ... and

. . . - • ( ) - • Cokerrf

Then there is a quasi-isomorphism a>«_i —> a>w and a short exact se-
quence

0 - • Hn(X)[-n] -+ o>n -+ o->w_i -^ 0.

Then we show by descending induction on n that

in the derived category. For n sufficiently large a>n is the zero complex.
So the claim is certainly true. Because of the assumption in (ii) the above

short exact sequence provides the claim for a>w. Since o>n-\ —> &>n

is a quasi-isomorphism and both functors preserve quasi-isomorphisms the
claim is true for a> n_i .
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Next note that (iii) =>• (iv) follows since UAa(F) — 0 for each i ^ 0 and
a flat i?-module F. Finally we have to show the implication (iv) =>• (i) in
order to finish the proof.
To this end let / be an arbitrary injective i^-module. Let K denote an
injective co-generator of the category of i?-modules. Because Hom(7, K)
is a flat /^-module the assumption in (ii) implies that

fl}(RHom(C*, Hom(7, K))) = 0 for each / ^ 0.

Because RHom(C^, Hom(7, K)) is represented by Hom(C^ ® / , K) and
because K is an injective i?-module it follows that

0 = HomiWiCx 0 / ) , K) for all i ^ 0.

Therefore Hl{Cx ® / ) = 0 for each i ^ 0 and each injective i?-module / .
By Theorem 1.10 this completes the proof. D

It is an open problem to the author whether (iii) in Theorem 2.5 holds for
any complex, similar to the result for the local cohomology in Theorem
1.10, see [1] for various results in this direction. It is true in the case of a
Noetherian ring R.

Corollary 2 .6 . Let x_, y = x\,...,xr,yi,...,ys denote a weakly pro-

regular sequence consisting of the two weakly proregular subsystems x_, y.

Suppose that R is of bounded XiR-torsion for i = l , . . . , r and is of

bounded yj-torsion for j = 1 , . . . ,s. Put a = x_R resp. b = yR. Then

there is a functorial isomorphism

lAa+\X)) ^ lAa(lA\X))

for a bounded complex of R-modules X.

Proof. Let X — • / denote an injective resolution of X. Then lAa+b(X))

is represented by Y\on\(C^y,I) in the derived category, see 2.5. But

now we have that Cx,y — C* <8> Cy. The adjunction formula provides the
isomorphism

^ z , Hom(Cz,

Furthermore both of the sequences x_ and y form a weakly proregular se-

quence and Hom(C ;, 7) is a complex of injective i?-modules. Whence by

2.5 the second complex in the above isomorphism represents Lyla(Lylb(X))

in the derived category. This completes the arguments. •

In the case of s = 1, i.e. y consists of a single element y there is a short
exact sequence for computing the left derived functors of the completion
inductively. The proof of the following corollary is a little more complicated
than the corresponding result for the local cohomology shown in 1.13.
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Corollary 2 . 7 . Let x_ and x_, y denote weakly proregular sequences.
Suppose that R is of bounded yR-torsion and of bounded XjR-torsion for
i = 1 , . . . , r. For each / s Z there is a functorial short exact sequence

0 -> l0A
yR(UAa(X)) -> UAa+yR(X) -* LiAyR(Li-iAa(X)) -> 0,

where X denotes a bounded complex of R-modules.

Proof. Let M denote an i?-module. Then we first observe that ljAyR(M) =
0 for all / ^ 0 ,1 . Because R is of bounded j-torsion and because lAyR(M)

is represented by Hom(CF, / ) , where M —> I denotes an injective res-
olution of M. Then this claim follows by view of the homology sequence
of

0 -> I -> Hom(Cy, I) -> H o m ( ^ , 7)[1] -> 0.

To this end recall that Ht(I) = Hi(Hom(Ry, / ) ) = 0 for all / > 0.
Now consider the free resolution L^_ of the Cech complex Cx_ as defined at
the beginning of this section. Then the derived functors of the completion
may be represented by V\om{Lx,X). By the adjunction formula we have
the isomorphism of complexes

~ Hom(Ly,Hom(Lx,X)),

note that Lx,y — L*_ ® Ly. This yields the following spectral sequence for
the homology modules

Efj = UAyR(ljAa(X)) => E™j = li+jA
a+yR(X).

Because of Ef- — 0 for all i ^ 0,1 it degenerates partially to the short

exact sequences of the statement. •

An inductive argument provides that LiAa(X) = 0 for all i > r, the number
of elements of x_. A more detailed study of the largest integer i such that
UAa(X) ^ 0 is in preparation.

References

[1] L. Alonso TarrTo, A. Jeremias Lopez, J. Lipman: local homology and cohomol-
ogy of schemes, Ann. scient. Ec. Norm. Sup., 4e ser. 30 (1997), 1-39.

[2] L. Alonso TarrTo, A. Jeremias Lopez, J. Lipman: Local homology and cohomol-
ogy of schemes, Corrections.

[3] N. Bourbaki: 'Algebre, Chap. X: Algebre homologique', Masson, Paris, 1980.
[4] J. P. C. Greenlees, J. P. May: Derived functors of the I-adic completion and

local homology, J. Algebra 149 (1992), 438-453.
[5] A. Grothendieck: 'Cohomologie locale des faisceaux coherents et theorems de

Lefschetz locaux et globaux', SGA 2, North-Holland, Amsterdam, 1962.
[6] A. Grothendieck: 'Local cohomology', notes by R. Hartshorne, Lect. Notes in

Math., 20, Springer, 1966.
[7] A. Grothendieck, J. Dieudonne: 'Elements de Geometrie Algebrique III', Publ.

Math. IHES, 11, 1961.
[8] R. Hartshorne: 'Residues and duality', Lect. Notes in Math., 4 1 , Springer,

1967.



Y7_ LOCAL COHOMOLOGY

[9] P. Schenzel: On the use of local cohomology in algebra and geometry. In:
Six Lectures in Commutative Algebra, Proceed. Summer School on Commu-
tative Algebra at Centre de Recerca Matemdtica, (Ed.: J. Elias, J. M. Giral,
R. M. Miro-Roig, S. Zarzuela), Progress in Math. Vol. 166, Birkhauser, 1998,
pp. 241-292.

[10] A.-M. Simon: Some homological properties of complete modules, Math. Proc.
Cambr. Phil. Soc. 108 (1990), 231-246.

[11] N. Spaltenstein: Resolutions of unbounded complexes, Compositio Math. 65
(1988), 121-154.

Martin-Luther-Universitat Halle-Wittenberg, Fachbereich Mathematik und Informatik, D —
06 099 Halle (Saale), Germany
E-mail address: schenzelOmathematik. uni -ha l le . de


