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APPLICATIONS OF THE DIMENSION FILTRATION

PETER SCHENZEL



ABSTRACT. For a finitely generated A-module M we define the dimen-
sion filtration .# = {M; }o<i<q4,d = dimy M, where M; denotes the largest
submodule of M of dimension < i. Several properties of this filtration are
investigated. In particular, in case the local ring (A, m) possesses a dual-
izing complex, then this filtration occurs as the filtration of a spectral se-
quence related to duality. Furthermore, we call an A-module M a Cohen-
Macaulay filtered provided all of the quotient modules M;/M;_, are ei-
ther zero or i-dimensional Cohen-Macaulay modules. We describe a few
basic properties of these kind of generalized Cohen-Macaulay modules.
In the case A possesses a dualizing complex it turns out — as one of the
main results — that M is a Cohen-Macaulay filtered A-module if and only
if for all 0 < i < d the module of deficiency K*(M) is either zero or an i-
dimensional Cohen-Macaulay module. Furthermore basic properties of
Cohen-Macaulay filtered modules with respect to localizations, comple-
tion, passing to a non-zero divisor, flat extensions are investigated.
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1. THE DIMENSION FILTRATION

1.1. The definitions. Let (A, m) denote a local Noetherian ring. Let M be
a finitely generated A-module and d = dim4 M. For an integer 0 < i < d let
M; denote the largest submodule of M such that dimy M; <i. Because of the
maximal condition of a Noetherian A-module the submodules M; of M are
well-defined. Moreover it follows that M;_; C M; forall 1 <i <d.

Definition 1.1. The increasing filration 7 == {M,;}o<;<y of submodules
of M is called the dimension filtration of M. Put .4 = M;/M,_ for all
P<i<d.

Primary decomposition. Note that Mo = H2 (M), where HO (-) denotes the
section functor with support in {m}.

Let 0= ﬂ?le ; denote a reduced primary decomposition of 0 in M. That
is, 0 £ ﬂ’}:l,#kNj forallk=1,...,n, and N; is a p j-coprimary submodule
of M such that the prime ideals p; are pairwise different and Assy M =
{p1,---,pn}. Hence Mo = Ngima/p;>0l;-

Both of these representations of My will be generalized to M;,0 <i<d, in
the following.

Annihilation ideals. Let

a; = H p.

peAssM,dimA /p<i
In the case that {p € AssM | dimA/p <i} =0 putq; =A.

Proposition 1.2. Let M be a finitely generated A-module. Then
0
M; = Hg, (M) = Ngim a p;>iNj

forall0 <i<d. Here(O= ﬂ?: N denotes a reduced primary decomposi-
tionof Oin M.

Proof. The equality of the last two modules in the statement follows by
easy arguments about the primary decomposition of the zero submodule
0 of M. Now let us prove that M; = Hc?,- (M) for all 0 <i < d. Clearly we
have Supp H (M) = Supp M NV (a;). Therefore it follows that M; C H). (M)
because any element of M; is annihilated by an ideal of dimension < i. By
the maximality of M; this proves the equality. 0

The previous result provides a stratification of the associated prime ideals
of M in terms of those of M; and .#; respectively.

Corollary 1.3. Let A4 = {M;}o<i<q denote the dimension filtration of M.
Then

a) Assy M; = {p € AssM | dimA/p < i},

b) AssgaM/M; = {p € AssM | dimA/p > i}, and

c) Assq ;= {p € AssM | dimA/p =i}
forall 0 <i<d.
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Proof. The two first equalities are obviously true by view of 1.2. Note that
ASSAHC?I,(M) ={pcAssaM|peV(a;)}.
The third equality is a consequence of the embedding .#; C M /M;_; and
the short exact sequence
0—-M_|—M;— #; — 0.
Here we use the containment relation
AssaM; C Assy M;_| UASsy #;
for the associated prime ideals of the corresponding modules. [

Remark. In a certain sense the quotients .#;,0 < i < d, of the dimension
filtration .# = {M;}o<i<q of M are a measure for the unmixedness of M.
Note that the A-module M is unmixed if

dimA/p = dimy M for all p € Assy M.

In this case .#; = 0 for all i < dimy M = d and M; = M. So the filtration is
discrete in the case M is unmixed.
More general let .# = {M,}o<;<4 be the dimension filtration of M. Then
M; = 0O for all i < depth, M. This follows by 1.3 and the fact

depthy M < dimA/p for all p € Assy M,
see [M, Theorem 17.2] for this inequality.
1.2. A Permanence Property.

Proposition 1.4. Let .# = {M; }o<;<q be the dimension filtration of a finitely
generated A-module M. Suppose that Supp, M is a catenary subset of SpecA.
Let p € SuppM denote a prime ideal. Define

M = M; | gima/p @aAyp for all 0 < i < dimy, My =1.

Then 4" = {M}o<i<; is the dimension filtration of the Ay-module M,,.
Proof. First we mention that there is the bound

dimy M! < (i+dimA/p) —dimA/p =i
for all i € Z. Next we recall the following statement about associated prime
ideals

Assa, My = {9Ap | g € Assa M,q C p},
see [M, Theorem 6.2]. Now let 0 = 07:11\7 ; be a reduced primary decom-
position of 0 in M, where N; is q;j-coprimary. Suppose that q; € p for all
j=1,....omand q; €pforall j=m+1,...,n. Then 0 = ﬂ’]".zzl(Nj@AAp)
is areduced primary decomposition of O in M}, as an Ay-module. Therefore,
by view of 1.2, it yields that

(Mp)i = mdimA,g/c|jA,g>i(]\/vj ®AAp)-
Moreover by the localization of M; | 4ima , We get the following equality

M; = Ndima/q >i+dima/p(N; ©a Ap).
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Because Supp, M is supposed to be a catenary subset of SpecA we get that
dimA/q; =dimA/p +dimA,/q;A,.

First this proves that d =+ dimA /p. Because of the above statement about
the associated prime ideals it shows finally that M} = (M, ); forall 0 <i <,
as required. U

In the following we consider a variation of the notion of a system of param-
eters of an A-module M.

1.3, Distinguished System of Parameters.

Definition 1.3, Letx=ux(,...,x4,d = dimy M, denote a system of parame-
ters of M. Then x == x1,...,x, is called a distinguished system of parameters
of M provided (x;y,... . x )M, = Oforall i=0,.. . ,d—1.

In the next result let us prove the existence of distinguished systems of
parameters of an A-module M.

Lemma 1.6. Any finitely generated A-module M admits a distinguished sys-
tem of parameters.

Proof. First we show the existence of a parameter x; of M such that x;M; =
Oforalli=0,...,d — 1. To this end note that dims M; < i <d forall i =
0,...,d—1.Put b= H?:_Ol Anny M;. Then b € p for any associated prime
ideal p € Assy M with dimA /p = d. Therefore there is an element x; € b and
xq € p for all p € Assqg M with dimA/p = d. Whence x,; is a parameter with
the desired property. Now pass to the factor module M/x;M and choose
a parameter x;_; of M /x;M such that x;_ M; =0 for all i =0,...,d — 2.

Then an induction finishes the proof of the claim. U
It turns out that whenever x = xy,...,x; is a distinguished system of param-
eters of M, the elements x|, ..., x; generate an ideal of definition of .#;. This

follows since M;/xM; is an A-module of finite length. Therefore, whenever
A; # 0, then xq,...,x; is a system of parameters of .#;.

Lemma 1.7. A system of parameters x = xy,...,xg of M is a distinguished
system of parameters if and only if M; =0 :py (Xit-1,- .., Xxq) fori=0,...,d —
1.

Proof. Let x =x1,...,x; denote a system of parameters of M such that
M,' =0 ‘M <xi+1,...,xd) fOI‘alli:O,...,d— 1.
Then (xj41,...,x7)M; =0, i.e. x is a distinguished system of parameters.

Conversely let x be a distinguished system of parameters. Then
M; CO:py (xig1,...,x9) foralli=0,...,d—1

as follows by the definition. Moreover there is the following expression for
the associated prime ideals

Asss(0:pg (Xig1,..,xg)) ={p €EAssSaM | p € V(xix1,...,%2) }.
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Let p denote an associated prime ideal of 0 :p7 (x4 1,- .. ,X4). Then we obtain
p € Suppa M/ (xiy1,...,x4)M and dimA/p <d—(d—i)=.

That is, dima (0 :37 (Xi41,- . -,%xq)) < i. Because of the maximality of M; the
equality M; =0 :p7 (x;41,...,xg) follows now. O

2. A SUPPLEMENT TO DUALITY

2.1. Dualizing complexes. Let (A, m) denote a local ring possessing a du-
alizing complex D},. Refer to [H, Chapter V, §2] or to [S3, 1.2] for basic
results about dualizing complexes. Note that the natural homomorphism of
complexes

M — Homy (Homy (M, D), D))

induces an isomorphism in cohomlogy for any finitely generated A-module
M.
Moreover there is an integer / € Z such that

Homy (k,D}) ~ k[l],

where k = A/m denotes the residue field of A. Without loss of generality
assume that / = 0. Then the dualizing complex D) has the property

DXZ = 69pESpecA,dimA/p:iEA (A/p)7
where E4(A/p) denotes the injective hull of A/p as A-module. Therefore
D), =0fori< —dimA and i > 0.
Definition 2.1. Let M denote a finitely generated A-module and o = dimy M.
For an integer { € Z define
K'{(M) = H (FHomy (M, D).
The module K{(M) := K¢ (M) is called the canonical module of M. For i+ d

the modules K'(M) are called the modules of deficiency of M. Note that
KiMy=0foralli<Qori>d.

By the local duality theorem
H: (M) ~Homy(K'(M),E),i € Z,

where E = E4(A/m). Whence the modules of deficiencies of M measure
the deviation of M from being a Cohen-Macaulay module. The canonical
module K(M) of M is a Cohen-Macaulay module provided M is a Cohen-
Macaulay module.

For a finitely generated A-module M and an integer i € N let

(AssaM); = {p € Assa M | dimA/p = i}.
For the proof of the next result see [S1, 3.1] and [S3, Lemma 1.9].

Proposition 2.2. Let M denote a d-dimensional A-module. Then the fol-
lowing results are true:

a) dimy K'(M) <iforall 0 <i<d and dimyK(M)=d.
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b) Assp K(M) = (Assa M),.

) (AssgKi(M)); = (AssaM); forall 0 < i< d.

d) Let M be a Cohen-Macaulay module. Then K(M) is also a Cohen-
Macaulay module.

The induced homomorphisms of the cohomology of the natural map
M — Homy (Homy (M, D), D))

are isomorphisms whenever M is a finitely generated R-module.

2.2. Dimension filtration and Duality.

Lemma 2.3. Let M denote a finitely generated A-module. Let p € Supp, M
be a prime ideal with t = dimA/p. Then there are the following isomor-
phisms o ' '
K (KT (M)) @4 Ap = K (KT (M©4 4y)
for any pair (i, j) € 7.
Proof. First note that there is an isomorphism of dualizing complexes
DA ®AAP = DAp [t]a

see e.g. [H, Chapter V, Proposition 7.1]. Now by the definition of the K*’s
write o . ‘

K'(K'(M)) ~ H '(Homs (H ™/ (Homy4 (M,Dy)),D})).
The localization functor - ®4 Ay is exact, 1.e. it commutes with cohomology.
Moreover let X denote a bounded complex of A-modules whose cohomol-
ogy modules are finitely generated A-modules. Then there is the following
isomorphism of complexes

Homy (X,DA) ®AAp ~ HOl’l’lAp (X ®AAP’DAp ) [T],
see [H, Chapter II]. Putting together all of these ingredients the statement
of the proposition follows now. O
In order to compute the homology of Hom, (Homy (M, D), ), D), ) there is the
following spectral sequence
E?? = HY(Hom, (Homy (M, D}),DY)),
see [E, Appendix 3, Part IT] or [W, Section 5].

Because sz is an injective A-module the corresponding E>-term has the
following form

E%? = HP(Homy (H™4(Homy (M,D},)),D},)).
With regard to our previous notation it follows that E2? = K=7(K9(M)).

Fact. Let M denote a finitely generated A-module with d = dimy M. Let
us return to the above spectral sequence. Consider the stage p+¢g = 0, the
only place in which non-zero cohomology occurs. Then the limit terms
EE™P —d < p <0, are the quotients of a filtration

FOcFrlc.. . crilcrid=Mm
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of M. That is we have FP /FPt1 ~ EE™P forall —d < p <0.

Question. What is the relation of the filtration .F = {F }<i<, to the
dimension filtration of M?

Theorem 2.4. Let # = {M;}o<i<q be the dimension filtration of M. Then
it follows M; = F~ forall 0 < i < d.

It is worth to remark that in general the limit terms EZ 7 of the spectral
sequence considered above do not agree with E"7 ~ K=?(K~?(M)). It
would be interesting to find an explicit description of these modules.

3. COHEN-MACAULAY FILTERED MODULES

3.1. The Definitions. Let (A,m) be local Noetherian ring. Let M denote
a finitely generated A-module. Let .# = {M;}¢<;<4 denote the dimension
filtration.

Definition 3.1. A finitely generated A-module M is called a Cohen-Macaulay
filtered module (cf. [S2}) (or sequentially Cohen-Macaulay module), when-
ever .#; == M;/M;_; is either zero or an i-dimensional Cohen-Macaulay
module forall 0 <7 < dimy M.

Note that any Cohen-Macaulay module is a Cohen-Macaulay filtered mod-
ule. This follows because under this assumption M; = 0 for all i < dimgq M.
Conversely an unmixed Cohen-Macaulay filtered module is a Cohen-Macaulay

module. Let M be an A-module such that depth, M = 0 and M/H2 (M) is a
Cohen-Maculay module. Then M is a Cohen-Macaulay filtered module.

Delinition 3.2. Let M denote a finitely generated A-module with d = dimy M.

an i-dimensional Cohen-Macaulay module forall 1 <i<d.

Proposition 3.3. Let € = {C;}o<i<q be Cohen-Macaulay filtration of M.
Then € coincides with the dimension filtration.

3.2. Approximately Cohen-Macaulay Modules. Let 0 = ﬁ’}le ; denote
a reduced primary decomposition. Put 237(0) = Ngima /p=dVj-

Definition 3.4. A linitely generated A-module M, d = dimy M, is called an
approximately Cohen-Macaulay module whenever M/uy(0) is a Cohen-
Macaulay module and depthy M > d —~ L

This is the extension of the notion of an approximately Cohen-Macaulay
ring introduced by S. Goto, see [G]. Note that a Cohen-Macaulay module
is always an approximately Cohen-Macaulay module. Next let us describe
the relation of this notion to that of CMF modules.

Proposition 3.5. Let M be a finitely generated A-module. Then M is ap-
proximately Cohen-Macaulay if and only if M is a Cohen-Macaulay filtered
module and depthy M > dimy M — 1.
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Proof. First let M be an approximately Cohen-Macaulay module. Put d =
dimyg M. By [M, Theorem 17.2] it follows that

d—1<depthy M < dimA/p for all p € Assy M.

Therefore M; = 0 for i =0,...,d —2 and My_| = up(0), see 1.2. Now
consider the short exact sequence

O—>Md_1—>M%M/Md_1—>O.

Because M is approximately Cohen-Macaulay it follows that M/M,_; is
a d-dimensional Cohen-Macaulay module and depthy M > d — 1. So the
short exact sequence implies depth, M;_; > d — 1. Because of dimy My_| <
d — 1 it turns out that M _ is either zero or a (d — 1)-dimensional Cohen-
Macaulay module.

The reverse statement follows the same line of reasoning. Hence we omit
the details. 0

3.3. Properties of CMF. Now there are a few results on permanence prop-
erties of Cohen-Macaulay filtered modules. To this end A denotes the m-
adic completion of A.

Proposition 3.6. Let M denote a Cohen-Macaulay filtered A-module. Then
the following conditions are satisfied:

a) Suppy M is a catenary subset of SpecA.
b) Letp € Suppy M. Then

dimA /p = dimA/q for all q € Ass; A/pA,
i.e. A/y is formally unmixed for all p € Supp, M.

Proof. Because M /M, is a Cohen-Macaulay module and
Suppy M = Suppy M /My,

both of the statements follow. For the first statement see [M, §17]. The
second is a consequence of [N, (34.9)]. O

A Cohen-Macaulay filtered ring A possesses a small Cohen-Macaulay mod-
ule. That is a Cohen-Macaulay module X such that depthX = dimA. This
follows since A/A4_1,d = dimA, is a d-dimensional Cohen-Macaulay mod-
ule. Consequently for a CMF ring A all the homological conjectures are
true.

Lemma 3.7. Let M denote a finitely generated A-module. Let x € m be an
M-regular element. Then M /xM is a CMF module provided M is a CMF
module.

Proof. First note that whenever x € m is an M-regular element, then My =0
and x is also M /M;-regular as well as .#;-regular for all i > 1. Here .# =
{M;}o<i<q denotes the dimension filtration and .#; = M;/M;_,. In particu-
lar it follows that M; NxM = xM; for all 1 <i <d.
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Now suppose that M is a CMF module. Let i > 1. Then
M| x M~ (M, xM) /xM) | (M;_1,xM) /xM )

is a (i — 1)-dimensional Cohen-Macaulay module or zero. Therefore by
3.3 it follows that M /xM is a (d — 1)-dimensional Cohen-Macaulay filtered
module since {(M;;1,xM /xM) }o<;<4 is a Cohen-Macaulay filtration.  [J

The converse is not true as mentioned by N. T. Cuong. To this end consider
a 2-dimensional local domain (A, m) that is not a Cohen-Macaulay ring. So
it is not CMF. On the other side A/xA,x # 0, is as a 1-dimensional ring
always a CMF.

In the final part of this section consider the behavior of the CMF property
by passing to the completion.

Theorem 3.8. Let M be a finitely generated A-module. Let M be a CMF
A-module. Then M @4 A is a CMF A-module.

Proof. Let A4 = {M;}o<i<q denote the Cohen-Macaulay filtration of the
CMF A-module M. Then {M; ®4 A}ogigd is clearly a Cohen-Macaulay fil-
tration of the A-module M ®,4 A. So by 3.3 M @4 A is a CMF module over
A. O

The converse of the above statement is not true in general, see Example 5.1.

3.4. Towards a Parametric Characterization.

Lemma 3.9. Let .# = {M;}o<;<q denote the dimension filtration of M.

Then .,
LA(M/)_CM> < ZLA('%Z'/OCIP .- 7xi)%i)
i=0
for any distinguished system of parameters x = x1,...,xq3,d = dimy M, of
M.

Proof. For 1 <i < d let us consider the following short exact sequences
0—M;_ HMiH%HO.

Tensor it by A/(x1,...,x4)A. Because of x;M;_; = 0,1 < i <d, it induces
an exact sequence

M1/ (xt,. . oxim)Miy — Mi/(xq,. . x) My — MG (x1,. ., X)) AM — 0.

Because x is a distinguished system of parameters of M the elements x1,...,x;
generate an ideal of definition of M;. That is, the A-modules

Mi/(xl,...,xi)Mi and //,-/(xl,...,xi)//i,i:O,...,d,
are A-modules of finite length. Therefore
La(M;/(x1,...,x)M;) < Ly(M;_1/(x1,...,xi—1)M;_1)+
+LA('%I'/<X17 v 7xl')f%i)

forall i =1,...,d. Because of M = M, a recurrence proves the desired
inequality. O
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Note that the inequality of 3.9 is also true for any system of parameters
X =Xxy,...,x; of M. Butin this case it might happen that the modules on the
right hand side are not of finite length. In this case the estimate is trivially
true.

Lemma 3.10. Let .# = {M;}o<i<q denote the dimension filtration of a
finitely generated A-module M with d = dimyM and t = depthy M. Let
X =Xx1,...,Xg be a distinguished system of parameters.

Suppose that M is a CMF module. Then the following conditions are satis-
fied:

) La(M/(x1,....xa)M) = SLo La( M) (x1, ... %) A).
b) M/(x1,...,x4—s)M is a t-dimensional Cohen-Macaulay module.

The converse is true, i.e. the conditions a) and b) imply that M is a CMF
module, provided depthy M > d — 1.

Another partial result is the following slight generalization of [G, Lemma
2.1] for a characterization of approximately Cohen-Macaulay modules.

Proposition 3.11. Let M denote a finitely generated A-module with d =
dimy M. Let r € N denote an integer. Suppose that there is an element x € m
satisfying the following two conditions:

a) M/x" M is a (d — 1)-dimensional Cohen-Macaulay module.

b) O x" =0 X
Then depthy M > d — 1 and M is an approximately Cohen-Macaulay module
withM;_; =07 x".

Proof. Put N := 0 37 x" = 0 13 x" 1. We first claim that depth, M /x"M >
d — 1. Suppose the contrary, i.e. depthy M /x"M =:t < d — 1. Then the short
exact sequence

0— M/(xM,N) —M/x "M - M/xM—0

implies that depth, M /(xM,N) = ¢t + 1. Because x is an M/N-regular ele-
ment it follows that

depthy M/N =t +2 and depthy, M/(x*M,N) =t +1 for all s > .
Therefore the short exact sequence
0—-N—-M/XM—-M/(x’M,N)— 0,

considered for s = r+ 1, provides that depthy N = ¢ + 2. Then the same
sequence considered for s = r yields that depth, M /x"M >t + 1, a contra-
diction.

Therefore M /x"M is a (d — 1)-dimensional Cohen-Macaulay module. Now
the first of the above short exact sequences proves that M/(xM,N) and
therefore also M /N is a Cohen-Macaulay module. Moreover the previous
exact sequence considered for s = r provides that N is a Cohen-Macaulay
module of dimension d — 1. By 1.2 this finishes the proof. O
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Note. Recently Nguyen Tu Cuong (cf. [C]) has found a characterization of
CMF modules in terms of multiplicities of a certain system of parameters.

4. A COHOMOLOGICAL CHARACTERIZATION

4.1. A Preliminary Result. Now we start the cohomological investigation
of CMF modules. To this end at first we need a description of the local
cohomology modules of a CMF module.

Lemma 4.1. Let M denote a CMF module with 4 = {M;}o<i<q its dimen-
sion filtration. Let i denote an integer with 0 < i < d. Then

Hyp(M) = Hyy (My) = Hy (A17).

In the case A possesses a dualizing complex it follows that K'(M) ~ K'(_#;)
Jorall0 <i<d.

Proof. First consider the short exact sequence 0 — M;_; — M; — .#; — O.
Because of dimM;_; < i— 1 itinduces an isomorphism H., (M;) ~ Hi, (.4;).
Second for j < i it yields isomorphisms Hg (M;) ~ Hj,(M;_1 ). Note that .#;
is either zero or an i-dimensional CM module. By induction it follows that

H. (M) ~H. (M) ~H. (My_)~...~H. (M) ~H. (M),

which proves the statement about the local cohomology modules. The rest
of the claim for K'(M) follows by similar arguments using the dualizing
complex. O

4.2. The criterion. Now we are prepared to prove the main result con-
cerning a characterization of CMF modules in terms of the modules of defi-
ciency K'(M),0 < i < d. Moreover there is an additional information about
the canonical module.

The equivalence of (i) and (ii) was announced by R. Stanley (cf. [S]). In
this form the result was proved in [S2]. Another proof of the equivalence of
(1) and (iii) by a different method was published by J. Herzog and E. Sbarra
(cf. [HS]).

Theorem 4.2. Let (A, m) denote a local ring possessing a dualizing com-
plex D). Let M be a finitely generated A-module with d = dimy M. Then the
following conditions are equivalent:

(1) M is a CMF A-module.
(ii) For all 0 < i < d the module of deficiency K'(M) is either zero or
an i-dimensional Cohen-Macaulay module.
(iii) Forall0 <i<d the A-modules K'(M) are either zero or i-dimensional
Cohen-Macaulay modules.

Proof. First suppose that M is a CMF module. Then the dimension filtration
A = {M;}o<i<q has the property that for all 0 <i < d the quotient module
M; = M;/M;_| is either zero or an i-dimensional Cohen-Macaulay module.
By view of 4.1 it follows that K*(M) ~ K'(.#;) for all 0 < i < d. Because
; is either zero or an i-dimensional Cohen-Macaulay module we have
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that K*(.#;) is either zero or the canonical module of the i-dimensional
Cohen-Macaulay module .#;. But then the canonical module of .#; is also
an i-dimensional Cohen-Macaulay module. So K‘(M) is either zero or an
i-dimensional Cohen-Macaulay module. This proves the implication (i) =
(ii) as well as (i) = (iii).

In order to prove (iii) = (i) consider the spectral sequence studied in the
proof of 2.2. By view of Theorem 2.4 it will be enough to prove that all the
quotients F?/FP+! ~ EE™P are cither zero or (—p)-dimensional Cohen-
Macaulay modules. We first claim that EX? ~ EJ""F for all —d < p <0.
To this end consider the subsequent stages of the spectral sequence

p—r—ptr—1 D,—D p+r—p—rtl
Ef — E5 P — EY .

The term on the left hand side is zero because it is a subquotient of the
modules K7 (K~ ~1(M)) = 0. Recall that dimy K771 (M) < —p +
r— 1, see 2.2. The right term is a subquotient of K=7~"(K~P~"+*1(M)). By
our assumption we have that K—7~"+! (M) is either zero or an (—p —r+ 1)-
dimensional Cohen-Macaulay module. But then the (—p — r)-th module of
deficiency K=" (K~P~"+1(M)) is zero. That is, the modules at the right
are always zero. But this implies that

FP/FPH ~ EDTP ~ K™P(K™P(M))

for all —d < p < 0. We finish the proof by showing that K~7(K~?(M)) is
either zero or a (—p)-dimensional Cohen-Macaulay module. By our as-
sumption K~ ?(M) is either zero or an (—p)-dimensional Cohen-Macaulay
module. Therefore K~7(K~7(M)) is either zero or — as the canonical mod-
ule of K~?(M) — also a (—p)-dimensional Cohen-Macaulay module. By
view of 3.3 this proves the claim of (i).

Finally we have to show that (ii) = (iii). That is, we have to show that the
canonical module K(M) = K4(M) is a Cohen-Macaulay module provided
for all 0 < i < d the module of deficiency K‘(M) is either zero or an i-

dimensional Cohen-Macaulay module. This will be part of another talk.
O

Looking at the second part of Theorem 4.2 there is another sufficient crite-
rion for the canonical module K (M) of M being a Cohen-Macaulay module.

5. FAITHFUL FLAT EXTENSIONS AND EXAMPLES

5.1. Nagata’s Example. Let (A, m) denote a local Noetherian ring. Let M
denote a finitely generated A-module.

Example 5.1. Let (A, m) denote the 2-dimensional local domain considered
by M. Nagata in [N, Example 2]. Clearly it is not a Cohen-Macaulay ring.
For the multiplicity e(m,A) it is shown that e(m,A) = 1. Therefore it implies
that

1 =e(m,A) = e(M,A) = e(M,A/uy(0)).
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By the view of [N, (40.6)] it yields that A/u;(0) is a regular local ring,
in particular a 2-dimensional Cohen-Macaulay ring. Moreover, depthA =
depthA = 1 the ideal u 1(0) is — considered as an A-module - a 1-dimensional
Cohen-Macaulay module. But this means that A is a CMF ring or equiv-
alently an approximately Cohen-Macaulay ring. But this is not true for A.
Otherwise A would be a Cohen-Macaulay ring since it is a domain.

5.2. Passing to the Completion. Before we shall formulate our next result
let us recall the definition of a Cohen-Macaulay filtration, 3.2.

Now let (A,m) — (B, n) be a faithful flat homomorphism of local rings. Let

M be a finitely generated A-module with d = dimy M. Let € = {C;}o<i<a
denote an increasing filtration of M such that M = C,;. Let 6 = {(Cg); }o<i<n
denote the induced filtration defined by (Cg); = C;1, @4 B, where t =dimB/mB
denotes the dimension of the fibre ring.

Theorem 5.2. Let (A, m) — (B,n) be a faithful flat homomorphism of local
rings. Let M be a finitely generated A-module with d = dimy M. Then the
following conditions are equivalent:

(i) The filtration € is a Cohen-Macaulay filtration of M and the fibre
ring B/mB is a Cohen-Macaulay ring.

(ii) The induced filtration €3 is a Cohen-Macaulay filtration of the B-
module M @4 B.

Proof. Let X denote an arbitrary finitely generated A-module. By virtue of
[M, Theorem 15.1] and [M, Theorem 23.3] it follows that

dimp X @4 B = dimy X + dim B/mB and
depthy X ®4 B = depth X + depth B/mB.

First of all this proves that dimgX ®4 B=d +1t,i.e. (Cp)g1: = M @4 B.
Now suppose that condition (i) is satisfied. Then the above equalities show
that each of the B-modules

(CB)i/(CB)i—1 = (Ci—+/Ci—1—) ®aB

are either zero or i-dimensional Cohen-Macaulay modules. The converse
follows the same line of reasoning. Hence we omit it. O

Note. The previous result 5.2 does not apply to the example considered in
5.1. In the example there does not exist a Cohen-Macaulay filtration in A,
while there is one in A. The Cohen-Macaulay filtration in A does not occur
as the extension of a Cohen-Macaulay filtration of A.

5.3. Examples.

Example 5.3. a) Let M be a Cohen-Macaulay module. Then M is also a
CMF module.

b) Let (A, m) be a local ring with d = dimA. Let N;,i =0,...,d, be a fam-
ily of A-modules such that either N; = O or V; is an i-dimensional Cohen-
Macaulay module. Then M = @fl:oNi is a CMF module over A. This follows
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easily by 3.3 since M admits a filtration M; = @i'zoN ; such that M; /M| ~
N;,i=0,...,d, is either zero or an i-dimensional Cohen-Macaulay module.
¢) Let (A, m) denote a local ring. Let M be a finitely generated A-module.
Then consider A X M, the idealization of M over A. That is, the additive
group of A X M coincides with the direct sum of the abelian groups A and
M. The multiplication is given by

(a,m) - (b,n) := (ab,an+ bm).

Then A x M is a d-dimensional local ring, see [N, (1.1)] or [BH, 3.3.22] for
these and related facts.

Now suppose that (A, m) is a d-dimensional Cohen-Macaulay ring. Let M
be a CMF module with dimM =t < d. Then A X M is a d-dimensional CMF
ring. To this end let .# = {M;}o<;<; denote the dimension filtration of M.
Now put

AxM for i=d,
Ri={ OxM for i=t+1,...,d—1, and
OxM; for i=0,...,t.

Then {R;}o<i<q is a filtration of R = A x M such that R; = A x M and
R;/R;_ is either zero or an i-dimensional Cohen-Macaulay module. Note
that
A for i=d,
R;/R;_| ~ 0 for i=¢t+1,...,d—1, and
Mi/Mi—l for i=1,...,t.

By view of 3.3 this proves the claim.

d) Let A[[x]] denote the formal power series ring in one variable x over the
local ring (A, m). Then a finitely A-module M is a CMF module if and only
if M[[x]] is a CMF module over the ring A[[x]].

e) Let M be a finitely generated A-module such that H (M),i # dima M,
is a finitely generated A-module. Then M is a CMF module if and only if
H (M) =0forall 0 <i< dimy M. In particular, under these circumstances
M is a Cohen-Macaulay module if and only if M is a CMF module with
depth, M > 0.

f) Every 1-dimensional A-module M is a CMF module. Therefore for any
d-dimensional Cohen-Macaulay ring with d > 2 and a l-dimensional A-
module M the idealization A X M is a d-dimensional CMF ring.

Question. It would be of some interest to understand the descend of the
CMF property from M ®4 A to M. What are sufficient condition on A? The
Example 5.1 does not has Cohen-Macaulay formal fibres. Is it enough to

suppose that the homomorphism A — A has Cohen-Macaulay formal fibres
?
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