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COMMUTATIVE ALGEBRA AND DUALITY IN THE
COHOMOLOGY OF GROUPS

DAVE BENSON

Abstract. I shall use duality in the cohomology rings of finite groups as a
motivation for a discussion of what the word “Gorenstein” should really mean in
a more general context than usual.
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Lecture 1: What is group cohomology?

Let G be a finite group and k a commutative ring of coefficients. Definition of
cohomology of groups via algebra: if M is a kG-module, then

H∗(G, M) = Ext∗ZG(Z, M) ∼= Ext∗kG(k, M).

Definition via topology: by a theorem of Milnor, there exists a contractible space
EG and a free action of G on EG. We define BG = EG/G and H∗(G, k) =
H∗(BG; k).

The cohomology H∗(G, k) has a multiplication, which can be described either
using Yoneda multiplication in Ext, or cup product in cohomology of BG. If k
is Noetherian, this makes it a finitely generated graded commutative ring. Here
graded commutative means that

ba = (−1)|a||b|ab.

For example, let us compute H∗(Z/2, k) both algebraically and topologically,
where k is a field of characteristic two. The group algebra kZ/2 is isomorphic
to k[t]/(t2), where Z/2 = 〈g | g2 = 1〉 and t = 1 + g ∈ kG. We can compute
H∗(G, k) = Ext∗kZ/2(k, k) by forming a free resolution of k as follows:

· · · t−→ kZ/2
t−→ kZ/2

t−→ kZ/2 → 0
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2 DAVE BENSON

Taking homomorphisms into k and computing cohomology of the resulting complex,
we find that each H i(G, k) is one dimensional over k, and the Yoneda class of the
exact sequence

0 → k → kZ/2
t−→ · · · t−→ kZ/2 → k → 0

can be chosen as a basis element. Multiplication is given by Yoneda splice, so writing
x for the generator in degree one, we find that the above sequence represents the
cohomology element xi. So we have

H∗(Z/2, k) ∼= k[x]

with |x| = 1.
On the other hand, if we think about the topological definition, let S∞ be the

union of the finite dimensional spheres Sn, with each sphere embedded as the equa-
tor in the next one. Any map from Sn into S∞ lands in some Sm, and is then
null homotopic, by sliding it off to the north pole in Sm+1; so S∞ is contractible.
The group Z/2 acts freely on S∞ by sending each point on a sphere to the antipo-
dal point. It follows that S∞ is an EZ/2. The quotient of S∞ by the antipodal
map is infinite projective space RP∞, so this is our model for BZ/2. It has one
hemispherical cell in each dimension, and its cohomology is k[x], with |x| = 1.

The correspondence between these two views is that the cellular chains on S∞

gives the free resolution we discussed above. More generally, for any group G, chains
on EG form a free resolution of the coefficient ring k as a kG-module. We have

C∗(BG; k) ∼= Homk(C∗(BG; k), k) ∼= HomkG(C∗(EG; k), k)

and so

H∗(BG; k) ∼= Ext∗kG(k, k).

As our next example, we can compute H∗(Z/2 × Z/2, k) using the Künneth
theorem. Namely, we can use EZ/2× EZ/2 as our EG, which gives RP∞ × RP∞

for our BG. So H∗(G, k) ∼= k[x, y] with |x| = |y| = 1. The same method works for
any elementary abelian 2-group, and shows that

H∗((Z/2)r, k) ∼= k[x1, . . . , xr],

a polynomial ring on r generators in degree one.
Next, we look at the quaternion group Q8 of order eight. This can be regarded as

a subgroup of the multiplicative group of the four dimensional quaternion division
algebra H. The group of quaternions of norm one is isomorphic to SU(2), which
is topologically just the unit sphere S3 in R4. So by left multiplication, Q8 acts
freely on S3. Although S3 isn’t contractible, we can use this action to build a
resolution, and then obtain cohomological information. Namely, we can choose a
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cellular decomposition of S3 so that the action of Q8 is cellular, and then the cellular
chains give us a sequence of free kQ8-modules

0 → C3(S
3; k) → C2(S

3; k) → C1(S
3; k) → C0(S

3; k) → 0

whose homology is k in degrees zero and three, and is exact elsewhere. Splicing this
sequence to itself infinitely often gives us a free resolution of k as a kQ8-module

· · · → C0(S
3; k) → C3(S

3; k) → · · · → C0(S
3; k) → 0.

Computing cohomology using this free resolution, we see that there is an element
z ∈ H4(Q8, k) inducing the periodicity, and

H∗(Q8, k)/(z) ∼= H∗(S3/Q8; k).

Since S3/Q8 is an orientable manifold, its cohomology satisfies Poincaré duality.
The way to say this in terms of commutative algebra is that H∗(Q8, k) is a one-
dimensional Gorenstein ring.

There are several things we can take from this example. First, if a finite group
G acts freely on a sphere, of any dimension, then the cohomology is periodic. So
for example, our computation of H∗(Z/2 × Z/2, k) shows that Z/2 × Z/2 cannot
act freely on a sphere of any dimension. A similar calculation for p odd shows that
Z/p× Z/p also cannot act freely on a sphere of any dimension. So if G acts freely
on a sphere, then the p-rank of G (i.e., the maximal rank r of an elementary abelian
p-subgroup (Z/p)r of G) is at most one.

The second thing that we can take from this example is the general statement that
if G acts freely on a sphere then H∗(G, k) is (trivial or) a one dimensional Gorenstein
ring. The following is a definition of Gorenstein suitable for our situation.

Definition 1.1. Let R be a finitely generated graded commutative ring with R0 = k
and Ri = 0 for i < 0. We say that R is Cohen–Macaulay if there are homogeneous
elements ζ1, . . . , ζr in R generating a polynomial subring k[ζ1, . . . , ζr] over which R
is a finitely generated free module. This is equivalent to the condition that ζ1, . . . , ζr

is a regular sequence.
We say that R is Gorenstein if, in addition, the quotient R̄ = R/(ζ1, . . . , ζr)

satisfies Poincaré duality. This means that there is a “top” degree d such that the
dimensions of R̄d−i and R̄i are equal for all values of i, and

R̄i × R̄d−i → R̄d

is a perfect pairing.
If we want to be more precise, we say that R is Gorenstein with shift a, where

a = −d +
r∑

i=1

(|ζi| − 1)

is independent of the choice of parameters.
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For example, if R is the cohomology of an orientable manifold of dimension d
then R is Gorenstein with shift a = −d.

Another equivalent way of expressing the Gorenstein condition that works more
generally is that if R has Krull dimension r, then it is Gorenstein with shift a if

Exti,j
R (k,R) =

{
k i = r and j = −a− r

0 otherwise.
(1.2)

Here, Ext is bigraded, with the Ext degree as the first index and the internal degree
coming from the grading on R as the second.

Theorem 1.3 (Benson, Carlson [4]). If G is a finite group and H∗(G, k) is Cohen–
Macaulay, then it is Gorenstein shift a = 0.

Corollary 1.4. If H∗(G, k) is a polynomial ring then p = 2, the generators are in
degree one, and (modulo an odd order normal subgroup invisible to mod 2 cohomol-
ogy) G ∼= (Z/2)r.

Explicitly compute a resolution for GL(3, F2) in characteristic two, and display
the duality. Total complex of the double complex
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2. Lecture 2: Local cohomology of group cohomology

In this lecture we discuss local cohomology. This can be computed using the
stable Koszul complex, as follows. Let R be a Noetherian graded commutative
local ring with maximal ideal m, and let M be a graded R-module. Choose a
homogeneous set of parameters ζ1, . . . , ζr in m for M , and form the complex

0 → M →
⊕

i

M [ζ−1
i ] →

⊕
i<j

M [(ζiζj)
−1] → · · · → M [(ζ1 . . . ζr)

−1] → 0.

The cohomology of this complex is the doubly graded local cohomology

H∗∗m M.

The first grading is the local cohomological degree, and the second grading comes
from the internal grading on R and M . For further details, see Bruns and Herzog
[6]. A theorem of Grothendieck states that Hs,t

m M ∼= (RsΓmM)t, the right derived
functors of the functor Γm on graded R-modules defined by

ΓmM = {x ∈ M | ∃n mn.x = 0}.
In general, we have Hs,t

m M = 0 except when

depth(M) ≤ s ≤ dim(M);

furthermore, if s = depth(M) or s = dim(M) then for some value of t we have
Hs,t

m M 6= 0.
For example, if R is Cohen–Macaulay of Krull dimension r, then Hs,t

m R = 0
except when s = r. The Matlis dual of Hr,∗

m R is the canonical module ΩR. The
condition that R is Gorenstein with shift a is the condition that ΩR

∼= R[a + r].
Note that if R0 = k and Rn = 0 for n < 0 then the Matlis dual of an R-module M
is the same as the graded dual Homk(M, k), so that in this case, Gorenstein with
shift a is the statement that

Hr,∗
m R ∼= Homk(R, k)[a + r]. (2.1)

Do the computations for the semidihedral 2-groups

SD2n = 〈g, h | g2n−1

= 1, h2 = 1, hgh−1 = g2n−2−1〉
(n ≥ 4). The cohomology ring of this group is

H∗(SD2n , F2) = F2[x, y, z, w]/(xy, y3, yz, z2 + x2w)

with |x| = |y| = 1, |z| = 3 and |w| = 4. This example has Krull dimension two and
depth one.

Greenlees developed a spectral sequence [9]

Hs,t
m H∗(G, k) ⇒ H−s−t(G, k) (2.2)
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which generalizes Theorem 1.3. Interpret H∗(G, k) as the injective hull of k as a
graded H∗(G, k)-module, namely the graded dual of H∗(G, k).

The Greenlees spectral sequence is an algebraic shadow of the statement that
H∗(G, k) is “Gorenstein” in a suitable derived sense to be discussed in the next two
lectures. Of course, if H∗(G, k) were Cohen–Macaulay as a ring, then this spectral
sequence would collapse and say that it is Gorenstein. The semidihedral example
shows that this is not always the case.

Examine the example of Γ7a2 in detail. Set up the spectral sequence using the
stable Koszul construction from [2].

Since Hj(G, k) = 0 for j negative, the E∞ page of the Greenlees spectral sequence
vanishes for s + t > 0. The regularity conjecture from [3] says that already the E2

page has this property. In other words, it says that Hs,t
m H∗(G, k) = 0 if s + t > 0.

This conjecture has been proved as long as the Krull dimension is at most two more
than the depth.

3. Lecture 3: What is Gorenstein, really?

What should “Gorenstein” really mean for a cohomology ring? The problem with
this question is that the ring structure alone is not the only structure carried by the
cohomology ring. There are also Massey products and Steenrod operations. The
Massey product are shadows of “higher associativities” and the Steenrod operations
are shadows of “higher commutativities.” All of these operations are obtained from
the differential graded algebra (DGA) of cochains, but is lost when we pass to the
cohomology as a ring. It turns out that we need to formulate the Gorenstein prop-
erty at the level of the DGA of cochains, rather than at the level of the cohomology
ring. Later, we shall discuss how to put enough extra structure on the cohomology
to formulate things there.

Denote by P (k) a projective resolution

· · · → P2 → P1 → P0 →
of k as a kG-module, and write R for the differential graded algebra EndkG(P (k))
of endomorphisms of the complex P (k). So

Rn =
∏

i

HomkG(Pn+i, Pi)

with multiplication defined by composition of maps and differential

d : Rn → Rn+1

defined by
d(f) (x) = d(f(x))− (−1)|f |f(d(x)).

We have Hn(R) ∼= Hn(G, k).
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For any DGA R over k, we can form the homotopy category of DG R-modules.
A map in this category is called a quasiisomorphism if it induces an isomorphism in
homology. The category of fractions obtained by inverting the quasiisomorphisms
is the derived category D(R). If X and Y are objects in D(R), then we can form
an object RHomR(X,Y ) in D(k) whose cohomology groups are the maps in D(R)
from X to shifts of Y . These work in the way one would expect: if X is an R-
S-bimodule and Y is a left R-module, for example, then RHomR(X, Y ) is a left
S-module. Similarly, if X is a right R-module and Y is a left R-module, we can

form the derived tensor object X
L
⊗R Y .

Dwyer, Greenlees and Iyengar [7] define an augmented DGA R → k over a field
k to be Gorenstein with shift a if

RHomR(k,R) ' k[−a] (3.1)

as objects in D(k). This should be compared with (1.2). They also impose another
technical condition (see Definition 6.1 of [7]) which is designed to ensure that Matlis
duality behaves well, and which we shall not state here. Also, their context is
more general than DGAs; they work with ring spectra in the sense of algebraic
topology. They show that the DGA R described above is Gorenstein in their sense,
with shift zero. They show that under suitable circumstances, in the presence of
the “higher commutativities” mentioned above, the Gorenstein condition gives a
spectral sequence

Hs,t
m H∗R ⇒ Hs+t+aHomk(R, k). (3.2)

In the case of the DGA R, this is the Greenlees spectral sequence (2.2).

Remarks. Much of what we are describing in this section and the next comes from
Dwyer, Greenlees and Iyengar [7]. They use the language of S-algebras and their
modules. An S-algebra is a ring spectrum, using a category of spectra in which the
smash product is strictly commutative and associative, not just up to all higher
homotopies. Such a category has been constructed by Elmendorf, Kř́ıž, Mandell
and May [8] among others. This is necessary in order to perform some of the
operations of commutative algebra. So for example if R is a commutative S-algebra
then a localization of R at a prime ideal in its homotopy is again a commutative
S-algebra; and the tensor product of two R-modules is again an R-module. A
DGA is an example of an S-algebra, but be warned that commutativity as an S-
algebra only means that it is commutative “up to all higher homotopies” (in the
E∞ sense) as a DGA. So for example, C∗(BG; k) is a commutative S-algebra, but
not a commutative DGA.

If R is a DGA, the its homotopy as an S-algebra is the same as its homology
as a DGA. However, for this really to be true, it is necessary to grade DGAs
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homologically rather than cohomologically. We are numbering ours cohomologically,
but it is easy to reindex by negating the grading, Xn = X−n.

If H∗R were Gorenstein with shift a as a ring, the spectral sequence (3.2) would
degenerate to

Hr,t
m H∗R ∼= Homk(H

∗R, k)r+t+a

where r is the Krull dimension of R. Comparing this with (2.1), we see that under
the above circumstances, if R is Gorenstein and H∗R is Cohen–Macaulay, then H∗R
is Gorenstein. This can be viewed as a generalization of Theorem 1.3.

So what extra information is there in R that is not reflected in the ring structure
of H∗R = H∗(G, k), and that gives rise to the difference between the statement
that R is Gorenstein and the statement that H∗R is Gorenstein? As we indicated
earlier, there are two kinds of extra information available: higher associativities
and higher commutativities. It turns out that for the definition of Gorenstein, only
the higher associativities are important. This is captured in the notion of an A∞
algebra, as we now explain. If higher commutativities are also incorporated, the
resulting structure is called an E∞ algebra; this is important when we want to
perform constructions from commutative algebra such as localization, and also if
we want the tensor product of two modules to be another module. A very good
survey of A∞ algebras is Keller [11], to which we refer for all details not supplied
here.

Let us begin by recalling the definition of the Massey triple product in cohomol-
ogy. Suppose that [x], [y] and [z] are elements of H∗(G, k) with the property that
[x][y] = 0 and [y][z] = 0. Choose cocycles x, y and z in R representing them. Then
there are cochains u and v such that xy = du and yz = dv. Look at the element

uz − (−1)|x|xv. (3.3)

If we apply d to this, then using the fact that d(z) = 0 and d(x) = 0, we get

d(u)z − xd(v) = xyz − xyz = 0.

So (3.3) is a cocycle, and we define the Massey triple product to be its cohomology
class

〈x, y, z〉 = [uz − (−1)|x|xv].

Replacing x, y and z by cohomologous cocycles will alter the Massey triple product,
and it is easy to check that it is well defined modulo xH∗(G, k) + H∗(G, k)z.

Higher Massey products are defined similarly. For example, if w, x, y and z are
elements such that wx = 0, xy = 0, yz = 0, 〈w, x, y〉 = 0 and 〈x, y, z〉 = 0, then the
Massey product 〈w, x, y, z〉 is defined. Unfortunately, the indeterminacies become
more and more complicated. Matric Massey products are a variation where use is
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made of relations that are not monomial. So for example if wx = 0, wy = 0 and
xz + yt = 0, then we can form the matric Massey product

〈w, (x y) , ( z
t )〉

by the same sort of process as we used above.
The concept of an A∞ algebra somehow rigidifies the Massey products, and makes

them universally defined, not just under some vanishing conditions, but at the
expense of having to make some choices. The beginning of the process is as follows.
Let R be a DGA over a field k, and look at H∗R. Choosing representative cocycles
in a linear way can be codified by the choice of a k-linear map f1 : H∗R → R which
induces the identity map on cohomology; here, we are thinking of H∗R as a DGA
with zero differential. Now, in general, f1 cannot be chosen to be compatible with
the multiplication. However, the difference can be written as a coboundary. In
other words, we can choose a linear map of degree −1

f2 : H∗R⊗H∗R → R

such that

f1(xy)− f1(x)f1(y) = df2(x, y).

Next, if x, y, z ∈ H∗R, we look at the element

(−1)|x|f1(x)f2(y, z)− f2(xy, z) + f2(x, yz)− f2(x, y)f1(z) (3.4)

and we see that applying d gives zero. So we can define a map of degree −1

m3 : H∗R⊗3 → H∗R

via

m3(x, y, z) = [(−1)|x|f1(x)f2(y, z)− f2(xy, z) + f2(x, yz)− f2(x, y)f1(z)].

Furthermore, f1m3(x, y, z) differs from (3.4) by a coboundary. So we can choose a
linear map of degree −2

f3 : H∗R⊗3 → R

so that

(−1)|x|f1(x)f2(y, z)−f2(xy, z)+f2(x, yz)−f2(x, y)f1(z) = f1m3(x, y, z)−df3(x, y, z).

Continuing this way, we obtain a sequence of maps

mn : H∗R⊗n → H∗R

(n ≥ 1) of degree 2− n (with m1 = 0 and m2(x, y) = xy) and

fn : H∗R⊗n → R
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(n ≥ 1) of degree 1− n satisfying the identities∑
n=r+s+t

(−1)r+stmr+1+t(1
⊗r ⊗ms ⊗ 1⊗t) = 0 (3.5)

and∑
n=r+s+t

(−1)r+stfr+1+t(1
⊗r ⊗ms ⊗ 1⊗t) =

∑
n=i1+···+ir

(−1)σmr(fi1 ⊗ · · · ⊗ fir) (3.6)

where

σ = (r − 1)(i1 − 1) + (r − 2)(i2 − 1) + · · ·+ 2(ir−2 − 1) + (ir−1 − 1).

Definition 3.7 (Stasheff). An A∞ algebra is a graded vector space A together with
linear maps mn : A⊗n → A (n ≥ 1) of degree 2− n satisfying relations (3.5).

A morphism of A∞ algebras A → B is a sequence of maps fn : A⊗n → B (n ≥ 1)
of degree 1− n satisfying relations (3.6).

A quasiisomorphism of A∞ algebras is a morphism such that f1 induces an iso-
morphism on homology with respect to m1.

Remarks. The case n = 1 of the relations (3.5) states that m1 is a differential,
while the case n = 2 states that m1 is a derivation with respect to the multiplication
m2. However, the multiplication m2 does not need to be associative; the remaining
mi (i ≥ 3) are “higher associativities” filling in this discrepancy. A DGA is a special
example of an A∞ algebra in which m2 is strictly associative and mi = 0 for i ≥ 3.
However, in general an A∞ algebra for which m2 is strictly associative still need not
have mi = 0 for i ≥ 3.

For a DGA R, the A∞ structure on H∗R rigidifies the Massey product structure.
For example, if x, y and z are elements of H∗R then m3(x, y, z) is a particular, well
defined representative of the Massey triple product 〈x, y, z〉. The advantages of m3

over the Massey triple product are that it is defined for all triples, not just ones
where xy = 0 and yz = 0, and there is no indeterminacy. The disadvantage is that
there were some choices made when constructing the A∞ structure on H∗R. The
resulting A∞ structure is in fact only well defined up to quasiisomorphism.

The argument presented above for constructing m3 and f3 for a DGA R is the
beginning of the proof of the following theorem.

Theorem 3.8 (Kadeishvili [10]). If A is an A∞ algebra (for example a DGA) then
there is an A∞ algebra structure on H∗A and a quasiisomorphism of A∞ algebras
H∗A → A.

The theory of A∞ modules is defined similarly. If A is an A∞ algebra, then an
A∞ module M comes with maps

mn : M ⊗ A⊗(n−1) → M
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(n ≥ 1) of degree 2 − n. These should satisfy exactly the same identities (3.5) as
for an A∞ algebra, but some of the mi in the formula are the ones for the module
and some are for the algebra. Similarly, a morphism of A∞ modules M ′ → M is
given by maps

fn : M ′ ⊗ A⊗(n−1) → M

(n ≥ 1) of degree 1 − n, satisfying the analog of (3.6). But this time, most of the
right hand side disappears because we’re using the identity morphism on A. So it
becomes∑

n=r+s+t

(−1)r+stfr+1+t(1
⊗r ⊗ms ⊗ 1⊗t) =

∑
n=r+s

(−1)(r+1)sm1+s(fr ⊗ 1⊗s).

A quasiisomorphism is a morphism such that f1 induces an isomorphism on the
cohomology with respect to m1, as before. Composition of morphisms f : M ′ → M
and g : M ′′ → M ′ is given by

(fg)n =
∑

n=r+s

(−1)(r+1)sf1+s(gr ⊗ 1⊗s).

If f, g : M ′ → M are morphisms, a homotopy from f to g is a collection of maps

hn : M ′ ⊗ A⊗(n−1) → M

(n ≥ 1) of degree −n satisfying

fn − gn =
∑

n=r+s

(−1)rsm1+s(hr ⊗ 1⊗s) +
∑

n=r+s+t

(−1)r+sthr+1+t(1
⊗r ⊗ms ⊗ 1⊗t).

We form the derived category D(A) of an A∞ algebra A just as we did for a DGA,
except that it’s slightly easier. We begin with the homotopy category whose objects
are A-modules and whose arrows are the homotopy classes of maps. Working by
analogy, we expect to have to invert the quasiisomorphisms. However, it turns out
that all quasiisomorphisms in the homotopy category are already invertible. So the
homotopy category is the derived category.

There are also Hom and tensor objects RHomR(X, Y ) and X
L
⊗R Y which work

in the same way as for a DGA. These are described in §6.3 of Keller [11] (with
different notation).

Theorem 3.9. A quasiisomorphism of A∞ algebras A → B induces an equivalence
of derived categories D(B) → D(A).

So we can now make the same definition of Gorenstein for an A∞ algebra as
we did for a DGA. Namely, that condition (3.1) holds (plus the same technical
condition as before).
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Theorem 3.10. Let G be a finite group and k a field of characteristic p. Regarding
H∗(G, k) as an A∞ algebra as described above, it is Gorenstein with shift equal to
zero.

Remark 3.11. More generally, if G is a compact Lie group and k is a field then
regarding H∗(BG; k) as an A∞ algebra, it is Gorenstein with shift equal to the
dimension of G as a manifold, provided that the conjugation action of G on Lie(G)
preserves orientation. This condition is satisfies provided G is finite or connected,
but for example it is not satisfied for G = ToH with T a torus and H a finite
group of automorphisms which does not preserve orientation. The reader may find
it instructive to compute H∗(B(T 3oZ/2); F2), where the action of Z/2 is given by
negation. This ring is Cohen–Macaulay, but not Gorenstein.

Finally, it is worth remarking that as long as we regard H∗(G, k) as an A∞
algebra, we can recover the module category Mod(kG) from it. Actually, this is
only the case when G is a p-group, because then k is the only simple module. But
for a more general finite group, or even a general finite dimensional algebra Λ,
Mod(Λ) can be recovered from the A∞ algebra Ext∗Λ(S, S), where S is a direct sum
of one representative of each isomorphism class of simple Λ-modules; see §§5-6 of
Keller [11] for further details. This can be regarded as a vindication of Alperin’s
dictum [1] that

Cohomology is representation theory.

4. Lecture 4: Duality in algebra and topology

In this lecture, following Dwyer, Greenlees and Iyengar [7], we discuss how to do
local cohomology at the level of DGAs, and what this has to do with the Gorenstein
condition. The discussion applies verbatim to A∞ algebras.

Our discussion begins with local cohomology for a Noetherian local ring R with
maximal ideal m. Recall that H i

mR are the right derived functors of the functor
Γm. The functor Γm, applied to an R-module M , picks out the largest submodule
that can be built out of copies of k = R/m using the operations of direct sums,
extensions, and cokernels. This is because setting

Γn
mM = {x ∈ M | mn.x = 0},

the quotient Γn
mM/Γn−1

m M is a direct sum of copies of k, so Γn
mM can be built from

k using direct sums and extensions. It follows that

ΓmM =
∞⋃

n=1

Γn
mM
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sits in a short exact sequence

0 →
∞⊕

n=1

Γn
mM →

∞⊕
n=1

Γn
mM → ΓmM → 0,

where the first nonzero map sends an element in Γn
mM to itself minus its image in

Γn+1
m M .
Now consider the case of an injective module. The classification of injective mod-

ules over a Noetherian commutative ring states that every injective is a direct sum
of indecomposable injectives, and that the indecomposable injectives are precisely
the injective hulls Ip of the modules R/p, where p is a prime ideal in R. Applying
Γm picks out the copies of Im and throws away the summands Ip with p 6= m.

If M is an R-module, considered as an object in D(R) concentrated in degree
zero, then M is equivalent to an injective resolution

0 → I0 → I1 → I2 → · · ·

of M . So the complex RΓmM , namely

0 → ΓmI0 → ΓmI1 → ΓmI2 → · · ·

comes with a map RΓmM → M in D(R) having the following properties:

(i) RΓmM is built from k, and

(ii) If X is an object in D(R) built from k and X → M is a map in D(R) then
there is a unique factorization through RΓmM :

RΓmM

��
X

;;

// M.

We use this as the basis for the following definitions. Let R be a DGA (or an A∞
algebra or an S-algebra) and let D(R) be its derived category.

Definition 4.1. If X is an object in D(R), we say that Y is built from X if it is
in the smallest triangulated subcategory of D(R) containing X and closed under
isomorphism, direct sums and direct summands. If only finite direct sums are used,
then Y is finitely built from X.

A map U → V is an X-equivalence if RHomR(X, U) → RHomR(X,V ) is an iso-
morphism. Y is X-cellular if every X-equivalence U → V induces an isomorphism
RHomR(Y, U) → RHomR(Y, V ).

Theorem 4.2. An object Y is X-cellular if and only if it is built from X.
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For any X and Y , there exists an X-cellular object CellX(Y ) together with an
X-equivalence CellX(Y ) → Y . This is unique up to canonical isomorphism in D(R),
and is called the X-cellular approximation to Y .

In terms of these definitions, if R is a Noetherian local ring, regarded as a DGA
concentrated in degree zero, then

RΓmM ∼= CellkM.

So in general, if R → k is an augmented DGA, we can regard CellkM as a “local
cohomology object” for M in the derived category.

Definition 4.3. Let R → k be an augmented DGA. We say that k is proxy-small
if there is an object K in D(R), called a Koszul complex, such that K is finitely
built from R, K is finitely built from k, and k is built from K.

Example 4.4. If R is a Noetherian local ring with maximal ideal m, and k = R/m,
then k is proxy-small, and the usual Koszul complex for a system of parameters in
m can be used as the Koszul complex K in the definition above.

The following is Proposition 2.10 of [7], which gives a model for Cellk(X) in case
k is proxy-small.

Proposition 4.5. Suppose that k is proxy-small, and set E = RHomR(k, k). Then
for any X in D(R), the natural map

RHomR(k,X)
L
⊗E k → X

is a k-cellular approximation to X.

We can regard the map described in the Proposition above as the counit of an
adjunction

D(R)
RHomR(k,−)

// D(Eop)
−

L
⊗E k

oo .

This adjunction gives a close relationship between the two categories D(R) and
D(E).

Example 4.6. Let R = kG. Then E is the differential graded algebra R =
EndkG(P (k)) discussed in the previous lecture. This DGA is quasiisomorphic to
C∗(BG; k), and so we are relating D(kG) with D(C∗(BG; k)).

If G is a finite p-group and k has characteristic p, then every object in D(kG) is
built from k. It follows that the adjunction above gives an embedding of D(kG) in
D(C∗(BG; k)).



COMMUTATIVE ALGEBRA AND DUALITY IN THE COHOMOLOGY OF GROUPS 15

Double Centralizers. If R → k is an augmented DGA, and E = RHomR(k, k),

we define the double centralizer of R to be R̂ = RHomE(k, k). There is an obvious

homomorphism R → R̂ given by left multiplication. We say that R is dc-complete
if R → R̂ is a quasiisomorphism.

Example 4.7 (Proposition 9.18 of [7]). If R is a Noetherian local ring with maximal

ideal m and k = R/m then R̂ is the m-adic completion R
∧
m = lim←

n

R/mn.

Example 4.8 (§3 of [7]). If G is a finite p-group then kG is dc-complete. If G is any
finite group (or more generally, a compact Lie group) then C∗(BG; k) is dc-complete.
But the double centralizer of kG is C∗(Ω(BG

∧
p ); k), which is only equivalent to kG

if G is a p-group (in the case of a compact Lie group, it’s equivalent to C∗(G; k) if
π0(G) is a finite p-group).

We can now “explain” why C∗(BG; k) is Gorenstein.

Proposition 4.9 (Proposition 6.5 of [7]). Suppose that R → k is an augmented
DGA, and set E = RHomR(k, k). If R is dc-complete and k is proxy-regular, then
R is Gorenstein with shift a if and only if E is Gorenstein with shift a.

The proof is based on the identities

RHomR(k,R) ∼= RHomR(k, RHomE(k, k)) ∼= RHomR⊗kE(k
L
⊗k k, k)

RHomE(k, E) ∼= RHomE(k, RHomR(k, k)) ∼= RHomE⊗kR(k
L
⊗k k, k).

If G is a finite p-group, then the conditions of Proposition 4.9 are satisfied. The
group algebra kG is self-injective, and so it is Gorenstein with shift zero. So by the
Proposition, C∗(BG; k) is also Gorenstein with shift zero.

If G is a finite group but not a p-group, the argument is more subtle, because
kG is not dc-complete. One must work via an embedding of G into SU(n). Then
C∗(BSU(n); k) is dc-complete and Gorenstein with shift n2−1, and C∗(SU(n)/G; k)
is Gorenstein with shift −(n2 − 1). One then uses the fibration

SU(n)/G → BG → BSU(n)

to show that C∗(BG; k) is Gorenstein with shift zero.

There is another model for Cellk(X), which explains the spectral sequence (3.2).
This is analogous to the theorem of Grothendieck mentioned in Lecture 2, stating
that Hs,t

m M ∼= (RsΓmM)t. Let R be an E∞ DGA (plus suitable technical conditions
that can be found in [7]). If x is an element of H i(R), we can represent x by a

cocycle in R and look at right multiplication by x as a morphism R
x−→ ΣiR. We

complete to a triangle in D(R):

K(x) → R
x−→ ΣiR.
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Similarly, if we use xm, we write

Km(x) → R
xm

−→ ΣimR,

and
K∞(x) = Hocolim−−−−−→

m

Km(x).

The diagram

K(x) //

��

R
x // ΣiR

x

��
K2(x) //

��

R
x2

// Σ2iR

x

��
K3(x) //

��

R
x3

// Σ3iR

x
��

...
...

...

and the exactness of Hocolim shows that there is a triangle

K∞(x) → R → R[x−1].

If x1, . . . , xr is a homogeneous sequence of parameters for M in H∗R then

K∞(x1)
L
⊗R · · ·

L
⊗R K∞(xr)

L
⊗R M

is a model for Cellk(M). Filtering this stable Koszul complex in a suitable sense is
what gives rise to the local cohomology spectral sequence (3.2).

We end by remarking that the relationships between D(kG) and D(C∗(BG; k))
described above have recently been used in a paper of Benson and Greenlees [5] to
prove a conjecture in modular representation theory via algebraic topology. The
theorem is too technical to state here.
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