
the
abdus salam
international centre for theoretical physics

strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

united nations
educational, scientific

and cultural
organization

international atomic
energy agency

These are preliminary lecture notes, intended only for distribution to participants

SMR1563/11

School on Commutative Algebra and Interactions with
Algebraic Geometry and Combinatorics

(24 May - 11 June 2004)

Characteristic p methods and tight closure

A.K. Singh
School of Mathematics

Georgia Institute of Technology
686 Cherry Street

Atlanta, GA 30332-0160
U.S.A.



CHARACTERISTIC p METHODS AND TIGHT CLOSURE

ANURAG K. SINGH

These are the notes of four lectures given at the Abdus Salam International
Centre for Theoretical Physics, Trieste, in June 2004 on tight closure theory. This
theory was developed by Melvin Hochster and Craig Huneke in the paper [HH1].
An excellent account may be found in Huneke’s CBMS lecture notes, [Hu]. The
lectures that follow are very far from a complete treatment, but we hope they will
be of some help to those who are new to the subject.

1. Tight closure: basic properties

By a ring we mean a commutative ring with a unit element. A local ring, denoted
(R,m) or (R,m,K), is a Noetherian ring with unique maximal ideal m and residue
field K = R/m.

If S is a subring of a ring R and there is an S-linear map ρ : R −→ S such
that ρ(s) = s for all s ∈ S, we shall say that S is a direct summand of R. In this
situation, let a be an ideal of S, and let s ∈ aR ∩ S. Then s =

∑
airi where ai ∈ a

and ri ∈ R. Applying ρ to this equation we get

ρ(s) =
∑

aiρ(ri) ∈ a,

and since ρ(s) = s, it follows that

aR ∩ S = a.

Now let G be a group acting on a Noetherian ring R. We use RG to denote the
ring on invariants, i.e.,

RG = {r ∈ R : g(r) = r for all g ∈ G}.

If RG is a direct summand of R, then aR ∩RG = a for all ideals a ⊂ RG. This has
several strong consequences as we shall see in these lectures—as a start, we observe
that it implies RG is a Noetherian ring: to see this, consider a chain of ideals of the
ring RG,

a1 ⊆ a2 ⊆ a3 ⊆ . . . .

Expanding these to ideals of R, we have a chain of ideals

a1R ⊆ a2R ⊆ a3R ⊆ . . . ,
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2 ANURAG K. SINGH

which stabilizes since R is Noetherian. But aiR ∩ RG = ai, so the original chain
stabilizes as well.

Hilbert’s fourteenth problem essentially asks whether RG is Noetherian whenever
R is. The answer turns out to be negative, and the first counterexamples were
constructed by Nagata, [Na1]. We shall say more about these issues in Remark 1.8.
For the moment, we focus on the case where R is a polynomial ring over a field K,
and G is a finite group acting on R by K-algebra automorphisms—the subject of
Benson’s book [Ben]. In this case RG is always Noetherian, see [AM, Exercise 7.5].

If the order of the finite group G is invertible in the field K, consider the map
ρ : R −→ RG given by

ρ(r) =
1
|G|

∑
g∈G

g(r).

It is easily verified that ρ is an RG-module homomorphism, and that ρ(s) = s for
all s ∈ RG. Hence RG is a direct summand of R whenever the characteristic of K

does not divide the order of the finite group G.

Example 1.1. Let Sn be the symmetric group on n symbols acting on the polyno-
mial ring R = K[x1, . . . , xn] by permuting the variables. Then the ring of invariants
is RSn = K[e1, . . . , en], where ei is the elementary symmetric function of degree i

in the variables x1, . . . , xn. Moreover, R is a free RSn -module with basis

xm1
1 xm2

2 · · ·xmn
n where 0 ≤ mi ≤ i− 1,

see, for example, [Art, Chapter II.G]. Consequently RSn is a direct summand of R,
and this is independent of the characteristic of the field K.

Example 1.2. Let K be a field of characteristic other than 2. For n ≥ 3, consider
the alternating group An < Sn acting on the polynomial ring R = K[x1, . . . , xn]
by permuting the variables. Let

∆ =
∏
i<j

(xi − xj) ∈ R.

Then σ(∆) = sgn(σ)∆ for every permutation σ ∈ Sn, so ∆ is fixed by even cycles.
It is not hard to see that RAn = K[e1, . . . , en,∆]. Since ∆2 is fixed by all elements
of Sn, it must be a polynomial in the elementary symmetric functions ei, and so
RAn is a hypersurface with defining equation of the form ∆2 − f(e1, . . . , en) = 0.

It turns out that RAn is a direct summand of R if and only if |An| = n!/2 is
invertible in K. We examine the case p = n = 3 here, and refer to [Si1] or [SmL]
for details of the general case. The ring of invariants is

RA3 = K[e1, e2, e3,∆]
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where e1 = x1 + x2 + x3, e2 = x1x2 + x2x3 + x3x1, e3 = x1x2x3, and ∆ =
(x1 − x2)(x2 − x3)(x1 − x3). Since RA3 is a hypersurface with defining equation
∆2 − f(e1, e2, e3) = 0, it follows that ∆ /∈ (e1, e2, e3)RA3 . On the other hand

∆ = (x1 − x2)(x3e1 + e2) ∈ (e1, e2, e3)R,

so RA3 is not a direct summand of R.

For a finite group G, when is RG a direct summand of R ? One answer comes
from tight closure theory:

Theorem 1.3. Let K be a field of positive characteristic, and let G be a finite
group acting on a polynomial ring R = K[x1, . . . , xn] by degree preserving K-algebra
automorphisms. Then RG is a direct summand of R if and only if RG is weakly
F-regular.

Definition 1.4. Let R be a ring of prime characteristic p and let R◦ denote the
complement of the minimal primes of R. If R is a domain, which will be the
main case in these lectures, then R◦ is just the set of nonzero elements of R. For
an ideal a = (x1, . . . , xn) of R and a prime power q = pe, we use the notation
a[q] = (xq

1, . . . , x
q
n). The tight closure of a is

a∗ = {z ∈ R | there exists c ∈ R◦ for which czq ∈ a[q] for all q � 0}

which is an ideal of R containing a—possibly larger, but a tight fit nonetheless. A
ring R is weakly F-regular if a∗ = a for all ideals a of R.

For a ring R of characteristic p > 0, the map F : R −→ R with F (r) = rp is
a ring homomorphism, called the Frobenius homomorphism. Note that R may be
viewed as an R-module via the Frobenius homomorphism or any iteration thereof.
For an ideal a = (x1, . . . , xn) of R, consider the exact sequence

Rn (x1 ··· xn)−−−−−−−→ R −−−−→ R/a −−−−→ 0.

Applying F e(R)⊗R, the right exactness of tensor gives us the exact sequence

Rn (xq
1 ··· xq

n)
−−−−−−−→ R −−−−→ F e(R)⊗R R/a −−−−→ 0,

which shows that F e(R)⊗R R/a ∼= R/a[q].
If R = Z/p[x1, . . . , xd] is a polynomial ring, the Frobenius F : R −→ R may be

identified with the inclusion

Z/p[xp
1, . . . , x

p
d] ⊂ Z/p[x1, . . . , xd]. (#)

The monomials in xi with each exponents less than p form a basis for Z/p[x1, . . . , xd]
as a Z/p[xp

1, . . . , x
p
d]-module, hence the inclusion (#) is free, in particular, flat. More

generally, we have:
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Proposition 1.5. Let R be a regular ring of prime characteristic p. Then the
Frobenius homomorphism is flat.

Proof. The issue is local, so we may assume R is a regular local ring. It suffices
to verify the assertion after taking the completion of R at its maximal ideal, so by
the structure theorem for complete local rings, Theorem 5.1 of the Appendix, we
may assume R is a power series ring over a field, say R = K[[x1, . . . , xd]]. By flat
descent we reduce to the case K = Z/p and then, similar to the argument earlier,
the Frobenius F : R −→ R may be identified with the inclusion Z/p[[xp

1, . . . , x
p
d]] ⊂

Z/p[[x1, . . . , xd]], which is free, hence flat. �

The converse is a theorem of Kunz: a ring R of positive characteristic is regular
if and only if the Frobenius homomorphism F : R −→ R is flat, [Ku1, Her].

Note that for a finite group G acting on a ring R, the extension RG ⊆ R is
integral since an element r ∈ R is a root of the polynomial∏

g∈G

(x− g(r)) ∈ RG[x].

The proof of Theorem 1.3 will be immediate from the three fundamental properties
of weakly F-regular rings which we establish next.

Theorem 1.6. The following are true for rings of positive characteristic:

(1) Regular rings are weakly F-regular.
(2) Direct summands of weakly F-regular domains are weakly F-regular.
(3) An excellent weakly F-regular domain is a direct summand of every module-

finite extension domain.

Proof. (1) The key point is the flatness of the Frobenius homomorphism, Proposi-
tion 1.5. Let R be a regular ring of characteristic p > 0. Given an ideal a of R and
an element z ∈ R, there is a short exact sequence

0 −→ R/(a : z) −→ R/a −→ R/(a + zR) −→ 0.

Tensoring this with an iteration F e : R −→ R of the Frobenius, and using that F e

is flat, we get a short exact sequence

0 −→ R/(a : z)[q] −→ R/a[q] −→ R/(a + zR)[q] −→ 0,

which implies that a[q] : zq = (a : z)[q] for all q = pe. If z ∈ a∗ then, by definition,
there exists c ∈ R◦ such that czq ∈ a[q] for all q � 0. But then

c ∈ a[q] : zq = (a : z)[q] for all q � 0.

If z /∈ a, there exists a maximal ideal m of R with a : z ⊆ m. We then get

c ∈
⋂

q�0

(a : z)[q]Rm ⊆
⋂

q�0

(mRm)[q] ,
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but then c ∈
⋂

q�0(mRm)q which is zero by Krull’s intersection theorem. This
contradicts the assumption that c ∈ R◦.

(2) Let S be a direct summand of a weakly F-regular domain R. For an ideal
a ⊂ S and element z ∈ S, suppose that z ∈ a∗. Then czq ∈ a[q] for all q � 0, where
c ∈ S is a nonzero element. This implies that czq ∈ a[q]R for all q � 0, and so
z ∈ (aR)∗ = aR. Since S is a direct summand of R we have aR∩S = a, and hence
we get z ∈ a.

(3) Let S ⊆ R be a module-finite extension of domains. Then the fraction field
Q(R) of R is a finite dimensional vector space over the fraction field Q(S) of S.
Choose an Q(S)-linear map ϕ0 : Q(R) −→ Q(S) with ϕ0(1) 6= 0. Since ϕ0(R) is a
finitely generated S-submodule of Q(S), there exists a nonzero element d ∈ S such
that ϕ = dϕ0 : R −→ S. Let c = ϕ(1) ∈ S which, we note, is a nonzero element.

Let a = (x1, . . . , xn) be an ideal of S, and let z ∈ aR ∩ S. Then there exist
elements ri ∈ R such that

z = r1x1 + · · ·+ rnxn.

Taking Frobenius powers of this equation, we get

zq = rq
1x

q
1 + · · ·+ rq

nxq
n for all q = pe.

Applying ϕ now gives us

czq = ϕ(1 · zq) = ϕ(rq
1)x

q
1 + · · ·+ ϕ(rq

n)xq
n ∈ a[q] for all q = pe,

and so z ∈ a∗. What we have proved is that if S ⊆ R is a module-finite extension
of domains of positive characteristic, then aR ∩ S ⊆ a∗ for all ideals a of S. If S is
weakly F-regular then, for all ideals a of S, we get aR ∩ S = a. To complete the
proof, we need a result of Hochster [Ho2]: given a module-finite extension S ⊆ R

of excellent domains, S is a direct summand of R if and only if aR ∩ S = a for all
ideals a ⊂ S, see Theorem 5.10. �

Remark 1.7. We saw that excellent weakly F-regular domains are direct sum-
mands of module-finite extension domains, Theorem 1.6 (3). An integral domain
is said to be a splinter if it is a direct summand of every module-finite extension
domain. It is easy to verify that a splinter is a normal domain.
(i) Characteristic zero: If a normal domain S contains the field of rational numbers
and R is a module-finite extension domain, then the trace map of fraction fields
Q(R) −→ Q(S) can be used to construct a splitting ρ : R −→ S. Consequently an
integral domain of characteristic zero is a splinter if and only if it is normal.
(ii) Mixed characteristic: It is for rings of mixed characteristic that the local homo-
logical conjectures remain unresolved. In this case, the canonical element conjecture,
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the improved new intersection conjecture, and the monomial conjecture are equiva-
lent to the conjecture that every regular local ring is a splinter, which is known as
the direct summand conjecture. For work on these and related homological ques-
tions, we refer the reader to the papers [Du, EG, Hei, Ho1, Ho3, PS, Ro1, Ro2].
(iii) Positive characteristic: As we saw, excellent weakly F-regular domains of pos-
itive characteristic are splinters, and Hochster and Huneke also proved the converse
for Gorenstein rings, [HH4]. This was extended by the author to the class of Q-
Gorenstein rings in [Si2] and, more recently, to rings whose anti-canonical cover
is Noetherian. One of the incentives for proving that the splinter property and
weak F-regularity agree for rings of positive characteristic is that it is easy to show
the localization of a splinter is a splinter. It is an open question whether weak
F-regularity localizes in general, though this is known in the graded case, [LyS].
This explains the nomenclature: the term F-regular is reserved for rings for which
every localization is weakly F-regular.

These issues are closely related to the question whether the tight closure a∗ of an
ideal a agrees with its plus closure, a+ = aR+ ∩ R, where R+ denotes the integral
closure of R in an algebraic closure of its fraction field. (An excellent domain R is
a splinter if and only if a+ = a for all ideals a of R.) The containment a+ ⊆ a∗

is easily seen, and Smith established the equality a+ = a∗ for parameter ideals
(see Definition 2.12) of excellent domains, [Sm1]. Whether tight closure and plus
closure agree is perhaps the most fascinating problem in tight closure theory. Work
on this question eventually led Hochster and Huneke to the celebrated theorem that
R+ is a big Cohen-Macaulay algebra for any excellent local domain R of positive
characteristic, [HH2]. A related result is that the separable part of R+ is also a big
Cohen-Macaulay algebra, [Si3]. It should be mentioned that amongst various other
consequences, establishing the equality of a∗ and a+ would prove that tight closure
localizes, a problem that has persisted since the inception of tight closure theory.

Remark 1.8. A linear algebraic group is Zariski closed subgroup of a general
linear group GLn(K). A linear algebraic group G is linearly reductive if every finite
dimensional G-module is a direct sum of irreducible G-modules, equivalently, if
every G-submodule has a G-stable complement.

Linearly reductive groups in characteristic zero include finite groups, algebraic
tori (i.e., products of copies of the multiplicative group of the field), and the classical
groups GLn(K), SLn(K), Sp2n(K), On(K) and SOn(K).

A linear algebraic group is reductive if its largest closed connected solvable normal
subgroup is an algebraic torus. In characteristic zero, linearly reductive groups are
precisely those which are reductive.
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If a linearly reductive group acts on a finitely generated K-algebra R, say by
degree preserving K-algebra automorphisms, then there is an RG-linear map, the
Reynolds operator ρ : R −→ RG, which makes RG a direct summand of R. By our
earlier discussion, it then follows that RG is Noetherian. However, if the field K has
positive characteristic, there need not be a Reynolds operator—reductive groups
in positive characteristic usually fail to be linearly reductive, Example 4.6. In the
preface of his book [Mum], Mumford conjectured that reductive groups satisfy a
weaker property which should ensure that RG is Noetherian, and this led to the
notion of geometrically reductive groups. A linear algebraic group G is geometrically
reductive if for every finite dimensional G-module V , and G-stable submodule W

of codimension one such that G acts trivially on V/W , there exists n ∈ N such that
W · Sn(V ) has a G-stable complement in Sn(V ).

In [Na3] Nagata proved that RG is finitely generated if G is geometrically reduc-
tive and Haboush, in [Hab], settled Mumford’s conjecture by proving that reductive
groups are geometrically reductive. It is interesting to note that for reductive groups
G, though aR ∩RG may not be contained in a, we always have aR ∩RG ⊆ rad(a),
[Na3, Lemma 5.2.B].

2. The Cohen-Macaulay property

Definition 2.1. Let M be an R-module. Elements z1, . . . , zd of R form a regular
sequence on M if

(1) (z1, . . . , zd)M 6= M , and
(2) zi is not a zerodivisor on M/(z1, . . . , zi−1)M for every i with 1 ≤ i ≤ d.

A local ring (R,m) is Cohen-Macaulay if some (equivalently, every) system of
parameters for R is a regular sequence on R. A ring R is Cohen-Macaulay if the
local ring Rm is Cohen-Macaulay for every maximal ideal m of R.

If R is an N-graded ring finitely generated over a field R0 = K, then R is
Cohen-Macaulay if and only if some (equivalently, every) homogeneous system of
parameters for R is a regular sequence.

For a local (or N-graded) ring (R,m), and a (graded) R-module M , the depth of
M , denoted depthM , is the length of a maximal sequence of elements of m which
form a regular sequence on M . Consequently a local ring R is Cohen-Macaulay if
and only if depthR = dim R.

How does the Cohen-Macaulay property arise in invariant theory? We start with
an elementary example:

Example 2.2. Let K be an infinite field, and R = K[x1, x2, y1, y2]. Consider the
action of the multiplicative group G = K \ {0}, as follows:

λ ∈ G : f(x1, x2, y1, y2) 7−→ f(λx1, λx2, λ
−1y1, λ

−1y2).
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Note that under this action, every monomial is taken to a scalar multiple. Let
f ∈ R be a polynomial which is fixed by the group action. If a monomial xi

1x
j
2y

k
1yl

2

occurs in f with nonzero coefficient, comparing coefficients of this monomial in f

and λ(f) gives us

λi+j−k−l = 1 for all λ ∈ G.

Since G is infinite, we must have i + j = k + l. It follows that the ring of invariants
is precisely

RG = K[x1y1, x1y2, x2y1, x2y2].

Note that dim RG = 3, for example, by examining the transcendental degree of the
fraction field. The polynomial ring S = K[z11, z12, z21, z22] surjects onto RG via
the K-algebra homomorphism ϕ with ϕ : zij 7−→ xiyj . It is easily seen that

ϕ(z11z22 − z12z21) = 0.

Since dim S = 4, the kernel of ϕ must be a height one prime of S, and it follows
that kerϕ = (z11z22 − z12z21).

Remark 2.3. Given an action of G on a polynomial ring R, the first fundamental
problem of invariant theory, according to Hermann Weyl [We], is to find generators
for the ring of invariants RG, in other words to find a polynomial ring S with
a surjection ϕ : S −→ RG. The second fundamental problem is to find relations
amongst these generators, i.e., to find a free S-module Sb1 which surjects onto kerϕ.
In Example 2.2, we solved these two fundamental problems for the prescribed group
action. In general, continuing this sequence of fundamental questions, one would
like to determine the resolution of RG as an S-module, i.e., to determine an exact
complex

· · · −→ Sb3 −→ Sb2 −→ Sb1 −→ S
ϕ−→ RG −→ 0.

Hilbert’s syzygy theorem implies that a minimal such resolution is finite. (Since
RG is a graded module over the polynomial ring S, minimal can be taken to mean
that the entries of the matrices defining the maps Sbi+1 −→ Sbi are homogeneous
elements of S which are non-units.) Knowing the graded free modules occurring
in the resolution, it is then easy to compute the dimension, multiplicity and, more
generally, the Hilbert polynomial of RG. Another fundamental question then arises:
what is the length of the minimal resolution of RG as an S-module, i.e., what is
the projective dimension pdS RG ? By the Auslander-Buchsbaum formula,

pdSRG = depthS − depth RG.

The polynomial ring S is Cohen-Macaulay and depth RG ≤ dim RG, so we get a
lower bound for the length of a minimal resolution,

pdSRG ≥ dim S − dim RG.
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Equality holds if and only if depthRG = dim RG, i.e., precisely when RG is Cohen-
Macaulay. This leads us to the question: When is RG Cohen-Macaulay?

Theorem 2.4 (Hochster-Eagon, [HE]). Let R be a polynomial ring over a field
K, and let G be a finite group acting on R by degree preserving K-algebra auto-
morphisms. If RG is a direct summand of R, then RG is Cohen-Macaulay. In
particular, if |G| is invertible in K, then RG is Cohen-Macaulay.

Proof. Let z = z1, . . . , zd be a homogeneous system of parameters for the ring RG.
Since G is finite, R is an integral extension of RG. Consequently z is a system
of parameters for R, and hence is a regular sequence on R. But RG is a direct
summand of R, so z is a regular sequence on RG as well. �

Remark 2.5. There are examples of finite groups G for which RG is not Cohen-
Macaulay due to Bertin and Fossum-Griffith: Let R = K[x1, . . . , xq] be a polyno-
mial ring over a field K of characteristic p > 0 where q = pe. Fix a generator σ

for the cyclic group G = Z/q, and consider the K-linear action of G on R where σ

cyclically permutes the generators x1, . . . , xq. Then for q ≥ 4, the ring of invariants
RG is a unique factorization domain which is not Cohen-Macaulay. Moreover, this
is preserved if R is replaced by its completion R̂ at the homogeneous maximal ideal,
and the action of G on R̂ is the unique continuous action extending the one on R.
For proofs, see [Ber] and [FG].

The proof of Theorem 2.4 works more generally to show that a direct summand
S of a Cohen-Macaulay ring R is Cohen-Macaulay provided that a system of pa-
rameters for S forms part of a system of parameters for R. In general, a direct
summand of a Cohen-Macaulay ring need not be Cohen-Macaulay as we see in the
next example.

Example 2.6. Let K be an infinite field, and let R be the hypersurface

R = K[x, y, z, s, t]/(x3 + y3 + z3).

Then R has a K-linear action of G = K \ {0} where

λ :


x 7−→ λx

y 7−→ λy

z 7−→ λz

and λ :

s 7−→ λ−1s

t 7−→ λ−1t
for λ ∈ G.

Similar to Example 2.2, the ring of invariants RG is the K-algebra generated
by the elements sx, sy, sz, tx, ty, and tz. It is easy to see that RG is a direct
summand of the Cohen-Macaulay ring R. (More generally, an algebraic torus is
linearly reductive.) However RG is not Cohen-Macaulay: the elements sx, ty, sy−tx
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form a homogeneous system of parameters for RG and satisfy the relation

sztz(sy − tx) = (sz)2ty − (tz)2sx,

and therefore sy − tx is a zerodivisor on RG/(sx, ty)RG.

Though the Cohen-Macaulay property is not preserved by direct summands,
there is a beautiful theorem of Hochster and Roberts which implies that several
important rings of invariants are Cohen-Macaulay:

Theorem 2.7 ([HR]). Let G be a linearly reductive group acting linearly on a poly-
nomial ring R. Then RG is Cohen-Macaulay. More generally, a direct summand
of a polynomial ring is Cohen-Macaulay.

This has been extended by Hochster and Huneke to all equicharacteristic regular
rings using their construction of big Cohen-Macaulay algebras:

Theorem 2.8 ([HH5]). Let S be a direct summand of a regular ring containing a
field. Then S is Cohen-Macaulay.

We have seen that direct summands of weakly F-regular domains are weakly
F-regular, Theorem 1.6 (2). In view of this, the following theorem gives us an
elementary proof of the Hochster-Roberts theorem in the positive characteristic
graded case. We will return to the characteristic zero case in § 4.

Theorem 2.9. Let (R,m,K) be a complete local domain of characteristic p > 0
or an N-graded domain finitely generated over a field [R]0 = K. Let y1, . . . , yd be a
system of parameters for R, or a homogeneous system of parameters in the graded
case. Then

(y1, . . . , yi) : yi+1 ⊆ (y1, . . . , yi)∗ for all 0 ≤ i ≤ d− 1.

In particular, if R is weakly F-regular, then it is Cohen-Macaulay.

Proof. In the complete case, R is module-finite over A = K[[y1, . . . , yd]], and in
the graded case over the graded subring A = K[y1, . . . , yd]. Suppose there exist
z, r1, . . . , ri ∈ R with

zyi+1 = r1y1 + · · ·+ riyi,

taking pe th powers, we get

zqyq
i+1 = rq

1y
q
1 + · · ·+ rq

i y
q
i for all q = pe. (#)

Let At be a free A-submodule of R where t is as large as possible. Then R/At is a
finitely generated torsion A-module, hence is killed by some nonzero element c ∈ A.
Since cR ⊆ At, multiplying the equation (#) by c, we get

czqyq
i+1 ∈ (yq

1, . . . , y
q
i )At.



CHARACTERISTIC p METHODS AND TIGHT CLOSURE 11

The elements y1, . . . , yi+1 form a regular sequence on A, hence on the free A-module
At, and so we get

czq ∈ (yq
1, . . . , y

q
i )At ⊆ (yq

1, . . . , y
q
i )R for all q = pe.

This implies that z ∈ (y1, . . . , yi)∗ as desired. �

Under mild hypotheses, weak F-regularity is preserved on taking direct sum-
mands and implies the Cohen-Macaulay property. There is another class of rings
in characteristic zero with these properties:

Definition 2.10. Let X be a normal irreducible variety over an algebraically closed
field K of characteristic zero. Then X has rational singularities if for some (equiv-
alently, every) desingularization f : Z −→ X, we have Rif∗(OZ) = 0 for all i ≥ 1.
If X has rational singularities, then all local ring of X are Cohen-Macaulay. We
say that R has rational singularities if Spec R has rational singularities. There are
useful numerical criterion to detect when a graded ring has rational singularities,
see [Fl] or [Wa2].

Theorem 2.11 (Boutot, [Bo]). Let R be a finitely generated algebra over a field of
characteristic zero, and S be a direct summand of R. If R has rational singularities,
then so does S.

The rational singularity property is related to a property which arise in tight
closure theory:

Definition 2.12. An ideal a = (x1, . . . , xn) is said to be a parameter ideal if the
images of x1, . . . , xn form part of a system of parameters in the local ring Rp for
every prime ideal p containing a. A ring R of positive characteristic is F-rational if
every parameter ideal of R equals its tight closure.

Of course, a weakly F-regular ring is F-rational. The notions agree for Gorenstein
rings, but not in general, see [Wa3].

A ring R = K[x1, . . . , xn]/a finitely generated over a field K of characteristic zero
is said to be of dense F-rational type if there exists a finitely generated Z-algebra
A ⊂ K and a finitely generated free A-algebra

RA = A[x1, . . . , xn]/aA

such that R ∼= RA ⊗A K and, for all maximal ideals m in a Zariski dense subset of
Spec A, the fiber rings RA ⊗A A/m are F-rational rings of characteristic p > 0.

Smith proved that rings of dense F-rational type have rational singularities [Sm2],
and the converse is a theorem of Hara [Har] as well as Mehta-Srinivas [MS]. Com-
bining these results, we have:
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Theorem 2.13. Let R be a ring finitely generated over a field of characteristic 0.
Then R has rational singularities if and only if it is of dense F-rational type.

For other striking connections between tight closure theory and singularities in
characteristic zero see [HW]. We conclude this section with some examples of rings
of invariants. Although we will not prove anything (except perhaps in one case) and
refer the reader to [We] and [DP], we hope the following examples give a glimpse
of this rich subject.

Example 2.14. Let X = (xij) be an n× d matrix of variables over a field K, and
consider the polynomial ring R = K[X], i.e., R is a polynomial ring in nd variables.
Let G = SLn(K) be the special linear group acting on R as follows:

M : xij −→ (MX)ij ,

i.e., an element M ∈ G send xij , the (i, j) entry of the matrix X, to the (i, j) entry
of the matrix MX. Since detM = 1, it follows that the size n minors of X are
fixed by the group action. It turns out whenever K is infinite, RG is the K-algebra
generated by these size n minors. The ring RG is the homogeneous coordinate
ring of the Grassmann variety of n dimensional subspaces of a d-dimensional vector
space. The relations between the minors are the well-known Plücker relations.

The reader is invited to prove that RG is a unique factorization domain. (The
key point is that since the commutator of the group G = SLn(K) is [G, G] = G,
any homomorphism from G to an abelian group must be trivial. In particular, there
are no nontrivial homomorphisms from G to the multiplicative group of the field
K.) Once we know that RG is a unique factorization domain, Murthy’s theorem
[Mur] implies that RG is Gorenstein. More generally, the ring of invariants of a
connected semisimple linear algebraic group acting linearly on a polynomial ring is
a Cohen-Macaulay unique factorization domain, hence also Gorenstein. For more
on the Gorenstein property of RG see [Wa1] and [Kn].

Example 2.15. Let X = (xij) and Y = (yjk) be r × n and n × s matrices of
variables over an infinite field K, and consider the polynomial ring R = K[X, Y ] of
dimension rn+ns. Let G = GLn(K) be the general linear group acting on R where
M ∈ G maps the entries of X to corresponding entries of XM−1 and the entries
of Y to those of MY . Then RG is the K-algebra generated by the entries of the
product matrix XY . If Z = (zij) is an r× s matrix of new variables mapping onto
the entries of XY , the kernel of the induced K-algebra surjection K[Z] −→ RG is
the ideal generated by the size n + 1 minors of the matrix Z. These determinantal
rings are the subject of [BV]. The case where r = s = 2 and n = 1 was earlier
encountered in Example 2.2.

Let us finally go through a computation in some detail:
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Example 2.16. Let X = (xij) be an n×n matrix of variables over an infinite field
K, and consider the polynomial ring R = K[X]. Let G = GLn(K) be the general
linear group acting linearly on R where M ∈ G maps entries of the matrix X to
corresponding entries of MXM−1. We shall determine the ring of invariants RG.
This example is a special case of [Pr].

The matrices X and MXM−1 are conjugate, so det(X), trace(X), and, more
generally, the coefficients of the characteristic polynomial p(t) = det(tI −X) of X

are fixed by the group action. We claim that RG is the K-algebra generated by the
coefficients of p(t).

Let Y = (yij) be an n× n matrix of new variables, and set S = R[Y, 1/ det(Y )].
Given f(X) ∈ RG, consider the element f(Y XY −1) ∈ S. When Y is specialized to
any matrix in GLn(K), the specialization of f(Y XY −1) agrees with f(X). Since
f(Y XY −1)− f(X) vanishes for all such specializations, it must vanish identically,
i.e., f(Y XY −1) = f(X).

Let L be the algebraic closure of the fraction field of R. When we specialize
the off-diagonal entries of X to 0, the resulting matrix has distinct eigenvalues
x11, . . . , xnn, and it follows that X has distinct eigenvalues in L. Consequently
there exists a matrix N ∈ GLn(L) such that NXN−1 = D is diagonal, the entries
of D being the eigenvalues of X. Specializing Y to the matrix N , we see that
f(D) = f(X). Hence f(X) is a polynomial in the entries of D, i.e., f(X) is a
polynomial function of the eigenvalues of X. Moreover, for a permutation π ∈ Sn,
consider the corresponding permutation matrix P . Then f(PDP−1) = f(D), so
f(X) is a symmetric function of the eigenvalues of f(X). The elementary symmetric
functions of the eigenvalues are, up to sign, the coefficients of the characteristic
polynomial, so we have proved our claim.

We have now solved the first fundamental problem for this group action. The
second fundamental problem is to determine the relations, if any, between the coef-
ficients of the characteristic polynomial of X. Specializing the off-diagonal entries
of X to 0, the coefficients of the characteristic polynomial of the resulting matrix
are the n elementary symmetric functions in x11, . . . , xnn which are algebraically
independent. It follows that the coefficients of p(t) are algebraically independent
as well, so RG is a polynomial ring in n variables.

3. The Briançon-Skoda Theorem

Definition 3.1. Let a be an ideal of a ring R. An element z ∈ R is in the integral
closure of a, denoted a, if it satisfies an equation of the form

zn + a1z
n−1 + a2z

n−2 + · · ·+ an = 0
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where ai ∈ ai for all 1 ≤ i ≤ n. If R is Noetherian, another characterization of the
integral closure is that z ∈ a if and only if there exists c ∈ R◦ such that czn ∈ an

for infinitely many positive integers n, or equivalently, for all n � 0. Yet another
characterization in the Noetherian case is that z ∈ a if and only if ϕ(z) ∈ aV for
every homomorphism ϕ : R −→ V , where V is a rank one discrete valuation ring.

It is easy to see that a is an ideal of R with

a ⊆ a ⊆ rad(a).

Moreover, if R has characteristic p > 0, then a∗ ⊆ a.

Let R = C{x1, . . . , xd} be the ring of convergent power series in d variables over
the complex numbers. If f belongs to the maximal ideal of R, then, using the
valuation criterion, we can see that

f ∈
(

∂f

∂x1
, . . . ,

∂f

∂xd

)
.

This implies that some power fk of f belongs to the ideal generated by the partial
derivatives, and John Mather asked if there is a bound on this power k, [Wal]. If
f is a homogeneous polynomial of degree n, then k = 1 suffices since the Euler
identity implies

nf =
(

x1
∂f

∂x1
+ · · ·+ xd

∂f

∂xd

)
.

However k = 1 may not be sufficient for an inhomogeneous polynomial f , for
example, take f = x2y2 + x5 + y5 ∈ R where R = C{x, y}. We claim that f does
not belong to the ideal

a =
(

∂f

∂x
,
∂f

∂y

)
= (2xy2 + 5x4, 2x2y + 5y4).

This is easily verified by comparing power series coefficients, or alternatively by
working modulo the ideal (x, y)6.

Briançon and Skoda answered Mather’s question by proving that fd belongs to
the ideal generated by the partial derivatives, [SB]. Their proof uses the conver-
gence of certain integrals. The absence of a purely algebraic proof for such an
algebraic statement was highlighted by Hochster in his lectures on Analytic meth-
ods in commutative algebra and became, to quote Lipman and Teissier, “something
of a scandal—perhaps even an insult—and certainly a challenge” for algebraists.
The first algebraic proofs were found by Lipman and Teissier, and subsequently
the result was extended to ideals in arbitrary regular local rings by Lipman and
Sathaye:

Theorem 3.2 ([LiT, LiS]). Let R be a regular ring, and a be an ideal generated by
n elements. Then an ⊆ a.
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Tight closure theory gives an extremely elementary proof for regular rings of
positive characteristic:

Theorem 3.3 (Hochster-Huneke). Let R be a Noetherian ring of prime character-
istic and a be an ideal generated by n elements. Then

an ⊆ a∗.

In particular, if R is weakly F-regular, then an ⊆ a.

Proof. It suffices to verify the assertion modulo each minimal prime of R, so we
assume R is a domain. Let a = (x1, . . . , xn) and z ∈ an. By one of the characteri-
zations of integral closure, there is a nonzero element c ∈ R such that

czk ∈ ank for all k � 0.

By the pigeonhole principle ank ⊆ (xk
1 , . . . , xk

n), so restricting k to q = pe, we get
czq ∈ a[q], and hence that z ∈ a∗. �

The reader should have no difficulty in proving that for R and a as above,

am+n ⊆
(
am+1

)∗
for all m ≥ 0.

There is a beautiful extension of the Briançon-Skoda theorem due to Aberbach and
Huneke:

Theorem 3.4 ([AH3]). Let R be an F-rational ring of positive characteristic, or
a finitely generated algebra over a field of characteristic zero which has rational
singularities. If a is an n-generated ideal of R, then

am+n ⊆ am+1 for all m ≥ 0.

Lipman used the notion of adjoint ideals to obtain improved Briançon-Skoda
theorems in [Li]. Improvements involving coefficient ideals may be found in [AH2],
and for applications to Rees rings, see [AH1, AHT]. Rees and Sally studied the
Briançon-Skoda theorem from another viewpoint in [RS], and Swanson’s related
work on joint reductions appears in [Sw1, Sw2]. In Wall’s lectures on Mather’s
work, where it all began, it is amusing to find the sentence ([Wal, page 185]):

Once the seed of algebra is sown, it grows fast.

4. Reduction modulo p

The first use of reduction modulo p methods we usually encounter is in the proof
that cyclotomic polynomials are irreducible, (Dedekind, 1857) typically done in a
graduate course in abstract algebra. The basic idea in Dedekind’s proof, as in most
reduction modulo p proofs, is to start with a statement in characteristic zero, reduce
modulo p, and then exploit the Frobenius. The technique has proved extremely
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useful in commutative algebra and yielded results for the equicharacteristic cases
of the homological conjectures. We shall use reduction modulo p methods here to
prove the Brianco̧n-Skoda theorem for regular rings of characteristic zero, as well
as the Hochster-Roberts theorem.

There are beautiful results relating the characteristic 0 and characteristic p prop-
erties of algebraic sets. Starting with a polynomial f(x1, . . . , xd) ∈ Z[x1, . . . , xd],
the solution set of f = 0 in Cd is a topological space. The Weil conjectures—now
theorems of Grothendieck and Deligne—relate the Betti numbers of this topological
space to the number of roots of f ∈ Z/p[x1, . . . , xd] in the finite fields Fpe , where pe

is a prime power. Closer to the applications we have in mind here, is the following
elementary result:

Proposition 4.1. Consider a family of polynomials f1, . . . , fn ∈ Z[x1, . . . , xd].
Then these polynomials have a common root over C if and only if, for all but
finitely many prime integers p, their images have a common root over the algebraic
closure of Z/p.

Proof. If (α1, . . . , αd) ∈ Cd is a common root of the given polynomials, consider
the subring A = Z[α1, . . . , αd] of C. Let m be any maximal ideal of A. Then A/m

is a field which is finitely generated as a Z-algebra, and hence is a finite field, see
[AM, Exercise 7.6]. Let p be the characteristic of A/m. Using to denote images
modulo m, the point (α1, . . . , αd) ∈ (A/m)d is a common root of the images of the
fi in Z/p[x1, . . . , xd]. It remains to verify that A has maximal ideals containing
infinitely many prime integers.

By the Noether’s normalization lemma, AQ = Q[α1, . . . , αd] is an integral exten-
sion of a polynomial subring Q[y1, . . . , yt]. Each αi satisfies an equation of integral
dependence over Q[y1, . . . , yt]. Each of these d equations involves finitely many
coefficients from Q so, after localizing at a suitable integer r, we have an integral
extension

Z[y1, . . . , yt, 1/r] ⊆ A[1/r]. (#)

For every prime integer p not dividing r, there is a maximal ideal of Z[y1, . . . , yt, 1/r]
which contains p. Since the extension (#) is integral, there exists a maximal ideal
of A[1/r] lying over every maximal ideal of Z[y1, . . . , yt, 1/r].

Conversely, if the polynomials do not have a common root in Cd, then Hilbert’s
Nullstellensatz implies that f1, . . . , fn generate the unit ideal in C[x1, . . . , xd], i.e.,
that C[x1, . . . , xd]/(f1, . . . , fn) = 0. But

C[x1, . . . , xd]
(f1, . . . , fn)

∼=
Q[x1, . . . , xd]
(f1, . . . , fn)

⊗Q C,

so Q[x1, . . . , xd]/(f1, . . . , fn) = 0 since C is faithfully flat over Q. This implies that
f1, . . . , fn generate the unit ideal in Q[x1, . . . , xd] as well and so, after multiplying
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by a common denominator, we have an equation of the form

f1g1 + · · ·+ fngn = m

where g1, . . . , gn ∈ Z[x1, . . . , xd], and m is a nonzero integer. For every prime integer
p not dividing m, the images of f1, . . . , fn generate the unit ideal in Z/p[x1, . . . , xd],
and hence cannot have a common root over the algebraic closure of Z/p. �

One of the ingredients we will need in subsequent applications of reduction mod-
ulo p methods is the generic freeness lemma of Hochster-Roberts. A special case
may be found in [Ma1, Chapter 8] and the general result is [HR, Lemma 8.1].

Lemma 4.2 (Generic freeness). Let A be a Noetherian domain, B a finitely gener-
ated A-algebra, and C a finitely generated B-algebra. Let N be a finitely generated
C-module, M a finitely generated B-submodule of N , and L a finitely generated
A-submodule of N . Then there exists a nonzero element a ∈ A such that the local-
ization (

N

L + M

)
a

is a free Aa-module.

We next prove the Briançon-Skoda theorem for regular rings of characteristic
zero.

Theorem 4.3. Let a be an n-generated ideal of a regular ring which contains a
field of characteristic zero. Then

an ⊆ a.

Proof. We first consider the case where the regular ring R is finitely generated over
a field K, and return to the general case later in this section.

Consider R as a homomorphic image of a polynomial ring T = K[x1, . . . , xd], say
R = T/(g1, . . . , gm). Let f1, . . . , fn be elements of T which map to generators of
the ideal a ⊂ R. If the statement of the theorem is false, there exists z ∈ T whose
image in R belongs to the set an \ a. Hence there exist elements ai ∈ (f1, . . . , fn)ni

and h1, . . . , hm ∈ (g1, . . . , gm) such that

zl + a1z
l−1 + · · ·+ al = h1g1 + · · ·+ hmgm. (#)

Let A be a finitely generated Z-subalgebra of K containing the coefficients of z, fi,
gi, ai, and hi as polynomials in x1, . . . , xd, and also the coefficients of polynomials
needed to express each ai as an element of (f1, . . . , fn)ni.

In the next few steps, we shall replace A by its localization at finitely many
elements. The conditions we require of A are preserved under further localization,
and we do not change our notation for A. It is worth emphasizing that when we
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adjoin the inverses of finitely many elements to the ring A, we retain the property
that it is a finitely generated Z-subalgebra of K. Consider the A-algebra

RA = A[x1, . . . , xd]/(g1, . . . , gm).

Let Q(A) denote the fraction field of A. The inclusion Q(A) −→ K is a flat homo-
morphism of A-modules so, upon tensoring with RA, we get a flat homomorphism

RA ⊗A Q(A) −→ RA ⊗A K ∼= R.

The ring R is regular, so it follows that RA⊗AQ(A) is regular as well. Since Q(A) is
a field of characteristic zero, it follows that RA⊗A Q(A) is a smooth Q(A)-algebra.
After inverting an element of A, we may assume that A −→ RA is smooth. Given a
homomorphism from A to a field κ, we use the notation Rκ = RA ⊗A κ. For every
such κ, the ring Rκ is smooth over κ by base change. In particular, Rκ is regular.

After localizing A at one element, we may assume that RA/(f1, . . . , fn)RA, and
RA/(z, f1, . . . , fn)RA are free A-modules. This ensures that (f1, . . . , fn)RA ⊗A κ

and (z, f1, . . . , fn)RA ⊗A κ are ideals of the ring Rκ. Since the image of z in R

does not belong to the ideal (f1, . . . , fn)R, after inverting one more element of A

we may assume that
(z, f1, . . . , fn)RA

(f1, . . . , fn)RA

is a nonzero free A-module.
Let m be a maximal ideal of A. The field κ = A/m is finitely generated as a

Z-algebra, hence is a finite field. We use zκ to denote the image of z in Rκ. The
freeness hypotheses give us the isomorphism

(z, f1, . . . , fn)RA

(f1, . . . , fn)RA
⊗A κ ∼=

(z, f1, . . . , fn)Rκ

(f1, . . . , fn)Rκ
,

and also ensure that this module is nonzero, i.e., that zκ /∈ (f1, . . . , fn)Rκ. The
image of equation (#) in Rκ implies that

zκ ∈ (f1, . . . , fn)nRκ.

But Rκ is a regular ring of positive characteristic, so this contradicts the charac-
teristic p Briançon-Skoda theorem we proved earlier as Theorem 3.3. �

For the general case, we will need a rather deep result on regular homomorphisms
which we state next. See the appendix, particularly the subsection Fibers and

geometric regularity, for relevant definitions.

Theorem 4.4 (General Néron Desingularization, [Po, Sw]). Let ϕ : R −→ S be
a regular homomorphism which factors through a finitely presented R-algebra R′.
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Then there exists an R′-algebra T such that the composite homomorphism R −→ T

is smooth, and the following diagram commutes

R −→ R′ −→ S

↘ ↑
T

.

Consider the special case where R is the localization of a polynomial ring over a
field and ϕ : R −→ R̂ is the map to the completion. Since R is excellent, the map ϕ

is regular, and so General Néron Desingularization applies here. This special case
is a theorem of Artin and Rotthaus:

Theorem 4.5 ([AR]). Let R = K[x1, . . . , xd]m, i.e., R is the localization of a
polynomial ring at its homogeneous maximal ideal m. Let R̂ denote the m-adic
completion of R. Then given any finitely generated R-subalgebra R′ of R̂, the
inclusion R −→ R̂ factors as

R −→ R′ −→ T −→ R̂

where R −→ T is smooth.

Proof of Theorem 4.3 in the general case. Suppose the assertion of the theorem is
false, there exists z ∈ an with z /∈ a. Let p be a prime ideal containing the
ideal a : z. Localizing at p and completing, we then have a counterexample in
a power series ring K[[x1, . . . , xd]] where K is a field of characteristic zero. Let
R = K[x1, . . . , xd](x1,...,xd). Let R′ be an R-subalgebra of R̂ = K[[x1, . . . , xd]]
which contains the element z, a set of generators for the ideal a, and the elements
of R̂ occurring in one equation demonstrating that z ∈ an in terms of the chosen
generating set for a.

By the Artin-Rotthaus theorem, the maps R −→ R̂ factors as

R −→ R′ −→ T −→ R̂

where R −→ T is smooth. In particular T is regular, and the images of z and a

in T also yield a counterexample, say z0 ∈ an
0 \ a0. Note that T is a regular ring

of the form T = S−1B, where B is a finitely generated algebra over the field K.
Since S−1B is regular, S contains an element a of the defining ideal of the singular
locus of B. The element z0, the generators for a0, and the elements occurring in
one equation implying z0 ∈ an

0 involve finitely many elements, hence finitely many
denominators from S, and we take b to be the product of these denominators.
We then obtain a counterexample in the ring Bab which is a regular ring finitely
generated over the field K, but we have already proved the Brianco̧n-Skoda theorem
in this case. �
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It should be mentioned that this approach is not the only way to deduce char-
acteristic zero results from positive characteristic theorems. Schoutens, [Sc], uses
model-theoretic methods to obtain the Brianco̧n-Skoda theorem for power series
rings C[[X1, . . . , Xd]] using the characteristic p version, Theorem 3.3.

We now return to the Hochster-Roberts theorem in characteristic zero. One
subtle point is that the property that a ring S is a direct summand of R may not
be preserved when we reduce modulo primes p, as we see in the following example.

Example 4.6. Consider the special case of Example 2.14 where n = 2 and d = 3,
i.e, K is an infinite field, and G = SL2(K) acts on the polynomial ring R =
K[u, v, w, x, y, z], where M ∈ G maps the entries of the matrix

X =

(
u v w

x y z

)
to those of MX. The ring of invariants for this action is RG = K[∆1,∆2,∆3],
where

∆1 = vz − wy, ∆2 = wx− uz, ∆3 = uy − vx

are the size two minors of the matrix X. These minors are algebraically independent
over K, and hence RG is a polynomial ring. If K has characteristic zero, then G

is linearly reductive, and hence RG is a direct summand of R. We shall see that
RG is not a direct summand of R if K is any field of characteristic p > 0. Let
a = (∆1,∆2,∆3)R, and consider the local cohomology module

H3
a(R) = lim−→

t

Ext3R(R/at, R) ∼= lim−→
q=pe

Ext3R(R/a[q], R),

where the isomorphism follows from the fact that the sequences of ideals {at}t∈N

and {a[pe]}e∈N are cofinal. The projective resolution of R/a is

P• = 0 −−−−→ R2 X−−−−→ R3 (∆1 ∆2 ∆3)−−−−−−−−−→ R −−−−→ 0.

Since the Frobenius F : R −→ R is flat, the complex F e(R) ⊗R P• is acyclic, and
hence is a resolution of R/a[q]. This implies that Ext3R(R/a[q], R) = 0 for all q = pe,
and hence that H3

a(R) = 0. Using the description of H•
a (R) as the cohomology of

the Čech complex

0 −→ R −→ R∆1 ⊕R∆2 ⊕R∆3 −→ R∆2∆3 ⊕R∆3∆1 ⊕R∆1∆2 −→ R∆1∆2∆3 −→ 0,

H3
a(R) = 0 implies that

1
∆1∆2∆3

=
r1

(∆2∆3)t
+

r2

(∆3∆1)t
+

r3

(∆1∆2)t

for ri ∈ R and t ∈ N. Clearing denominators gives us

(∆1∆2∆3)t−1 = r1∆t
1 + r2∆t

2 + r3∆t
3 ∈ (∆t

1,∆
t
2,∆

t
3)R.
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Since (∆1∆2∆3)t−1 /∈ (∆t
1,∆

t
2,∆

t
3)R

G, it follows that RG is not a direct summand
of R.

We now return to the Hochster-Roberts theorem in the form:

Theorem 4.7. Let R = K[x1, . . . , xn] be a polynomial ring over a field K, and
let S be an N-graded subring of R which is a direct summand of R. Then S is
Cohen-Macaulay.

Proof of Theorem 2.7. Let y1, . . . , yd be a homogeneous system of parameters for
the ring S. Suppose there exist si ∈ S with

s1y1 + · · ·+ smym = 0 (#)

and sm /∈ (y1, . . . , ym−1)S then, since S is a direct summand of R, we also have
sm /∈ (y1, . . . , ym−1)R.

The ring S is module-finite over its polynomial subring B = K[y1, . . . , yd], say
S =

∑N
i=1 Bui where ui are finitely many homogeneous elements of S. For all

1 ≤ i, j, t ≤ N , there exist elements cijt ∈ B such that uiuj =
∑N

t=1 cijtut. Let A

be the ring obtained by adjoining to Z the following elements of K:

• the coefficients that occur when each yi and each ui is written as a polyno-
mial in x1, . . . , xn,

• coefficients occurring when each cijt is written as a polynomial in y1, . . . , yd,
• for each si, the coefficients of the polynomials in y1, . . . , yd needed in one

equation expressing si as a B-linear combination of u1, . . . , uN .

Note that A is a finitely generated Z-algebra of K. Set

BA = A[y1, . . . , yd], SA =
N∑

i=1

BAui, and RA = A[x1, . . . , xn].

Then SA is a subring of RA and is module-finite over its subring BA. Since sm /∈
(y1, . . . , ym−1)R, after replacing A by a localization at one element, we may assume
that

(sm, y1, . . . , ym−1)RA

(y1, . . . , ym−1)RA

is a nonzero free A-module. After localizing A at an element, we may also assume
that each of

RA

(sm, y1, . . . , ym−1)RA
,

RA

(y1, . . . , ym−1)RA
, SA/BA, and RA/SA

is a free A-module.
Let m be a maximal ideal of A. Then κ = A/m is a finitely generated Z-

algebra, hence a finite field. We use the notation Mκ to denote M ⊗A κ, and
to denote the image of an element modulo m. Note that Rκ = κ[x1, . . . , xn] and
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Bκ = κ[y1, . . . , yd] are polynomial rings over the field κ, and that the freeness
hypotheses ensure that Bκ ⊆ Sκ ⊆ Rκ. The image of equation (#) in Sκ gives us

s1y1 + · · ·+ smym = 0,

which is a relation on the homogeneous system of parameters y1, . . . , yd of Sκ. By
Theorem 2.9 it follows that

sm ∈
((

y1, . . . , ym−1

)
Sκ

)∗
.

Since Sκ ⊆ Rκ and Rκ is a polynomial ring, we have

sm ∈
((

y1, . . . , ym−1

)
Rκ

)∗ =
(
y1, . . . , ym−1

)
Rκ,

but this contradicts the condition that

(sm, y1, . . . , ym−1)RA

(y1, . . . , ym−1)RA
⊗A κ ∼=

(sm, y1, . . . , ym−1)Rκ

(y1, . . . , ym−1)Rκ

is a nonzero module. �

5. Appendix

5.1. The structure theory of complete local rings. Every ring R admits a
ring homomorphism ϕ : Z −→ R where ϕ(1) is the unit element of R. The kernel
of this homomorphism is an ideal of Z generated be a unique nonnegative integer
char (R), the characteristic of R. A local ring (R,m,K) is equicharacteristic or of
equal characteristic if char (R) = char (K).

For a local ring (R,m,K) the possible values of char (K) and char (R) are:

• char (K) = char (R) = 0, in which case Q ⊆ R.
• char (K) = char (R) = p > 0, in which case Z/pZ ⊆ R.
• char (K) = p > 0 and char (R) = 0. As an example of this, take R to be

the ring of p-adic integers.
• char (K) = p > 0 and char (R) = pe for some e ≥ 2. In this case R is not a

reduced ring.

If (R,m) is a local ring containing a field, we say that a field L ⊆ R is a coefficient
field for R if the composition

L ↪→ R � R/m

is an isomorphism. Proofs of the following theorems due to Cohen maybe found in
[Ma1, Chapter 11] and [Ma1, Appendix].

Theorem 5.1. Let (R,m,K) be a complete local ring containing a field. Then:

(1) The ring R contains a coefficient field.
(2) If L ⊆ R is a coefficient field, then R is a homomorphic image of a formal

power series ring over L, i.e., R ∼= L[[T1, . . . , Tn]]/a.
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(3) If L ⊆ R is a coefficient field and x1, . . . , xd is a system of parameters
for R, then the subring A = L[[x1, . . . , xd]] of R is isomorphic to a formal
power series ring L[[T1, . . . , Td]], and R is a finitely generated A-module.

(4) The ring R is regular is and only if it isomorphic to a formal power series
ring L[[T1, . . . , Td]] over some coefficient field L.

In the case where (R,m,K) does not contain a field, for the sake of simplicity
we make the assumption that R is an integral domain. This ensures that the only
possibility is char (K) = p > 0 and char (R) = 0, and this case is usually referred
to as mixed characteristic. The role of a coefficient field is now replaced by that of
a discrete valuation ring (V, pV ), which serves as a coefficient ring.

A regular local ring (R,m,K) of mixed characteristic is unramified if p /∈ m2,
and is ramified if p ∈ m2.

Theorem 5.2. Let (R,m,K) be a complete local domain with char (R) = 0 and
char (K) = p > 0. Then there exists a discrete valuation ring (V, pV ) which is a
subring of R, such V ⊆ R induces an isomorphism V/pV −→ R/m.

(1) The ring R is a homomorphic image of a formal power series ring over V ,
i.e., R ∼= V [[T1, . . . , Tn]]/a.

(2) If p, x2, . . . , xd is a system of parameters for the ring R, consider the subring
A = V [[x2, . . . , xd]]. Then A is isomorphic to a formal power series ring
V [[T2, . . . , Td]], and R is a finitely generated A-module.

(3) The ring R is an unramified regular local ring if and only if it is isomorphic
to a formal power series ring V [[T2, . . . , Td]].

(4) The ring R is a ramified regular local ring if and only if it is isomorphic to
V [[T1, . . . , Td]]/(p− f) where f is an element in the square of the maximal
ideal of V [[T1, . . . , Td]].

5.2. Excellent rings. The class of excellent rings was introduced by Grothendieck
to circumvent some pathological behavior that can occur in the larger class of Noe-
therian rings. The precise definition is somewhat technical in nature, but is satis-
fied by most Noetherian rings that are likely to be encountered by mathematicians
working in algebraic geometry, number theory, or several variable complex analysis.
For a detailed treatment and proofs of results summarized here, the reader should
consult [EGA], particularly § 7, and [Ma1, Chapter 13]. The expository article
[Ma2] provides a nice introduction to the theory of excellent rings of characteristic
zero. Various examples of non-excellent rings were constructed by Nagata, and are
included as an appendix in his book [Na2].

Definition 5.3. A ring R is said to be excellent if

(1) R is Noetherian,
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(2) R is universally catenary,
(3) for every prime ideal p ∈ Spec R, the formal fibers of the local ring Rp are

geometrically regular, and
(4) for every finitely generated R-algebra S, the regular locus of the ring S,

i.e., the set {p ∈ Spec S : Sp is a regular local ring}, is an open subset of
Spec S.

Of course, we need to define some of the terms occurring above.

Universally catenary rings. A ring R is catenary if for all prime ideals p ⊆ q of
R, all saturated chains of prime ideals joining p and q have the same length. A ring
R is universally catenary if every finitely generated algebra over R is a catenary
ring.

Several attempts had been made to prove that all Noetherian rings were catenary,
until Nagata constructed the first examples of noncatenary Noetherian rings in
1956. He constructed a local integral domain (R,m) of dimension 3 which is not
catenary; R has saturated chains of prime ideals joining p = (0) and q = m of
lengths 2 and 3, as illustrated in the diagram below:

@
@

@












�
�

�

J
J

J
JJ

p = (0)

q = m

p1

p2

p′1

Theorem 5.4 (Dimension formula). Let R ⊆ S be integral domains such that R

is universally catenary and S is a finitely generated R-algebra. Let q ∈ Spec S and
p = q ∩R ∈ Spec R. Then

height q + tr.deg κ(p)κ(q) = height p + tr.deg RS,

where κ(p) denotes the field Rp/pRp and κ(q) = Sq/qSq, and by tr.deg RS we mean
the transcendence degree of fraction field of S over the fraction field of R.

Ratliff showed that the above dimension formula, in a sense, characterizes uni-
versally catenary rings, see [Ra1, Ra2].

Fibers and geometric regularity. For a ring homomorphism ϕ : R −→ S, by
the fiber of ϕ at a prime p ∈ Spec R, we mean the ring S ⊗R κ(p) where κ(p)
denotes the field Rp/pRp. Note that the inverse image of p under the induced
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map Spec S −→ Spec R is homeomorphic to Spec S⊗R κ(p), which explains the use
(rather, the misuse) of the word “fiber.”

For a local ring (R,m), the formal fibers of R are the fibers of the homomorphism
R −→ R̂, where R̂ denotes the completion of R at its maximal ideal m. If a is an
ideal of R, then R̂/a = R̂/aR̂, and so a formal fiber of the ring R/a is also a formal
fiber of the ring R.

A K-algebra R is geometrically regular if R⊗K L is a regular ring for every finite
extension L of the field K. This is equivalent to the condition that R ⊗K L is
regular for every finite purely inseparable extension L of K.

A ring homomorphism ϕ : R −→ S is regular if it is flat and for all p ∈ Spec R,
the fiber κ(p)⊗R S is geometrically regular.

A ring homomorphism ϕ : R −→ S is smooth if it is regular, and S is finitely pre-
sented over the image of R. In this case, for every R-algebra T , the homomorphism
R⊗R T −→ S ⊗R T is also smooth.

The ubiquity of excellent rings. The result below explains why the Noetherian
rings we encounter are almost always excellent rings:

Theorem 5.5. If a ring R is obtained by adjoining finitely many variables to a field
or a complete discrete valuation ring, taking a homomorphic image, and localizing
at some multiplicative set, then R is an excellent ring. More precisely,

(1) Every complete local ring (in particular, every field) is excellent. The ring
of convergent power series over R or C is excellent. A Dedekind domain
whose field of fractions has characteristic zero (e.g. Z) is excellent.

(2) A finitely generated algebra over an excellent ring is excellent; in particular,
a homomorphic image of an excellent ring is excellent.

(3) A localization of an excellent ring is excellent.

There is an interesting class of rings of characteristic p > 0 which are excellent
by the following theorem of Kunz:

Theorem 5.6. [Ku1, Ku2] For a ring R of characteristic p > 0, let F : R −→ R be
the Frobenius homomorphism. If R is module-finite over F (R), then R is excellent.

Some properties of excellent rings.

Theorem 5.7. If R is an excellent ring, then the normal locus as well as the
Cohen-Macaulay locus, i.e.,

{p ∈ Spec R : Rp is normal} and {p ∈ Spec R : Rp is Cohen-Macaulay},

are open subsets of Spec R.
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Nagata defined a ring R to be a pseudo-geometric ring if for every prime p ∈
Spec R, and for every finite extension field K of the field of fractions of R/p, the
integral closure of R/p in K is a finitely generated R/p-module. Examples of Noe-
therian rings which did not satisfy this property were first constructed by Akizuki
in [Ak]. In honor of the Japanese school of commutative algebra, Grothendieck re-
named pseudo-geometric rings as anneaux universellement japonais, or universally
Japanese rings [EGA, § 7.7]. At some point they were again renamed, and are now
called Nagata rings.

Theorem 5.8. An excellent ring is a Nagata ring.

The excellence property also ensures that certain properties of a local ring R are
inherited by its m-adic completion R̂, and this is the essence of the next theorem:

Theorem 5.9. Let R be an excellent local ring with maximal ideal m.

(1) If R is reduced (i.e., has no nonzero nilpotent elements) then R̂, its m-adic
completion, is also a reduced ring.

(2) If R is a domain then, by (1) above, R̂ is a reduced ring. In this case,
there is a bijection between the minimal primes of R̂ and maximal ideals of
R′, where R′ denotes the integral closure of R in its field of fractions. In
particular, R̂ is a domain if and only if R′ is local.

(3) If R is a normal ring, then R̂ is also a normal ring.

We conclude with the following theorem of Hochster:

Theorem 5.10. [Ho2] Let S be a reduced excellent local ring with maximal ideal m.
Then for all n > 0, there is an m-primary ideal an ⊆ mn such that the ring S/an

is injective as a module over itself (i.e., is a zero-dimensional Gorenstein ring).
As a consequence of this, if R is a module-finite extension ring of S and aR∩S =

a for all ideals a of S, then S is a direct summand of R as an S-module.
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rems and the depth of Rees rings, Compositio Math. 97 (1995), 403–434.

[Ak] Y. Akizuki, Einige Bemerkungen über primäre Integritätsbereiche mit Teilerkettensatz,

Proc. Phys.-Math. Soc. Japan 17 (1935), 327–336.

[Art] E. Artin, Galois Theory, Notre Dame Mathematical Lectures 2, University of Notre Dame

Press, South Bend, Ind., 1959.

[AR] M. Artin and C. Rotthaus, A structure theorem for power series rings, in: Algebraic

geometry and commutative algebra, Vol. I, pp. 35–44, Kinokuniya, Tokyo, 1988.

[AM] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley

Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[Ben] D. J. Benson, Polynomial invariants of finite groups, London Mathematical Society lecture

note series 190, Cambridge University Press, Cambridge, 1993.

[Ber] M.-J. Bertin, Anneaux d’invariants d’anneaux de polynomes, en caractéristique p, C. R.
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[Ro2] P. Roberts, Le théorème d’intersection, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987),

177–180.

[Sc] H. Schoutens, A non-standard proof of the Briançon-Skoda theorem, Proc. Amer. Math.
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