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Introduction
Thse notes give a treatment of the notion of integral closure as it applies to ideals,
modules and algebras, and associated algebras, emphasizing their relationships. Its
main theme are the structures that arise as solutions of collections of equations of
integral dependence in an algebra A,

In such equations, the a;-'s and z are required to satisfy set theoretic restrictions of
various kinds, with the solutions assembled into algebras, ideals, or modules, each
process adding a particular flavor to the subject. The study of these equations-
including the search for the equations themselves-is a region of convergence of
many interests in algebraic geometry, commutative algebra, number theory and
computational aspects of each of these fields. The overall goal is to find and under-
stand the equations defining these assemblages. Both challenges and opportunities
arise with these issues, the former by the difficulties current models of computa-
tion have in dealing with them, the latter in the need to develop new theoretical
approaches to its understanding.

For one of these structures, S, the analysis and/or construction of its integral
closure S usually passes through the study of its so-called reductions Sb:

The So are structures similar to S, with the same closure as S, possibly providing
a pathway to the closure which does not pass through S. They are geometrically
and computationally simpler than S and therefore provide for a convenient platform
from which to examine S and give rise to many structures that ultimately bear on S.
It is not too far-fetched to make an equivalence between the study of all the !% and
of S. Rather than a source of frustration, this diversity is a mine of opportunities to
examine S, and often it is the springboard to the examination of other properties of
S besides its closure.

An algebraic structure-a ring, an ideal or even a module-is often susceptible to
smoothing processes that enhance their properties. One major process is the inte-
gral closure of the structure. This often enable them to support new constructions,
including analytic ones. In the case of algebras, the divisors acquire a group struc-
ture, the cohomology tends to slim down. To make this more viable, multiplicity
theory—broadly seen as the assignment of measures of size to an structure-must
be built up with the introduction of new families of degree functions suitable for
tracking the processes through their complexity costs. The synergy between these
two regions is illustrated in the diagram:
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The overall goal is to describe the developments leading to this picture, and, hope-
fully, of setting the stage for further research.

There is an obvious organization for the several problems that arise. Without
emphasizing relationships one has:

a

a

a

a

Membership Test: f G

Completeness Test: S -

Construction Task: S -

Complexity Cost: cx(S

S ?

= S ?

?

S) ?

None of these problems has an optimal solution yet, that would permit check offs,
certainly not for the various structures treated. In addition to these issues, predicting
properties of S from S-such as number of generators and their degrees as the case
may be-becomes rather compelling and can also be stated in terms of complexities.

Given an affine algebra S over a constructible field, the usual approach to the
construction of S starting from S, or from some So, involves a procedure P which
when applied to S, produces an extension

S c P(S) C S,

properly containing S, unless it is already the desired closure.
The presence of Noetherian conditions will guarantee the existence of an inte-

ger r such that P'*(S) = S. Interestingly though, under appropriate control condi-
tions obtained by judicious choices for P, it is possible to estimate the order r from
So. More delicate issues are those regarding the number of generators of Pl(S)
(their degrees in the graded case):



• Determine r such that Pr(S) = S.

• Determine the number of (module or algebra) generators of S.

• In the graded case, determine the degrees of the (module or algebra) genera-
tors of S.

If P allows for answering the second and third problems for P(S) in terms of S,
then we would achieve a good understanding of the whole closure process.

There has been progress throughout the whole front of problems outlined above.
For the other algebraic structures we treat-ideals and modules-the picture is not this
rosy. While each of them-to wit, the construction or understanding of the integral
closure of an ideal or module S-can be converted into another involving an associ-
ated algebra, the process is not robust under two important criteria: The conversion
process makes the complexity intractable and brings no understanding about the
nature of S. Instead we must look for direct pathways, sensitive to the nature of the
ideal or module.

Our model is Section 1, where for a reduced affine algebra A we focus on:

• Effective methods to compute the integral closure A.

• Development and analysis of processes P(-) that associate to an intermediate
extension A C B C A, another extension B C P(B) C A, guaranteed to be
distinct from B when B ^ A.

• Establishing a priori bounds for the 'order' of P, that is for the integer n such
that P ' (A)= A.

• Estimation of the number of generators (and of their degrees in the graded
case) of A.

• Basic treatment of the tracking number of an algebra.

Section 2 dealing with the integral closure of ideals might at first resemble a
special case of the problems treated in the previous section. Thus, given an ideal /
of the normal domain (for simplicity) A, the integral closure / of the ideal is to be
found as the degree 1 component of the algebra

R\Ii\=R + \It +

so to find / passes through the construction of R[It] ! One would rather have direct
constructions / ~-> / taking place entirely in R. The difficulty of realizing this lies
in the absence of conductors, such as Jacobian ideals in the algebra case: Given A
by generators and relations (at least in characteristic zero) the Jacobian ideal J of A
has the property

J - A c A,

in other words, A C A : / . This fact lies at the base of all current algorithms to build
A. There is no known corresponding annihilator for7//. The main topics here are:



• Properties of integrally closed ideals.

m Monomial ideals, when the theory is fairly complete and efficiently imple-
mented already.

• Computation of multiplicities.

• Normalization of ideals which may be considered one of the main problems
of the theory, particularly the examination of certain conjectures pointing to
a decisive role of the Hilbert polynomial in controlling the computation.

Part of Section 2 is a treatment of integral closure for modules and some al-
gebras arising from them. There are two threads running in parallel: First, the
emphasis on techniques that seek to assemble such issues with those techniques
already discussed in previous sections on algebras and ideals. There are also novel
phenomena to modules with a concomitant development appropriate methods.



1 Integral Closure of Algebras

The main theme of this chapter will be a reduced affine algebra A over a field k and
its relationship to its integral closure A. Setting up processes to construct A, analyz-
ing their complexities and making predictions about properties and descriptions of
A, constitute a significant area of questions, with individualized issues but also with
an array of related connections. Those links are the main focus of our discussion.

We develop frameworks that allow for discussions of various complexities as-
sociated with the construction of A:

A = k[x{ , . . . , x n ] j 11->- A = k \ y \ , . . . , ym] /J,

where P is some algorithm. The process is often characterized by iterations of
a basic procedure P outputting integral, rational extensions of the affine ring A
terminating at its integral closure A:

• A = A Q H-»A} i—> A2 1—> - - -1—> A, , = A

Short of a direct description of the integral closure of A by a single operation-
a situation achieved in some cases-the construction of A is usually achieved by a
'smoothing' procedure: An operation P on affine rings with the properties

• A c P(A) c A;

• If A ^

The general style of the operation P is of the form

A~> /(A) -> P(A) = HomA(/(A),/(A)),

where I (A) is an ideal somewhat related to the conductor of A. The ring

) = HomA(I(A),I(A))

is called the idealize r of I (A). Two examples of such methods, using Jacobian
ideals, are featured in [Va91b] and [Jo98], respectively: Let J be the Jacobian ideal
of A. The corresponding smoothing operations are the following:

(i) P(A)=HomA(J-1,J-1)

(ii) P(A) =

The 'order' of the construction is the smallest integer n such that Pl(A) = A.
The 'cost* of the computation C(A) however will consist of^/Li c(i), where c(i) is
the complexity of the operation P on the data set represented by P~l(A).

Obviously, in a Grobner basis setting, different iterations of P may carry non-
comparable costs. This holds true particularly if each iteration uses its own local
variables.



Almost irresponsibly one could define the astronomical complexity of a smooth-
ing operation by the order of P:

n = Cp(A).

It is not yet clear what significance is carried by this number. The fact however
is that P usually acts not on the full set B(A) of integral birational extensions of A,

but also on much smaller subsets of extensions (containing A)

We will discuss the following issues:

® Descriptions of several such P.

• How long these chains might be?

• How long is the description of A in terms of a description of A?

The first subsection is a compiling of several resources that appear in the actual
construction of integral closures of rings. To describe the results of the next subsec-
tions, we introduce some notation and terminology. The two most basic invariants
of an affine ring A (assumed reduced, equidimensional throughout) are its dimen-
sion dimA = d and its 'degree', the rank of A with respect to one of its Noether
normalizations k[x\,... ,x</j. If k has characteristic zero and A is a standard graded
algebra, we can find an embedding

S = k[x{,... ,xd+y]/(f) <-* A,

with / monic in Xd+y, where deg/ — deg(A). In the non graded case, pick / of

least possible total degree. Observe

so we could always assume that A is a hypersurface ring. Often however, we may
want to use information on A that, is not shared by 5.

In subsection 2 we will describe an approach to the issue of complexity by de-
veloping a setting for analyzing the efficiency of algorithms that compute the inte-
gral closure of affine rings. It gives quadratic (cubic in the non-homogeneous case)
multiplicity based but dimension independent bounds for the number of passes any
construction of a broad class will make, thereby leading to the notion of astronom-
ical complexity.

Unlike the treatment of subsection 4, that seeks to estimate the complexity of A
in terms of the number of generators that will be required to give a presentation of A
(i.e. its embedding dimension), here we are going to estimate the number of passes
by any method that progressively builds A by taking larger integral extensions.



Here we will argue that while the finite generation of A as an A-module guar-
antees that chains of integral extensions,

A=A0CAlCA2C-..CAncA,

are stationary, there are no bounds for n if the Krull dimension of A is at least 2.
We show that if the extensions A; are taken satisfying the 52-condition of Serre,
then n can be bound by data essentially contained in the Jacobian ideal of A (in
characteristic zero at least).

A preferred approach to the computation of the integral closure should have the
following general properties:

• All calculations are carried out in the same ring of polynomials. If the ring A
is not Gorenstein, it will require one Noether normalization.

• It uses the Jacobian ideal of A, or of an appropriate hypersurface subring,
only theoretically to control the length of the chains of the extensions.

® There is an explicit quadratic bound (cubic in the non-homogeneous case)
on the multiplicity for the number of passes the basic operation has to be
carried out. In particular, and surprisingly, the bound is independent of the
dimension.

• It can make use of known properties of the ring A.

It will thus differ from the algorithms proposed in either [Jo98] or [Va91b], by
the fact that it does not require changes in the rings for each of its basic cycles
of computation. The primitive operation itself is based on elementary facts of the
theory of Rees algebras. To enable the calculation we will introduce the notion of
a proper construction and discuss instances of it.

Key to our discussion here is the elementary, but somehow surprising, obser-
vation that the set 5>(A) of extensions with the condition Si of Serre between an
equidimensional, reduced affine algebra A and its integral closure A satisfy the as-
cending chain condition inherited from the finiteness of A over A, but the descend-
ing condition as well.

The explanation requires the presence of a Gorenstein subalgebra S C A, over
which A is birational and integral. If A is not Gorenstein, S is obtained from a
Noether normalization of A and the theorem, of the primitive element. One shows
(Theorem 1.29) that there is a inclusion reversing one-one correspondence between
5? (A) and a subset of the set D(c) of divisorial ideals of S that contain the conductor
c of A relative to S. Since c is not accessible one uses the Jacobian ideal as an
approximation in order to determine the maximal length of chains of elements of
52(A). In Corollary 1.31, it is shown that if A is a standard graded algebra over a
field of characteristic zero, and of multiplicity e, then any chain in 5»(A) has at most
(e — 1) elements. In the non-homogeneous case of a hypersurface ring defined by
an equation of degree e, the best bound we know is e(e —if.

Next we describe a process to create chains in S(A). Actually the focus is
on processes that produce shorter chains in S>(A) and its elements are amenable
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to computation. A standard construction in the cohomology of blowups provides

chains of length at most 'g'~?"' | (correspondingly, e"7 ' , in the non-homogeneous

case).
Subsection 3 is an abstract treatment of the length of divisorial extensions be-

tween a graded domain and its integral closure, according to [DV3]. It does not
improve on the bounds already discussed, for characteristic zero, nevertheless in
arbitrary characteristics, it imposes absolute bounds.

In subsection 4, we will discuss, following [UV3], the problem of estimating
the number of generators the integral closure A of an affme domain A may re-
quire. This number, and the degrees of the generators in the graded case, are major
measures of costs of the computation. We discuss current developments on this
question for various kinds of algebras, particularly algebras with a small singular
locus. At the worst, these estimates have the double exponential shape of Grobner
bases computations.

1.1 Normalization Toolbox

We will assemble in this section some resources that intervene in any discussion of
the integral closure of an algebra. Most can be found in one of [BH93], [Ma86], or
[Va98b], but for convenience will be re-assembled here.

Noether Normalization Module

In nonzero characteristics, when the theorem of the primitive element may fail to
apply, the following result is often useful.

Proposition 1.1 Let A =R\y\,... ,yn] be an integral domain finite over the subring
R, and let rank#(A) = e. Let K be the field of fractions of R and define the field
extensions

FQ = K, F\ = K [ y i , . . . , ) ' / ] , i = 1 . . . n .

Then the module

is R-free of rank e.

Proof. As the rank satisfies the equality e =11?= i ru >7 — [Fi '• Fi-\], e is the number
of 'monomials' yj1 • • •yj,". Their linear independence over R is a simple verification.
•

Remark 1,2 If B is a finitely generated standard graded algebra over the field k,

the Noether normalization process can described differently. The argument is that
establishing the Hilbert polynomial associated to B. More precisely, if B has Kruil
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dimension 0, A — k is a Noether normalization. If dim I? > 1, one begins by picking
a homogeneous element z £ B+ which is not contained in any of the minimal prime
ideals of B. When k is infinite, the usual prime avoidance finds z G B\. Ifk is finite
however one argues differently: If Pi,..., Pn are the minimal primes of B, we must
find a form h which is not contained in any Pt. Suppose the best one can do is to find
a f o r m / ^ U ^ P ; , for 5 maximum <n. This means that/£P s+i. If g E f)i<P.\Ps+i
is a form (easy to show), then h — fl + gb, where a — degg, b — deg/ is a form not
contained in a larger subset of the associated primes, contradicting the definition of
5.

Krull-Serre Normality Criterion

Throughout we will assume that A is a reduced Noetherian ring, and denote by
K its total ring of fractions. For each prime ideal p, the localization Ap can be
naturally identified to a subring of K so that intersections of such subrings may be
considered. A itself may be represented as

A — f]Ap, grade pAp < 1.
P

It is then easy to describe, using these localizations, when A is integrally closed:

Proposition 1.3 (Krall-Serre) Let A be a reduced Noetherian ring. The following
conditions are equivalent:

(a) A is integrally closed.

(b) For each prime ideal p of A associated to a principal ideal, Ap is a discrete
valuation domain.

(c) A satisfies:

(i) The condition Si: For each prime ideal p associated to a principal
ideal, dimAp < 1.

(ii) The condition R\: For each prime ideal p of codimension 1, Ap is a
discrete valuation domain.

Remark 1.4 If A is an integral domain with a finite integral closure A and / is a
nonzero element in ann (A/A), these conditions can be simply stated as: (i) (/)
has no embedded primes, and (ii) for each minimal prime p of (/) Rp is a discrete
valuation ring. We leave the proof as an exercise.

Canonical Module and ^-Ification

We are going to use a notion of "canonical ideal" of a reduced algebra A that is
appropriate for our treatment of normality. A general reference is [BH93, Chapter
4]; we will also make use of [Va98b, Chapter 6].



Definition 1.5 Let A be a reduced affine algebra. A weak canonical ideal of A is
an ideal L of A with the following properties:

(i) L satisfies the condition Sj of Serre.

(ii) For any ideal / that satisfies the condition & of Serre, the canonical mapping

/ i—> Hom,4 (H01114 (/, L), L)

is an isomorphism.

There are almost always many choices for L, but once fixed we will denote it
by &A, or simply co if no confusion can arise. Here are some of its properties:

Proposition 1.6 Let A be a reduced affine algebra with a canonical ideal CO.

(i) For any ideal I,
H01114 ( H o m A ( / , (£>A ) , G>A ))

is the smallest ideal containing 1 that satisfies the condition $».

(ii) A satisfies the condition S2 if and only if

A = Hom^ (co,co).

Definition 1.7 If A is a Noetherian ring of total ring of fractions K, the smallest
finite extension A—>A'cK with the S2 property is called the ^-ification of A.

An extension with this property is unique (prove it!). It may not always ex-
ist, even when A is an integral domain. In most of the rings we discuss however
its existence is guaranteed simply from the theory of the canonical module. The
extension

A C HomA(o), 00) C A

is the S2-ification of A.

Sometimes one can avoid the direct use of canonical modules, as in the follow-
ing:

Proposition 1.8 Let R be a Noetherian domain and let A be a torsionfree finite
R-algebra. IfRp is a Gorenstein ring for every prime ideal of height 1, then A** =
Hom/f (Horn/; (A,/?),/?) is the S^-ification of A.

Proof. Consider the natural embedding

0-->A—>A** —>C->0.

For each prime p C R of height 1, Ap is a reflexive module since it is torsionfree
over the Gorenstein ring Rp. This shows that C has codimension at least two. We
have
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over all such primes of R. The second module is just A**, from elementary proper-
ties of dual modules. Since each Ap contains A**, we have A' — A**. •

Two lazy ways to find an integral extension of a ring with the property Si, which
do not necessarily involve canonical modules, arise in the following manner. The
proofs are left as exercises.

Proposition 1.9 Let R be a Noetherian domain with the condition Si and let A be
an integral, rational extension of R. Let c = Horns (A, R) be the conductor ideal
of A over R. Then B = Hom#(c, c) is an integral, rational extension of A with the
condition £2-

Proposition 1.10 Let R be a Noetherian domain with the condition Si and let A be

an integral domain containing R and R-finite. Then

B = HoiTu(Homj?(A,i?),Homs(A,i?))

is an integral, rational extension of A with the condition Si.

Remark 1.11 One important case this result applies is to Rees algebras of equi-
multiple ideals. If R is a Gorenstein ring and / is an equimultiple ideal and J is a
complete intersection that is a reduction of /, if we set S = R[Jt] and A — R[It], S
is a Cohen-Macaulay ring which is Gorenstein in codimension 1 (proof left to the
reader) and Homs(Homs(A,S),S) is the 52-ification of A.

Conductors and Affine Algebras

Let A be a reduced Noetherian ring and denote by A its integral closure in the total
ring of fractions K. The conductor of A is the ideal

c(A) = ann (A/A) = HomA(A,A).

We note that
A = HomA(c(A),c(A)),

since c(A) is an ideal of A. This shows that there is an equivalence of access c(A) <^
A,

Access to c(A) being usually only found once A has been determined, one may
have to appeal to what was flippantly termed in [Va98b, Chapter 6] semi-conductors
of A: nonzero subideals of c(A). Let us denote one of such nonzero ideal as C and
assume that it contains regular elements.

Let us give a scenario for a description of A:

Proposition 1.12 //height (C) > 2, K
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Proof. First, observe that for each prime ideal p of A of codimension at most one,
C 5/ p, and therefore Ap—Ap. This implies that

Ap = [ |Aq,

where q runs over the primes of A lying over p, which in turn shows that

~A = f)Ap.
P

We can now prove our assertion. Since (C~1)p = Ap, C~! is contained in all
these intersections and therefore is contained in A. On the other hand, for any
regular element b € A, from Cb C A, we get C~lb~i D A, that is b e C"1. Finally,
we observe that A is generated by regular elements as an A-module. •

The Jacobian Ideal

One of the most useful of such (conductor) ideals is the Jacobian ideal of an affine
algebra A. Suppose that

A = k[xi,...,xn]/I,

where / is an unmixed ideal of codimension g. If I — (fi,... ,fm), the Jacobian
ideal J(A) is the image in A of the ideal generated by the g x g minors of the
Jacobian matrix

a ( / i , • • - , / « )

There are relative versions one of which we are going to make use of.
The relationship between Jacobian ideals and conductors was pointed out in

[No50] and strengthened in [LS81].

Theorem 1.13 Let A be an affine domain and let S be one of its Noether normal-
izations. Suppose the field of fractions of A is a separable extension of the field of
fractions of S. Let A = S\x\,... ,xn]/P be a presentation of A and let JQ denote the
Jacobian ideal of A relative to the variables xi,... ,xn. If A is the integral closure
of A then JQ-AC A. In particular

A = A: Jo

if and only if A is integrally closed.

Theorem 1.14 Let A be an affine domain over afield of characteristic zero. IfJ{A)
and c(A) denote the Jacobian ideal and the conductor of A, then

(1)

15



Algebras with the Condition Ri and One-Step Normalization

There are very few general 'explicit' descriptions of the integral closure of an alge-
bra. One that comes close to meeting this requirement occurs from the computation
of a very special module of syzygies.

Theorem 1.15 Let Abe a reduced affine algebra that satisfies the condition R± of
Serre. There exist two elements f and g in the conductor ideal c(A) such that

L ={(a,b)eAxA\ af - bg = 0} -> A = {a/g (a, b) e L} = Af

Proof. By assumption, the conductor ideal c(A) has codimension at least 2; pick
f,g G c(A), both regular elements of A, generating an ideal of codimension 2 (like
in the converse of Krull's principal ideal theorem). We note that the module defined
by the right hand side of (2) is

A:K(f,g).

Since / and g are contained in the conductor of A, we have

AC.A:K(f\g),

To prove the reverse containment, we use that

A = P | Ap, p prime ideal of A of codimension 1.

Note that each of these localizations is a semi-local ring whose maximal ideals
correspond to the prime ideals of A lying above p. •

Remark 1.16 If A is a reduced equidimensional affine algebra over a field of char-
acteristic zero with the condition i?i then the elements f,g can be chosen in the
Jacobian ideal J(A).

Corollary 1.17 If A is an algebra as above, satisfying the condition R{ of Serre,
then A is the So-ification of A, that is, the smallest extension A C B C K that satisfies
the condition Sj.

This formulation permits other representations for A: If the Jacobian ideal J(A)
has codimension at least 2, and 5 C A is a hypersurface ring over which A is integral,
then

A = Homs(Homs(A, 5), 5).

16



Localization and Normalization

We treat a role that localization plays in the construction of the normalization of
certain rings. The setting will be that of an affine domain A over a field k with a
Noether normalization

R = k [ x i , . . . ,Xd]c—> A .

To start, consider the following recast of the Krull-Serre criterion:

Proposition 1.18 Let A be a Noetherian domain and let f,g be a regular sequence
ofR. If A is the integral closure of A, then

The assertion holds for arbitrary Noetherian domains although we will only
use it for affine domains. When / and g are taken as a regular sequence in R, we
still have the equality A = AfC\Ag. Since Af = Af (and similarly for g), there are
i?-sufomodules C = (c{,... ,cr) andD — (d\, ...,ds) such that C/ = A f and Df — Ag.

Proposition 1.19 Iff, g is a regular sequence in R, setting B = ( q , . . . , cr, d{,..., ds),
one has a natural isomorphism

B** = HomR(BomR(B,R),R)^A. (2)

Proof. Consider the inclusion B C A. Since A satisfies the condition S2, it will
also satisfy S2 relative to the subring R. This means that the bidual of B will be
contained in A, B** c-~* A. To prove they are equal, it will suffice to show that for
each prime ideal p c R of codimension l,B^* — ~Ap. But from our choices of / and
g,Bp=Ap. a

A special case is when /belongs to the conductor of A, since Ay = Af already,
so that we simply take C —A. For simplicity we denote B — A(f,g), and the special
case by A(l,g). As an application, let us consider a reduction technique that con-
verts the problem of finding the integral closure of a standard graded algebra into
another involving finding the integral closure of a lower dimension affine domain
(but not graded) and the computation of duals.

Proposition 1.20 Suppose as above that f lies in the conductor of A and g is a
form of degree 1 (in particular, d > 2)). The integral closure of A is obtained as the
R-bidual of a set of generators of the integral closure ofA/(g — 1).

Proof. The localization Af has a natural identification with the ring Ag — S[T, T~1},
where S is the set of fractions in Ag of degree 0 and T is an indeterminate. Further,
as it is well-known (see [Ei95, Exercise 2.17]), S~A/(g - 1). •
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/?i-ification

We consider two constructions, considered in [Va91b] and [Jo98] (using [GRe84,
p. 127]), respectively; our presentation is also informed by [MatO]. Its tests provide
proactive normality criteria:

Theorem 1.21 Let A be a reduced equidimensional affine ring over afield of char-
acteristic zero, and, denote by J its Jacobian ideal. A is integrally closed in the
following two cases:

(i) A = HomA(J \J l):

(ii) A = Horn^x//, /

Proof. Let p be a prime associated to a principal ideal (/) generated by a regular
element, and consider Ap. Both conditions (i) and (ii) are maintained by localizing.
We will then use the symbol A for Ap.

(i) The first idealizer ring condition can be rewritten as A = (/ • J"1)"1. This
means that the ideal J•J~i —A, and therefore ./ is a principal ideal. By [Li69a]
J — A, and A is a discrete valuation domain by the Jacobian criterion.

(ii) Suppose A ^ A. According to Theorem 1.13, J is contained in the conductor
ideal of A. Let p be an associated prime of A/A. Pick x G A \ A such that A: x~ p.
Since / C p, we also have \/J C p. Let

x" + an- ixn~l + • • • + ao = 0

be an equation of integral dependence of x over A. For any y G y/1, multiplying
the equation by y1 we get that (xy)n G \/J. Since xy G A, we obtain xy G \/l, and
therefore x G A by the hypothesis. •

Unlike the operation denned earlier, each application of P takes place in a
different ring, as the new Jacobian ideal has to be assembled from a presentation of
the algebra P(B).

Remark 1,22 Observe that the criterion of normality expressed in the equality

Homi4(7"1,/~1) =A,

does not require A to satisfy the Sj condition of Serre (as stated originally in
[Va91b]). We note that one way to configure the endomorphism ring is simply
as follows. Let x G J be a regular element, and denote by (x) ^ / the ideal quotient
in A. Since J~l = ((x) :« f)x~l,

HomA(j\jl) = HomA((x) : / , (x) : J).
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Example 1.23 Let us illustrate with one example how the two methods differ markedly
in the presence of the condition R{ of Serre. Let A be an affine domain over a field
of characteristic zero, and let / be its Jacobian ideal. Suppose height / > 2 (the R
condition). As we have discussed,

A = J~~l C HomA (J~ l , / "" ' )c l

Consider now the following example. Let n be a positive integer, and set

A = R\x,y} + (x,y)nC\x,y},

whose integral closure is the ring of polynomials C[*,y]. Note that 4c — C\x,y]x

and Ay = C[x,y]y. This means that \J1 is the maximal ideal

It is clear that
UoraA(M,M) = R[x,y] + (x,y)n~lC[x,y\.

It will take precisely n passes of the operation to produce the integral closure. In
particular, neither the dimension (d = 2), nor the multiplicity (e = 1) play any role.

Presentation of Horru(/,/). The Jacobian algorithms require presentations of
HomA(J, J) as A-algebras, where J is some ideal obtained from the Jacobian ideal
of the algebra A. More precisely, the passage from Jn to Jn+i requires a set of
generators and relations for An+i = Hom(/n,/re). In case w\,...,ws is a set of
generators of An+{ as an A-module, a set of generators and relations of An+\ as a
fc-algebra can be obtained from the following observation ([Ca84]):

An+1=k[xu...,xni,Wu...,Ws]/(I,Hn,Kn),

where Hn are the generators for the linear syzygies of the w, over A,

and Kn is the set of quadratic relations

Hij = WiWj-fdaijkWk,
k=\

that express the algebra structure of

1.2 Dlvlsorial Extensions of an Affine Algebra

We treat here an approach of [VaO] to the analysis of the construction of the integral
closure A of an affine ring A. It will apply to an examination of the complexity
of some of the existing algorithms ([Jo98], [Va91b]). These algorithms put their
trust blindly on the Noetherian condition, without any a priori numerical certificate
of termination. We remedy this for any algorithm that uses a particular class of
extensions termed divisorial. In addition, we analyze in detail an approach to the
computation of A that is theoretically distinct from the current methods.
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Divisorial Extensions of Gorenstein Rings

Throughout we will assume that A is a reduced affine ring and A is its integral
closure.

Definition 1.24 An integral extension B of A is divisorial if A C B C A and B
satisfies the S2 condition of Serre. The set of divisorial extensions of A will be
denoted by Si(A).

Let A — k[x\,... ,xn]/I be a reduced equidimensional affine algebra over a field
k of characteristic zero, let R = k[x\,... ,xci) C A be a Noether normalization and
S — k{x\,... ,xrj,x(i-y\}/(f) a hypersurface ring such that the extension 5 C A is
birational. Denote by / the Jacobian ideal of 5', that is the image in S of the ideal
generated by the partial derivatives of the polynomial / .

From 5 c A c 5 = A and [No50] we have that J is contained in the conductor
of 5. To fix the terminology, we denote the annihilator of the 5-module A/5 by
c(A/5). Note the identification c(A/S) = Homs(A,5).

We want to benefit from the fact that 5 is a Gorenstein ring, in particular that
its divisorial ideals have a rich structure. Let us recall some of those. Denote by K
the total ring of fractions of 5. A finitely generated submodule L of K is said to be
divisorial if it is faithful and the canonical mapping

L i-> Horns (Horns (L, 5), S)

is an isomorphism. Since 5 is Gorenstein, for a proper ideal L C 5 this simply
means that all the primary components of L have codimension 1. We sura up some
of these properties in (see [BH93] for general properties of Gorenstein rings and
[Va93b, Section 6.3] for specific details on the 52 condition of Serre):

Proposition 1.25 Let S be a hypersurface ring as above (or more generally a
Gorenstein ring). Then

(a) A finitely generated faithful submodule of K is divisorial if and only if it
satisfies the S2 condition of Serre.

(b) Let A C B be finite birational extensions of S such that A and B have the
condition So of Serre. Then A — B if and only ifc(A/S) — c(B/S).

(c) If A is an algebra such that S C A C 5, then

Homs(Homs(A,S),S) - Homs(c(A/S),S)

is the So-closure of A.

Remark 1.26 We will also denote A ' = Hottis(A,S), and the 52-closure of an al-
gebra A by C(A) = (A""1 )""1. Note that one has the equality of conductors c(A/S) =
c(C(A)/S). Actually these same properties of the duality theory over Gorenstein
rings hold if S is 5*2 and is Gorenstein in codimension at most one.
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We now define our two notions and begin exploring their relationship.

Definition 1.27 Let / be an ideal containing regular elements of a Noetherian ring
S. The degree of / is the integer

deg(/) =
height p=i

Definition 1.28 A proper operation for the purpose of computing the integral clo-
sure of S is a method such that whenever S C A C S is given, the operation produces
a divisorial extension B such that A C B C S.

The next result highlights the fact that most extensions used in the computation
of the integral closure satisfy the descending chain condition.

Theorem 1.29 Let A be a Gorenstein ring with a finite integral closure A. Let
^(A) be the set of extensions Ac. B C.A that satisfy the ,% condition ofSerre and
denote by c the conductor of A over A. There is an inclusion reversing one-one
correspondence between that elements of5>(A) and a subset of divisorial ideals of
S containing c. In particular 5->(A) satisfies the descending chain condition.

Proof. Any ascending chain of divisorial extensions

ACAi C A 2 C . . . C A W C A

gives rise to a descending chain of divisorial ideals

C ( A I / A ) D C ( A 2 / A ) D - . O C ( A W / A )

of the same length by Proposition 1.25(b). But each of these divisorial ideals con-
tain c, which gives the assertion. •

We collect these properties: Let pi, . . . , pn be the associated primes of c and let
U = [J"=1 pi. There is an embedding of partially ordered sets

S2(Af

where Si (A)' is 5>(A) with the order reversed. Note that Su/cu is an Artinian ring.

Of course the conductor ideal c is usually not known in advance, or the ring
A is not always Gorenstein. In case A is a reduced equidimensional affine algebra
over a field of large characteristic we may replace it by a hypersurface subring S
with integral closure A. On the other hand, by [No50], the Jacobian ideal J of S is
contained in the conductor of S. We get the less tight but more explicit rephrasing
of Theorem 1.29:
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Theorem 130 Let S be a reduced hypersurface ring

over afield of characteristic zero and let J be its Jacobian ideal. Then the integral
closure ofS can be obtained by carried out in at most deg(J) proper operations on
S.

In characteristic zero, the relationship between the Jacobian ideal J of S and the
conductor c of S is difficult to express in detail, in any event the two ideals have
the same associated primes of codimension one, a condition we can write as the
equality of radical ideals ^/c /

Corollary 1,31 Let k be a field of characteristic zero and let A be a standard
graded domain over k of dimension d and multiplicity e. Let S be a hypersur-
face sub ring of A such that S C A is finite and birational. Then the integral closure
of A can be obtained after (e — 1) proper operations on S.

Proof. Denote S = k\x\,... ,Xd+\\/(f), where / is a form of degree e = deg(A).

By Euler's formula, / € L = ( i~~,..., ~~~- ) . Let then g,h be forms of degree

e — 1 in L forming a regular sequence in T = k[xi,... ,x(i+i]. Clearly we have
that deg(g,h)S > deg(/). On the other hand, we have the following estimation of
ordinary multiplicities

height <p=2

1
height <p=2

HT/(f,g,h)v)
height <p=2

- dtg((g,h)S)

> deg(c),

as required. •

Note that this is a pessimistic bound, that would be already cut in half by the
simple hypothesis that no minimal prime of J is monomial. One does not need the
base ring to be a hypersurface ring, the Gorenstein condition will do. We illustrate
with the following:

Corollary 132 Let A be a reduced equidimensional Gorenstein algebra over a
field of characteristic zero. Let J be the Jacobian ideal of S and let L the corre-
sponding divisorial ideal, L = (J"1)"1. If L is a radical ideal then A is the only
proper divisorial extension of A.
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Proof. Let A c S c C b e divisorial extensions of A, and let K c / be the conductors
of the extensions C and B, respectively. We will show that K — I. If p be a prime of
codimension one that it is not associated to /, Bp is integrally closed and Bp = Cp.
Thus / and K have the same primary components since they both contain L. •

Let us highlight the boundedness of chains of divisorial subalgebras.

Corollary 133 Let A be a reduced equidimensional standard graded algebra over
afield of characteristic zero, and set e = deg(A). Then any sequence

A=A\ C A 2 C ••• C.An C A

of finite extensions of A with the property S2 of'Serre has length at most (e - - I)2.

Non-Homogeneous Algebras

We will now treat affine algebras which are not homogeneous. Suppose A is a
reduced equidimensional algebra over a field of characteristic zero, of dimension
d. Let

S = k[xi,... ,xd,xd+i]/(f) <-> A

be a hypersurface ring over which A is finite and birational. The degree of the
polynomial / will play the role of the multiplicity of A. Of course, we may choose
/ of as small degree as possible.

Our aim is to find estimates for the length of chains of algebras

satisfying the condition &, between S and its integral closure A. The argument we
used required the length estimates for the length of the total ring of fractions of 5/c,
where c is the conductor ideal of 5, ami (A/5). Actually, it only needs estimates for
the length of the total ring of fractions of (S/c)m, where m ranges over the maximal
ideals of 5.

In the homogeneous case, we found convenient to estimate these lengths in
terms of the multiplicities of (5/c)m; we will do likewise here.

A first point to be made is the observation that we may replace k by K= S/rn
and m by a maximal ideal 971 of K®kA lying over it. In other words, we can
replace R by a faithfully flat (local) extension $. The conditions are all preserved
in that Sf = K ®^ 5 is reduced, 5" = K ®>K A, the conductor of S extends to the
conductor of Y, and chains of extensions with the $2 conditions give like to likewise
extensions of i^-algebras. Furthermore the length of the total ring of fractions of
R/c is bounded by the length of the total ring of fractions ofFt/c'.

What this all means is that we may assume that m is a rational point of the
hypersurface / = 0. We may change the coordinates so that m corresponds to the
actual origin.
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Proposition 1.34 Let A — k[x\,... ,xd] be the ring of polynomials over the infinite
field k and let f, g be polynomials in A vanishing at the origin. Suppose f, g is a
regular sequence and, deg/ = m < n = degg. Then the multiplicity of the local ring

at most nm2

Proof. Write / as the sum of its homogeneous components,

/
=

m-l

and similarly for g,
8 = gn+gn-l

We first discuss the route the argument will take. Suppose that g? is not a multiple
of/,-. We denote by R the localization of A at the origin, and its maximal ideal by m.
We observe that A/(/ r) is the associated graded ring of/?/(/), and the image of g.
is the initial form g. Thus the associated graded ring of R/(f,g) is a homomoiphic
image of A/(fr,gs). If fr and gs are relatively prime polynomials, it will follow that
the multiplicity of R/(f, g) will be bounded by r • s.

r • s.

We are going to ensure that these conditions on / and g are realized for /
and another element h of the ideal (f,g). After a linear, homogeneous change of
variables (as k is infinite), we may assume that each non-vanishing component of
/ and of g has unit coefficient in the variable JQ. For that end it suffices to use the
usual procedure on the product of all nonzero components of / and g. At this point
we may assume that / and g axe monic.

Rewrite now

jn - 1 i

with the a,-, bj in k[x\,... ,Xd-i\. Consider now the resultant of these two polyno-
mials with respect to xd:

1 am-{ am-2

1 am-1 a\

1 am-{ am-2

1 bn-\ bn^2 ••• b0

1 bn-i ... bi bo

1 bn-i bn-2

ao

aQ

We recall that h = Res(f,g) lies in the ideal (/,g). Scanning the rows of the matrix
above (n rows of entries of degree at most m, m rows of entries of degree at most n),
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it follows that degh < 2mn. A closer examination of the distribution of the degrees
shows that deg/z < mn (see [Wal62, Theorem 10.9]). If hp is the initial form of h,
then clearly hp and fr are relatively prime since the latter is monic in Xd, while hp

lacks any term with X4.
Assembling the estimates, one has

') < deg/f/(/,h) < r-p <m-mn = nm ,

as claimed. •

Corollary 1.35 Let S = k[x{,... ,xcj+[]/(f) be a reduced hypersurface ring over a
field of characteristic zero, with deg/ = e. Then any chain of algebras between S
and its integral closure, satisfying the condition S>, has length at most e(e — 1)".

Remark 1,36 One must be careful to use this notion of multiplicity in these es-
timates instead of the more classical one. Consider the case of the graded ring
S = klx1 ,x2n+l}. Its ordinary multiplicity at the origin is 2, while the multiplicity
derived from the Noether normalization is e = n + 1 . This is the value to be used in
the estimation since there are chains of length n + 1 extensions between S and its
integral closure k[x\. (The author thanks W. Heinzer for this observation.)

A Rees Algebra Approach to the Integral Closure

We now introduce and analyze in detail one proper operation which does not use
so extensively Jacobian ideals. It is part of another methodology of finding integral
closures. Thus far, our approach to passing from one extension to another involved
the addition of a batch of new variables. More precisely, given say a setting as
above [using the same notation]

using a presentation of A to obtain its Jacobian ideal, one defines

B = Horns (/ , /) ,

where / i s a divisorial ideal constructed from J. The net result is that iteration of
this construction quickly leads to too many variables. It might be advisable to carry
out most of the construction in the original ring or even in S. Let us describe such
approach. We will refer to it as a modified proper operation.

Proposition 1.37 There is at least one modified proper operation whose iteration
leads to the integral closure ofS.

Proof. We assume that we have S C A c S and now we introduce a construction of
a divisorial algebra B that enlarges A whenever A 7̂  5. Denote / = c(A/S). Note
that / = Horns (A, 5) is the canonical ideal of A, and two possibilities may occur:

(a) I = A: In this case A is quasi-Gorenstein.
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(b) I?A

(a) In this case in the method we are going to use for case (b) would come
to a halt. To avoid that, we apply the Jacobian method to A to get (if A ^ A,
when the whole process would be halted anyway) an extension A ^ B. Observe
B = Horns (/,/) is computed in S and / = c(B) as well. In other words, we can
discard the variables used to find J. In case again c(B) = Bwe have no choice but
repeat the previous step.

(b) A natural choice is:

In other words, if R[It\ is the Rees algebra of the ideal I, X = Proj(i?[/r]), then
B = H°(X,Ox). To show that B is properly larger than A it suffices that exhibit this
at one of the associated prime ideals of /. Let p be a minimal prime of / for which
Sp 7̂  Ap. If /p is principal we have that Ip = tSp and therefore Sp = Ap, which is
a contradiction. This means that the ideal Ip has a minimal reduction of reduction
number at least one, that is, Fp

+1 = ul'p for some r > 1. This equation shows that

which gives the desired contradiction since Fpu~r contains Ap properly as Ip is not
principal.

We observe that a bound for the integer r can be found as well: Let g € J
be a form of degree e — 1 which together with / form a regular sequence of R —

We recall ([Va98b, Chapter 9]):

Theorem 1 3 8 Let (R, m) he a Cohen-Macaulay local ring of dimension d>\ and
infinite residue field. If I is an m-primary ideal whose multiplicity is e(I), then

r(I)<d-e(I)-2d+\. (3)

Furthermore, if I C ms, then

(4)

Thus the reduction number of the ideal Ip is bounded by the Hilbert-Samuel
multiplicity e(Ip) of Ip minus one. In a manner similar as we have argued earlier,
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By taking divisorial closures, we have

C(B) =

for r < e(e— 1), as desired. •

Suppose in a sequence of computations there is no halt. The proper opera-
tion above then leads to a faster approach to the integral closure according to the
following observation:

Proposition 1.39 Let S cAbe a divisorial extension and letl= c(A/S). IfB is the
divisorial closure of\Jn>l~Homs(ln,In), then

deg(c(A/5))>deg(c(fi/5)) + 2.

In particular, for any standard graded algebra of multiplicity e, the number of

terms in any chain of algebras obtained in this manner will have at most ^j~^~

divisorial extensions.

Proof. Suppose that the degrees of the conductors of A and B differ by 1. This
means that the two algebras agree at all localizations of S at height 1 primes, except
at R = Sp, and that X((B/A)p) = 1. We are going to show that for the given choice
of how B is built that is a contradiction.

We localize S,A,B,I at p but keep a simpler notation S = Sp, etc. Let (u) be a
minimal reduction of /, Ir+l = ulr. We know that r > 1 since / is not a principal
ideal, as A ^ B. We note that A C Iu~l c B. Since B/A is a simple 5-module, we
have that either A — lu { or B — lu l. We can readily rule out the first possibility.
The other leads to the equality

since B is an algebra. But this implies that

in other words, thatIu~l C Horns(/,S) = A. •

Remark 1.40 In case A is a non-homogeneous algebra, the cubic estimate of Corol-
lary 1.35 must be considered.

1.3 Tracking Number of an Algebra

We now give a more conceptual explanation of the boundedness of the chains of
the previous section based on another family of divisors attached to the extensions
([DV3]). Its added usefulness will include extensions to all characteristics.

Let £ be a finitely generated graded module over the polynomial ring R =
k[x\.... ,xc{\. If dim Is = d denote by det/?(£) the determinantal divisor of E: If £
has multiplicity e,
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Definition 1.41 The integer 8 will be called the tracking number of E: 8 — tn(is).

The terminology tracking number (or twisf) refers to the use of integers as lo-
cators, or tags, for modules and algebras in partially ordered sets. A forerunner of
this use was made in [VaO], when divisorial ideals were employed to bound chains
of algebras with the property S2 of Serre.

Chern Coefficients

We first develop the basic properties of this notion. It may help to begin with these
examples:

Example 1.42 If A is a homogeneous domain over a field k, R is a homogeneous
Noether normalization and S is a hypersurface ring over which A is birational,

RcS = R[t]/(f(t))cA

(/(/) is a homogeneous polynomial of degree e), we have (AfS)** = R[— (jQl. As a
consequence tn(A) < (2).

Another illustrative example, is that of the fractionary ideal / — (:^/y\y). I is
positively generated and/** =R(l/y): tn(7) = — 1.

The following observation shows the use of tracking numbers to locate the
members of certain chains of modules.

Proposition 1.43 IfE C F are modules with the same multiplicity that satisfy the
S-2 condition of Serre, then tn(E) > tn(F) with equality only ifE — F.

Proof. Consider the exact sequence

and we will key on the annihilator of C (the conductor of F into E). Localization
at height 1 prime p gives a free resolution of Cp and the equality

det(F)=det(q>p)-det(£).

Therefore det(£") = det(F) if and only if C has codimension at least two, which is
not possible if C 7̂  0 since it has depth at least 1. •

Corollary 1.44 If the modules in the (strict) chain

EQ C E:I C • • • C En

have the same multiplicity and satisfy the condition Si of Serre, then n < tn(£b) —
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Proposition 1.45 If the complex of finitely generated graded R-modules

is an exact sequence of free modules in each localization Rp at height one primes,
then tn(5) = tn(A) +tn(C).

Proof. We break up the complex into simpler exact complexes:

0 —> ker(<p) —> A —> A' — image (9) —> 0

0 -> A' —f ker(» —> ker(\|f)/A' --> 0

0 ->• B1 = image ( » —> C —> C/B1 -»• 0

and
0 -> ker(\|/) —> B —> B' -> 0.

We note that by hypothesis, codimker(<p) > i, codimC/B" > 2, codimker(\j/)/A':
2, so that we have the equality of determinantal divisors:

det(A) = det(A') = det(ker(\|/)), and det(C) = det(g').

What this all means is that we may assume the given complex is exact.
Suppose r = rank (A) and rank(C) = s and set n = r + s. Consider the pair

A1"A, ASC. For vi, . . . . vr G A, Mj , . . . , us G C, pick w; in B such that V|/(w/) = M; and
consider

Vi A • • • A vr A. wi A • • • A ws G AnB.

Different choices for w, would produce elements in AnB that differ from, the above
by terms that would contain at least r + 1 factors of the form

vi A - A v r A v f + i A - ,

with vi G A. Such products are torsion elements in AnB. This implies that modulo
torsion we have a well defined pairing

[ArA/torsion] ®R [A*C/torsion] —> [A"S/torsion].

When localized at primes p of codimension at most 1 the complex becomes an exact
complex of protective i?p-modules and the pairing is an isomorphism. Upon taking
biduals and the o divisorial composition, we obtain the asserted isomorphism. •

Corollary 1.46 Let

0->Ai —>A2—• >Aw->0

be a complex of graded R-modules and homogeneous homomorphisms which is an
exact complex of free modules in codimension 1. Then
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Proposi t ion 1.47 LetR — k[x\,... ,xci] and let

0-+A—>B—>C—>D-+0,

be an exact sequence of graded R-modules and homogeneous homomorphisms. If
dimi? = dimC = d, codimA > 1 and codiniD > 2, then tn(2?) = tn(C).

Corollary 1.48 IfE is a graded R-module of dimension d, then

tn(E) = tn^/mod torsion) = tn (£**).

Let A be a homogeneous algebra defined over a field & that admits a Noether
normalization R = k[x\,. ..,xj], then clearly tn#(A) = tn/f/(A'), where K is a field
extension of k,R^ = K®kR and A' = K^A. Partly for this reason, we can always
define the tracking number of an algebra by first enlarging the ground field. Having
done that and chosen a Noether normalization R that is a standard graded algebra,
it will follow that t%(A) is independent of R: the R-torsion submodule AQ of A is
actually an ideal of A whose definition is independent of R.

Calculation Rules

Proposition 1.49 Let E be a finitely generated graded module over the polynomial
ring R — k\x\,... ,Xd]. If E is torsionfree over R, tn(E) = e\ (E), the first Cheni
number ofE.

Proof. Let

0 -+ ®jR[-Vd)j] -> • • • -> ©y-/?[-pij] -> ®jR[-Vo,j] ->E->0

be a (graded) free resolution of E. The integer

hi

is (see [BH93, Proposition 4.1.9]) the next to the leading Hilbert coefficient of Is. It
is also the integer that one gets by taking the alternating product of the determinants
in the free graded resolution (see Corollary 1.46). •

In general, the connection between the tracking number and the first Hilbert
coefficient has to be 'adjusted' in the following manner.

Proposition 1.50 Let E be a finitely generated graded module overR = &[jq,... ,JC^].
If dim E = d and EQ is its torsion submodule,

0 -> Eo —> E —•£ ' ->( ) ,

then
tn(E) =tn(Er) = ei(E

f) = ei(E) + eo(Eo),

where eo(E) is the multiplicity ofEo if'dimZso = d — 1, or 0 otherwise.
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Proof. Denote by //AOO the Hilbert series of an i?-module A (see [BH93, Chap, 4])
and write

if dimA = d. For the exact sequence defining Ef, we have

where r = 1 if dim£b = <i — 1, or r > 2 otherwise. Since

the assertion follows. •

Remark 1.51 This suggests a reformulation of the notion of tracking number. By
using exclusively the Hilbert function, the definition could be extended to all finite
modules over a graded algebra.

Corollary 1.52 Let E and F be graded R-modules of dimension d. Then

tn(E ®R F) = deg(E) • tn(F) + deg(F) • tn(F).

Proof. By Corollary 1.48, we may assume that E and F are torsionfree modules.
Let P and Q be minimal protective resolutions of E and F, respectively. The com-
plex P®i?Q is acyclic in codimension 1, by the assumption on E and F. We can
then use Corollary 1.46,

tn(E®RF) =
k>0

Expanding gives the desired formula. •

Theorem 1*53 Let A be a simplicial complex on the vertex set V = {x\,,,. ,xn},
and denote by k\A] the corresponding Stanley-Reisner ring. 7/dim£[A] = d,

where f] denotes the number of faces of dimension i, and fd_2 denotes the number
of maximal faces of dimension d — 2.

Proof. Set k[A] = S/I\, and decompose 4 = /} C\I2, where I\ is the intersection of
the primary components of dimension d and k of the remaining components. The
exact sequence

0-/l/4 —

gives, according to Proposition 1.50,

From the Hilbert function of A;[A] ([BH93, Lemma 5.1.8]), we have that eL =
dfd-i — fd-2, while if II/IA is a module of dimension d — 1, its multiplicity is
the number of maximal faces of dimension d — 2. •
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Theorem 1.54 Let S — k[xi,... ,xn] be a ring of polynomials, and A — S1I a graded
algebra. For a monomial ordering >, denote by 1 — ?'«>(/) the initial ideal asso-
ciated to I and set B = S/I'. Then ln(B) > tn(A).

Proof. Let / be the component of I of maximal dimension and consider the exact
sequence

0 -> J/I —> S/I —> S/J -> 0.

dim/// < dimA and therefore tn(A) = tn(S/J) = e[(S/J). Denote by / the corre-
sponding initial ideal of / , and consider the sequence

0 ->• / / / ' —> S/I' —> S/J1 -»• 0.

Noting that S/I and S/J have the same multiplicity, and so do S/I and S/J' by
Macaulay's theorem, dim.///' < dimA, This means that

ta(5/7/) - tn(5//) - ei(S/f) + eo(f/I
t) - ej(5/J) + e 0( / / / ' ) ^ tn(A)

Example 1.55 Let A = k[x,y,z,w]/(x^ ~yzw,x2y — zw2). The Hilbert series of this
(Cohen-Macaulay) algebra is

LI (f\ _ '"A\-/

so that

Consider now the algebra B = k[x,y,z,w]/J, where J is the initial ideal of / for
the Deglex order. A calculation with Macaulayl gives

/ = (x2)', x3, xzw2, xy3zw, y5ziv).

By Macaulay's Theorem, B has the same Hilbert function as A. An examination of
the components of B, gives an exact sequence

0 -> Bo —> B —> B' -> 0,

where BQ is the ideal of elements with support in codimension 1. By Corollary 1.48,

At same time, one has the equality of ̂ -polynomials,

hB(t)=hBI(t) + (l-t)hBo(t),

and therefore

A final calculation of multiplicities gives eo(Bo) = 5, and

tn(5) = 18 + 5 = 23.

The example shows that tn(A) is independent of the Hilbert function of the algebra.
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Bounding Tracking Numbers

We now describe how the technique of generic hyperplane sections leads to bounds
of various kinds. We are going to assume that the algebras are defined over infinite
fields.

One of the important properties of the tracking number is that it will not change
under hyperplane sections as long as the dimension of the ring is at least 3. So one
can answer questions about the tracking number just by studying the 2 dimensional
case. Hie idea here is that tracking number is more or less the same material as <\
and hence cutting by a superficial element will not change it unless the dimension
is to drop below 2.

Proposition 1.56 Let E be o finitely generated graded module of dimension d over
R = k[x\,,.. ,Xd} with d > 2. Then for a general element h of degree one Ft = R/(h)
is also a polynomial ring, and tnn(E) = tnR/(Ef), where E' = E/hE.

Proof. First we will prove the statement for a torsion free module E. Consider the
exact sequence

0 _, E —>E** —> C -> 0.

Note that C has codimensioii at least 2 since after localization at any height 1 prime
E and E** are equal. Now for a linear form hinR that is a superficial element for
C we can tensor the above exact sequence with R/(h) to get the complex

Tori(C,/?/(/i)) —> E/hE —> E**/hE** —> C/hC -> 0.

Now as an jR-module C/hC has codimension at least 3, so as an R" = R/(h) module
it has codimension at least 2. Also as Toii(C,R/(h)) has codimension at least 2
as an i?-moduie, so it is a torsion i?/(7?)-module. Hence we have ti^i(E/hE) ~
tnR>(E**/hE**). But E** is a torsion free R/{h)-module, so

tax {E/hE) = ei(E**/hE**) = ei(E**) - tnR{E**) = tnR(E).

To prove the statement for a general R module E, we consider the short exact
sequence

0 --> EQ —> E —•£ ' ->( ) ,

where EQ is the torsion submodule of E. E' is torsion free, so by the first case we
know that for a general linear element h of R, tiiR/^iE'/hE') = triR(E'). Now if
in addition we restrict ourselves to those h that are superficial for E and Ej, we can
tensor the above exact sequence with R/(h) and get

0 = Tori (E',R/(h)) —> E0/hEQ —> E/hE —> E'/hE' ->• 0,

but since EQ/IIEQ is a torsion R1 = /?/(/?)-module, tnR'(E/hE) = in.gi{E'/hE') =

We shall now derive the first of our general bounds for tn(E) in terms of the
Castelnuovo-Mumford regularity reg(E) of the module. For terminology and basic
properties of the reg(-) function, we shall use [Ei95, Section 20.5].
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Theorem 1.57 LetR — k[x\,... ,Xd] and E a generated graded R-module of dimen-
sion d. Then

<deg(E)-reg(£).

Proof. The assertion is clear if d = 0. For d > 1, if EQ denotes the submodule of
E of the elements with finite support, deg(Zs) = deg{E /EQ), in{E) — tn(E /EQ) and
XQg(E/EQ) < reg(E), the latter according to [Ei95, Corollary 20.19(d)]. From this
reduction, the assertion is also clear if d = 1.

If d > 3, we use a hyperplane section h so that rift (Z?) = tnR/^(E/hE), accord-
ing to Proposition 1.56, and mg(E/hE) < reg(E), according to [Ei95, Proposition
20.20]. (Of course, deg(E) = deg(E/hE).)

With these reductions, we may assume that d = 2 and that depth E > 0. Denote
by EQ now the torsion submodule of E and consider the exact sequence

0 _, EQ —* E —• E' ->• 0.

Noting that either EQ is zero or depth EQ > 0, taking local cohomology with respect
to the maximal ideal m = (x],X2), we have the exact sequence

0 > Hi(E0) > H1JE) --> Hi(Ef) - HI(EQ) - 0 > Hl(E) • - H^E!) > 0,

from which we get
reg(ii) = max{reg(£'o);reg(JE'/)}.

This provides the final reduction tod = 2 and E torsionfree. Let

[j} ® h ^ - ] — E—> 0

be a minimal projective resolution of E, From Corollary 1.46, we have

Reducing this complex modulo a hyperplane section h, we get a minimal free res-
olution for the graded module E/hE over the PID R/(h). By the basic theorem for
modules over such rings, after basis change, we may assume that

bj = cij + Cj, Cj > 0 , j = l . . . s.

Noting that a = reg(£") = max{a,, bj — 1 j i = 1... r, 7 = 1 s} > 0, and deg(ii) =
r — s, we have

deg(£)reg(£) - tn(E) = (r- s)a - £ CH + £ («; + c
i=l i=\

r i*

L ( a -~ad
s+i.

> 0,
as desired. D
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Positivity of Tracking Numbers

We shall now prove our main result, the somewhat surprising fact that for a reduced
homogeneous algebra A, tn(A) > 0. Since such algebras already admit a general
upper bound for tn(A) in terms of its multiplicity, together these statements are
useful in the construction of integral closures by all algorithms that use intermediate
extensions that satisfy the condition Sz of Serre.

Theorem 1.58 Let A be a reduced, non-negativeiy graded algebra that is finite
over a standard graded Noether normalization R. Then tn(A) > 0.

Proof. Let A = 5/7, 5 = k[x\,... ,xn], be a graded presentation of A. From our
earlier discussion, we may assume that / is height unmixed (as otherwise the lower
dimensional components gives rise to the torsion part of A, which is dropped in the
calculation of tn(E) anyway).

Let / = P\ n • • • n Pr be the primary decomposition of /, and define the natural
exact sequence

0 -> S/7 —> S/Pi x - • • x S/Pr —> C -> 0,

from which a calculation with Hilbert coefficients gives

tn(A) =

This shows that it suffices to assume that A is a domain.
Let A denote the integral closure of A. Note that A is also a n on-negatively

graded algebra and that the same Noether normalization R can be used. Since
tn(A) > tn(A), we may assume that A is integrally closed.

Since the cases dimA < 1 are trivial, we may assume dimA = d>2. The case
d = 2 is also clear since A is then Cohen-Macaulay. Assume then d > 2. We are
going to change the base field using rational, extensions of the form kit), which do
not affect the integral closure condition. (Of course we may assume that the base
field is infinite.)

If h\ and hi are linearly independent hyperplane sections in R, they define a
regular sequence in A, since the algebra being normal satisfies the £ condition of
Serre. Effecting a change of ring of the type k —> k(t) gives a hyperplane section
h\—t-hi€R{t), which is a prime element in A, according to Nagata's trick. Clearly
we can choose h\ and hi so that h\—t • hi is a generic hyperplane section for the
purpose of applying Proposition 1.56 to A. This completes the reduction to domains
in dimension d—\. •

One application is to the study of constructions of the integral closure of an
affine domain (see [VaO] where details are given and the characteristic zero case is
exploited via resultants).
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Theorem 1.59 Let A be a standard graded domain over a field k and let A be its
integral closure. Then any chain of distinct subalgebras satisfying the condition S
of'Serre,

AcA1 C ••• CAn=A,

has length at most fy, where e = deg(A).

Proof. It will suffice, according to Corollary 1.44, to show that 0 < tn(A) < (j).
The non-negativity having been established in Theorem 1.58, we now prove the
upper bound.

If k is a field of characteristic zero, by the theorem of the primitive element,
A contains a hypersurface ring 5 = R[t]/(f(t)), where R is a ring of polynomials
R — k[zi, • • •, Zd] > deg(zi) — 1, and f(t) is a homogeneous polynomial in t of degree
e. As tn(A) < tn(S) = (f,), the assertion would hold in this case. (We also observe
that when dimA > 3, any hyperplane section, say h, used to reduce the dimension
that were employed in the proof of Theorem 1.58, could be chosen so that the
image of S in A/hA would be S/(h), and therefore we would maintain the same
upper bound.)

To complete the proof in other characteristics we resort to the following con-
struction developed in Proposition 1.1. If A = R[y\,... ,yn], let

be the i?-module of rank e constructed there. As the rank satisfies the equality
e = Ili=i ru e is the number of 'monomials' yj1 • • -yt. Their linear independence
over I? is a simple verification. Note also that there are monomials of all degrees
between 0 and X/Li(r*'"" -0- Thus according to Proposition 1.49, the bound for
ln(E) is obvious, with equality holding only when E is a hypersurface ring over J?.
(The precise value for tn(ii) could be derived from Corollary 1.52.) •

1.4 Embedding Dimension of the Integral Closure

Let k be a field, and let A be a reduced ring which is a finitely generated fc-algebra.
The integral closure A is also an affme algebra over k,

A = k[xi,... ,xn]/I =-> A = k\yi,...,ym\/J.

The least n, among all such presentations of A, is the embedding dimension of A,
embdim(A). We will be focused on the number ofindeterininat.es needed to present
A. If A is N- graded, A is similarly graded and there will be presentations where the
>'; are homogeneous elements. The degree of a presentation of A is the maximum
of the deg()'F-). We will denote by embdeg(A) the minimum achieved among all
presentations; we call that integer the embedding degree of A. (For the moment
we shall blur the fact that a short presentation-one yielding embdim(A)-raay not
correspond to the presentation giving rise to embdeg(A).)

These numbers are major measures of the complexity of computing A. Our aim
here is to give estimates for the embedding dimension of A, and in the graded case
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to embdeg(A), under some restrictions. Whenever possible we will seek to control
the embedding dimension of all intermediate rings which occur in the construction
of A, A major concern is to make use of known properties of A, such as informa-
tion about its singular locus, or expected geometric properties of A, in particular
regarding its depth.

We introduce here a geometric approach to this problem. A direct approach
would be to attempt to bound degree data on the presentation ideal J in terms of
n and /. We will follow a different path, as we will assume that we possess in-
formation about A with a geometric content, such as the dimension of A and its
multiplicity, and on certain instances some fine data on its singular locus. Our re-
sults will then be expressed by bounding either embdim(B) or embdeg(B) in terms
of that data.

In order to explain our results, let us bring out the invariants of an affme ring
A which are likely to occur in any estimate for embdim(A) and for embdeg(A).
We shall assume that A is reduced and equidimensional. One source of difficulty
lies in that the ring B = A may also be the integral closure of other rings. This
fuzziness is at the same time a path to dealing with this problem in some cases of
interest. Assume that k is an infinite field, so that after a possible change of vari-
ables, the subring generated by the images of the first d variables ^'s is a Noether
normalization of A,

T = k[xi,... ,xj] c—> A.

If A is reduced and equidimensional, the rank of A over T is the ordinary torsion-
free rank over A as a T-module. Denote by deg(A) the least torsionfree rank of A
over T for all possible Noether normalizations; this number is equal to the ordinary
multiplicity deg(A) of A, when A is a graded algebra. By the theorem of the primi-
tive element, there exists an element u € A, satisfying an equation /(«) = 0, where
f(t) is a monic, irreducible polynomial of T[t], deg/(f) = deg(A). This will imply
that S — T[t]/(f(t)) is a subring of A such that B is also the integral closure of S.
This shows that the only general numerical invariants we can really use for A are
its dimension and multiplicity, and to a lesser extent the Jacobian ideal of S.

There are many cases when an estimate for embdim(A) is easy to obtain: A is
Cohen-Macaulay. The ring A is then a free module over 7, of rank deg(A) having
T as a summand. Therefore embdim(A) < dimAH-deg(A) — 1. For example, if
dimA < 2 this will always hold. Another instance are the rings A generated by
monomials; by the well-known theorem of Hochster ([Ho72]), A will be Cohen-
Macaulay.

Our overall aim is to derive elementary functions $(d,e) and d(d,e), polyno-
mial in e for fixed d, such that for any standard graded equidimensional reduced
algebra A of dimension d = dimA and multiplicity e — deg(A),

embdim(A) < p(dimA,deg(A))
embdeg(A) < 8(dimA,deg(A)).

The existence of such functions, albeit not in any explicit form, and therefore
without the link to complexity, has been established in [DK84, Theorem 3.1] in a
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model theoretic formulation grounded on the explicit construction of integral clo-
sures of [Sei75] and [Sto68J. The bounds given here, beyond their effective char-
acter, seek to derive formulas for $(d,e) and b(d,e) that are sensitive to additional
information that is known about A, such as the case when the dimension is at most
3 or the singular locus is small. To exercise this kind of control one must however
work in very strict characteristics, usually zero.

Cohen-Macaulay Integral Closure

We begin by introducing some notation and terminology and make some general
comments. Throughout we use standard terminology: an affine algebra A will
denote a finitely generated algebra k\ai,...,an] over a field k, and it said to be a
standard graded algebra if it is affine and generated by its elements of degree 1.

Suppose A is an affine algebra, and R = k[z] =k[zi,...,Zd] is one of its Noether
normalizations. The rank of A over R is the dimension of the if-vector space B(SRK,

where K is the field of fractions of R. This dimension may vary with the choice
of the Noether normalization. When A is a standard graded algebra and the 4
are homogeneous of degree 1, this rank is equal to the multiplicity deg(A) of A
as provided by its Hilbert function. It is thus independent of the choice of such
Noether normalization. In the non-graded case, by abuse of terminology, we let
degA denote the infimum. of the ranks of A over its various Noether normalizations,
a terminology that is consistent in the graded case.

Theorem 1.60 Let A. be a reduced, equidimensional affine domain over afield k.
Let R ~ k\X{.... ,X(j] c--> Abe a Noether normalization and suppose that rairi&(A) =
e > 1.

(i) If the integral closure B of A is Cohen-Macaulay then embdim(5) < d + e --- 1.

(ii) If moreover A is a standard graded algebra and R is generated by forms of
degree 1, then B can be generated by elements of degree at most e—l

Proof, (i) If B is Cohen-Macaulay, then B is simply a free /?-module so B can be
generated by deg(iS) module generators over R. Furthermore the embedding R c--> B
gives a splitting and consequently

embdim(g) < d + deg(B) - 1.

(ii) We may assume that k is an infinite field. Let R be a Noether normalization
as above and denote by S = R[t]/(f) a hypersurface ring contained in B, where / is
a form of degree e. Consider the exact sequence

viewed as modules over a Noether normalization T = k[z\,... ,Zd\ of S, where the
H are 1-forms. Since C is a Cohen-Macaulay module of dimension d — 1, we may
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even assume that z — z\,• • -,Zd-\ is aregular sequence on C. Reduction modulo z
gives an exact sequence of graded k[zd] -modules

where C is a torsion &[^]-module. By the fundamental theorem for free k[zj]-
modules and its submoduies, there exists a homogeneous basis of B, %,...,£<? such
that for some integers d\,..., de, the z^e,- form a basis of 5. This shows that deg § <
e—1 since S is generated by elements of degree at most e—l. •

This is the optimal case but it is rarely achieved. It will always be the case when
d < 2, or deg (A) = 2, and by a theorem of Hochster ([Ho72]), for all monomial
subrings. In many other constructions it is assured not to happen. Here is a partial
explanation.

Proposition 1.61 Let A be an integrally closed affine domain over a field of char-
acteristic zero. If A is not Cohen-Macaulay then any finite integral extension B
which is a domain is not Cohen-Macaulay either.

This is explained by the following fact. Let K c L be the field of fractions of
A and B, respectively, and denote by N the Galois closure of L/K. The trace map

jK induces a A-module map

: B h-> A,

where s is the relative degree of the fields [N : K], It provides a splitting decompo-
sition

B = A®M.

On the other hand, we have the standard inequality of direct summands

depth B < depth A.

An example of such rings is built as follows. Let S = k[x,y,z]/{f), say / =
x3 +y3 +z3, over a field k of characteristic zero. Let R be the Rees algebra of
(x,y,z)S. It is easy to see that R is normal but not Cohen-Macaulay.

Dimension 3 + +

The case of dim A < 2 being considered above, we focus here on the conditions
that are always present when dimA > 3 and deg (A) > 3. Because of its dependence
on Jacobian ideals most of our assertions will only be valid over fields of large
characteristic.

Let A = k\x-[,... ,xn]/I be a reduced equidimensional affine algebra over a field
of characteristic zero, n — embdim(A), of dimension dimA = d. We call ecodim(A) =
n — d the embedding codimension of A. We denote by Qk(A) the module of Kahler
differentials of A Ik. By J(A) we denote the Jacobian ideal Fi%(O^(A)) of A. Re-
call that V(J(A)) = Sing(A) if k is perfect and A is equidimensional.
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Lemma 1.62 Let k be afield of characteristic zero, let S be a reduced and equidi-
mensional standard graded k-algebra of dimension d and multiplicity e > 2 and
assume that embdim(5) < d + 1. If S G B is a finite and birational extension of
rings, then the S-module B/S satisfies

deg(B/S)<(e--l)2,

Proof. We may assume that S ̂  B. As 5 satisfies % and the extension S c B is
finite and birational, it follows that the 5-module B/S is of pure codimension one.
Thus, since S is Gorenstein,

Applying Horns (-,5) to the exact sequence

0 -> S —>B — /

yields an exact sequence

0 -> S/S :s B —> E)Lil
s(B/S,S) —• Extl

s(B,S) -»• 0,

Since B has the property 5? over the Gorenstein ring 5, the 5-module Ex^(B, S) has
codimension at least 2. Thus

deg(Ex4(fi/S,S)) = deg(5/5 :s B).

On the other hand J(S) C S :s S by [No50]. Hence J(S) C S :s B and then, as both
ideals have height one,

dcg(S/S:sB)<dcg(S/J(S)).

Finally, write S = R/(f) with R = k\x[,... ,xn] a polynomial ring and / a form of

degree e. Set J = R(^~-,... ,-^-j. One has / G / since characteristic k = 0 and

hence 5/7(5) = i?/7. But 7 is an ideal of height 2 generated by forms of degree
e — 1. Therefore

deg(5/7(5)) - deg(i?/7) < {e-\f.

We observe the following slight improvement which will apply to the integral
closure of A.

Corollary 1.63 If moreover the algebra B satisfies Si then

deg(B/S)<e(e--2).

Proof. We pick up the proof above after observing that Ex^(B,S) has codimension
at least 3. Let g,h be forms of degree e — 1 in 7 generating a regular sequence.
Consider the induced exact sequence

0 -> L —> R/(g, h) —> Ext|(C, 5) —> Ex4(5,5) -»• 0. (5)
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We cannot have L — 0 as R/(f,g) is Cohen-Macaulay of dimension d — 1 and
therefore Exts(J3,S) would have codimension at most 2. Thus L must be nonzero,
of dimension d— I, and therefore

deg(S/J(S)) < dcg(R/(g,h)) - 1 < (e - I)2 - 1 - e(e - 2).

Theorem 1.64 Let k be a field of characteristic zero and let A be a reduced anil
equidimensional standard graded k-algebra of dimension d and multiplicity e > 1.
If A C B is a finite and birational extension of graded rings with depth AB > d — 1,
then

vA(B)<(e-l)2

and

embdim(B) < (e-\f + d+\. (6)

Proof. There exists a homogeneous subalgebra S of A so that embdim(5r) < d+l
and the extension S C A is finite and birational. Notice that deg(S) = deg(A) = e.
The 5-module B/S is Cohen-Macaulay. Therefore vs(B/S) < deg(B/S) and the
assertions follow by Lemma 1.62. •

Corollary 1,65 Let k be a field of characteristic zero and let A be a reduced and
equidimensional standard graded k-algebra of dimension 3 and multiplicity e. The
integral closure 2? = A satisfies

embdim(JS) < (e - -1)2 + 4.

Remark 1,66 We will make two observations about this quadratic estimate, First,
the assertion is not strictly module theoretic, the algebra structure ofB really mat-
ters, not depending merely on the fact that B is a reflexive module over the Noether
normalization. For example, ifR = k\x,y,z\ and p is one of the Macaulay's prime
ideals with a large number of generators, there are exact sequences of the form

0->fl—>E—> p->0,

with E a reflexive module. Thus deg(£') — 2 butv(E) 3> 0. According to the result
mentioned, E could not be the underlying module of an integral domain finite over
R.

The other point is that even the quadratic bound may be too large and perhaps
a bound of type Cdeg(A)3/2 suffices. In examples it is all we have been able to
achieve.

Remark 1.67 Let R be a ring of polynomials over a field k of characteristic ̂  1
and let u ERbea polynomial which is not a square. Let B — R[T]/(T2 — u) —R[t\.
For any ideal I of R, A = R + It is an affine domain whose integral closure is B.
Note the significance of the Si condition of Serre for A: It will limit its embedding
dimension to dimA + i, otherwise it will be determined by the number of generators
of I if dimA > 1.
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Remark 1,68 If in the setting of Theorem 1.64, depth AB < d — 2 and B satisfies
Si (as an A-module or, equivalently, as a ring), then VA(B) > e + 3. Indeed, for a
homogeneous Noether normalization T of A, depth rB <d~2 and, the T-module B
satisfies 5*2. Thus any first syzygy module ofB over T is a nonfree third syzygy of fi-
nite projective dimension, thus has rank at least 3 by the Syzygy Theorem ([EG8I]).
It follows that vA(B) > vT(B) > ranksB + 3 = e + 3.

Non-Homogeneous Algebras

We now formulate a version of the estimates of the two previous sections valid
for general, affine algebras. We will deal with the non-homogeneous version of
Lemma 1,62 and Theorem 1.64. To this end we use a technique employed in [VaO].

Suppose A is a reduced, equidimensional, affine algebra over a field k of charac-
teristic zero. We denote by R = k\z\ = k[z,i,..., zj] one of its Noether normalizations
such that the rank e of A over R is minimal. As earlier, we set S = R[z/+i]/(f) to
be a hypersurface ring i ? c S c A over which A is rational, so that deg/ = e. With
abuse of terminology we shall refer to e as the 'multiplicity' of A.

Lemma 1.69 Let k be afield of characteristic zero, let S be a reduced and equidi-
mensional k-algebra of dimension d and multiplicity e > 1 and assume that embdim(S) <
d + 1. IfSdBis a finite and birational extension of rings, then for each maximal
ideal *p ofS, the S^-module (B/S)<$ satisfies

deg (B/S)v < e(e-l)2. (7)

Proof. Let S = k[zi,..-,Zd,Zd+i]/(f), deg/ = e. We may assume that k is alge-
braically closed and *p is defined by the origin. Since / is square free and the
characteristic of k is zero, after a possible linear change of variables we may as-
sume that / and one of its partial derivatives, g, form a regular sequence. We now
appeal to Proposition 1.34. •

Theorem 1.70 Let k be a field of characteristic zero and let A be a reduced and
equidimensional k-algebra of dimension d and multiplicity e > 1. If A C B is a
finite and birational extension of graded rings and for each maximal ideal ̂ 3 of A,
depth A Bsp >d—l, then

vA(B)<e(e~~l)2 + d+l

and

embdim(S) < e(e-I)2+ 2d+l. (8)

Proof. The proof is nearly the same as that of Theorem 1.64 once we have estab-
lished the local estimates for the number of generators of B/A. We complete by
appealing to Swan's Theorem. •

We obtain a general bound in the special case of dim A = 3:
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Corollary 1.71 Let k be a field of characteristic zero and let Abe a reduced and
equidimensional k-algebra of dimension 3 and multiplicity e. The integral closure
B = A satisfies

, ,. ,„. f (e — I ) 2 + 4 if A is homogeneous
e m b d i m f i ) < < \ , 2 i 7 . . . . ,

[ e{e~~ I) -fi if A is non homogeneous.

Small Singularities

Let A be a reduced equidimensional affine algebra over a perfect field k, let J be its
Jacobian ideal and B its integral closure. We treat the case of dimA = d > 4 and
assume that the singular locus of A is suitably small.

Suppose that height J > 2, a condition equivalent with Ap = Bp for each prime
ideal of A of height 1. This means that B is the ,%-in" cation of A, and one may
describe B as the outcome of a single operation. According to Theorem 1.15,

B = A ; J.

The issue is to estimate how many generators this process requires. One of our
results, for d = 4, will do precisely this. For higher dimensions we shall require a
condition of the order Rd-7, (see further for more precise statements). Before we
can get to this we need to examine various 'approximations' of B by some more
tractable subrings much in the manner that the hypersurface subring S was used in
Section 3. They will be aimed at converting information about the degrees of the
generators of a 'thick' portion of the Jacobian ideal / in terms of the multiplicity of
A.

Proposition 1.72 Let k be an infinite perfect field, let A be a finitely generated k-
algebra of dimension d, and let q be a prime ideal of A. //ecodim(Aq) < gfor some
g > 1, then there exists a k-subalgebra S — k[x{.... ,Xd+g] C A so that the extension
S C A is finite and

If in addition A is standard graded then x\,... ,Xd+g can be chosen to be linear
forms, and if A is reduced and equidimensional then the extension S C A can be
chosen to be birational.

Proof. Write A = k\y\,..., yn], where y\,..., yn are chosen to be linear forms if A
is standard graded. Letxi , . . . ,Xd+? be sufficiently general £-linear combinations of
yi,... ,yn. Write S = k[xi,... ,x^+?] and p = qOS. Obviously A is finite over S. If
A is reduced and equidimensional then the extension is birational since g > 1.

To show that the inclusion 5 C A induces an isomorphism Sp — Aq, write k(q)
for the residue field of q and consider the exact sequence

0 .-> D ------> R - k(q) ®kA —> k(q) -> 0 (9)
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induced by the multiplication map A®kA —> A. Notice that D = ]T"=1 R(}'i ® 1 —
1 ®y;) is a maximal ideal of R. Since

= v(Qk(Aq)) = embdim(A,,) + dimA/q

one has Dm = X/^f ÎD>C*; ® 1 — 1 ®x,-). On the other hand as dimi? = d < d + g,

;-rf R{xi ® 1 ~" 1 ®xi)', to see this recall that every ideal in a ^/-dimensional
ring containing an infinite field k is generated up to radical by d+ 1 general fc-linear
combinations of its generators. It follows that D =Y?i~'( R(xj® 1 — 1 ®Xi), Thus
by (9), fc(q) ®sA = fc(q). Comparing numbers of generators over the ring Sj, we
conclude that Vs (Aq) = 1, hence Sp=Aq. •

Corollary 1.73 Let k be an infinite perfect field and let A be a reduced and equidi-
mensional standard graded k-algebra of dimension d. Write A for the set of all
homogeneous subalgebras S = k\x\,... ,Xd+\\ of A so that the extension S C A is
finite and birational, and set J =Xse/4 A • J(S). Then \/J(A) — \fj.

Proof. For a fixed prime ideal q of A we apply Proposition 1.72 with g = 1. The
proposition shows that Aq is regular if and only if Sqr,,s is regular for some S e A.
Since 5 is again equidimensional one has J(A) C q if and only if 7(5) C q D 5 if and
only if A-/(S) C q for some S e / I . ' ' •

Corollary 1.74 Let k be an infinite perfect field and let A. be a reduced and equidi-
mensional standard graded k-algebra with e — deg(A) and c — codim(Sing(A)).
Then the conductor of A contains an ideal of height c generated by fonns of degree
e-L

Proof. We claim that the ideal j of Corollary 1.73 has the desired properties. First,
by the corollary, height j — c. Now let S e A. Since S — k\xi,... ,x(/+i] is reduced
and equidimensional of dimension d we can write S = k[X\,.,. ,X{j+i]/(f) where
/ is a form. As the homogeneous extension S C A is finite and birational one has
deg(5) = deg(A), thus deg/ = e. Therefore 7(5) is generated by forms of degree
e — 1 and hence J has the same property. Finally by [No50], 7(5) is contained in
the conductor c(5) of 5. But c(5) c c(A) since the extension 5 c A is finite and
birational. Thus indeed J C c(A). •

Theorem 1.75 Let k be a field of characteristic zero and let Abe a reduced and
equidimensional standard graded algebra of dimension d > 4 and multiplicity e.
Let A CB be a finite and birational extension of graded rings and let t be a positive
integer with 2<t< min{<i — 2, depth AB}. If A satisfies Rd-t-i then

vA(B) < (e(e-l))2M-(2e(e-l)f~'~2+2

embdim(fi) < (e(e- I))2'"'"' - (2e(e- l)f'~t~2 +t + 3.
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Proof. It suffices to show that vs(B/A) < (e(e~~l)f' '*"' - (2e(e- I))2"' ' 2 + 1 for
some homogeneous &~subalgebra S — k[x\,... ,xt+2] of A.

Let x = x\,... ,JE;_I be a sequence of general linear forms in A. Write E> =
B/B(x) and A' for the image of A in B1'. Since dinxi (B/A) < t one has dir%> B' /A' <
dim ĵ B'jA' < 1. Furthermore S ; satisfies Rd-t-i ([F177]), and is reduced and equidi-
mensional of dimension d — t + 1 > 3. Thus the standard graded ^-algebra A' has
the same properties. Moreover deg(A') = degA,(B') = degA(B) = deg(A) = e. By
the graded Nakayama lemma, as El /A' C A' /A', it suffices to show that for ev-
ery A'-submodule C of A'/A' and some homogeneous £>subalgebra S of A' with
embdim(5/) < 3,

Vy(C) < (deg(A')(deg(A') - I ) ) 2 *" '" 2 - (2deg(A')(deg(A/) - l ) 2 ^ ' " 3 +

Changing notation we prove the following: Let A be a reduced and equidimen-
sional standard graded fc-algebra of dimension d > 3 and multiplicity e satisfying
Rd-2- Tliere exists a homogeneous fc-subalgebra S of A with embdim(5) < 3 so that
for every A-submodule of B/A = A/A

vs(C) < (e(e - l)f"2 - (2e(e - I ) ) 2 " + 1. (10)

Write c for the conductor annA{B/A) of A. By Corollary 1.74, c contains forms
of degree e — 1 that generate an ideal J of height d—\. Let x be a general Minear
combination of these forms. Write / / = B/Bx and let S',Af be the images of 5,A in
B'. As height J>d — 1, it follows that B1 satisfies Rd....3 ([F177, Theorem 4.7]), and
B' is reduced and equidimensional of dimension d—\>2. Since dirn^B'/A' < 1,
A1 then has the same properties. Notice that deg(A') = e(e — 1) because x is a B-
regular form of degree e — 1. On the other hand, as x G c ~ a n n ^ ^ / A ) we have
B/A = B'/A' and therefore C C 5/A = Bf/A' C A'/A'.

We are now ready to prove (10) by induction on d > 3. If d = 3 let XL,X2,X$

be general linear forms in A, and write S = i'[xi,X2,X3] and 5' for the image of S
in A'. The extension 5̂  C A' is finite and birational, S' is a Cohen-Macaulay ring
of dimension 2, embdim^) < 3 = dim5"+ 1, and deg(S') = deg(A/). Thus the
S-module B1 /S' is Cohen-Macaulay of dimension 1 and has multiplicity at most
(deg(A') - I )2 by Lemma 1.62. Let D c Bf/Sf be the preimage of C c B'/A' under
the natural projection from B"/S' to B'/A'. As an ^-module of B'/S', D is also
Cohen-Macaulay of dimension 1. Therefore

vs(C) = vy (C) < v y (D) < deg(D) < deg(fi'/5') < (deg(A;) - I)2

= (e(e ~~ 1) - I)2 = (e(e - I))2 - 2e(e - 1) + 1

establishing (10) for d ~ 3.
If rf > 4 then by the induction hypothesis there exists a homogeneous &-subalgebra

5' of A' with embdimS7 < 3 so that

< (deg(A')(deg(A') - i))2dtalA'-2 _ (2deg(A/)(deg(A/) - S))2dim-4'"1 + i

= (e(e~ l)(e(e- I ) - I))2""3 - (2e(e- l)(e(e- 1) - l ) ) 2 ^
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To see the last inequality one may assume that e > 2; set a — e(e — 1) > 2 and
a = 2 d ~ 4 > 1, and use the fact that (a - l ) a < aa - a a l to deduce (a (a - l ) ) 2 a -•
(2a(a — l ) ) a < a4a — (2a)2a. Finally, let 5 be any homogeneous fc-subalgebra of A
with embdim(S) < 3 mapping onto Sf and notice that Vs(C) = Vy(C). •

Corollary 1.76 Let k be a field of characteristic zero and let A be a reduced and
equidimensional standard graded algebra of dimension d >4 and multiplicity e. If
A satisfies Rd~3 then for B —A

embdim(B) < (e(e - I ) ) 2 " - (2e(e - I))2""4 + 5.

In particular if d = 4 and A satisfies R\ then

embdim(fl) < (e(e ~~ 1 ))2 - 2e(e - 1) + 5.

Bounds on Degrees

In this section we give degree bounds for the generators of the integral closure of a
standard graded integral domains over a field of characteristic zero.

Our first bound has a conjectural basis, as it depends on the validity of the
conjecture of [EG84]:

Conjecture 1.77 (Eisenbucl-Goto) Let A be a homogeneous integral domain over
an integrally closed field of characteristic zero. Then the Casteinuovo-Mumford
regularity of A is bounded by

reg(A) < deg(A) — codim(A) + 1.

Theorem 1.78 Let k be afield of characteristic zero and let A be a standard graded
domain over k of dimension d and multiplicity e. Write B = A and suppose that A
satisfies the condition R\. If (1.77) holds in dimension < d — 1 then

embdeg(5) < ( e - l ) 2 . (11)

Proof. Consider the exact sequence

0-->A —>B —>D-*0,

and we will seek to estimate the degrees of the generators of D, We set A = R/p
where R is a ring of polynomials. By Corollary 1.74 and Bertini's theorem {[F177,
Theorem 4.7]), there exists a form / of degree e—l in the conductor of A such
that B/fB is an integral domain. Tensoring the exact sequence above by A/(/) , we
obtain the exact sequence

We write
D[-(e-l)] = y/(p,f)cR/(p,f),
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and observe that R/*$ is a subring of B/fB and therefore it is an integral domain of
dimension d — 1, and multiplicity e(e — 1), since dimD <d — 2.

When we apply (1.77) to the standard graded domain R/^p, we obtain that
$P is generated by elements of degree < degl?/^$ = e(e — 1). This means that
D[~~(e — 1)] is also generated by elements of this degree, and therefore D can be
generated by elements of degree at most e(e — \) — (e—l) = (e—lf. •

The bound predicted by (1.77) have been established in very low dimensions
(< 3), often with additional restrictions. On the other hand, for isolated singularities
there is the bound of Mumford [BM91, Theorem 3.12(b)], that implies that B is
generated in degrees at most d(e — 2) + 2.

Proposition 1.79 Let k be an infinite perfect field, letA = k\}\,... ,yn\ be an equidi-
mensional k-algebra of dimension d, and, let s be a positive integer. Let %...., x^+s

be genera! k-linear combinations ofyi ,...,yn and write S = k[x\,... ,xj+s] C A. If
ecodim(Aq) < dim A^ for every prime q of A with dimAq < s — 1, then Sp =Apfor
every prime p ofS with dimSp < s — 1.

Proof. Consider the exact sequence

0-.D—>R = A®kA
T^A^>0. (12)

The ring R is equidimensional and D ^X/Li R(yi ® 1 — 1 ®yi) is an ideal of height
d. Furthermore by our assumption, v(ID>g) < dimi?g for every Q E F(D) with
dim/?g <d + s—\, i.e., © satisfies the condition Gj+S. But then

d+s

height (Y, R(x' ® 1 - 1 ®*0) '^>>d + s. (13)
i=l

Now let p be a prime of S with dimSp < s ~~ 3. As dimAp ®^ Ap < dimAp 4-
dim A < d + s—1,(13) implies that

d+s
(Ap ®kAp)B = ^ (Ap ®kAv)(xi 0 1 - 1 ®xt).

Thus Ap ®sp Ap = Ap by (12). Since Ap is a finite Sp-module, comparing numbers
of generators then yields v$p (Ap) — 1, hence Sp~Ap. •

Theorem 1.80 Let k be a perfect field, let A be a reduced and equidimensional
standard graded k-algebra of dimension d and multiplicity e > 2, and let A C B be
a finite and birational extension of graded rings. If A satisfies R\ and depth AB >
d—1, then the A-module B is generated in degrees at most 3e — 4.

Proof. We may assume that k is infinite and then by Proposition 1.79 we may re-
duce to the case where A = k[xi,... ,xci+2\ with the Xj linear forms. Take X{,,.. ,xci+2
to be general, map the polynomial ring R = k[X[,... , ^+2] onto A by sending X-t
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toxi, and write S — k[x\,..., JC<?+I] C A. One has S — k\X\.... ,Xcj+i]/(f) for some
form / of degree e. Since S is reduced there exists a form g e k[X\,... ,Xa+i] of
degree e — 1 so that f,g are a regular sequence on k[X\,... ,Xd+\] and the image of
g in S lies in J(S), hence in the conductor of S ([No50]). Write &[.\j,... ,xa-,Av+2J =
&[X],... ,Xj,Xd+2\/(h) where h is a form of degree e. As h is monic in ^Q+2, it
follows that f,g, h is an i?-regular sequence.

Consider the ring A' = R/(f,h) and its homogeneous Noether normalization

Since the socle of the complete intersection A'/(x[,... .xci-{.,g) is concentrated in
degree deg/ + d&gh + degg — 3 = 3e — 4, we conclude that the 51-module A' is
generated in degrees at most 3e — 4. But A' maps onto A and gB C A. Thus as
modules over the polynomial ring T = k[Xi,... ,Xd-i],A/S is generated in degrees
at most 3e 4 and B/S is finite.

Now consider the exact sequence of graded r-modules,

0 -). M - A/5 —>N = B/S —> fi/A -> 0.

Here iV is a maximal Cohen-Macaulay module, hence free, whereas dimN/M —
dimB/A < d — 2 < dimT. If the degree of a homogeneous basis element of N
exceeds 3e — 4, then N/M has a nontrivial free summand, which is impossible.
Thus the T-module N is generated in degrees at most 3e — 4, and then the same
holds for the A-module B. •

1.5 Homological Degrees of Bideals

Let A be an affine domain over a field and let E be a finitely generated torsionfree
A-module. The construction of faidual, E** = HomA(Hom,i(.E',A),A), occurs often
in our treatment of integral closure and a comparison between the number of gen-
erators of E and of E** is required, at least in the case when A is a Gorenstein ring.
This is not always possible but we are going to show how the theory of homological
degrees developed in [Va98a] may help.

Proposition 1.81 Let (R,m) be a Gorenstein local ring of dimension d, and let E
be a torsionfree R—module and let F be its bidual. IfdimF/E ~ 2, then

if d = 4,5.

Proof. Set C — F/E and note that in general dimC < d — 2. We note also that the
case dimC < 1 will easily be gleaned in the proof. Consider the exact sequence

and apply the functor Horn^(•,/?). WTe observe that by local duality ExiR(C,R) —
Ofori<d-3, ExeR(F,R) = 0 for i > d ~~ 1, that Bx^~2(F,R) has finite length
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because F satisfies the condition & of Serre, and in a similar manner Exr|(F, J?) —
0 and Ext^"1 (E.R) has finite length because E is torsionfree. With this the long
exact sequence of cohomology breaks down into the shorter exact sequences:

Ex4(F,i?) = Ex4(£, R), i<d- 4,

'"'\F,R) -+EX4~"3(E,R) ->EX4~~2(C,R) ->Ext£ 2(F,i?) ^ E x t f 2(

Exrf '(F.,i?) =Ext|(C,i?).

We break down the mid sequence into short exact sequences

0 -> Ex4-3(F,R) -+ Ex4~\E,R) --* Lo --> 0

0 -> Li -+ E x 4 2 (F , i? ) ~~> L2 -™> 0

We recall the expression for hdeg(F)

hdeg(E) = deg(£) +

•hdeg(Ext^(F,

and identify similar values for the expression for hdeg(F). Note that for i < d —
4, they are the same. We are going to argue that for the higher dimensions the
contributions ofExtR(E,R) are at least as high as those of ExiR(F,R}). We have to
concern ourselves with Exf^3 (F,i?) and Ext^ 2(F,R).

The key module to examine is H = Ext^ (C,R). Since dimC = 2, its bot-
tom cohomology module is a module of dimension 2 of depth 2 as well: H =
IIomR/'j(C,R/I), I being a complete intersection of codimension d — 2 contained
in the annihilator of C. In particular, LQ is a nonzero module of positive depth and
dimension 2, since ExtJ»~ (F,R) has dimension at most 1, as remarked at the outset;
it is the full submodule of Extijf3(E.R) of dimension < 1.

Since Exr|~2(C,i?) has depth 2, we have that EX^~1(LQ,R) = Extf (Lj.i?), a
module of the same length as L\. On the other hand, the cohomology of the se-
quence defining LQ gives the exact sequences

0 -> Exrf""1 (L0,i?) -> Ext^"1 (ExtdR~3(E,R)M) -> ExtdR~'1 (Extf'3(F,R),R) -»• 0

that establishes the equality

hdeg(Ex4"-3(F,i?)) = hdeg(Ex4-3(Fi?)) + hdeg(Lo). (14)
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As for Extg 2(F,R), the modules L\ and Li have finite length and

hdeg(Ex4~2(F,i?)) = \{LX) + X(L2) < hdeg(Lo) + hdeg(Ext^2(F,i?)). (15)

The con'esponding terms in the formula for hdeg(iT) and hdeg(F) are respec-
tively

( ^ 4 ) .hdeg(Ext£-3(E,R)) + ^ " ^ .hdeg(Ex4~2(E,R)) (16)

hdeg(Ex4 3(F,i?))+ ^ " ^ .hdeg(Ext£-2(F,/?)). (17)

Replacing hdeg(Ex$~2(E,/?)) from (14) by hdeg(Ex4"3(F,R)) + hdeg(io),
and moving the term with hdeg(Zo) over we get

1\ (d—1\ (d— \\
hdegCEx4~3(F.i?))+ )hdes(Exti~2(E.R))+[ hdeg(L0). (18)

4/ ^ " \d-3J ' \d-4_ 4J
For c? > 6, ( ) > ( j , which shows that taking (15) into account the

\d ~4J \d~3J
expression (18) exceeds (17), as desired.

In case of d = 4,5, taking twice (^I4) will serve the stated purpose. •

Remark 1,82 Since for any module F, v(F) < hdeg(F), the result bounds v(F) in
terms of hdeg(is). The coefficient of 2 in case of d = 4,5 probably can be refined
further.

Corollary 1,83 Let R be a Gorenstein local ring of dimension 4. For any finitely
generated torsionfree R-module E, hdeg(£*+) < 2-hdeg(£").

Proof". Note that the hypothesis on C is always satisfied when d = 4. •
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2 Normalization of Ideals and Modules

An issue is how to introduce numerical measures, with similar properties to those
we employed in the case of algebras, which are appropriate to the normalization of
ideals.

2.1 Normalization of Ideals

This section examines several auxiliary constructions and devices to examine the
integral closure of ideals, and to study the properties and applications to normal-
ization of ideals.

A non direct construction of the integral closure of an ideal can be sketched as
follows. Let R be a normal domain and let / be an ideal. 7 is the degree 1 component
of the integral closure of the Rees algebra of /:

* R[It] =R + \It] + fit2 + • • •

This begs the issue since the construction of R[It], for arbitrary ideals, may verge
on the impossibility. It takes place in a much larger setting (that of a presentation
R[It] ~ R[Ti,...,Tn]/L). By a direct construction / ~ » 7 we mean an algorithm
whose steps take place entirely in R. These are lacking in the literature. We provide
in full details a simple situation, that of monomial ideals of finite colength.

The significant difference between the construction of the integral closure of
an affine algebra A and that of 7 lies in the ready existence of conductors: Given A
by generators and relations (at least in characteristic zero) the Jacobian ideal J of A
has the property

J-AcA,

in other words, A~ <zA:J. This fact lies at the root of all current algorithms to build
A. There, is no known corresponding annihilator for7//. In several cases, one can
cheat by borrowing part of the Jacobian ideal of R[It\ by proceeding as follows. Let
(this will be part of the cheat) R[It] — R[T\,..., Tn] /L be a presentation of the Rees
algebra of/. The Jacobian ideal is a graded ideal

with the components obtained by taking selected minors of the Jacobian matrix.
This means that to obtain some of the generators of 4 we do not need to consider
all the generators of L. Since / annihilates R[It]/R[ft], we have that for each i

and therefore

2>0

Of course when using subideals f{ C /r-, or further when only a few J- are used, the
comparison gets overstated.
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Despite these obstacles, in a number of important cases, one is able to under-
stand relatively well the process of integral closure and normalization of ideals.
These include monomial ideals and ideals of finite colength in regular local rings.
Even here the full panoply of techniques of commutative algebra must be brought
to play.

Definition 2.1 Let R be a quasi-unmixed normal domain and let / be an ideal.

(i) The normalization index of / Is the smallest integer s = s(I) such that

i """ = I • I ' n 5̂  s.

(ii) The generation index of/ is the smallest integer SQ = SQ(I) such that

For example, If i? = k\x\,. ..,Xd\ and /= (xf,... ,x^), then/i = / = (xi,.,. ,Xd)d.
It follows that so(I) = 1, while s(I) = 17(/j) = d - 1.

The notion of special fiber can also be useful in treating normalization indices.
Let (i?,m) be a local, normal domain and let / be an ideal such that its Rees algebra
A = R[It] has a finite integral closure B =^n>olntn. We defined in the previous
section, the notions of indices of normalization:

s(I) = M{n i B =

Vn(T\ — \r\iin I R— A lit lktK~\ \

This means that s(I) measures the 'degree' of B as an A-module, while
measures the 'degree' of B as an A-algebra. If we set

we get an Artinian local ring and use Nakayama Lemnia to derive simple relations
between s(I) and so (I).

Proposition 2,2 For an ideal I as above,

so(I) = inf{n\F = F0[Fu...,Fn]}.

Furthermore, if the index ofnilpotency ofF\ is r,, then

Although these integers are well defined-since R[It] is finite over i?[/r]-it is not
clear, even in case R is a regular local ring, which invariants of R and of / have
a bearing on the determination of s(I). An affirmative case is that of a monomial
ideal / of a ring of polynomials in d indeterrainates over a field-when s < d— 1
(according to Theorem 2.7).
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Equimultiple Ideals

For primary ideals and some other equimultiple ideals there are relations between
the two indices of normalization.

Proposition 2.3 Let (R, m) he an integrally closed, local Cohen-Macaulay domain
such that the maximal ideal m is normal. Let I be m-primary ideal of indices of
normalization s(I) and SQ(I). Then

where e(I) is the multiplicity of I.

Proof. Without loss of generality, we may assume that the residue field of R is
infinite. Set S = R[It] and denote by B its integral closure. We form the special
fiber of B,

F = B/ (m, It)B = 2_,Fn,
«>o

and following Proposition 2.2, we estimate s(I) (the Castelnuovo-Mumford regu-
larity of F) of the algebra F in terms of the indices of nilpotency of the components
Fn, for n<so(I). ___

Let J = (zi, • • •, Zd) b g a minimal reduction of / . For each component In = /" of
B, we collect the following data:

Jn — {A; • • •, id), a minimal reduction of /„

e(ln) = e(I)nd, the multiplicity of In

e(I )rn ~ rJn (4) < ——d ~~ 2d + 1, a bound on the reduction number of ln.

The last assertion follows from Theorem 1.38, once it is observed that ^ C mn =
m", by the normality of m.

WTe are now ready to estimate the index of nilpotency of the component Fn.
With the notation above, we have 4 r " + 1 — Jn^n"- When this relation is read in the
special fiber ring F, it means that rn -\-1 > index of nilpotency of Fn.

Following Proposition 2.2, we have

e(I)dnd-l~So(I)(2d-l) + l,

which we approximate with an elementary integral to get the assertion. •

We can do considerably better when I? is a ring of polynomials over a field of
characteristic zero.

53



Reduction Number of Good Filtrations

We have, on several occasions, mentioned the construction of Rees algebras associ-
ated to filtrations different from adic ones. An important case is the mtegral closure
filtration associated to an ideal. Let R be a quasi unmixed integral domain and let /
be a nonzero ideal. Denote by

the Rees algebra attached to {/*}. Noting that while A may not be a standard
graded algebra, it is finitely generated over R\It], We may thus apply the theory of
Castelnuovo-Mumford regularity to A in order to deduce results about the reduction
number of the filtration. We state one of these extensions.

We assume that (R,m) is a local ring and set £(A) = dimA/mA for the analytic
spread of A (which is equal to the analytic spread of/). If / is a minimal reduction
of/, setting B = R[Jt\, we can apply the previous results to the pair (5, A):

Theorem 2.4 Let (i?,m) he a, Cohen-Macaulay local ring and let {4, ̂  0,,/Q = i?}
be a multiplicative filtration such that the Rees algebra A —Y,n>o^ntn is Cohen-
Macaulay and finite over R[I\i\. Suppose that height I\_ > 0 and let J be a minimal
reduction ofl\. Then

4+1 — Jin — him n > @(h) — 1,

and in particular, A is generated over Rllt] by forms of degrees at most £ —I —

n>0

Theorem 2,5 Let R = k[xi,... ,x(i], where k is a field of characteristic zero and
let I be a homogeneous ideal that is {xi,... ,x(i)-primary. Ifs(I) and SQ(I) are the
indices of normalization of I, then

where e(P) is the multiplicity of I.

Proof. We begin by localizing R at the maximal homogeneous ideal and picking a
minimal reduction / of /. We denote the associated graded ring of the filtration of
integral closures {In — ~In} by G,

n>0

In this affine ring we can take for a Noether normalization a ring A = k[z\,... ,z,d\,
where the z/'s are the images in Gi of a minimal set of generators of/.

There are two basic algebraic facts about the algebra G. First, its multiplicity
as a graded A-module is the same as that of the associated graded ring of /, that is,
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e(I). Second, since the Rees algebra of the integral closure filtration is a normal
domain, so is the extended Rees algebra

and consequently the algebra G = C/(t~l) will satisfy the condition Si of Serre.
This means that as a module over A, C is torsionfree.

We now apply the theory of Cayley-Hamilton equations to the elements of the
components of G (see [Va98b, Chapter 9]): For u 6 Gn, we have an equation of
integrality over A

ur + a1u
r^1 H \-ar = Q,

where a\ are homogeneous forms of A, in particular a, £ Am-, and r < e(G) = e(I).
Since k has characteristic zero, using (lie argument of [Va98b, Proposition 9.3.5],
we obtain an equality

GT
n —AnG

r~ .

At the level of the filtration, this equality means that

jr ,— pi jr- i , j

/„ C J 4 -rlnr+i,ln CJ Jn

which we weaken by

where we used

Proposition 2.6 Let R = k[x\,... ,.xn] be a ring of polynomials over afield of char-
acteristic zero. For any homogeneous ideal I and any positive integer r,

Finally, in the special fiber ring F(B), this equation shows that the indices of
nilpotency of the components Fn are bounded by e(I), as desired. Now we apply
Proposition 2.2 (and delocalize back to the original homogeneous ideals). •

Normalization of Monomial Ideals

In the case of monomial ideals the picture is very clear, according to:

Theorem 2.7 Let R be a ring of polynomials over afield k, R = k[x[,... ,x<y], and
let I be a. monomial ideal. Then

I" = II"-[, n>d. (19)

Proof. Let ~R be the integral closure of the Rees algebra of the ideal /,

n>0
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To prove the asserted equality, since the ideals are homogeneous, it is enough to
localize at the maximal homogeneous ideal M of R. The ring R is Cohen-Macaulay
by Hochster's theorem ([BH93, Theorem 6,3.5]).

We first assume that k is an infinite field, and apply Theorem 2.4 by letting J be
a minimal reduction of I\. Then

In+i=JIn = IiIn, n>£(h)-l,

and in particular, A is generated over R[It] by forms of degrees at most £ — 1 =

i

The extension to all fields is now immediate: The equality (19) of monomial
ideals is equivalent of an equality of products of its monomial generators. Since
these are independent of the characteristic or any field extension, being completely
determined by the convex hull of the corresponding exponent vectors, the assertion
is clear. •

The following normality criterion was first shown in [RRV2]:

Theorem 2.8 (Reid-Roberts-Vitulli) Let R = k\x[,... ,xj] be a ring of polynomi-
als over afield k, and let I be a monomial ideal. If I is integrally closed for i < d
then I is normal.

Corollary 2.9 Let R = k[x\,.,., xcj} be a ring of polynomials over afield k, and let
I be a monomial ideal. Then for n > d — 1, the ideal ~P is normal.

Remark 2,10 Let R be a regular ring of dimension d and let / be one of its ideals.
\£d = 2, from Zariski's theory ([ZS60]),

Moreover, by [LT81] it will follow that the integral closure of R[It] is Cohen-
Macaulay. For d — 3, no general bound exists.

Primary Ideals in Regular Rings

We discuss the role of Briancon-Skoda type theorems in determining some rela-
tionships between the coefficients 6Q(I) and <?i(/) of the Hilbert polynomial of an
ideal. We consider here the case of a normal local ring (/?, m) of dimension d and
of an m-primary ideal / . Set A = R[It] and B = R[It]; we assume that B is a finite
A-module. From the exact sequence

0 ---> ¥/In —> R/In —•> R/W -> 0, (20)

we obtain as above the relationship

where £Q(I) is the multiplicity of the module of components /"//", if dimL = d;
otherwise it is set to zero.
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Theorem 2.11 Let (i?,ni) be a Cohen-Macaulay local ring of infinite residue field.
Suppose the Briangon-Skoda number ofR is c(R). Then for any m-primary ideal I,

e\{I)<c{R)-eQ{l).

In particular, e\{I) < c(R) • eo(I).

Proof. We recall the definition of c = c(I): For any ideal L of R

Ln+c c L'^ vn.

To apply this notion to our setting, let / b e a minimal reduction of /. Assume
jn+c (- jit for aii n. To estimate the multiplicity of the module of components
7"+c/Jn+c-which is the same as that of the module of components 7*/Jn-note that

c c j«5 anc[ thai- jn a(imits a filtration

whose factors all have multiplicity eo(J). More precisely, for each positive integer
k,

^ ^ 7 / + l o w e r terffiS.

As a consequence we obtain

ei(I) < ei(J) + c(R) • eo(J) - c(R) • eo(I),

since e\(J) = 0. The other inequality, e\{l) < c(R) • eo(I), follows from (20). •

Corollary 2.12 Let (i?,m) be a Japanese regular local ring of dimension d. Then
for any m-primary ideal I,

Proof". Tn this case, the classical Briancon-Skoda theorem asserts that c(R) =d—l.
•

Normalization of Rees Algebras

The computation (and of its control) of the integral closure of a standard graded
algebra over a field benefits greatly from Noether normalizations and of the struc-
tures built upon them. If A — R[It\ is the Rees algebra of the ideal / of an integral
domain R, it. does not allow for many such constructions. We would still like to
develop some tracking of the complexity of the task required to build A (assumed
A-finite) through sequences of extensions

A = A o —> A i —*• A 2 — » • • • — » A n = A
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where A-l+\ is obtained from an specific procedure P applied to A-. (In [VaO], with
the A; satisfying the condition^, the chains were called divisorial.) At a minimum,
we would want to bound the length of such chains. We are going to show how
Theorem 2.11 can be used to do just that for a class of Rees algebras.

Let (R, m) be a Cohen-Macaulay local of dimension d, integrally closed, of
Briangon-Skoda number c(R), and let / be an tn-primary ideal of multiplicity $(/).
Let A and B be distinct algebras satisfying the & condition of Serre, and such that

R[It] cAcBcR[lt].

For any algebra D such as these, we set X(R/Dn) for its Hilbert function; for n >• 0,
one has the Hilbert polynomial

X(R/Dn) = eo(D) (" + d
d
 l) -ex{D) ^/^f) + l o w e r terms'

The Hilbert coefficients satisfy eo(D) = eo(I), and according to Theorem 2.11,

Theorem 2.13 For any two algebras A and B as above,

c(R)eo(I)>ei{B)>ei(A)>O,

in particular any chain of such algebras has length bounded by

Proof. Set C = B/A. Since A has Krull dimension d -[-1 and satisfies S2, it follows
easily that C is an A-module of Krull dimension d. From the exact sequence,

0 -> Cn —> R/An —> R/Bn -> 0,

one gets that the multiplicity eo(C) of C is e\_{B) — ei(A). As eo(C) > 0, we have
all the assertions. •

Corollary 2.14 If (R,xn) is a regular local ring of dimension d and I is an tn-
primary ideal, then (d — l)eo(I) bounds the lengths of the divisorial chains between
R[It] and~R[ft].

Remark 2,15 In sections 3 and 4 of Chapter 1, several bounds for the lengths of
divisorial chains of algebras were developed in terms of the multiplicity of the
algebra. In the case of a Rees algebra R[It], where (R,m) is a local ring, the
relevant multiplicity would be deg(i?[/f]«p) where *p = (m,R[It]+). This number
may however be considerably larger that multiplicities associated to the ideal / in
R. For example, if R = k[x\,... ,Xd] is a ring of polynomials over the field k, and
l = (xi,...,xd), then deg(i?[/f] = d.

Question 2.16 There are two interlocked issues here:
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(i) The overall bounds developed above obviously extend to certain classes of
singular rings (e.g. non-regular local rings which are F-regular), but one
should expects the existence of bounds, particularly for ~ef(/) to be more
prevalent (and not necessarily in the shape above). Even more challenging is
the problem of handling higher dimensional ideals (with equimultiple ideals
not representing a great challenge, hopefully).

(ii) Given the existence for bounds, there remains the problem of finding meth-
ods and approaches to build the sequences of extensions.

2,2 Integral Closure of Modules

Rees algebras of modules exhibit a significant new set of problems compared to or-
dinary Rees algebras. In this section we study the notion of integrality on modules
and of algebras built on them. In addition to the general methods of Section 1 based
on Jacobian criteria, we make use of the properties specific to modules and ways to
convert the problems to the setting of ideals via deformation theory or through the
intervention of Fitting ideals.

Let R be a Noetherian ring with total ring of fractions K and let E be a finitely
generated J?-module. We say that E has a rank if K®RE = Kr, in which case r
is said to be the rank of E. By S(E) we denote the symmetric algebra of E. As
for the Rees algebra of E, as discussed in the Introduction, in an embarrassment
of riches there are several possible definitions. The path chosen here is that which
most resembles the classical case of the blowup algebra of an embedding. For a
module E and a mapping / : is —* Rr, we take this to mean the subalgebra of S(R")
generated by the forms in f(E). In other words, f(E) generates a multiplicative
filtration of S{Rr), and R f(E) is the associated graded algebra. In this definition,
one may as well assume that / is an embedding. For modules of rank r we have
/ : E —> Rr, the details of the embedding get coded as well in the structure of
Rf(E).

For such modules we may actually adopt the following definition of their Rees
algebras: Let R be a Noetherian ring and E a finitely generated /f-module having
a rank. The Rees algebra R (E) of E is S(E) modulo its i?-torsion submodule. If
S(E) = R (E) then R (E) is said to be of linear type. By abuse of terminology, E
is said to be of of linear type.

There are several algebras that arise in this fashion. First, assume A is a finite
dimensional algebra over the field k. A may be a Lie algebra or have another special
structure. The commuting variety is

C(A) = {(u,v) e A x A j uv = vu}.

The defining equations for such algebraic variety are obtained by picking a basis
{ei,...,en} for A over k, and collecting the quadratic polynomials jf = ,//(X,Y)
that occur as coefficients of the generic commutation relation

59



We can write these polynomials as

where <p is a matrix of linear forms in the variables %. It follows that the affine ring
of C(A) is the symmetric algebra ^xi (coker 9). The generic component of this
algebra is the Rees algebra R (coker 9). In several cases of interest (see [Va94b,
Chapter 9]) there remains the issue of deciding when these algebras coincide: If A
is a simple Lie algebra over a field of characteristic zero, it is known that coker (cp)
is a torsionfree ^[X]-module of projective dimension two, and that

Sm (coker cp)red - R (coker <p).

Another major class of examples are the Rees algebras directly attached to
affine algebras. Suppose A is an algebra essentially of finite type over the field
k, and let Q = i\(A) be its module of Kahler differentials. The Rees algebra of
A is i?(O). It is the carrier of considerable information about the tangential vari-
ety of spec (A) and of its Gauss image (see [SSU2]). In this case, rarely 00 is of
linear type, and the construction of R (Q) gives a mechanism to extract "nonlinear
relations" from the module O.

A third setting is provided by conormal modules, that is if R — S/I, the Rees
algebra of /'/I2, under natural conditions such as / is a prime ideal or is generically a
complete intersection, provides the means to study features of the associated graded
ring of / though the examination of the natural surjection

It is worthwhile pointing out a significant difference between the Rees algebra
of an ideal / and the Rees algebra of a module E of rank r > 2. While a Veronese
subring R (/)W of R (I) is a Rees algebra, the Veronese subring R (Efe\foi e > 2,
is not a Rees algebra.

Dimensions of Rees Algebras and of its Fibers

There are several measures of size attached to a Rees algebra R(E), all derived
from ordinary Rees algebras. We briefly survey them.

Proposition 2,17 Let Rbe a Noetherian ring of dimension d and E a finitely gen-
erated R-module having a rank r. Then

dimR(E) = d + r = d + height R(E)+.

Proof. We may assume that E is torsionfree, in which case E can be embedded
into a free module G — Rr. Now R (E) is a subalgebra of the polynomial ring
S = R (G) = R[t 1,..., tr]. As in the case of ideals, the minimal primes of R (E) are
exactly of the form *p = pSC\R(E), where p ranges over all minimal primes of
R. Write R = R/p and E for the image of E in R ®R G. Since R (E)/*p ™ RR(E),
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we may replace R and E by R and E to assume that R is a domain. But then the
assertions follow from the dimension formula for graded domains ([Va94b, 1.2.2]).
•

A special but significant class of Rees algebras are those of linear type. They
are the algebras of the form R (E) = SR(E). We have already discussed this notion
earlier in the case of ideals. It is hard to test this condition from a presentation of
the module alone:

Rm _^Rn > E ^ Q_

Nevertheless the following criterion is helpful ([Va94b, Theorem 1.3.5]).

Proposition 2.18 Let R be an unmixed integral domain and E a torsionfree R-
module, with a presentation as above. If R (E) is of linear type then

h e i g h t It (<p) > rank( (p ) -t + 2, \<t< rank(q>) .

Reductions and Integral Closure of a Module

In analogy with the case of ideals, one introduces a key notion.

Definition 2.19 Let U C E be a submodule. We say that U is a reduction of E
or, equivalently, E is integral over U if R (E) is integral over the .R-subalgebra
generated by U.

Alternatively, the integrality condition is expressed by the equations
U • R (E)s, s » 0. The least integer s>0 for which this equality holds is called the
reduction number of E with respect to U and denoted by njiE). For any reduction
U of E the module E/U is torsion, hence U has the same rank as E. This follows
from the fact that a module of linear type such as a free module admits no proper
reductions.

Let E be a submodule of Rr. The integral closure of E in Rr is the largest
submodule E C Rr having E as a reduction. (A broader definition exists, but we
will limit ourselves to this case.)

If R is a local ring with residue field k then the special fiber of R (E) is the ring
F(E) = k®RR (E); its Kxull dimension is called the analytic spread of E and is
denoted by £(E).

Now assume in addition that k is infinite. A reduction of E is said to be min-
imal if it is minimal with respect to inclusion. For any reduction U of E one has
v((/) > £(E) (v(-) denotes the minimal number of generators function), and equal-
ity holds if and only if U is minimal. Minimal reductions arise from the following
construction: The algebra F (E) is a standard graded algebra of dimension £ — £{E)
over the infinite field k. Thus it admits a Noether normalization k[yi,... ,yg\ gen-
erated by linear forms; lift these linear forms to elements x\,... ,X( in R(E)\ = E,
and denote by U the submodule generated by x\,... ,xe. By Nakayama's Lemma,
for all large r we have R (£')r+i = U • R (E)r, making U a minimal reduction of E.
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Having established the existence of minimal reductions, we can define the re-
duction number r(E) of E to be the minimum of iy{E), where U ranges over ail
minimal reductions ofE.

Proposition 2.20 Let R be a Noetherian local ring of dimension d > 1 and let E
be a finitely generated R-module having rank r. Then

(21)

Proof. We may assume that the residue field of R is infinite. Let m be the maximal
ideal of R and U any minimal reduction of E. Now r = rank E = rank U < v(U) —
£{E). On the other hand, by the proof of Proposition 2.17, mi? (E) is not contained
in any minimal prime of R (E). Therefore £{E) = dimF(E) < dimR (E) — 1 =
d + r—l, where the last equality holds by Proposition 2.17. •

In some cases one can fix completely the analytic spread.

Proposition 2.21 Let (R,m) be a Noetherian local ring of dimension d > 1, with
an infinite residue field, and. let E be a finitely generated R-module having rank r.
Suppose E ^ Rr and0 f- l(Rr/E) < «. Then £(E) =d + r-l.

Proof. Let Rs —> Rr be a horaomorphism with s = £(E) and such that the image F
of (p is a minimal reduction of E. For each prime ideal p =*= m, Fp is a reduction
of Ep — Rp, and therefore Fp — Rp. Thus the cokernel of (p is a (nonzero) mod-
ule of finite length. By the Eagon-Northcott theorem, the height d of the ideal of
maximal minors of <p must satisfy d < s -- r + 1. Together with the estimate of
Proposition 2.20, we obtain the desired equality. •

Buchsbaum-Rim Multiplicity

Let R be a Noetherian local ring of dimension d. The Buchsbaum-Rim multiplicity
([BR65]) arises in the context of an embedding

0 -> E - ^ Rr —> C(<p) -^ 0,

where C((p) has finite length.
Denote by

<p : Rm —> Rr

a matrix with image <p == E and grade coker <p > 2. There is a homomorphism

S(q>) : S(B») —, S(Rr)

of symmetric algebras, whose image is R (E), and whose cokernel we denote by

—> S(Rr) —> C(<p) -^ 0. (22)
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This exact sequence (with a different notation) is studied in [BR65] in great detail.
Of significance for us is the fact that C((p), with the grading induced by the ho-
mogeneous homomorphism S(q>), has components of finite length which for n ~;P 0
satisfy

A,(C((p)w) = —— -, nd+r~l + lower degree terms.

Here br(E') is a non vanishing positive integer (see Theorem 2,22) called the Buchsbaum-
Rim multiplicity of <p or of E. (In fact, for one only needs to assume that coker cp is
a module of finite length.)

ft would be useful to have practical algorithms to find these multiplicities. We
only make the comment that there are raw comparative estimates of these multi-
plicities. Let a be any m-primary ideal contained in the annihilator of coker 9, for
instance a = /r(<p)- Then

< X(Sn(R
r)/anSn(R

r))

since a" annihilates C((p)n. Thus

where e(a) is the Hilbert-Samuel multiplicity of the ideal 0.
One should expect br(£) to be, in most cases, not larger than the multiplicity of

/r((p). To illustrate the reason, let (i?,m) be a regular local ring of dimension d>2
and consider the module E = m © m with its natural embedding into R2. The ideal
I = h{ty) = tn2. which has multiplicity 2d. The Buchsbaum-Rim's polynomial is

X(Sn(R
2)/En) = MSn(R/In)) = {n+\)(" + d

d
X \ = jj^ynd+V + l o w e r terms,

sothatbr(£') = i/+l.

Theorem 2.22 IfC{y) ^ 0 then for n > 0, X(Sn(R
r)/En) is a polynomial in n of

degree d-\-r— 1.

Corollary 2.23 Let R be a quasi-unmixed local ring of dimension d > 0 and let
F c £ C Rr be R-modules with X(Rr/F) < 00. Then F is a reduction of E if and
only zfbr(F) = br(E).

Reduction Numbers of Modules

We discuss some tools to estimate reductions of modules. It makes use of the
multiplicities of the special fibers. We begin by quoting some results from [SUV3].
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Special Fibers and Buchsbaum-Rim Multiplicities

Let (R, m) be a Noetherian local ring of dimension d and E an ideal module of rank
r that is a vector bundle (that is, E is free on the punctured spectrum of R) but it is
not i?-free. There is one case when we have an explicit formula for the Buchsbaum-
Rim multiplicity hv(E). It arises as follows. Let (/?, m) be a Cohen-Macaulay local
ring of dimension d and let

be a vector bundle. Assuming that R has an infinite residue field, let F be a minimal
reduction of E. According to Proposition 2.21, F is minimally generated by d-\-
r—\ elements and it is also an ideal module. In the terminology of [BR65], F
is a parameter module. We shall refer to such modules as complete intersection
modules.

Theorem 2.24 Under the conditions above, let 9 : Rd+r~1—>Rr be a mapping
whose image is U. Then

br(E) = br(27) = l(Rr/U) = l{R/deto{U)),

where deto(J7) is the ideal generated by the r by r minors of (p.

We quote some results from [SUV3]:

Proposition 2.25 If R is a Cohen-Macaulay local ring with infinite residue field
thenbro(E) < br(E).

Theorem 2.26 Let R be a Noetherian local ring and E an ideal module that is a
vector bundle, but not free. Then the special fiber F(E) has multiplicity at most
bro(E).

Corollary 2.27 Let R and E be as in Theorem 2,26 and suppose further that the
residue field ofR has characteristic zero. If F(E) satisfies the condition 5j and is
equidimensional then r(£r) < bro(Zs) — 1. If in addition R is Cohen-Macaulay with
infinite residue field then r(E) < br(is) — 1.

The hypothesis on the condition 5j always holds if R is a positively graded
domain over a field and E is graded, generated by elements of the same degree. In
this case F(E) embeds into R (E).

Theorem 2.28 Let (/?, m) be a Cohen-Macaulay local ring of dimension d > ! and
let E C.Rr be a submodule such that "k{R'/E) < 00 and \'(E) <d + r-l. For all
n>0
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Reduction Number of a Module

Let us first clarify, in terms of the coefficients of the Buchsbaum-Rim polynomial,
when a module E is a complete intersection.

Let (R, m) be a Cohen-Macaulay local ring of dimension d > i and let E be an
ideal module which is a vector bundle. Let E <-> R be the natural embedding and
consider the Buchsbaum-Rim polynomial

= HE) (" + * + : ; 2) h {n+/+
+

r
rJ2

 3 ) + lower

with br(jE') — X(Rr/U), where U is a minimal reduction of E. From. Theorem 2.28,
we have that

(n+cl/r;2'
y a ~t~ r

and therefore

\(En !Un) = bl(
n+

1
d + r 3 ] + lower terms.

\ d+r-2 J

In this expression, it follows that b\ > 0. Actually one can explain the case
when b{ vanishes in the following manner. Consider the embedding of Rees alge-
bras

0 _> R (u) - ^ R (E) —, 0 En/Un -H. 0.

This is an exact sequence of finitely generated modules over R ([/), and since R (U)
is Cohen-Macaulay of dimension d + r, the module on the right must have Krull
dimension precisely d + r —I unless it vanishes. This means that b\ = 0 only if
U = E, This is the module extension of the result for ideals. It would be interesting
to have also bz > 0, as it occurs in the case of ideals.

We now turn to the question of the reduction number of the module E as above.
We seek submodules U, minimally generated by £(E) =d + r—l elements such
that for some 'small' integer s, R (E)s+i = U • R (£%. For that, we consider the
Hilbert function of the special fiber F (E) in order to apply [Va98b, Theorem 9.3.2J.

Theorem 2.29 Let R be a Cohen-Macaulay local ring of dimension d > 1, with
infinite residue field, and let E (ZJR be a submodule such that X(Rr/E) < », The
reduction number of E satisfies

T(E) < (d + r-l)-br(E)-2(d + r-l) + ]. = e(E)-br(E)-2-e(E) + L

23 Extended Degree for the Buchsbaum-Rim Multiplicity

Let R be a Noetherian local ring of dimension d and let E C R be a module of rank
r. Suppose that the ideal deto(ii) has codimension c. The function

n ^ deg(Sn(R
n)/En)
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is the Hilbert function for the extended degree associated to the Buchsbaum-Rim
multiplicity. If pi,. . . ,ps are the associated prime ideals of R/E of maximal di-
mension, by the associativity formula for multiplicities,

For n >̂ 0, this is a polynomial of degree r-+-max{dimi?p;} — 1. When all these
primes have the same codimension, say c,

JTo ' V c + r-j-1

where the bj(E) are assembled from the Buchsbaum-Rim multiplicities of the mod-
ules EPi

Proposition 2.30 Let R be a Cohen-Macaulay local ring and let E C R be an
equimultiple module of codimension c, and let F be a minimal reduction of E.
Then

bo(E)=dcg(Rr/F).

Proof. According to the expression above for ky(E), we have

bo(E) =

j/) = deg(/?7F),

by the rule for computation of multiplicities. •

Let us make a slight extension to subfiltrations of the integral closure filtration
En. We arc going to assume that E is equimultiple and that the algebra C =X«>o-E'"
is Noetherian, that is it is finite over R (F), for the minimal reduction F of E. We
can define the extended degree function deg(Sn(Rr)/En). It has similar properties
to those of dcg(Sn(R

r)/En); the coefficients of the polynomial (for n >̂ 0) will be
denoted by bj(E).

Theorem 2.31 Let (R.m) be a normal Cohen-Macaulay local of dimension d and
let E C Rr be an equimultiple module of codimension c such that C =X«>o-^" ls

Noetherian. Let F be a minimal reduction ofE and let A and B be distinct graded
subalgebras

R(F)cA= 2> n C B - X £„ C C.
n>0 n>0

If A and B satisfy the condition 5;> of Serve, then bo (A) = bo(B) and by (A) < by (B).
In particular, by (A) < by(E) for all proper subalgebras of C, and all chains of
graded subalgebras ofC satisfying the condition Si have length at most by(E).
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Proof. Consider the exact sequence of R (F)-modules

Since A satisfies 5*2, it follows that D has Krall dimension d + r—l. We first deal
with the case c = d. Let us examine deg(DB) using the exact sequence

0 -+ Bn/An -—> Sn(R
r)/An -^ Sn(R

r)/Bn -+ 0,

in which deg is just ordinary length. Since dimD — d + r—l, deg(Z^) is just
the ordinary Hilbert function and therefore it is a polynomial of degree d + r — 2
for n ^> 0, of leading coefficient «?o(D), the ordinary multiplicity of D. On the
other hand, the Buchsbaum-Rim extended degree functions deg(4(i? r)/An) and
deg(Sn(R

r)/Bn) are polynomials of degree d + r—l for n 3> 0, so their leading
coefficients must be equal bo (A) = bo(B), and b{{B) = b\{A) + eo(D). Therefore
b\ (B) > b\ (A) since eo(D) > 0. (Observe that comparing individually A and B, we
get that b\ (B) > 0.)

Assume now c < d. Since the special, fiber R (F) ® R/xn has Krull dimension
c+r—l < d + r—l, the module D®R/m has Krall dimension < d + r—l as well.
This means that the associated primes of D of dimension d + r — 1 are of the form.
%$ = p + P C R (F), where p ^ m and P is a homogeneous subideal of R (F)+.
Write T = R (F)/<p = R/p + go- By [Va94b, Lemma 1.2.2], dimT = dim^/'p +
height (Qo). As a localization of an equimultiple module is still equimultiple, it
follows that the minimal primes we must consider are still among the associated
primes pi of Rr jF. This means that dim/?/p = d — c and

height (Go) = dim T - dim R/p = d + r - I - (d - c) = c + r 1.

As a consequence, X((Dn)p) is a polynomial of degree exactly c + r ~~ 2 for n 7> 0.
Meanwhile the functions deg(Sn(R'')/An) and deg(Sn(R

r)/Bn) are both poly-
nomials of degree c + r—l for n » 0, which allows us again to obtain the equal-
ities bo(A) = bo(B) and bi(B) = bi(A) + bo(D), and our assertions follow since
bo(D) > 0. ' ' •

2.4 Normal i ty of Algebras of L inea r Type

In this section we examine the normality of certain classes of modules. More pre-
cisely, we want to develop effective criteria of normality for algebras of linear type.
In particular, given a normal domain R and a torsionfree module E with a free
resolution,

we study the role of the matrices of syzygies in the normality of the Rees algebra of
E. This goal being, in general, not too realistic, we will restrict ourselves to those
algebras which are of linear type, that is, in which R(E) = SR(E). Our general
reference for this section is [BV3].

An underlying motivation is the following open problem. Let $j be a simple Lie
algebra over an algebraically closed field k of characteristic zero. If e\,..., en is
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a basis of g over k, we consider as in (21) the commuting variety V = C(Q) of Q
(see [Va94b, Chapter 9] for details). This is an irreducible variety and an important
question is whether it is normal. (There is also a more pointed question on whether
V is a rational singularity.)

From the perspective of Rees algebras, there is a torsionfree module E over the
ring of polynomials R = k[x\,... ,xn] such that R (E) is the affine ring of V. The
irreducibility of V means that

The structure of E carries considerable information about g. E has protective
resolution

0 _+ & JU R" -5U Rn —> E -+ 0,

in which £ is the rank of g.
The mapping 9 is given as a skew-symmetric matrix of linear forms, obtained

as a Jacobian matrix of the equations defining commutation in Q. Then \|/ is also a
Jacobian matrix obtained as follows. Let pi,..., pi be the fundamental invariants of
the adjoint action of the corresponding Lie group G. The mapping \|/is the Jacobian
matrix of these polynomials, A fundamental fact about the ideal / = |(xj/) is that
it has codimension 3, and its radical has one or two components, according to the
root length of g. Elementary calculations show that / is a prime ideal in the cases
of the algebras A2 and A3.

This wealth of information makes an appealing case for a program to examine
normality in Rees algebras of modules. In this section we develop some techniques
targeted at simpler classes of modules.

The main result of this section (Theorem 2.42) characterizes normality in terms
of the ideal Ic(x\f)S(E) and of the completeness of the firsts symmetric powers of E,
where c = rank\|/, and s = rank/ft — rankE. It requires that R be a regular domain.
Some of the other characterizations, although valid only for restricted classes of
modules, do not assume regularity in R. Furthermore, they are more accessible for
computation.

# Complete intersection modules

• Complete intersection algebras

® Almost complete intersection algebras

« Algebras of linear type

Complete Intersection Modules

Let R be a Cohen-Macaulay ring and let £ be a complete intersection module.
Suppose that E is given by a mapping
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This means that E — image (p has rank r, and that the ideal / — defc(£) has codi-
mension c > 2.

Gur puipose is to describe, entirely in terms of the ideal /, when E is integrally
closed. It turns out that more is achieved.

Theorem 232 Let Rbe a Cohen-Macaulay integrally closed domain and let E be
a complete intersection module. The following conditions are equivalent:

(a) E is integrally closed.

(b) E is normal.

(c) deto(-E) is an integrally closed generic complete intersection.

Moreover ifdeto(E) is a prime ideal then the conditions above hold.

Example 233 Let p be a perfect ideal of codimension 2 generated by maximal
minors of the fix (n + 1) matrix <p. According to the assertion above, the columns
of (p generate a normal submodule of/?1. In contrast, p is often a non-normal ideal.

Let R be a Cohen-Macaulay normal domain and let £ be a torsionfree R-
module. The criteria above can be used to test the completeness of other modules
that are not complete intersection modules. Let E be an ideal module of projective
dimension c — 1 > 1. It will follow that the associated primes of the cokernel of
the embedding E c--> E** = Rr have codimension at most c. This means that in
comparing E to E,

E/E --> Rr/E,

to compare E to E we may consider only those localizations at the associated
primes of Rr/E.

We will assume one additional requirement on E, that it satisfies the condition
F\ (or, Goo) on the local number of generators,

Vp e Spec (R),p ^ (0), v(£p) < r-fdimi?p - 1.

This condition is always present when the module is of linear type. If the codimen-
sion of Rr/E is c, localizing at a prime ideal associated to R IE, Ev is a complete
intersection module. As a consequence of these observations we obtain:

Corollary 234 Let E be an ideal module for which E** /E is equidimensional. If
E satisfies the condition F\ then E is integrally closed if and only ifdefy(E) is an
integrally closed generic complete intersection.
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Complete Intersection Algebras

Let R be an integrally closed Cohen-Macaulay domain and Set E be a finitely gen-
erated torsionfree i?-module. It is clear that if the Rees algebra R (E) of E is a
complete intersection then E has a projective resolution

0 _ , Rm _5L, Rn _ > E -> 0, (23)

and it is of linear type. According to [Va94b, Theorem 3.1.6], for S(E) to be a
complete intersection we must have

grade /, (q>) > rank(cp) — t+l=m — t+l, \<t <m.

Moreover, since S(E) — R (E) is an integral domain, this requirement will hold
modulo any nonzero element of R, so it will be strengthened to

grade It(<p) > rank(cp) -t + 2 = m-t + 2, 1 < t < m.

It can be rephrased in terms of the local number of generators as

v(Ep) <n — m + height p — 1, p ^ 0.

For these modules, the graded components of the Koszul complex of the forms
of A =R[TU..., Tn] (see [Av81]),

give i?-projective resolutions of the symmetric powers of E:

0 -> A"Rm -+ A 5 " 1 / ?" ® R" -> • • • -+ R'n ® Ss-i (R!l) -> Ss(R
n) -> SS(E) -> 0.

In particular we have:

Proposition 2.35 Let R be a Cohen-Macaulay normal domain and let E he a
finitely generated, torsionfree R-module such that the Rees algebra R (E) is a com-
plete intersection defined by m equations. The non-normal R-locus of R (E) has
codimension at most m + 1.

Proof. It suffices to consider the following observation. For any torsionfree R-
module G, contained in a free module F, the embedding

G/G -~> F/G

shows that if G has projective dimension < r, the associated primes of GIG have
codimension at most r + 1. In the case of the symmetric powers Ss(E) of E, the
projective dimensions are bounded by m, from the comments above. •

The next aim is to discuss the normality of the algebra R (E) versus the com-
pleteness of the module E and of a few other symmetric powers.
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Almost Complete Intersection Algebras

An almost complete intersection Rees algebra arises from a module E with a pro-
jective resolution

0 _ R JU Rm -5U R" —* E -> 0.

For the module to be of linear type, S(E) = R (E), the roles of the determinantal
ideals /,((p) and of / = /i(\|/) are less well behaved than in the case of complete
intersections. They are nevertheless determined by any minimal resolution of E,
the /> (cp) giving the Fitting ideals of E, while /i(\|/) is the annihilator of Ext|(£T,i?).
Let us give a summary of some of the known results, according to [Va94b, Section
3.4]:

Theorem 237 Let Rbe a Cohen-Macaulay integral domain and let E be a module
with a resolution as above. The following hold:

(a) IfS(E) = R (E) then height h(y?) is odd.

(b) If I is a strongly Cohen-Macaulay ideal of codimension 3, satisfying the con-
dition F\, and E* is a third syzygy module, then S(E) is a Cohen-Macaulay
integral domain.

This shows the kind of requirement that must be present when one wants to
construct integrally closed Rees algebras in this class.

Example 238 Let R = k[x\.... ,Xd] be a ring of polynomials. In [Ve73], for each
d >4,it is described an indecomposable vector bundle on the punctured spectrum
of R, of rank d — 2. Its module E of global sections has a resolution

0 _> R JU Rd - ^ R2d3 — E - 0,

with (p having linear forms as entries, and \j/( 1) = [x\,... ,Xd]. If d is odd, according
to [SUV93, Corollary 3.10], E is of linear type and normal.

The analysis of the normality of the two previous classes of Rees algebras was
made simpler because they were naturally Cohen-Macaulay. This is not the case
any longer with almost complete intersections, requiring that the & condition be
imposed in some fashion. We pick one closely related to normality.

Theorem 239 Let Rbe a regular integral domain and let E be a torsionfree mod-
ule whose second Betti number is 1. Suppose E is of linear type. If the ideal
Ii(\\f)R (E) is principal at all localizations of R(E) of depth 1 then R (E) satisfies
the condition S2 ofSerre.

Proof. The condition on L = h(~y)R (E) means that for any localization Sp, S =
R (£•), with depth Sp = 1, the ideal Lp is principal. There are several global ways
to recast this, such as (L • L"1)"1 = S.
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We may assume that R is a local ring, and that the resolution of E is minimal.
Pick m A — R[T[,...,Tn] a prime ideal P for which depth Sp — 1. We must show
that dim Sp = 1. As in the other cases, we may assume that Pf]R is the maximal
ideal of R.

We derive now a presentation of the ideal / = 7(<p) = (fi,... ,fm)A, modulo / :

Q-+K-* (A/J)m - Sm —> J/J2 -> 0,

and analyze the element of Sn induced by v = \j/(l). This is a nonzero 'vector'
whose entries in Sp generate Lp, which by assumption is a principal ideal. This
means that v = ocvo, for some nonzero a G Sp, where VQ is an unimodular element
Sp. Since v G K, this means that the image u of VQ in (J/J2)p, is a torsion element
of the module. Two cases arise. If u = 0, (J/J2)p is a free Sp since it has also
rank m—\, and therefore Jp is a complete intersection in the regular local ring
Ap, according to [Va67]. This implies that the Cohen-Macaulay local ring Sp has
dimension 1. On the other hand, if u ^ 0, it is a torsion element of (J / / ) /» which
is also a minimal generator of the module. We thus have that in the exact sequence

0 -> torsion (J/J2)P -> (J/J2)P ~> C -» 0,

C is a torsionfree 5p-module, of rank m — 1, generated by /M — 1 elements. We thus
have that the ideal Jp of the regular local ring Ap has the property

JP/JJ =* (Ap/Jp)1"-1 © (torsion).

According to [Va67] again, Jp is a complete intersection since it has codimension
m—l. This shows that Sp must have dimension 1. •

In studying the normality in an algebra S — S(E) (E torsionfree) of linear type,
the advantage of 5*2 holding is extremely useful. To recall briefly some technical
facts from [Va94b, p. 138]. For a prime ideal p C R there is an associated prime
ideal in S(E) defined by

T(p)=teT(SR(E) •----> SR/p(E/pE)p).

In our case, T(p) is the contraction pS(E)p nS(E), so height T(p) — height pS(E).
The prime ideals we are interested in are those of height 1. If J? is equidimen-

sional, we see that

height T(p) = 1 if and only if v(£p) = height p +rank(£") - 1.

Let us quote [Va94b, Proposition 5.6.2]:

Proposition 2.40 Let R be a universally catenarian Noetherian ring and let E be
a finitely generated module such that S(E) is a domain. Then the set

{T(p) j height p > 2 and height T(p) = 1}
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is finite. More precisely, for any presentation W1 —> Rn —*• E —* 0, this set is in
bijection with

{p C R | Ep not free, p e M.in(R/It((p)) and height p = rank(<p) -t + 2},

where 1 < t < rank((p).

Theorem 2.41 Let R be a regular integral domain and let E be a torsionfree mod-
ule with a free resolution

Suppose E is of linear type. E is normal if and only if the following conditions
hold:

(i) The ideal I\{ys)S{E) is principal at all localizations ofS(E) of depth 1.

(ii) The modules SS(E) are complete, for s=\... m — 1.

Proof. We only have to show that (1) and (ii) imply that E is normal. In view of
Theorem 2,39, it suffices to verify the condition R\ of Serre.

Let P c A b e a prime ideal such that its image in S = A/J has height 1, We may
assume that PD R is the maximal ideal of R and that E has projective dimension 2,
that is I\ (\|/) C m as otherwise we could apply Theorem 2.36.

From Proposition 2.40, and the paragraph preceding it, dimi? = rank(<p) --t + 2
on the one hand and dimi? = n — r+1 on the other. Thus, t = \ and m = dimi?.From
Proposition 2.40, and the paragraph preceding it, dimi? = rank(cp) — t + 2 on the one
hand and dimi? — n — r+l on the other. Thus, t — 1 and m — dimi?. Pick 0 ̂  a t in
and consider the ideal / = (a, f\,..., fm) C A. With P — mA, set L — I:P. For a set
x\,... ,xm of minimal generators of tn, we have

[a,/i , . . . , /«] = [jci,...,^«]-fi(O), (24)

where J3(<E>) is a m x (m + 1) matrix whose first column has entries in R, and the
other columns are linear forms in the 7/'s. We denote by 1Q the ideal of A generated
by the minors of order m that fix the first column of i?(<t>). These are all forms of
degree m — 1, and LQ C L. When we localize at P however, LQAP = LAp, since by
condition (i) and the proof of Theorem 2.39, Jp is a complete intersection and the
assertion follows from a classical result of Northcott. This means that the image C
of CT^LQ in the field of fractions of S is not contained in S and has the property that
C • PSp C Sp, giving rise to two possible outcomes:

™P (25)

In the first case, C would consist of elements in the integral closure of Sp but it not
contained in Sp. This cannot occur since by condition (ii) all the symmetric powers
of is, up to order m — 1, are complete. This means that the second possibility occurs,
and SP is a DVR. •
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Effective Criteria

We are going to make a series of observations leading to the proof of a general-
ization of Theorem 2.41 to all algebras of linear type over regular domains. The
arguments show great similarity for the following technical reason. If E is a torsion-
free i?-module of linear type, a prominent role is played by the prime ideals of S(E)
of codimension one, which we denoted T(p), If p is the unique maximal ideal-as a
reduction will lead to-height T(p) = 1 if and only if dimi? + rank(is) = v(E) + 1,
a condition equivalent to (when E has finite protective dimension) the second Betti
number of £ is 1.

Theorem 2.42 Let R he a regular integral domain and let E be a torsionfree mod-
ule of rank r, with a free presentation

RP V ; f?m * * R» v F » f |

Suppose E is of linear type. R (E) is normal if and only if the following conditions
hold:

(i) The ideal Ic(\\f)S(E), c = m + r — n, is principal at all localizations ofS(E) of
depth 1.

(ii) The modules SS(E) are complete, for s — 1 n — r.

Proof. We note that n — r is the height of the defining ideal /((p) of 5, while c —
m + r — n is the rank of the second syzygy module.

The necessity of these conditions follows ipso literis from the discussion of
Theorem 2,41, except for a clarification in the role of condition (i). We consider
the complex induced by tensoring the tail of the presentation by S,

SP JL> S
m ---> J/J2 --> 0.

Note that \j/ has rank c, while J/J2 has rank n — r. This means that the kernel of the
natural surjection C = coker (\j/) —*• J/J2 is a torsion S-rnodule.

Lemma 2.43 Let E be a module as above, setA = R[Ti,... ,Tn] andJ= (fi,...,fin) =
[T{,..., Tn] • 9 the defining ideal ofS(E) = A/J. Let P D J be a prime ideal of A. If

is a principal ideal then Jp is a complete intersection.

Proof. According to [Va98b, Proposition 2.4.5], since the Fitting ideal |.(\}T)p is
principal, the module Cp decomposes as

CP^S!y® (torsion).

This means that we have a surjection

SrjTr -> (JP/Jp)/(torsion)
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of torsionfree Sp-modules of the same rank. Therefore

JP/JP = Spr © (torsion).

At this point, we invoke [Va67] to conclude that Jp is a complete intersection. •

The rest of the proof of Theorem 2.42 would proceed as in the proof of Theo-
rem 2.41. Choosing P = mA so that Sp has dimension 1, Jp is a complete intersec-
tion of codimension n — r = dim7? — 1 = d ----- 1. As in setting up the equation (24),
we pick O ^ a e m, pick a minimal set {x\,... ,x(i} of generators for m, and define
the matrix 5(<3>)

[a,fi,...,fm] = [xu...,xd]'B(O). (26)

Note that when localizing at P the ideals (a,fi,..., fm)p and (x\.... ,Xd)p are gen-
erated by regular sequences and we can use the same argument employed in the
proof of Theorem 2.41. •

2.5 Normalization of Modules

Let R be a normal domain and consider a module with an embedding E c > R"
ir = rank(is)). In this section we will show how the issues of normalization of
ideals and modules resemble one another. We will denote by En the components of
the Rees algebra R (E).

The normalization problem for a module of E is understood here in several
senses. A strong one as either the description of the integral closure of R (E) or
its construction. In more general terms, as the study of the relationships (expressed
in the comparison between their invariants) between the two algebras R (E) and
RjE).

The normalization problem for modules over two-dimensional regular local
rings is well clarified in ([Ko95]; see also [KK97]):

Theorem 2.44 LetR be a two-dimensional regular local ring and let E be a finitely
generated torsionfree R-module. Then R (E) = R (E), and it is a Cohen-Macaulay
algebra.

In higher dimensions, or for nonregular two-dimensional normal domains, the
picture is much more diffuse. To exhibit some of this diversity, first we make
several observations on how the transiting between Rees algebras of ideals and of
modules can take place besides the technique of Bourbaki sequences. Let E C i?" be
a submodule of a free module, and denote by R (E) c R (R") = S the corresponding
Rees algebras. We can consider the ideal (E) of 5* generated by the 1-forms in E.
In other words, (E) is the ideal of relations of S/(E) = 5^(/?r/E). In particular
some properties of (E) can be examined through the general tools developed for
symmetric algebras. Thus for example, to examine the codimension of (E) we may
replace E by one of its reductions F, and focus on Sit(Rr/F).

Our aim in this section being normalization, we start by providing a source of
complete modules derived from ideals.
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Proposition 2.45 Let M be a graded ideal of the polynomial ring S — R [x\,..., xj],
M — ®n>oMn. If M is an integrally closed S-ideal then each component Mn is an
integrally closed R-module.

Proof. Mn is a /?-module of the module Sn freely i?-generated by the monomials Ta

in the xi of degree n. Denote by R (Mn) c R (Sn) the corresponding Rees algebras.
Let u E Sn be integral over Mn; there is an equation in R (Sn) of the form

um + aiu
m-1 + • • • + am = 0, at e M\r

Map this equation using the natural homomorphism R (S^) —> 5, that sends the
variable Ta into the corresponding monomial of S. The equation converts into an
equation of integrality of u E S over the ideal M. Since M = M, u E Mn. •

Proposition 2.46 Let S = R (Rr) = R[xi,... ,xr] and denote by (E) the ideal of S
generated by the forms in E. For any positive integer n,

Proof. It suffices to verify the equality of these two integrally closed modules at
the valuations of R. At some valuation V, VS = V[zi,...,zr\ and VE is gener-
ated by the forms aizi,. •. ,arzr, with a\ G V. We must show that the ideal (VE)
is normal. We may assume that a\ divides all «/, a; — a\bu so that the ideal
(VE) = ai(zi,b2Z2,• • • ,brzr), and it will be normal if and only if it is the case
for (z\, bizi, • • •,brzr). Obviously we can drop the indeterminate zi and iterate. •

We shall now apply the Briancon-Skoda theory to the ideal (E) and to its pow-
ers. To illustrate, suppose that R is a regular domain of dimension d so that the
localizations of S are regular of dimension at most d + r; its Briancon-Skoda num-
ber is therefore c(S) < d + r—l. Since the analytic spread of E is d + r — 1, the
Briancon-Skoda number of E is c < £(E) — 1 = d + r — 2.

Let E <—> Rr be a module of finite colength and let F be a minimal reduction of
E (we may assume that R has infinite residue field). F is a complete intersection
module, generated by d + r—l elements (dim/? = d). From the definition of c —
c(E), we have

~ ( E n + c ~ ) c ( F n ) , n > l ,

which in degree n + cby the Proposition above can be written

Consider now the corresponding nitrations

0 -> W+c/Fn+c —> Sn+C/Fn+C —> Sn+c/W** -> 0. (27)

As in the case of ideals,

UEn+c/Fn+c) = k(Sn+c/F
n+c)-'k(Sn+c/E»+')- <k(Sn+c/F

n+c)-X(Sn+c/F
nSc),
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since En+C C F"SC, by the definition of c(E).

We now identify these numericai functions. The simplest to do is %(Sn+c/F
n+c).

This, according to Theorem 2.28, is given by the Buchsbaum-Rim polynomial of

Here br(F) = br(Is) = \{Rr/F) is the Buchsbaum-Rim multiplicity of E. More
generally, we use the following notation for the Buchsbaum-Rim polynomials of E
and of the integral closure of R (£"):

P(n) = X(Sn/E
n)=br(E)^+

d^
+

r
r
 {

 2 ) - M * ) ^ ^ , ^ + lowertenns

Pin) -

For any graded subalgebra R (E) C A C R (E), one can define X(Sn/An), and
associate with it the Buchsbaum-Rim polynomial. In such case, the coefficients
will be denoted br(A), brj (A), and so on.

Theorem 2.47 Let (i?,tn) be a Cohen-Macaulay normal local domain of infinite
residue field. Let E be a module of rank r > 2 and S as above such that the Rees
algebra R (E) has finite integral closure. If the Briangon-Skoda number of S is
c(S), then

In addition,

hniE) <hr(E) ,
c —~ i

Proof. According to the definition of c = c(S) and the discussion above, Ef+C c.
FnSc, for n > 0. We set up the exact sequences

0 __̂  pn+c /pn+c c , /pn-tc . c , /fn-rc __̂  ()

For n > 0 , we use it to make comparisons between the coefficients of the poly-
nomials. First note the embedding En+C/Fn+C c—s> FnSc/F

n+c, which means that
the Hilbert polynomial p(n) of the R (F)-raodule

77 > 0

dominates that of 0 W > 1 E
H+C/Fn+C, so that we have

p(n + c)> Pin + c) ~~ P~(n + c), n > 0.
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Since C is annihilated by a power of m, its KruU dimension is at most dimi? (F) —
\—d + r~~-1, and consequently the polynomial p(n) has degree at most d + r — 2.
Comparing leading coefficients for P(n + c) and P(n + c), this implies that br(£') =
br(E). One also has the inequality

where eo(C) is set to the multiplicity of C if dimC = d -f r — 1, or to 0 otherwise.
We are going to see that dimC = d + r — 1 and calculate its multiplicity. First note
that C is defined by the exact sequence

o -> /? (F) —> i? e F e • • • e FC-1 e R (F)SC —> c --> o.

Since R (F) is Cohen-Macaulay, it follows that C has dimension precisely dim R (F) -
1.

The determination of eo(C) is more delicate but we offer an estimation that
looks natural. We begin by filtering C itself: From

Fn+ccFn+c-lSiC---ClFnSc

we define the R (F)-modules

that give the factors of a filtration of C.

Lemma 2.48 deg(A) < br(£)
^ 1

Proof. We set 5,- - Sx • St-i, s - A,(Si/F) - br(£) and write

5'j = (F,cii,...,as),

where the submodules of Si,

define a composition series for Si/F, that is X(Fj+i/Fj) = 1. We use these s mod-
ules for a final filtering of the Df obtaining factors of the form

Fn-Fj+iSi-i/Fn-FjSi-i.

Note that this module is annihilated by the maximal ideal of R and is generated as
an R (F)-module by a.j+i • ma, where the ma are the monomials of degree i — 1 of
the polynomial ring S — R[x\,... ,x,]. As a consequence it is generated by C~ĵ 7 )
elements over the special fiber of R (F). Since F is of linear type, this ring is a ring

79



of polynomials and the multiplicity of the module is at most ('T^ ). Adding these
contributions we get the asserted bound. •

To complete the proof of Theorem 2.47, collecting the partial multiplicities
gives

eo(C) < br(E) ±

establishing the desired formula. •

Corollary 2.49 IfR is a regular local ring of dimension d and E is a suhmodule of
W, of finite colength so that R(E) has finite integral closure, then for any distinct
graded subalgebras A and B,

R(E)cAcBcR(E),

satisfying the ̂ -condition ofSerre,

0 < bn (A) < bri (B) < br(E) •

In particular, any chain of such subalgebras has length atniostbr(E) •(
\r+d-3

Proof. As in the proof above, the module C = B/A has dimension d-\-r— 1, and
we would obtain b\ (A) = br; (B) + eo(C). •

Question 2,50 As it was the case of ideals, an issue is whether the length of such
chains can be predicted a priori for more general rings.

Cohen-Macaulay Algebras

Let (R, m) be a Cohen-Macaulay local domain of dimension d and let E be a tor-
sionfree /^-module of rank r. Denote by A the Rees algebra of E, R(E), and let B
be a graded, finite A-subalgebra of A. The main result of this section is that if B
is Cohen-Macaulay then its reduction number (in a sense to be made explicit) is at
most d — 1. In particular B is generated by its components of degree at most d—\.

We fix an embedding E c—> Rr and identify R (E) with the subalgebra of S =
R[T],. ...Tr] generated by the 1-forms in E. The integral closure of R (E) and the
subalgebra B will be written

n>0

We can refer to B as a algebra of the multiplicative filtration {En} of i?-submodules
of 5.
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Theorem 2.51 Let (R.xn) be a Cohen-Macaulay local ring of infinite residue field
and let {En,^ Q,EQ — R} be a multiplicative filtration such that the Rees algebra
B = XJI>O-^« ^ Cohen-Macaulay and finite over A. Let G be a minimal reduction
ofE. Then

and in particular, B is generated over A by forms of degrees at most d — \,

ri>0

For r ~ 1, that is, the case of ideals is proved in Theorem rredintclos. That
result was based on the characterization of the Cohen-Macaulayness of the Rees
algebra of an ideal / in terms of its associated graded and of its reduction number.
It turns out that Theorem 2.51 is a direct consequence of the ideal case and of the
technique of Bourbaki sequences.

Proof. We assume that r > 2. In the algebra A, the prime ideal A±. ~ EA has
codimension r and therefore, by the going-up theorem, height (EB) = r or more
precise grade (EB) = r since B is Cohen-Macaulay by assumption.

Now we carry out a generic extension of R —> R" to construct a prime ideal of
B ®R R1 generated by a regular sequence r — 1 elements of R ® E. For example,
if ei,..., en is a set of i?-generators of E and X is a n x (/• — 1) matrix of distinct
indeterminates over R, taking the r — 1 linear combinations

F= ( / i , . . . , / r _ i ) = (e\_,...,en)-X

and setting R1 = i?[X|mrX], gives rise to the prime ideal (F) C B with the asserted
properties. In particular, this construction gives rise to the exact sequence of R-
modules (after we replace, innocuously, R by R")

0 _, F —>Ei —> h -» 0,

where I\ is torsionfree i?-module of rank 1, which we identity to an ideal /.
Consider the i?-algebra homomorphism

B= 2_,En —> 2^ En/FEn-.\ —
n>0 n>0 n>0

where En/FEn-i = In is also torsionfree of rank 1. Observe that C is finite over
the Rees algebra of / and thus C is contained in R[It\. Since (F) is a complete
intersection ideal of the Cohen-Macaulay ring B, C is Cohen-Macaulay. We may
thus apply Theorem 2.4 to obtain a minimal reduction J for C of reduction number
at most d—\. Lifting / to E\_ and adding F, gives rise to a reduction L for B
generated by at most d + r — 1 elements, having reduction number at most d — 1. It
will easily have the property that E,t+\ = LEn = EEn, for n>d—\. Note that if G
is any minimal reduction of E, we can change A by R (G) and obtain E^-fi = GEn,
n > d— 1, as well. •
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