

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR1563/6

School on Commutative Algebra and Interactions with Algebraic Geometry and Combinatorics

(24 May - 11 June 2004)

Applications of the dimension filtration

P. Schenzel

Martin-Luther-Universität Institut für Informatik D-06120 Halle Germany

These are preliminary lecture notes, intended only for distribution to participants

APPLICATIONS OF THE DIMENSION FILTRATION

PETER SCHENZEL

ABSTRACT. For a finitely generated A-module M we define the dimension filtration $\mathcal{M} = \{M_i\}_{0 \le i \le d}, d = \dim_A M$, where M_i denotes the largest submodule of M of dimension $\le i$. Several properties of this filtration are investigated. In particular, in case the local ring (A, \mathfrak{m}) possesses a dualizing complex, then this filtration occurs as the filtration of a spectral sequence related to duality. Furthermore, we call an A-module M a Cohen-Macaulay filtered provided all of the quotient modules M_i/M_{i-1} are either zero or *i*-dimensional Cohen-Macaulay modules. We describe a few basic properties of these kind of generalized Cohen-Macaulay modules. In the case A possesses a dualizing complex it turns out – as one of the main results – that M is a Cohen-Macaulay filtered A-module if and only if for all $0 \le i < d$ the module of deficiency $K^i(M)$ is either zero or an *i*-dimensional Cohen-Macaulay module. Furthermore basic properties of Cohen-Macaulay module furthermore basic properties of cohen-Macaulay module. Furthermore basic properties of Lohen-Macaulay module. Furthermore basic properties of Cohen-Macaulay filtered modules with respect to localizations, completion, passing to a non-zero divisor, flat extensions are investigated.

CONTENTS

1. The Dimension Filtration	4
1.1. The definitions	4
1.2. A Permanence Property	5
1.3. Distinguished System of Parameters	6
2. A Supplement to Duality	7
2.1. Dualizing complexes	7
2.2. Dimension filtration and Duality	8
3. Cohen-Macaulay filtered Modules	9
3.1. The Definitions	9
3.2. Approximately Cohen-Macaulay Modules	9
3.3. Properties of CMF	10
3.4. Towards a Parametric Characterization	11
4. A Cohomological Characterization	13
4.1. A Preliminary Result	13
4.2. The criterion	13
5. Faithful Flat Extensions and Examples	14
5.1. Nagata's Example	14
5.2. Passing to the Completion	15
5.3. Examples	15
References	16

1. THE DIMENSION FILTRATION

1.1. The definitions. Let (A, \mathfrak{m}) denote a local Noetherian ring. Let M be a finitely generated A-module and $d = \dim_A M$. For an integer $0 \le i < d$ let M_i denote the largest submodule of M such that $\dim_A M_i \le i$. Because of the maximal condition of a Noetherian A-module the submodules M_i of M are well-defined. Moreover it follows that $M_{i-1} \subseteq M_i$ for all $1 \le i \le d$.

Definition 1.1. The increasing filtration $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ of submodules of M is called the dimension filtration of M. Put $\mathcal{M}_i = M_i/M_{i-1}$ for all $1 \le i \le d$.

Primary decomposition. Note that $M_0 = H^0_{\mathfrak{m}}(M)$, where $H^0_{\mathfrak{m}}(\cdot)$ denotes the section functor with support in $\{\mathfrak{m}\}$.

Let $0 = \bigcap_{j=1}^{n} N_j$ denote a reduced primary decomposition of 0 in M. That is, $0 \neq \bigcap_{j=1, j \neq k}^{n} N_j$ for all k = 1, ..., n, and N_j is a \mathfrak{p}_j -coprimary submodule of M such that the prime ideals \mathfrak{p}_j are pairwise different and $\operatorname{Ass}_A M = {\mathfrak{p}_1, ..., \mathfrak{p}_n}$. Hence $M_0 = \bigcap_{\dim A/\mathfrak{p}_j > 0} N_j$.

Both of these representations of M_0 will be generalized to $M_i, 0 \le i \le d$, in the following.

Annihilation ideals. Let

$$\mathfrak{a}_i = \prod_{\mathfrak{p} \in \mathrm{Ass}M, \dim A/\mathfrak{p} \leq i} \mathfrak{p}.$$

In the case that $\{\mathfrak{p} \in \operatorname{Ass} M \mid \dim A/\mathfrak{p} \leq i\} = \emptyset$ put $\mathfrak{a}_i = A$.

Proposition 1.2. Let M be a finitely generated A-module. Then

$$M_i = H^0_{\mathfrak{a}_i}(M) = \bigcap_{\dim A/\mathfrak{p}_j > i} N_j$$

for all $0 \le i \le d$. Here $0 = \bigcap_{j=1}^{n} N_j$ denotes a reduced primary decomposition of 0 in M.

Proof. The equality of the last two modules in the statement follows by easy arguments about the primary decomposition of the zero submodule 0 of M. Now let us prove that $M_i = H^0_{\mathfrak{a}_i}(M)$ for all $0 \le i \le d$. Clearly we have $\operatorname{Supp} H^0_{\mathfrak{a}_i}(M) = \operatorname{Supp} M \cap V(\mathfrak{a}_i)$. Therefore it follows that $M_i \subseteq H^0_{\mathfrak{a}_i}(M)$ because any element of M_i is annihilated by an ideal of dimension $\le i$. By the maximality of M_i this proves the equality.

The previous result provides a stratification of the associated prime ideals of M in terms of those of M_i and \mathcal{M}_i respectively.

Corollary 1.3. Let $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ denote the dimension filtration of M. *Then*

a)
$$\operatorname{Ass}_A M_i = \{ \mathfrak{p} \in \operatorname{Ass} M \mid \dim A/\mathfrak{p} \le i \},\$$

b) $\operatorname{Ass}_A M/M_i = \{ \mathfrak{p} \in \operatorname{Ass} M \mid \dim A/\mathfrak{p} > i \},\$ and
c) $\operatorname{Ass}_A \mathscr{M}_i = \{ \mathfrak{p} \in \operatorname{Ass} M \mid \dim A/\mathfrak{p} = i \}\$
for all $0 \le i \le d$.

Proof. The two first equalities are obviously true by view of 1.2. Note that

$$\operatorname{Ass}_A H^0_{\mathfrak{a}_i}(M) = \{ \mathfrak{p} \in \operatorname{Ass}_A M \mid \mathfrak{p} \in V(\mathfrak{a}_i) \}.$$

The third equality is a consequence of the embedding $\mathcal{M}_i \subseteq M/M_{i-1}$ and the short exact sequence

$$0 \to M_{i-1} \to M_i \to \mathscr{M}_i \to 0.$$

Here we use the containment relation

$$\operatorname{Ass}_A M_i \subseteq \operatorname{Ass}_A M_{i-1} \cup \operatorname{Ass}_A \mathscr{M}_i$$

for the associated prime ideals of the corresponding modules.

Remark. In a certain sense the quotients $\mathcal{M}_i, 0 \le i \le d$, of the dimension filtration $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ of M are a measure for the unmixedness of M. Note that the *A*-module M is unmixed if

 $\dim A/\mathfrak{p} = \dim_A M$ for all $\mathfrak{p} \in \operatorname{Ass}_A M$.

In this case $\mathcal{M}_i = 0$ for all $i < \dim_A M = d$ and $M_d = M$. So the filtration is discrete in the case M is unmixed.

More general let $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ be the dimension filtration of M. Then $M_i = 0$ for all $i < \text{depth}_A M$. This follows by 1.3 and the fact

 $\operatorname{depth}_A M \leq \operatorname{dim} A/\mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}_A M$,

see [M, Theorem 17.2] for this inequality.

1.2. A Permanence Property.

Proposition 1.4. Let $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ be the dimension filtration of a finitely generated A-module M. Suppose that $\operatorname{Supp}_A M$ is a catenary subset of Spec A. Let $\mathfrak{p} \in \operatorname{Supp} M$ denote a prime ideal. Define

$$M'_i = M_{i+\dim A/\mathfrak{p}} \otimes_A A_\mathfrak{p}$$
 for all $0 \le i \le \dim_{A_\mathfrak{p}} M_\mathfrak{p} = t$.

Then $\mathcal{M}' = \{M'_i\}_{0 \le i \le t}$ is the dimension filtration of the A_p -module M_p .

Proof. First we mention that there is the bound

 $\dim_A M'_i \le (i + \dim A/\mathfrak{p}) - \dim A/\mathfrak{p} = i$

for all $i \in \mathbb{Z}$. Next we recall the following statement about associated prime ideals

$$\operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}} = \{ \mathfrak{q} A_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Ass}_{A} M, \mathfrak{q} \subseteq \mathfrak{p} \},$$

see [M, Theorem 6.2]. Now let $0 = \bigcap_{j=1}^{n} N_j$ be a reduced primary decomposition of 0 in M, where N_j is \mathfrak{q}_j -coprimary. Suppose that $\mathfrak{q}_j \subseteq \mathfrak{p}$ for all $j = 1, \ldots, m$ and $\mathfrak{q}_j \not\subseteq \mathfrak{p}$ for all $j = m+1, \ldots, n$. Then $0 = \bigcap_{j=1}^{m} (N_j \otimes_A A_\mathfrak{p})$ is a reduced primary decomposition of 0 in $M_\mathfrak{p}$ as an $A_\mathfrak{p}$ -module. Therefore, by view of 1.2, it yields that

$$(M_{\mathfrak{p}})_i = \cap_{\dim A_{\mathfrak{p}}/\mathfrak{q}_j A_{\mathfrak{p}} > i} (N_j \otimes_A A_{\mathfrak{p}}).$$

Moreover by the localization of $M_{i+\dim A/\mathfrak{p}}$ we get the following equality

$$M'_i = \cap_{\dim A/\mathfrak{q}_j > i + \dim A/\mathfrak{p}} (N_j \otimes_A A_\mathfrak{p})$$

Because $\operatorname{Supp}_A M$ is supposed to be a catenary subset of $\operatorname{Spec} A$ we get that

 $\dim A/\mathfrak{q}_i = \dim A/\mathfrak{p} + \dim A_\mathfrak{p}/\mathfrak{q}_i A_\mathfrak{p}.$

First this proves that $d = t + \dim A/\mathfrak{p}$. Because of the above statement about the associated prime ideals it shows finally that $M'_i = (M_\mathfrak{p})_i$ for all $0 \le i \le t$, as required.

In the following we consider a variation of the notion of a system of parameters of an A-module M.

1.3. Distinguished System of Parameters.

Definition 1.5. Let $\underline{x} = x_1, \dots, x_d, d = \dim_A M$, denote a system of parameters of M. Then $\underline{x} = x_1, \dots, x_d$ is called a distinguished system of parameters of M provided $(x_{i+1}, \dots, x_d)M_i = 0$ for all $i = 0, \dots, d-1$.

In the next result let us prove the existence of distinguished systems of parameters of an A-module M.

Lemma 1.6. Any finitely generated A-module M admits a distinguished system of parameters.

Proof. First we show the existence of a parameter x_d of M such that $x_dM_i = 0$ for all i = 0, ..., d - 1. To this end note that $\dim_A M_i \le i < d$ for all i = 0, ..., d - 1. Put $\mathfrak{b} = \prod_{i=0}^{d-1} \operatorname{Ann}_A M_i$. Then $\mathfrak{b} \not\subseteq \mathfrak{p}$ for any associated prime ideal $\mathfrak{p} \in \operatorname{Ass}_A M$ with $\dim A/\mathfrak{p} = d$. Therefore there is an element $x_d \in \mathfrak{b}$ and $x_d \notin \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}_A M$ with $\dim A/\mathfrak{p} = d$. Whence x_d is a parameter with the desired property. Now pass to the factor module M/x_dM and choose a parameter x_{d-1} of M/x_dM such that $x_{d-1}M_i = 0$ for all i = 0, ..., d-2. Then an induction finishes the proof of the claim. \Box

It turns out that whenever $\underline{x} = x_1, \dots, x_d$ is a distinguished system of parameters of M, the elements x_1, \dots, x_i generate an ideal of definition of \mathcal{M}_i . This follows since $M_i / \underline{x} M_i$ is an A-module of finite length. Therefore, whenever $\mathcal{M}_i \neq 0$, then x_1, \dots, x_i is a system of parameters of \mathcal{M}_i .

Lemma 1.7. A system of parameters $\underline{x} = x_1, \ldots, x_d$ of M is a distinguished system of parameters if and only if $M_i = 0$:_M (x_{i+1}, \ldots, x_d) for $i = 0, \ldots, d - 1$.

Proof. Let $\underline{x} = x_1, \dots, x_d$ denote a system of parameters of M such that

 $M_i = 0 :_M (x_{i+1}, \dots, x_d)$ for all $i = 0, \dots, d-1$.

Then $(x_{i+1}, \ldots, x_d)M_i = 0$, i.e. <u>x</u> is a distinguished system of parameters. Conversely let <u>x</u> be a distinguished system of parameters. Then

 $M_i \subseteq 0 :_M (x_{i+1}, ..., x_d)$ for all i = 0, ..., d-1

as follows by the definition. Moreover there is the following expression for the associated prime ideals

 $\operatorname{Ass}_{A}(0:_{M}(x_{i+1},\ldots,x_{d})) = \{\mathfrak{p} \in \operatorname{Ass}_{A}M \mid \mathfrak{p} \in V(x_{i+1},\ldots,x_{d})\}.$

Let p denote an associated prime ideal of $0:_M(x_{i+1},\ldots,x_d)$. Then we obtain

$$\mathfrak{p} \in \operatorname{Supp}_A M/(x_{i+1},\ldots,x_d)M$$
 and $\dim A/\mathfrak{p} \leq d-(d-i)=i$.

That is, dim_A($0:_M (x_{i+1},...,x_d)$) $\leq i$. Because of the maximality of M_i the equality $M_i = 0:_M (x_{i+1},...,x_d)$ follows now.

2. A SUPPLEMENT TO DUALITY

2.1. **Dualizing complexes.** Let (A, \mathfrak{m}) denote a local ring possessing a dualizing complex D_A^{\cdot} . Refer to [H, Chapter V, §2] or to [S3, 1.2] for basic results about dualizing complexes. Note that the natural homomorphism of complexes

$$M \to \operatorname{Hom}_A(\operatorname{Hom}_A(M, D_A^{\cdot}), D_A^{\cdot})$$

induces an isomorphism in cohomlogy for any finitely generated A-module M.

Moreover there is an integer $l \in \mathbb{Z}$ such that

$$\operatorname{Hom}_{A}(k, D_{A}^{\cdot}) \simeq k[l],$$

where $k = A/\mathfrak{m}$ denotes the residue field of A. Without loss of generality assume that l = 0. Then the dualizing complex D_A^{\cdot} has the property

$$D_A^{-i} \simeq \oplus_{\mathfrak{p} \in \operatorname{Spec} A, \dim A/\mathfrak{p} = i} E_A(A/\mathfrak{p})$$

where $E_A(A/\mathfrak{p})$ denotes the injective hull of A/\mathfrak{p} as A-module. Therefore $D_A^i = 0$ for $i < -\dim A$ and i > 0.

Definition 2.1. Let *M* denote a finitely generated *A*-module and $d = \dim_A M$. For an integer $i \in \mathbb{Z}$ define

$$K^{i}(M) := H^{-i}(\operatorname{Hom}_{A}(M, D_{A}^{\cdot})).$$

The module $K(M) := K^d(M)$ is called the canonical module of M. For $i \neq d$ the modules $K^i(M)$ are called the modules of deficiency of M. Note that $K^i(M) = 0$ for all i < 0 or i > d.

By the local duality theorem

$$H^i_{\mathfrak{m}}(M)\simeq \operatorname{Hom}_A(K^i(M),E), i\in\mathbb{Z},$$

where $E = E_A(A/\mathfrak{m})$. Whence the modules of deficiencies of M measure the deviation of M from being a Cohen-Macaulay module. The canonical module K(M) of M is a Cohen-Macaulay module provided M is a Cohen-Macaulay module.

For a finitely generated A-module M and an integer $i \in \mathbb{N}$ let

$$(\operatorname{Ass}_A M)_i = \{ \mathfrak{p} \in \operatorname{Ass}_A M \mid \dim A/\mathfrak{p} = i \}.$$

For the proof of the next result see [S1, 3.1] and [S3, Lemma 1.9].

Proposition 2.2. Let *M* denote a *d*-dimensional *A*-module. Then the following results are true:

a) dim_A $K^i(M) \leq i$ for all $0 \leq i < d$ and dim_A K(M) = d.

7

- b) $\operatorname{Ass}_A K(M) = (\operatorname{Ass}_A M)_d$.
- c) $(\operatorname{Ass}_A K^i(M))_i = (\operatorname{Ass}_A M)_i$ for all $0 \le i < d$.
- d) Let M be a Cohen-Macaulay module. Then K(M) is also a Cohen-Macaulay module.

The induced homomorphisms of the cohomology of the natural map

$$M \to \operatorname{Hom}_A(\operatorname{Hom}_A(M, D_A^{\cdot}), D_A^{\cdot})$$

are isomorphisms whenever M is a finitely generated R-module.

2.2. Dimension filtration and Duality.

Lemma 2.3. Let M denote a finitely generated A-module. Let $\mathfrak{p} \in \operatorname{Supp}_A M$ be a prime ideal with $t = \dim A/\mathfrak{p}$. Then there are the following isomorphisms

$$K^{i}(K^{j}(M))\otimes_{A}A_{\mathfrak{p}}\simeq K^{i-t}(K^{j-t}(M\otimes_{A}A_{\mathfrak{p}}))$$

for any pair $(i, j) \in \mathbb{Z}^2$.

Proof. First note that there is an isomorphism of dualizing complexes

$$D_A^{\cdot} \otimes_A A_{\mathfrak{p}} \simeq D_{A_{\mathfrak{p}}}^{\cdot}[t],$$

see e.g. [H, Chapter V, Proposition 7.1]. Now by the definition of the K^i 's write

$$K^{i}(K^{j}(M)) \simeq H^{-i}(\operatorname{Hom}_{A}(H^{-j}(\operatorname{Hom}_{A}(M, D^{\cdot}_{A})), D^{\cdot}_{A}))$$

The localization functor $\cdot \otimes_A A_p$ is exact, i.e. it commutes with cohomology. Moreover let X denote a bounded complex of A-modules whose cohomology modules are finitely generated A-modules. Then there is the following isomorphism of complexes

$$\operatorname{Hom}_{A}(X, D_{A}^{\cdot}) \otimes_{A} A_{\mathfrak{p}} \simeq \operatorname{Hom}_{A_{\mathfrak{p}}}(X \otimes_{A} A_{\mathfrak{p}}, D_{A_{\mathfrak{p}}}^{\cdot})[t],$$

see [H, Chapter II]. Putting together all of these ingredients the statement of the proposition follows now. \Box

In order to compute the homology of $\operatorname{Hom}_A(\operatorname{Hom}_A(M, D_A^{\cdot}), D_A^{\cdot})$ there is the following spectral sequence

$$E_1^{pq} = H^q(\operatorname{Hom}_A(\operatorname{Hom}_A(M, D_A^{\cdot}), D_A^{p})),$$

see [E, Appendix 3, Part II] or [W, Section 5].

Because D_A^p is an injective A-module the corresponding E_2 -term has the following form

$$E_2^{pq} = H^p(\operatorname{Hom}_A(H^{-q}(\operatorname{Hom}_A(M, D_A^{\cdot})), D_A^{\cdot})).$$

With regard to our previous notation it follows that $E_2^{pq} = K^{-p}(K^q(M))$.

Fact. Let *M* denote a finitely generated *A*-module with $d = \dim_A M$. Let us return to the above spectral sequence. Consider the stage p + q = 0, the only place in which non-zero cohomology occurs. Then the limit terms $E_{\infty}^{p,-p}$, $-d \le p \le 0$, are the quotients of a filtration

$$F^0 \subseteq F^{-1} \subseteq \ldots \subseteq F^{-d+1} \subseteq F^{-d} = M$$

of *M*. That is we have $F^p/F^{p+1} \simeq E_{\infty}^{p,-p}$ for all $-d \le p \le 0$.

Question. What is the relation of the filtration $\mathscr{F} = \{F^{-i}\}_{0 \le i \le d}$ to the dimension filtration of *M*?

Theorem 2.4. Let $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ be the dimension filtration of M. Then it follows $M_i = F^{-i}$ for all $0 \le i \le d$.

It is worth to remark that in general the limit terms $E_{\infty}^{p,-p}$ of the spectral sequence considered above do not agree with $E_2^{p,-p} \simeq K^{-p}(K^{-p}(M))$. It would be interesting to find an explicit description of these modules.

3. COHEN-MACAULAY FILTERED MODULES

3.1. The Definitions. Let (A, \mathfrak{m}) be local Noetherian ring. Let M denote a finitely generated A-module. Let $\mathscr{M} = \{M_i\}_{0 \le i \le d}$ denote the dimension filtration.

Definition 3.1. A finitely generated *A*-module *M* is called a Cohen-Macaulay filtered module (cf. [S2]) (or sequentially Cohen-Macaulay module), whenever $\mathcal{M}_i = M_i/M_{i-1}$ is either zero or an *i*-dimensional Cohen-Macaulay module for all $0 \le i \le \dim_A M$.

Note that any Cohen-Macaulay module is a Cohen-Macaulay filtered module. This follows because under this assumption $M_i = 0$ for all $i < \dim_A M$. Conversely an unmixed Cohen-Macaulay filtered module is a Cohen-Macaulay module. Let M be an A-module such that depth_A M = 0 and $M/H_m^0(M)$ is a Cohen-Maculay module. Then M is a Cohen-Macaulay filtered module.

Definition 3.2. Let *M* denote a finitely generated *A*-module with $d = \dim_A M$. An increasing filtration $\mathscr{C} = \{C_i\}_{0 \le i \le d}$ of *M* is called a Cohen-Macaulay filtration whenever $M = C_d, d = \dim_A M$, and $\mathscr{C}_i = C_i/C_{i-1}$ is either zero or an *i*-dimensional Cohen-Macaulay module for all $1 \le i \le d$.

Proposition 3.3. Let $\mathscr{C} = \{C_i\}_{0 \le i \le d}$ be Cohen-Macaulay filtration of M. Then \mathscr{C} coincides with the dimension filtration.

3.2. Approximately Cohen-Macaulay Modules. Let $0 = \bigcap_{j=1}^{n} N_j$ denote a reduced primary decomposition. Put $u_M(0) = \bigcap_{\dim A/\mathfrak{p}_i = d} N_j$.

Definition 3.4. A finitely generated A-module $M, d = \dim_A M$, is called an approximately Cohen-Macaulay module whenever $M/u_M(0)$ is a Cohen-Macaulay module and depth_A $M \ge d - 1$.

This is the extension of the notion of an approximately Cohen-Macaulay ring introduced by S. Gôto, see [G]. Note that a Cohen-Macaulay module is always an approximately Cohen-Macaulay module. Next let us describe the relation of this notion to that of CMF modules.

Proposition 3.5. Let M be a finitely generated A-module. Then M is approximately Cohen-Macaulay if and only if M is a Cohen-Macaulay filtered module and depth_A $M \ge \dim_A M - 1$.

9

Proof. First let M be an approximately Cohen-Macaulay module. Put $d = \dim_A M$. By [M, Theorem 17.2] it follows that

 $d-1 \leq \operatorname{depth}_A M \leq \operatorname{dim} A/\mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}_A M$.

Therefore $M_i = 0$ for i = 0, ..., d - 2 and $M_{d-1} = u_M(0)$, see 1.2. Now consider the short exact sequence

$$0 \to M_{d-1} \to M \to M/M_{d-1} \to 0.$$

Because *M* is approximately Cohen-Macaulay it follows that M/M_{d-1} is a *d*-dimensional Cohen-Macaulay module and depth_A $M \ge d - 1$. So the short exact sequence implies depth_A $M_{d-1} \ge d - 1$. Because of dim_A $M_{d-1} \le d - 1$ it turns out that M_{d-1} is either zero or a (d - 1)-dimensional Cohen-Macaulay module.

The reverse statement follows the same line of reasoning. Hence we omit the details. $\hfill \Box$

3.3. **Properties of CMF.** Now there are a few results on permanence properties of Cohen-Macaulay filtered modules. To this end \hat{A} denotes the madic completion of A.

Proposition 3.6. Let *M* denote a Cohen-Macaulay filtered A-module. Then the following conditions are satisfied:

- a) $\operatorname{Supp}_A M$ is a catenary subset of $\operatorname{Spec} A$.
- b) Let $\mathfrak{p} \in \operatorname{Supp}_A M$. Then

 $\dim A/\mathfrak{p} = \dim \hat{A}/\mathfrak{q} \text{ for all } \mathfrak{q} \in \operatorname{Ass}_{\hat{A}} \hat{A}/\mathfrak{p} \hat{A},$

i.e. A/\mathfrak{p} *is formally unmixed for all* $\mathfrak{p} \in \operatorname{Supp}_A M$.

Proof. Because M/M_{d-1} is a Cohen-Macaulay module and

$$\operatorname{Supp}_A M = \operatorname{Supp}_A M / M_{d-1}$$

both of the statements follow. For the first statement see [M, $\S17$]. The second is a consequence of [N, (34.9)].

A Cohen-Macaulay filtered ring A possesses a small Cohen-Macaulay module. That is a Cohen-Macaulay module X such that depth $X = \dim A$. This follows since A/A_{d-1} , $d = \dim A$, is a d-dimensional Cohen-Macaulay module. Consequently for a CMF ring A all the homological conjectures are true.

Lemma 3.7. Let M denote a finitely generated A-module. Let $x \in \mathfrak{m}$ be an M-regular element. Then M/xM is a CMF module provided M is a CMF module.

Proof. First note that whenever $x \in \mathfrak{m}$ is an *M*-regular element, then $M_0 = 0$ and *x* is also M/M_i -regular as well as \mathcal{M}_i -regular for all $i \geq 1$. Here $\mathcal{M} = \{M_i\}_{0 \leq i \leq d}$ denotes the dimension filtration and $\mathcal{M}_i = M_i/M_{i-1}$. In particular it follows that $M_i \cap xM = xM_i$ for all $1 \leq i \leq d$.

Now suppose that *M* is a CMF module. Let $i \ge 1$. Then

 $\mathcal{M}_i/x\mathcal{M}_i \simeq ((M_i, xM)/xM)/(M_{i-1}, xM)/xM)$

is a (i-1)-dimensional Cohen-Macaulay module or zero. Therefore by 3.3 it follows that M/xM is a (d-1)-dimensional Cohen-Macaulay filtered module since $\{(M_{i+1}, xM/xM)\}_{0 \le i < d}$ is a Cohen-Macaulay filtration. \Box

The converse is not true as mentioned by N. T. Cuong. To this end consider a 2-dimensional local domain (A, \mathfrak{m}) that is not a Cohen-Macaulay ring. So it is not CMF. On the other side $A/xA, x \neq 0$, is as a 1-dimensional ring always a CMF.

In the final part of this section consider the behavior of the CMF property by passing to the completion.

Theorem 3.8. Let M be a finitely generated A-module. Let M be a CMF A-module. Then $M \otimes_A \hat{A}$ is a CMF \hat{A} -module.

Proof. Let $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ denote the Cohen-Macaulay filtration of the CMF *A*-module *M*. Then $\{M_i \otimes_A \hat{A}\}_{0 \le i \le d}$ is clearly a Cohen-Macaulay filtration of the \hat{A} -module $M \otimes_A \hat{A}$. So by 3.3 $M \otimes_A \hat{A}$ is a CMF module over \hat{A} .

The converse of the above statement is not true in general, see Example 5.1.

3.4. Towards a Parametric Characterization.

Lemma 3.9. Let $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ denote the dimension filtration of M. Then

$$L_A(M/\underline{x}M) \leq \sum_{i=0}^d L_A(\mathcal{M}_i/(x_1,\ldots,x_i)\mathcal{M}_i)$$

for any distinguished system of parameters $\underline{x} = x_1, \dots, x_d, d = \dim_A M$, of M.

Proof. For $1 \le i \le d$ let us consider the following short exact sequences

$$0 \to M_{i-1} \to M_i \to \mathscr{M}_i \to 0.$$

Tensor it by $A/(x_1,...,x_d)A$. Because of $x_iM_{i-1} = 0, 1 \le i \le d$, it induces an exact sequence

$$M_{i-1}/(x_1,\ldots,x_{i-1})M_{i-1} \rightarrow M_i/(x_1,\ldots,x_i)M_i \rightarrow \mathcal{M}_i/(x_1,\ldots,x_i)\mathcal{M}_i \rightarrow 0.$$

Because <u>x</u> is a distinguished system of parameters of M the elements x_1, \ldots, x_i generate an ideal of definition of M_i . That is, the A-modules

$$M_i/(x_1,\ldots,x_i)M_i$$
 and $\mathcal{M}_i/(x_1,\ldots,x_i)\mathcal{M}_i, i=0,\ldots,d$,

are A-modules of finite length. Therefore

$$L_A(M_i/(x_1,...,x_i)M_i) \le L_A(M_{i-1}/(x_1,...,x_{i-1})M_{i-1}) + L_A(\mathcal{M}_i/(x_1,...,x_i)\mathcal{M}_i)$$

for all i = 1, ..., d. Because of $M = M_d$ a recurrence proves the desired inequality.

Note that the inequality of 3.9 is also true for any system of parameters $\underline{x} = x_1, \ldots, x_d$ of M. But in this case it might happen that the modules on the right hand side are not of finite length. In this case the estimate is trivially true.

Lemma 3.10. Let $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ denote the dimension filtration of a finitely generated A-module M with $d = \dim_A M$ and $t = \operatorname{depth}_A M$. Let $\underline{x} = x_1, \ldots, x_d$ be a distinguished system of parameters.

Suppose that M is a CMF module. Then the following conditions are satisfied:

- a) $L_A(M/(x_1,...,x_d)M) = \sum_{i=0}^d L_A(\mathcal{M}_i/(x_1,...,x_i)\mathcal{M}_i).$
- b) $M/(x_1,...,x_{d-t})M$ is a t-dimensional Cohen-Macaulay module.

The converse is true, i.e. the conditions a) and b) imply that M is a CMF module, provided depth_A $M \ge d - 1$.

Another partial result is the following slight generalization of [G, Lemma 2.1] for a characterization of approximately Cohen-Macaulay modules.

Proposition 3.11. Let M denote a finitely generated A-module with $d = \dim_A M$. Let $r \in \mathbb{N}$ denote an integer. Suppose that there is an element $x \in \mathfrak{m}$ satisfying the following two conditions:

- a) $M/x^{r+1}M$ is a (d-1)-dimensional Cohen-Macaulay module.
- b) $0:_M x^r = 0:_M x^{r+1}$.

Then depth_A $M \ge d-1$ and M is an approximately Cohen-Macaulay module with $M_{d-1} = 0$:_M x^r .

Proof. Put N := 0:_M $x^r = 0$:_M x^{r+1} . We first claim that depth_A $M/x^rM \ge d-1$. Suppose the contrary, i.e. depth_A $M/x^rM =: t < d-1$. Then the short exact sequence

$$0 \to M/(xM,N) \to M/x^{r+1}M \to M/x^rM \to 0$$

implies that depth_AM/(xM,N) = t + 1. Because x is an M/N-regular element it follows that

depth_A M/N = t + 2 and depth_A $M/(x^s M, N) = t + 1$ for all $s \ge 1$.

Therefore the short exact sequence

$$0 \to N \to M/x^{s}M \to M/(x^{s}M,N) \to 0,$$

considered for s = r + 1, provides that depth_AN = t + 2. Then the same sequence considered for s = r yields that depth_A $M/x^rM \ge t + 1$, a contradiction.

Therefore $M/x^r M$ is a (d-1)-dimensional Cohen-Macaulay module. Now the first of the above short exact sequences proves that M/(xM,N) and therefore also M/N is a Cohen-Macaulay module. Moreover the previous exact sequence considered for s = r provides that N is a Cohen-Macaulay module of dimension d-1. By 1.2 this finishes the proof. **Note.** Recently Nguyen Tu Cuong (cf. [C]) has found a characterization of CMF modules in terms of multiplicities of a certain system of parameters.

4. A COHOMOLOGICAL CHARACTERIZATION

4.1. **A Preliminary Result.** Now we start the cohomological investigation of CMF modules. To this end at first we need a description of the local cohomology modules of a CMF module.

Lemma 4.1. Let M denote a CMF module with $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ its dimension filtration. Let i denote an integer with $0 \le i \le d$. Then

$$H^{i}_{\mathfrak{m}}(M) \simeq H^{i}_{\mathfrak{m}}(M_{i}) \simeq H^{i}_{\mathfrak{m}}(\mathscr{M}_{i}).$$

In the case A possesses a dualizing complex it follows that $K^i(M) \simeq K^i(\mathcal{M}_i)$ for all $0 \le i \le d$.

Proof. First consider the short exact sequence $0 \to M_{i-1} \to M_i \to \mathcal{M}_i \to 0$. Because of dim $M_{i-1} \le i-1$ it induces an isomorphism $H^i_{\mathfrak{m}}(M_i) \simeq H^i_{\mathfrak{m}}(\mathcal{M}_i)$. Second for j < i it yields isomorphisms $H^j_{\mathfrak{m}}(M_i) \simeq H^j_{\mathfrak{m}}(M_{i-1})$. Note that \mathcal{M}_i is either zero or an *i*-dimensional CM module. By induction it follows that

 $H^{i}_{\mathfrak{m}}(M) \simeq H^{i}_{\mathfrak{m}}(M_{d}) \simeq H^{i}_{\mathfrak{m}}(M_{d-1}) \simeq \ldots \simeq H^{i}_{\mathfrak{m}}(M_{i+1}) \simeq H^{i}_{\mathfrak{m}}(M_{i}),$

which proves the statement about the local cohomology modules. The rest of the claim for $K^i(M)$ follows by similar arguments using the dualizing complex.

4.2. The criterion. Now we are prepared to prove the main result concerning a characterization of CMF modules in terms of the modules of deficiency $K^i(M), 0 \le i < d$. Moreover there is an additional information about the canonical module.

The equivalence of (i) and (ii) was announced by R. Stanley (cf. [S]). In this form the result was proved in [S2]. Another proof of the equivalence of (i) and (iii) by a different method was published by J. Herzog and E. Sbarra (cf. [HS]).

Theorem 4.2. Let (A, \mathfrak{m}) denote a local ring possessing a dualizing complex D_A^{\cdot} . Let M be a finitely generated A-module with $d = \dim_A M$. Then the following conditions are equivalent:

- (i) *M* is a CMF A-module.
- (ii) For all $0 \le i < d$ the module of deficiency $K^i(M)$ is either zero or an i-dimensional Cohen-Macaulay module.
- (iii) For all $0 \le i \le d$ the A-modules $K^i(M)$ are either zero or i-dimensional Cohen-Macaulay modules.

Proof. First suppose that *M* is a CMF module. Then the dimension filtration $\mathcal{M} = \{M_i\}_{0 \le i \le d}$ has the property that for all $0 \le i \le d$ the quotient module $\mathcal{M}_i = M_i/M_{i-1}$ is either zero or an *i*-dimensional Cohen-Macaulay module. By view of 4.1 it follows that $K^i(\mathcal{M}) \simeq K^i(\mathcal{M}_i)$ for all $0 \le i \le d$. Because \mathcal{M}_i is either zero or an *i*-dimensional Cohen-Macaulay module we have

13

that $K^i(\mathcal{M}_i)$ is either zero or the canonical module of the *i*-dimensional Cohen-Macaulay module \mathcal{M}_i . But then the canonical module of \mathcal{M}_i is also an *i*-dimensional Cohen-Macaulay module. So $K^i(M)$ is either zero or an *i*-dimensional Cohen-Macaulay module. This proves the implication (i) \Rightarrow (ii) as well as (i) \Rightarrow (iii).

In order to prove (iii) \Rightarrow (i) consider the spectral sequence studied in the proof of 2.2. By view of Theorem 2.4 it will be enough to prove that all the quotients $F^p/F^{p+1} \simeq E_{\infty}^{p,-p}$ are either zero or (-p)-dimensional Cohen-Macaulay modules. We first claim that $E_{\infty}^{p,-p} \simeq E_2^{p,-p}$ for all $-d \le p \le 0$. To this end consider the subsequent stages of the spectral sequence

$$E_r^{p-r,-p+r-1} \to E_r^{p,-p} \to E_r^{p+r,-p-r+1}.$$

The term on the left hand side is zero because it is a subquotient of the modules $K^{-p+r}(K^{-p+r-1}(M)) = 0$. Recall that $\dim_A K^{-p+r-1}(M) \leq -p + r - 1$, see 2.2. The right term is a subquotient of $K^{-p-r}(K^{-p-r+1}(M))$. By our assumption we have that $K^{-p-r+1}(M)$ is either zero or an (-p-r+1)-dimensional Cohen-Macaulay module. But then the (-p-r)-th module of deficiency $K^{-p-r}(K^{-p-r+1}(M))$ is zero. That is, the modules at the right are always zero. But this implies that

$$F^p/F^{p+1} \simeq E_2^{p,-p} \simeq K^{-p}(K^{-p}(M))$$

for all $-d \le p \le 0$. We finish the proof by showing that $K^{-p}(K^{-p}(M))$ is either zero or a (-p)-dimensional Cohen-Macaulay module. By our assumption $K^{-p}(M)$ is either zero or an (-p)-dimensional Cohen-Macaulay module. Therefore $K^{-p}(K^{-p}(M))$ is either zero or – as the canonical module of $K^{-p}(M)$ – also a (-p)-dimensional Cohen-Macaulay module. By view of 3.3 this proves the claim of (i).

Finally we have to show that (ii) \Rightarrow (iii). That is, we have to show that the canonical module $K(M) = K^d(M)$ is a Cohen-Macaulay module provided for all $0 \le i < d$ the module of deficiency $K^i(M)$ is either zero or an *i*-dimensional Cohen-Macaulay module. This will be part of another talk.

Looking at the second part of Theorem 4.2 there is another sufficient criterion for the canonical module K(M) of M being a Cohen-Macaulay module.

5. FAITHFUL FLAT EXTENSIONS AND EXAMPLES

5.1. Nagata's Example. Let (A, \mathfrak{m}) denote a local Noetherian ring. Let *M* denote a finitely generated *A*-module.

Example 5.1. Let (A, \mathfrak{m}) denote the 2-dimensional local domain considered by M. Nagata in [N, Example 2]. Clearly it is not a Cohen-Macaulay ring. For the multiplicity $e(\mathfrak{m}, A)$ it is shown that $e(\mathfrak{m}, A) = 1$. Therefore it implies that

$$1 = e(\mathfrak{m}, A) = e(\widehat{\mathfrak{m}}, \widehat{A}) = e(\widehat{\mathfrak{m}}, \widehat{A}/u_{\widehat{A}}(0)).$$

By the view of [N, (40.6)] it yields that $\hat{A}/u_{\hat{A}}(0)$ is a regular local ring, in particular a 2-dimensional Cohen-Macaulay ring. Moreover, depthA = depth $\hat{A} = 1$ the ideal $u_{\hat{A}}(0)$ is – considered as an \hat{A} -module – a 1-dimensional Cohen-Macaulay module. But this means that \hat{A} is a CMF ring or equivalently an approximately Cohen-Macaulay ring. But this is not true for A. Otherwise A would be a Cohen-Macaulay ring since it is a domain.

5.2. **Passing to the Completion.** Before we shall formulate our next result let us recall the definition of a Cohen-Macaulay filtration, 3.2.

Now let $(A, \mathfrak{m}) \to (B, \mathfrak{n})$ be a faithful flat homomorphism of local rings. Let M be a finitely generated A-module with $d = \dim_A M$. Let $\mathscr{C} = \{C_i\}_{0 \le i \le d}$ denote an increasing filtration of M such that $M = C_d$. Let $\mathscr{C}_B = \{(C_B)_i\}_{0 \le i \le n}$ denote the induced filtration defined by $(C_B)_i = C_{i+t} \otimes_A B$, where $t = \dim B/\mathfrak{m}B$ denotes the dimension of the fibre ring.

Theorem 5.2. Let $(A, \mathfrak{m}) \to (B, \mathfrak{n})$ be a faithful flat homomorphism of local rings. Let M be a finitely generated A-module with $d = \dim_A M$. Then the following conditions are equivalent:

- (i) The filtration 𝒞 is a Cohen-Macaulay filtration of M and the fibre ring B/mB is a Cohen-Macaulay ring.
- (ii) The induced filtration \mathcal{C}_B is a Cohen-Macaulay filtration of the B-module $M \otimes_A B$.

Proof. Let X denote an arbitrary finitely generated A-module. By virtue of [M, Theorem 15.1] and [M, Theorem 23.3] it follows that

 $\dim_B X \otimes_A B = \dim_A X + \dim B / \mathfrak{m} B$ and

$$\operatorname{depth}_B X \otimes_A B = \operatorname{depth}_A X + \operatorname{depth}_B B.$$

First of all this proves that $\dim_B X \otimes_A B = d + t$, i.e. $(C_B)_{d+t} = M \otimes_A B$. Now suppose that condition (i) is satisfied. Then the above equalities show that each of the *B*-modules

$$(C_B)_i/(C_B)_{i-1} \simeq (C_{i-t}/C_{i-1-t}) \otimes_A B$$

are either zero or *i*-dimensional Cohen-Macaulay modules. The converse follows the same line of reasoning. Hence we omit it. \Box

Note. The previous result 5.2 does not apply to the example considered in 5.1. In the example there does not exist a Cohen-Macaulay filtration in \hat{A} , while there is one in \hat{A} . The Cohen-Macaulay filtration in \hat{A} does not occur as the extension of a Cohen-Macaulay filtration of A.

5.3. Examples.

Example 5.3. a) Let M be a Cohen-Macaulay module. Then M is also a CMF module.

b) Let (A, \mathfrak{m}) be a local ring with $d = \dim A$. Let $N_i, i = 0, \dots, d$, be a family of A-modules such that either $N_i = 0$ or N_i is an *i*-dimensional Cohen-Macaulay module. Then $M = \bigoplus_{i=0}^{d} N_i$ is a CMF module over A. This follows

easily by 3.3 since *M* admits a filtration $M_i = \bigoplus_{j=0}^i N_j$ such that $M_i/M_{i-1} \simeq N_i$, i = 0, ..., d, is either zero or an *i*-dimensional Cohen-Macaulay module. c) Let (A, \mathfrak{m}) denote a local ring. Let *M* be a finitely generated *A*-module. Then consider $A \ltimes M$, the idealization of *M* over *A*. That is, the additive group of $A \ltimes M$ coincides with the direct sum of the abelian groups *A* and *M*. The multiplication is given by

$$(a,m) \cdot (b,n) := (ab,an+bm).$$

Then $A \ltimes M$ is a *d*-dimensional local ring, see [N, (1.1)] or [BH, 3.3.22] for these and related facts.

Now suppose that (A, \mathfrak{m}) is a *d*-dimensional Cohen-Macaulay ring. Let *M* be a CMF module with dim M = t < d. Then $A \ltimes M$ is a *d*-dimensional CMF ring. To this end let $\mathscr{M} = \{M_i\}_{0 \le i \le t}$ denote the dimension filtration of *M*. Now put

$$R_i = \begin{cases} A \ltimes M & \text{for} \quad i = d, \\ 0 \ltimes M & \text{for} \quad i = t+1, \dots, d-1, \text{ and} \\ 0 \ltimes M_i & \text{for} \quad i = 0, \dots, t. \end{cases}$$

Then $\{R_i\}_{0 \le i \le d}$ is a filtration of $R = A \ltimes M$ such that $R_d = A \ltimes M$ and R_i/R_{i-1} is either zero or an *i*-dimensional Cohen-Macaulay module. Note that

$$R_i/R_{i-1} \simeq \begin{cases} A & \text{for } i = d, \\ 0 & \text{for } i = t+1, \dots, d-1, \text{ and} \\ M_i/M_{i-1} & \text{for } i = 1, \dots, t. \end{cases}$$

By view of 3.3 this proves the claim.

d) Let A[[x]] denote the formal power series ring in one variable x over the local ring (A, \mathfrak{m}) . Then a finitely A-module M is a CMF module if and only if M[[x]] is a CMF module over the ring A[[x]].

e) Let *M* be a finitely generated *A*-module such that $H^i_{\mathfrak{m}}(M), i \neq \dim_A M$, is a finitely generated *A*-module. Then *M* is a CMF module if and only if $H^i_{\mathfrak{m}}(M) = 0$ for all $0 < i < \dim_A M$. In particular, under these circumstances *M* is a Cohen-Macaulay module if and only if *M* is a CMF module with depth_A M > 0.

f) Every 1-dimensional A-module M is a CMF module. Therefore for any d-dimensional Cohen-Macaulay ring with $d \ge 2$ and a 1-dimensional A-module M the idealization $A \ltimes M$ is a d-dimensional CMF ring.

Question. It would be of some interest to understand the descend of the CMF property from $M \otimes_A \hat{A}$ to M. What are sufficient condition on A? The Example 5.1 does not has Cohen-Macaulay formal fibres. Is it enough to suppose that the homomorphism $A \rightarrow \hat{A}$ has Cohen-Macaulay formal fibres?

REFERENCES

17	DIMENSION FILTRATION
[C]	N. T. CUONG: 'On sequentially Cohen-Macaulay Modules', Talk at School on
	Comm. Algebra and Interact with Algebraic Geom. and Com., Trieste, 2004.
[E]	D. EISENBUD: 'Commutative Algebra (with a view towards algebraic geome-
	try)', Springer-Verlag, 1995.
[G]	S. GÔTO: Approximately Cohen-Macaulay rings, J. Algebra 76 (1981), 214–225.
[H]	R. HARTSHORNE: 'Residues and Duality', Lect. Notes in Math., 20, Springer, 1966.
[HK]	J. Herzog, E. Kunz: 'Der kanonische Modul eines Cohen-Macaulay-Ringes',
	Lect. Notes in Math., 238, Springer, 1971.
[HS]	J. HERZOG, E: SBARRA: 'Sequentially Cohen-Macaulay modules and local co-
L]	homology', Proc of the Intern Colloquium on algebra, arithmetic and geometry,
	Mumbai, India, 2000, Tata Institute of Fundamental Research, Bombay. Stud.
	Math., Tata Inst. Fundam. Res. 16, 327-340 (2002).
[M]	H. MATSUMURA: 'Commutative ring theory', Cambridge University Press,
[101]	1986.
[N]	M. NAGATA: 'Local rings', Interscience, 1962.
[S1]	P. SCHENZEL: 'Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-
[91]	Ringe', Lect. Notes in Math., 907 , Springer, 1982.
[S2]	P. SCHENZEL: On the dimension filtration and Cohen-Macaulay filtered mod-
[52]	ules, Van Oystaeyen, F.(ed.), Commutative algebra and algebraic geometry. New
[62]	York: Marcel Dekker. Lect. Notes Pure Appl. Math. 206 , 245-264 (1999).
[S3]	P. SCHENZEL: 'On the use of local cohomoloy in algebra and geometry', Lec- tures at the Summmerschool of Commutative Algebra and Algebraic Geometry,
	Ballaterra, 1996, Birkhäuser Verlag.
[S]	R. STANLEY: 'Combinatorics and Commutative Algebra', Second Edition,
	Progress in Math., 41, Birkhäuser, 1996.
[W]	C. WEIBEL: 'An Introduction to Homological Algebra', Cambr. Univ. Press,
	1994.

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG, FACHBEREICH MATHEMATIK UND INFORMATIK, D — 06 099 HALLE (SAALE), GERMANY *E-mail address*: schenzel@mathematik.uni-halle.de