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any term order, because the standard monomials for the initial submodule
in(7V) form a vector space basis for both F/N and jF/in(iV). Since jF/in(7V)
is a direct sum of multigraded translates of monomial quotients of S, and K-
polynomials as well as Hilbert series are additive on direct sums, it suffices
by Lemma 8.40 to know that if-polynomials are preserved under passing
to quotients by initial submodules. This last bit is Theorem 8.36. •

Example 8.42 Putting the Hilbert series in Example 8.38 over a com-
mon denominator yields the Z © Z/2Z-graded K-polynomial of M, namely
fC{M; s, t) = s-2t(l - st)(l - s) + 1 - s~2t = 1 - s'H - s'H2 + t2. O

Two open problems concerning Hilbert series and ^-polynomials are

(i) how to represent the kernel of the homomorphism of abelian groups
{Hilbert series of modest modules} —> {^-polynomials}; and

(ii) how to write down Hilbert series for immodest modules.

The map {Hilbert series} —> {i^-polynomials} in (i) is never injective when
the grading is nonpositive: there can be many modest modules, with very
different-looking Hilbert series, that nonetheless have equal X-polynomials.
Such ambiguity does not occur in the positively graded case by Theo-
rem 8.20, because the rational functions that represent positively graded
Hilbert series lie in an ambient power series ring that is an integral domain.

8.5 Multidegrees

We saw in Part I that free resolutions in the finest possible multigrading
are essentially combinatorial in nature. For coarser gradings, in contrast,
combinatorial data can usually be extracted only after a certain amount
of condensation. Although if-polynomials can sometimes suffice for this
purpose, even they might end up carrying an overload of information. In
such cases we prefer a multigraded generalization of the degree of a Z-
graded ideal. The characterizing properties of these multidegrees give them
enormous potential to encapsulate finely textured combinatorics, as we shall
see in the cases of Schubert and quiver polynomials in Chapters 15-17.

The ordinary Z-graded degree of a module is usually defined via the
leading coefficient of its Hilbert polynomial (see Exercise 8.13). However,
as Hilbert polynomials do not directly extend to multigraded situations, we
must instead rely on a different characterization. In the next definition, the
symbol multp (M) denotes the multiplicity of a module M at the prime p,
which by definition equals the length of the largest finite-length submodule
in the localization of M at p [Eis95, Section 3.6].

Definition 8.43 Let S be a polynomial ring multigraded by a subgroup
A C Zd (so in particular, A is torsion-free). Let C : M H+ C(M;t) be a
function from finitely generated graded S-modules to Z[t\,... ,td]-
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1. The function C is additive if for all modules M,

C(M;t) =

fc=i

where p i , . . . . p r are the maximal dimensional associated primes of M.

2. The function C is degenerative if, whenever M = !F/K is a graded
free presentation and in(M) := ^-/in(iir) for some term or weight order,

C(M;t) = C(in(M);t).

The definition of additivity implicitly uses the fact (Proposition 8.11)
that p i , . . . , jv are themselves multigraded, given that M is. This subtlety
is why we restrict to torsion-free gradings when dealing with multidegrees.

Readers who have previously seen the notion of Z-graded degree will
recognize it as being both additive and degenerative. The main goal of this
section is to produce a multigraded analogue of degree that also satisfies
these properties. The very fact that Z-graded degrees already satisfy them
means that we will need extra information to distinguish multidegrees from
the usual Z-graded degree. To that end, we have the following uniqueness
statement, our main result of the section.

Theorem 8.44 Exactly one additive degenerative function C satisfies

for all prime monomial ideals (x^,... ,Xir), where (a, t) = a\t\ + -

Proof. If M is a finitely generated graded module, then let M = ^F/K be
a graded presentation, and pick a term order on J-. Set M' = J-/\n(K),
so C(M;t) = C(M';t) because C is degenerative. Note that M' is a direct
sum of A-graded translates of monomial quotients of S. Since all of the
associated primes of M' are therefore monomial primes, the values of C
on the prime monomial quotients of S determine C{M'\ t) by additivity.
This proves uniqueness. Existence will follow from Corollary 8.47, Propo-
sition 8.49, and Theorem 8.53. •

From the perspective of uniqueness, we could as well have put any func-
tion of t on the right hand side of Theorem 8.44. However, it takes very
special such right hand sides to guarantee that a function C actually ex-
ists. Indeed, C is severely overdetermined, because most submodules K Q J-
have lots of distinct initial submodules in (if) as the term order varies. This
brings us to our main definition: to prove the existence of a function C satis-
fying Theorem 8.44, we shall explicitly construct one from if-polynomials.

We work exclusively with torsion-free gradings, and therefore we as-
sume A C Z f The symbol t a thus stands for an honest Laurent monomial



8.5. MULTIDEGREES 167

*i1 " ' ' *dd' allowing us to substitute 1 — tj for every occurrence of tj. Doing
so yields a rational function (1 — t\)ai • • • (1 — *<j)ad, which can be expanded
(even if some of the cij are less than 0) as a well-defined power series

in Z[[*i,..., td]]. Doing the same for each monomial in an arbitrary Laurent
polynomial K(t) results in a power series K[[l —t]]. If K(t) is a polynomial,
so a G Nd whenever t a appears in K(t), then K[[l — t]] is a polynomial.

Definition 8.45 The multidegree of a Zd-graded S-module M is the
sum C(M; t) £ Z[*i,. . . , *J of all terms in /C[[M; 1 — t]] having total degree
codim(M) = n — dim(M). When M = S/I is the coordinate ring of a
subvariety X C kn, we may also write [X]A or C(X;i) to mean C(M;t).

Example 8.46 Let S = k[a, 6, c, d] be multigraded by Z2, with

deg(a) = (2,-1) , deg(6) = (1,0), deg(c) = (0,1), and deg(d) = (-1,2).

If M is the module S/{b2, be, c2), then

JC(M-t) = 1 — tdeg(fe2) — tdeg(bc) — tdes(c2) + tdes(b2c) + tdeg^bc2)
= 1 - t\ - tit2 - t\ + t\t2 + htj

because of the Scarf resolution. Gathering — t\-\-t\t2 = —if (1 —^2), we get

12 — tft2 — *1*2 , SO

C(Af;t) = 3*i*2

is the sum of degree 2 = codim(M) terms in /C[[M; 1 — t]]. O

Immediately from Definition 8.45 and the invariance of ii'-polynomials
under Grobner degeneration in Theorem 8.36, we get the analogous invari-
ance of niultidegrees under Grobner degeneration.

Corollary 8.47 The multidegree function M H^ C(M; t) is degenerative.

Next let us verify that the niultidegrees of quotients by monomial primes
satisfy the formula in Theorem 8.44. For this we need a lemma.

Lemma 8.48 Let b G Zd. If K{t) = 1 - t b = 1 - i j 1 • • -tb/ then substitut-
ing l—tj for each occurrence oftj yields K[[l—t]] = 6i*i + - • •+bdtd+O(t2),
where O(t ) denotes a sum of terms each of which has total degree at least 2.
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d d

Proof. K[[l -1]] = 1 - J ] ( l - tj)b' = 1 - H (l - bjtj + O{t])), and

d d

this equals 1 - (l - ^(bjtj) + O(t2)) = ( ^ M i ) + ° ( t 2 ) - D

The linear form b\t\ + • • • + bdtd in Lemma 8.48 can also be expressed as
the inner product (b,t) of the vector b with the vector t=(t\,...,td). It
can be useful to think of this as the logarithm of the Laurent monomial t b .

Proposition 8.49 K-polynomials of prime monomial quotients satisfy

e=i

where O(t r + 1) is a sum of forms each of which has total degree at least
r + 1. In particular, the multidegree of a prime monomial quotient of S is

Proof. Using the Koszul complex, the X-polynomial of the quotient module
M = S/{xii,...,xir) is computed to be /C(M;t) = (1 - t a i ) - - - ( l - t a - ) .
Now apply Lemma 8.48 to each of the r factors in this product. •

Example 8.50 Consider the ring S = k[a, b, c, d] multigraded by 7? with

deg(a) = (3,0), deg(fe) = (2,1), deg(c) = (1,2), and deg(d) = (0,3)

Then, using variables s = si,S2, we have multidegrees

C(S/{a,b),s) =
C(S/(a,d),s) = (3si)(3s2) =

and C(S/(c,d),s) = (si + 2s2)(3s2) =

Note that these multidegrees all lie inside the ring

= Z[si + 2s2,2si + s2]

and not just 1\s\, s2], since the group A is the proper subgroup of Zsi ©Zs2

generated by si+2s2 and 2si+s2 . Nonetheless, the definition of multidegree
via /C[[M; 1 — s]] still works verbatim. O

Remark 8.51 Warning: Proposition 8.49 does not say that the product
{ai1, t) • • • (a^, t) is nonzero. Indeed it can very easily be zero, if a^ = 0 for
some £. However, this is the only way to get zero, as the product of linear
forms takes place in a polynomial ring over Z, which has no zerodivisors.

Proposition 8.49 implies that multidegrees of quotients of S by mono-
mial prime ideals are insensitive to multigraded shifts.
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Corollary 8.52 If M = 5 / ( 3 ^ , . . .,xir) then C(M(-b) ; t ) = C(M;t).

Proof. Shifting by b multiplies the /^-polynomial by t b , so /C(M(—b); t) =
tb/C(M;t). The degree r form in /C[[M(-b); 1 - t]] is the product of the
lowest degree forms in /C[[M; 1 — t]] and (1 — t ) b , the latter of which is 1. •

In view of Corollary 8.47 and Proposition 8.49, our final result of the
chapter completes the characterization of multidegrees in Theorem 8.44.

Theorem 8.53 The multidegree function C : M i—> C(M\ t) is additive.

Proof. Let M = Mi D Mt-i D • • • D Mi D Mo = 0 be a filtration of M
in which Mj/Mj-i = (S/pj)(—hj) for multigraded primes pj and vectors
bj e A. Such a nitration exists because we can choose a homogeneous
associated prime pi = ann(m-i) by Proposition 8.11, set Mi = (mi) =
(Sypi)(— deg(mi)), and then continue by noetherian induction on M/M\.

The quotients S/pj all have dimension at most dim(M), and if S/p has
dimension exactly dim(M), then p = pj for exactly multp(M) values of j
(localize the filtration at p to see this). Also, additivity of i'f-polynomials
on short exact sequences implies that JC(M;t) = ^ . - = 1 K{Mj/Mj-i; t) .

Assume for the moment that M is a direct sum of multigraded shifts
of quotients of S by monomial ideals. Then all the primes pj are mono-
mial primes. Therefore the only power series /C[[Af//Afj_i; 1 — t]] con-
tributing terms of degree codim(M) to /C[[M; 1 — t]] are those for which
Mj/Mj-i = (S/pj)(—hj) has maximal dimension, by Proposition 8.49 and
Corollary 8.52. Hence the theorem holds for such M.

Before continuing with the case of general modules M, let us generalize
Proposition 8.49, and hence Corollary 8.52, to arbitrary modules.

Claim 8.54 / / M has codimension r, then /C[[M; 1 — t]] = C(M;t) +
O(t r + 1 ) . In particular, C(M(-b) ; t ) = C(M;t) for arbitrary modules M.

Proof. We have just finished showing that the first statement holds for
direct sums of multigraded shifts of monomial quotients of S. By Corol-
lary 8.47, every module M = J-/K of codimension r has the same multide-
gree as such a direct sum, namely !F/\n{K\ whose codimension is also r.
The second statement follows as in the proof of Corollary 8.52. •

Now the argument before Claim 8.54 works for arbitrary modules M and
primes pj, using the Claim in place of Proposition 8.49 and Corollary 8.52. •

Example 8.55 Let S = k[a, b, c, d] and let I = (b2 — ac, be — ad, c2 — bd)
be the twisted, cubic ideal. Then / has initial ideal in(J) = (b2, be, c2) under
the reverse lexicographic term order with a > b > c > d. Since in(7) is
supported on (b, c) with multiplicity 3, the multidegree of 5/7 under the
Z2-grading from Example 8.46 is C(S/I;ti,t2) = 3(deg(fr),t)(deg(c),t) =

This agrees with the multidegree in Example 8.46, as it should by
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Theorem 8.53. It also equals the multidegree C(S/I; t) of the twisted cubic,
by Corollary 8.47.

On the other hand, the twisted cubic ideal / has initial ideal in(/) =
(ac, ad, bd) = (a, b) n (a, d) n (c, d) under the lexicographic term order with
a > b > c > d. Using the multigrading and notation from Example 8.50,
additivity in Theorem 8.53 implies that

C(S/(ac,ad,bd);s) = C(S/(a, b); s) + C(S/(a, d);s) + C(S/(c,d);s)

We conclude by Corollary 8.47 that C(S/I; s) = 6s? + 15sis2 + 6s|. This
multidegree also equals 3(deg(6), s){deg(c), s) = 3(si + 2s2)(2si + S2). <>

Exercises
8.1 Prove that Sa is generated as a module over So by any set of monomials that
generates the ideal (Sa) inside of <S\

8.2 Let Q be a pointed affine semigroup in A = Z , and let A' C A be the
subgroup generated by Q. Write Z[[Q]][A] = 1[[Q]] ®z[Q] %[A]. Note that when
A' = A, the ring Z[[Q]][A] equals the localization Z[[Q]][tra i , . . . , t " a " ] .

(a) Show that if A' = A, every element in Z[[Q]] [A] can be represented uniquely
by a series J2aeA c a t a supported on a union of finitely many translates of Q.

(b) In the situation of part (a), prove that every series supported on a union of
finitely many translates of Q lies in Z[[Q]][A|.

(c) Use Exercise 7.10 to verify parts (a) and (b) when A' does not equal A.

8.3 Consider the twisted cubic ideal / in Example 8.55, and let w = (0,1, 3, 2).

(a) Prove that the homogenization of / with respect to the weight vector w is
the ideal I — (ac — b2y, be — ady2, c2 — bdy3, b3 — a2dy) in S[y\.

(b) Compute a minimal free resolution of / graded by Z x Z, where the multi-
grading of k[a, b, c, d] by Z2 is as in either Example 8.46 or Example 8.50.

(c) Verify Proposition 8.28, Theorem 8.29, and Corollary 8.31 in this case by
plugging y = 0 and y = 1 into matrices for the maps in the resolution
from (b), and exhibiting the consecutive pairs as described in Remark 8.30.

8.4 Let S = k[x] for x = i, j = 1 , . . . , 4}. With • | = det('), set

/ =
X21 X22

X 1 2
X l l

X 2 1

X 3 1

X 1 3

X23

£ 3 3

X l 4

X 2 4

X 3 4

)

X 1 2

X 2 2

X 3 2

X 1 3

X 2 3

£ 3 3

X 1 4

X 2 4

X 3 4

Compute the if-polynomials and multidegrees of the quotient S/I in the multi-
gradings by Z4 in which (i) deg(xij) = U and (ii)

8.5 Make arbitrarily long lists of polynomials generating the ideal (xy — 1) C
k[x, y], none of which can be left off. (Example 8.35 has lists of length 1 and 2.)
Confirm that the corresponding free resolutions all give the same if-polynomial.
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8.6 Write down formulas for the K-polynomial and multidegree of the quotient
of S by an irreducible monomial ideal (i.e. generated by powers of variables).

8.7 Show that arbitrary multidegrees are nonnegative, in the following sense:
The multidegree of any module of dimension n — r over S is a nonnegative sum of
"squarefree" homogeneous forms (a^, t) • • • {&ir, t) of degree r with i\ < • • • < ir.

8.8 If the linear forms (ai, t ) , . . . , (an, t) are nonzero and generate a pointed affine
semigroup in Z , deduce that no product ( a ^ t ) • • • ( a ^ t ) for i\ < • • • < ir is
zero, and that all of these forms together generate a pointed semigroup in ZR,
where R = (" „" ) is the number of monomials of degree r in n variables.

8.9 Prove that the positivity in Exercise 8.7 holds for positive multigradings in
the stronger sense that any nonempty nonnegative sum of forms (en1, t) • • • (anr, t)
is nonzero. Conclude that C(M;t) ^ 0 if M ^ 0 is positively graded.

8.10 Let M and M' be two Z™-graded S'-modules. Give examples demonstrating
that the product of the multidegrees of M and M' need not be expressible as
the multidegree of a Zn-graded module. Can you find sufficient conditions on M
and M' to guarantee that C(M; i)C(M'\ t) = C(M ® s M';t)?

8.11 Let M b e a multigraded module and z S S a homogeneous nonzerodivisor
on M of degree b. Prove that

(a) JC(M/zM;t) = (1 - tb)/C(Af; t), and

(b) C{M/zM;t) = (b,t)C{M;t).

8.12 Let / C S be multidgraded for a positive Z -grading. Suppose that J is
a Zd-graded radical ideal contained inside / , and that J is equidimensional (also
known as pure: all of its associated primes have the same dimension). If S/I and
S/J have equal multidegrees, deduce that I = J. Hint: Use Exercise 8.9.

8.13 Let S be Z-graded in the usual way, with deg(xj) = 1 for i — 1,.. . , n. The
Z-graded degree e(M) of a graded module M is usually defined as (r — 1)! times
the leading coefficient of the Hilbert polynomial of M, where r = dim(M). Prove
that the multidegree of M is e(M)tn^r.

8.14 Suppose S is multigraded by A, with deg(xi) = sn £ A, and suppose A —> A'
is a homomorphism of abelian groups sending an to â  £ A'. Prove the following.

(a) The homomorphism A —* A1 induces a new multigrading deg' on S, in which
deg'(xj) = a-.

(b) If a module M is multigraded by A, then M is also multigraded by A'.

(c) If JC(M; t) and K,(M\ s) are the ./^-polynomials of M under the multigradings
by A and A', then /C(M;t) maps to K.(M;s) under the homomorphism
Z[A] —• 1\A'\ of group algebras. In particular, this sends t a i to sa».

(d) If C(M;t) and C(M;s) are the multidegrees of M under the multigrad-
ings by A and A', then C{M; t) maps to C(M; s) under the homomorphism
Z[t] —> Z[s] of polynomial rings, which sends (&i,t) to (a^,s).

8.15 Verify functoriality of if-polynomials and multidegrees for the twisted cubic
k[a, b, c, d\/(b —ac, ad—be, c —bd) under the two multigradings in Examples 8.46,
8.50, and 8.55. The morphism of gradings sends t\ H^ 2SI — S2 and ti i—> 2s2 — si.
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8.16 Prove that an ideal / inside an a priori ungraded polynomial ring k[x] is
homogeneous for a weight vector w £ Z™ if and only if some (and hence every)
reduced Grobner basis for / is homogeneous for w. Conclude that there is a
unique finest /-universal grading on k[x] in which the ideal / is homogeneous.

8.17 For any polynomial g 6 k[x], let log(g) be the set of exponent vectors on
monomials having nonzero coefficient in g. Suppose that Q is the reduced Grobner
basis of / for some term order. If L is the sublattice of Z™ generated by the sets
log(g) — log(in(g)) for g £ Q, show that the Z™/L-grading on k[x] is universal for / .

8.18 Prove that if L C Z™ is a sublattice, then the universal grading for the
lattice ideal II is the multigrading by Z™/L.

8.19 Define the universal /^-polynomial and universal multidegree of the
quotient k[x]/ / to be its /f-polynomial and multidegree in the /-universal grading.
Compute the universal /^-polynomial and multidegree of S/I from Exercise 8.4.

Notes
Geometrically, a multigrading on a polynomial ring comes from the action of an
algebraic torus times a finite abelian group. The importance of this point of
view has surged in recent years due to its connections with toric varieties (see
Chapter 10). Multigraded k[xi , . . . , xn]-modules correspond to torus-equivariant
sheaves on the vector space k™. The /^-polynomial of a module is precisely the
class represented by the corresponding sheaf in the equivariant K-theory of k";
this is the content of Theorem 8.34. The degenerative property of K-polynomials
in Theorem 8.36 is an instance of the constancy of /^-theory classes in flat families.
See [BG05] for more on /C-theory in the toric context.

The increase of Betti numbers in Theorem 8.29 can be interpreted in terms of
associated graded modules for nitrations [Vas98, Section B.2], or as an instance of
a more general upper-semicontinuity for flat families [Har77, Theorem III.12.8].

The notion of multidegree, essentially in the form of Definition 8.45, seems
to be due to Borho and Brylinski [BB82, BB85] as well as to Joseph [Jos84].
The equivariant multiplicities used by Rossmann [Ros89] in complex-analytic
contexts are equivalent. Multidegrees are called T-equivariant Hilbert polyno-
mials in [CG97, Section 6.6], where they are proved to be additive as well as
homogeneous of degree equal to the codimension (the name is confusing when
compared with usual Hilbert polynomials). Elementary proofs of these facts ap-
pear also in [BB82]. Multidegrees are algebraic reformulations of the geometric
torus-equivariant Chow classes (or equivariant cohomology classes when k = C)
of varieties in k™ [Tot99, EG98]; this is proved in [KMS04, Proposition 1.19].
The transition from /sT-polynomials to multidegrees is a manifestation of the
Grothendieck—Riemann—Roch theorem.

Exercises 8.7-8.9 come from [KnM04b, Section 1.7], where the positively
multigraded case of the characterization in Theorem 8.44 (that is, including the
degenerative property) was noted. Exercise 8.12 appears in [Mar04, Section 5] and
[KnM04b, Lemma 1.7.5]. The t-multidegree in Exercise 8.4 is a Schur function,
since / is a grassmannian Schubert determinantal ideal (Exercises 15.2 and 16.9).



Chapter 15

Matrix Schubert varieties

In the previous chapter, we saw how Pliicker coordinates parametrize flags
in vector spaces. We found that the list of Pliicker coordinates is, up to
scale, invariant on the set of invertible matrices mapping to a single flag.
Here we focus on bigger sets of matrices, called matrix Schubert varieties,
that map not to single points in the flag variety, but to subvarieties called
Schubert varieties. Matrix Schubert varieties are sets of rectangular matri-
ces satisfying certain constraints on the ranks of their submatrices. Com-
mutative algebra enters the picture through their defining ideals, which are
generated by minors in the generic rectangular matrix of variables.

This chapter and the two after it offer a self-contained introduction to
determinantal ideals. Our presentation complements the existing extensive
literature (see the Notes to Chapter 16), concerning both quantitative and
qualitative attributes, such as dimension, degree, primality, and Cohen-
Macaulayness, of varieties of matrices with rank constraints. We con-
sider the finest possible multigrading, which demands the refined toolkit
of a new generation of combinatorialists. Besides primality and Cohen—
Macaulayness, the main results are that the essential minors form a Grobner
basis, and that the multidegree equals a double Schubert polynomial.

Harvesting combinatorics from algebraic fields of study requires sowing
combinatorial seeds. In our case, the seed is a partial permutation matrix
from which the submatrix ranks are determined. Partial permutations lead
us naturally in this chapter to the Bruhat and weak orders on the symmet-
ric group. Part of this story is the notion of length for partial permutations,
which is characterized in our algebraic context in terms of operations inter-
changing pairs of rows in matrices. These combinatorial considerations are
fertilized by the geometry of Borel group orbits, on which the rank condi-
tions are fixed. This geometry under row exchanges allows us to reap our
reward: the multidegrees of matrix Schubert varieties satisfy the divided
difference recurrence, characterizing them as double Schubert polynomials.

289
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15.1 Schubert determinantal ideals

Throughout this chapter, M^i will denote the vector space of matrices with
k rows and £ columns over the field k, which we assume is algebraically
closed, for convenience. Denote the coordinate ring of Mki by k[x], where

x = [x,a/3 a — 1 , . . . , k a n d j3 — !,...,£)

is a set variables filling the generic kx£ matrix. Our interests in this chapter
lie with the following loci inside kmx^.

Definition 15.1 Let w G Mkt be a partial permutation, meaning that
w is a k x £ matrix having all entries equal to 0 except for at most one entry
equal to 1 in each row and column. The matrix Schubert variety Xw

inside MM is the subvariety

Xw = {Z £ MM | rank(ZpXq) < r&nk.(wpxq) for all p and q},

where ZpXq is the upper-left pxq rectangular submatrix of Z. Let r{w) be
the kx£ array whose entry at (p, q) is rpq(w) = i&nk(wpXq).

Example 15.2 The classical determinantal variety is the set of all
kx£ matrices over k of rank at most r. This variety is the matrix Schubert
variety Xw for the partial permutation matrix w with r nonzero entries

Wn = W22 = • • • = Wrr = 1

along the diagonal, and all other entries wap equal to zero. The classical
determinantal ideal, generated by the set of all (r + 1) x (r + 1) minors
of the kxl matrix of variables, vanishes on this variety. In Definition 15.5
this ideal will be called the Schubert determinantal ideal Iw for the special
partial permutation w above. We shall see in Corollary 16.29 that in fact Iw

is the prime ideal of Xw. In Example 15.39 we show that the multidegree
of this classical determinantal ideal is a Schur polynomial. Our results in
Chapter 16 imply that the set of all (r + 1) x (r + 1) minors is a Grobner
basis and its determinantal variety is Cohen-Macaulay.

Some readers may wonder whether the machinery developed below is re-
ally the right way to prove the Grobner basis property in this classical case.
Our answer to this question is emphatically 'yes'. The local transitions in
Section 15.3—15.5 provide the steps for an elementary and self-contained
proof, by an induction that involves all matrix Schubert varieties, starting
from the case of a coordinate subspace in Example 15.3. An essential fea-
ture of this induction is that it reflects the combinatorics inherent in the
universal grading making all minors homogeneous (see Exercise 15.1).

For the classical determinantal ideal of maximal minors, where r —
min(fc,£), the induction is particularly simple and explicit, as is the combi-
natorial multidegree formula; see Exercises 15.4, 15.5, and 15.12. O



15.1. SCHUBERT DETERMINANTAL IDEALS 291

Partial permutation matrices w are sometimes called rook placements,
because rooks placed on the 1 entries in w are not attacking one another.
The number rank(iypxg) appearing in Definition 15.1 is simply the number
of 1 entries (rooks) in the northwest pxq submatrix of w. A partial permu-
tation can be viewed as a correspondence that takes some of the integers
1 , . . . , k to distinct integers from { 1 , . . . , £}. We write w(i) = j if the partial
permutation w has a 1 in row i and column j . This convention results from
viewing matrices in Mke as acting on row vectors from the right; it is there-
fore transposed from the more common convention for writing permutation
matrices using columns.

When w is an honest square permutation matrix of size n, so k — n — £
and there are exactly n entries of w equal to 1, then we can express w
in one-line notation: the permutation w = w±... wn of { 1 , . . . , n} sends
i H-> iUj. This is not to be confused with cycle notation, where (for instance)
the permutation Oi = (i, i + 1) is the adjacent transposition switching i
and i + 1. The number r&nk(wpXq) can alternatively be expressed as

rpq(w) = rank(wpX(j) = #{(i,j) < (p,q) \ w(i) = j}

for permutations w. The group of permutations of { 1 , . . . ,n} is denoted
by Sn. There is a special permutation u>o = n ... 321 called the long word
inside Sn, which reverses the order of 1 , . . . . n.

Example 15.3 The variety XWo inside Mnn for the long word WQ € Sn

is just the linear subspace of lower-right-triangular matrices; its ideal is
(xij | i + j < n). As we shall see in Section 15.3, this is the smallest matrix
Schubert variety indexed by an honest permutation in Sn. O

Example 15.4 Five of the six 3 x 3 matrix Schubert varieties for honest
permutations are linear subspaces:

-'123

^213

^231

-^231

/3 2 i

= 0
= {xu)
= (211,212)

= (211,221)

= (211,212,221)

-X123

^ 2 1 3

^ 2 3 1

-X"312

X321

= M3
= {z
= {Z
= {z
= {Z

G M33 211

e M33 | 211
G M33 | 2 n
e M33 1 211

= 0}
= 212 = 0}
= 22i = 0}

= 212 = 221 = 0}

The remaining permutation, w — 132, has matrix ~ ~ T , SO that
1

1

1

1̂32 = {̂ 11X22 - 212221) X132 = {Z G M33 I rank(Z2X2) < !} •

Thus J132 is the set of matrices whose upper-left 2 x 2 block is singular. O

Since a matrix has rank at most r if and only if its minors of size r + 1
all vanish, the matrix Schubert variety Xw is the (reduced) subvariety of

cut out by the ideal Iw denned as follows.
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Definition 15.5 Let w €E M^e be a partial permutation. The Schubert
determinantal ideal Iw C k[x] is generated by all minors in xpXq of size
1 + fpq(w) for all p and q, where x = {xap) is the kx£ matrix of variables.

It is a nontrivial fact that Schubert determinantal ideals are prime, but
we shall not need it in this chapter, where we work exclusively with the zero
set Xw of Iw. We therefore write I{XW) instead of Iw when we mean the
radical of Iw. Chapter 16 gives a combinatorial algebraic primality proof.

Example 15.6 Let w = 13865742, so that the matrix for w is given by
replacing each x by 1 in the left matrix below.

X

X

X

X

X
X

X

X
1
1
1
1
1

1
1
1
1

2"
2
2
2
2

2
2
2
2
2

2
2
2
2

2
2
2

2 3

3
3
3

3

3
3
3

3

3
3
3

3

3
3

3

3

3 3

Each 8x8 matrix in Xw has the property that every rectangular submatrix
contained in the region filled with l's has rank < 1, and every rectangular
submatrix contained in the region filled with 2's has rank < 2, and so on.
The ideal Iw contains the 21 minors of size 2 x 2 in the first region and
the 144 minors of size 3 x 3 in the second region. These 165 minors in fact
generate Iw\ see Theorem 15.15. O

Example 15.7 Let w be the 3x3 partial permutation matrix 1
1

The

matrix Schubert variety Xw is the set of 3 x 3 matrices whose upper-left
entry is zero, and whose determinant is zero. The ideal Iw is

£11, det
£n x12 xi3
^21 ^22 £23

£31 £32 £33

The generators of Iw are the same as those of the ideal J2143 for the per-
mutation in S4 sending 1 1—̂ 2, 2 1—»- 1, 3 1—>• 4 and 4 ^ 3 . O

It might seem a bit unhelpful of us to have ignored partial permutations
until the very last example above, but in fact there is a general principle
illustrated by Example 15.7 that gets us off the hook. Let us say that a
partial permutation w extends w if the matrix w has northwest corner w.

Proposition 15.8 Every partial permutation matrix w can be extended
canonically to a square permutation matrix w whose Schubert determinantal
ideal 1$ has the same minimal generating minors as Iw.

Proof. Suppose that w is not already a permutation, and that by symmetry
there is a row (as opposed to a column) of if that has no 1 entries. Define w'
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by adding a new column and placing a 1 entry in its highest possible row.
Define w by continuing until there is a 1 entry in every row and column.

The Schubert determinantal ideal of any partial permutation matrix
extending w contains the generators of Iw by definition. Therefore it is
enough—by induction on the number of rows and columns added to get w—
to show that the Schubert determinantal ideal Iw> is contained inside Iw.
The only generators of Iw> that are not obviously in Iw are the minors of
size l + rank(t/ ; '^+ 1s) m the generic matrix Xpx(^+1) for p — l,...,k. Now
use the next lemma. •

Lemma 15.9 The ideal generated by all minors of size r in xpXq contains
every minor of size r + 1 in xpx(g+1) or in X(p+1)xq.

Proof. Laplace expand each minor of size r + 1 along its rightmost column
or bottom row, respectively. •

The canonical extension w in Proposition 15.8 has the property that

• no 1 entry in columns £ + 1 , £ + 2 , . . . of w is northeast of another; and
• no 1 entry in rows k + 1, k + 2 , . . . of w is northeast of another.

Although w has size n for some fixed n, any size n + n' permutation ma-
trix extending w with these properties is a matrix for w, viewed as lying
in Sn-\-n/. Thus this this size n + n' permutation matrix is w plus some
extra 1 entries on the main diagonal in the southeast corner. Fortunately,
Schubert determinantal ideals are insensitive to the choice of n'.

Proposition 15.10 / / w € Sn and w extends w to an element of Sn+n>
fixing n + 1 , . . . , n + n1, then Iw and 1$ have the same minimal generators.

Proof. Add an extra column to w containing no 1 entries to get a partial
permutation matrix w'. Since every row of w contains a 1, the "new" minors
generating Iw> are of size 1 +p inside xpX(n+1) for each p. These minors
are all zero, because they do not fit inside ~x.px(n+i)• (If this last statement
is unconvincing, think rank-wise: the rank conditions coming from the last
column of w' say that the first p rows of matrices in Xw> have rank at
most p; but this is a vacuous condition, since it is always satisfied.) Now
apply Proposition 15.8 to w' and repeat n' times to get w. •

Remark 15.11 Geometrically, Propositions 15.8 and 15.10 both say that
XJX, = Xw x km , where m is the area of the matrix w minus the area of w.

As a final note on definitions, let us say what matrix Schubert varieties
have to do with flag varieties. Recall from Section 14.1 that every invertible
matrix 0 £ GLn determines a flag in k" by its Plucker coordinates.

Definition 15.12 Let w G Sn be a permutation. The Schubert vari-
ety Xw in the flag variety T£n consists of the flags determined by invertible
matrices lying in the matrix Schubert variety Xw.
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15.2 Essential sets

As we have seen in Example 15.2, some of the most classical ideals in
commutative algebra are certain types of Schubert determinantal deals. To
identify other special types, and to reduce the number of generating minors
from the set given in Definition 15.5, we use the following tools.

Definition 15.13 The diagram D(w) of a partial permutation matrix w
consists of all locations (called 'boxes') in the kx£ grid neither due south
nor due east of a nonzero entry in w. The length of if is the cardinality l(w)
of its diagram D(w). The essential set £ss(w) consists of the boxes (p, q)
in D(w) such that neither (p,q + 1) nor (p + l,q) lies in D(w).

The diagram of w determines w up to extension as in Propositions 15.8
and 15.10. The length of w is a fundamental combinatorial invariant that
will be used repeatedly, starting in the next section. The diagram can be
described more graphically by crossing out all the locations due south and
east of nonzero entries in w; this leaves precisely the diagram D(w) remain-
ing. The essential set £ss(w) consists of the "southeast corners" in D(w).

Example 15.14 Consider the 8x8 square matrix for the permutation w =
48627315, whose 1 entries are indicated by x in the following array:

4
8
6
2
7
3
1
5

u
•
•
•
•
0
X

U
•
•
X

U
•
0

m
X

X •

. •
• 0

• 0

• X

• 0 X
X • •

• X •

Locations in the diagram of w are indicated by boxes, and its essential set
consists of the subset of boxes with numbers in them. The number in the
box (p,q) G £ss(w) is iank(wp><q). O

Theorem 15.15 The Schubert determinantal ideal Iw C
by minors coming from ranks in the essential set of w:

[x] is generated

Iw — (minors of size 1 + r&nk{wpXq) in x p x g | (p, q) £ £ss{w)).

Proof. Suppose (p, q) does not lie in £ss(w). Either (p, q) lies outside D(w),
or one of the two locations (p, q+1) and (p + 1, q) lies in D{w).

In the former case we demonstrate that the ideal generated by the mi-
nors of size 1 + rpq(w) in xpXq is contained either in the ideal generated
by the minors in Iw from x(-p_1-)Xg or in the ideal generated by the minors
in Iw from ^.pX(q-i)- Suppose by symmetry that a nonzero entry of w lies
due north of (p, q). Using Lemma 15.9, the minors of size l + rpq(w) in xpX(j
are stipulated by the rank condition at (p, q — 1). Continuing in this way,
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we can move north and/or west until we get to a box in D(w), or else
to a location outside the matrix. The first possibility reduces to the case
(p,q) E D{w). For the other possibility, we find that rpq(w) = min{p,g},
so there are no minors of size 1 + rpq(w) in xpXg .

Now we treat the case (p, q) € D(w), where we assume by symmetry that
D(w) has a box at (p, q + 1). The rank at (p, q) equals the rank at (p,q + l)
in this case, so the minors of size 1 +rank(u)pXg) in xpXg are contained (as
a set) inside the set of minors of size 1 + rank(u;j,x(g+i)) in xpX(g+1). Now
continue east and/or south until a box in £ss(w) is reached. •

Example 15.16 Let w be the partial permutation of Example 15.2, so Xw

is the variety of all matrices of rank < r. Then the essential set Sss(w) is
the singleton {(k,£)} consisting of a box in the southeast corner of w. O

Example 15.17 Suppose the (partial) permutation w has essential set

£ss(w) = {(ai , /?i) , . . . , (am , /3m)}

in which the a's weakly decrease and the /3's weakly increase:

cxi > • • • > oim a n d /?i < • • • < /3m.

Thus £ss(w) lies along a path snaking its way east and north. Such (partial)
permutations are called vexillary. Various classes of vexillary Schubert
determinantal ideals have been objects of study in recent years, under the
name "ladder determinantal ideals" (usually with prepended adjectives). O

15.3 Bruhat and weak orders

Given a determinantal ideal / , one can analyze / by examining the relations
between its generating minors. On the other hand, a main theme of this
chapter is that one can also learn a great deal by examining the relations
between ideals in a combinatorially structured family containing / as a
member. In our case, the set of matrix Schubert varieties inside M^e forms
a poset under inclusion. The first goal of this section is to analyze this
poset, to get a criterion on a permutation v and a partial permutation w
for when Xv contains Xw (Proposition 15.23). Then we define a related but
weaker order on the partial permutations in Mfze (Definition 15.24). These
partial orders will result in our being able (in Section 15.4) to calculate
the dimensions of matrix Schubert varieties, and to show that they are
irreducible, meaning that the radical of Iw is a prime ideal.

Definition 15.18 For kx£ partial permutations v and w, write v < w and
say that v precedes w in Bruhat order if Xv contains Xw.

Thus the Bruhat partial order reverses the partial order by containment.
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Lemma 15.19 In Bruhat order, v < w if and only if w lies in Xv. In
other words, v <w if and only if rank(t>pX(?) > rank(wpXq) for all p,q.

Proof. Clearly v < w implies w E Xv. For the other direction, note that
w E Xv implies rank(Zpxg) < r&nk(wpxg) < rank(upxg) for all Z E Xw. •

This motivates us to consider the array r(v) — r(w), whose entry at (p, q)
is the integer rpq{v) — rpq{w) that is nonnegative if v < w. Let us say that
(p, q) is a southeast corner in r(v) — r(w) if v < w, the entry rpq(v) — rpq(w)
is strictly positive, and Tij{v) — rij(w) = 0 whenever (p, q) < (i,j).

Lemma 15.20 Let v be an nxn permutation, and (p,q) ^ (n,n) a south-
east corner in r(v)—r(w). Then (p-\-l,q+l) < (n,n), andv(p+1) = q-\-l.

Proof. Suppose rin(v) > rin{w) for some row index i, so w has less than i
nonzero entries in its first i rows. Then w has less than i' nonzero entries in
its top i' rows for all i' > i. Since rin{v) = i for alH = 1 , . . . , n, the nonzero
entries of r(v) — r(w) run all the way down the right column from (i, n) to
(n, n). Hence q + 1 < n; transposing the argument shows p + 1 < n.

In general, rank(tf(i+1)X;?) and rank(^jXQ+1)) can each equal either
r$j(w) or l + rij(w); the same of course holds for v. Therefore, (p, q) being a
southeast corner means that r(w) increases as it passes south one unit from
(p, q) to (jp+1, q), as well as east one unit from (p, q) to (p, q+1), while r(v)
remains constant. The south passage implies that w(p + 1) = j for some
j < q, while v(p+l) >q+l; the east passage implies that w(i) = q+ 1 for
some i < p, while v~1(q + 1) > p + 1. Since rp+\.q+\(v) — rp+\.q+i(w) > 0,
we must have v(p + 1) = q + 1. •

Let Ti}i> be the operator switching rows i and i' in partial permutations.

Lemma 15.21 Fix a kx£ partial permutation matrix v with nonzero en-
tries v(i) = j and v(i') = j ' . If (i,j) < (i',j'), then the following hold.

1. l(rij'v) = l(v) + 1 + twice the number of nonzero entries of v strictly
inside the rectangle enclosed by (i,j) and (i',jr).

2. rpq(Ti,i>v) = rpq(v) unless (p,q) lies inside the rectangle enclosed by
(i,j) and (i' — l,j' — 1), in which case rpq[ji,iiv) = rpq(v) — 1.

Proof. Outside the mentioned rectangle, the diagram stays the same after
the row switch. Inside the rectangle, nothing changes except that before
the switch, no boxes in the diagram lie across the top edge or down the left
edge, whereas after the switch, no boxes in the diagram lie on the bottom
or right edges. In the process, new boxes appear at the upper-left corner,
as well as above the top of and to the left of every nonzero entry inside
the rectangle. Boxes already along the bottom row or right column of the
rectangle before the switch move instead to the top or left. See Fig. 15.1 for
an illustrative example, where the notation follows that of Example 15.14.

The claim concerning rpq{v) is easier, and left as an exercise. •
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j
X

•
•
•
•
•
•

•
•
X

X •

. •

. •

. •

•
•
•
•

•
•
•
X

j
U

•
•
•
•
•
X

U

•
•
•
•
•

U

•
•
X

3'
D D D x

x . . .
. an .

. an .

. an .

Ti.i'V

Figure 15.1: Change in length under switching rows

Lemma 15.22 Fix a kx£ partial permutation matrix w with a nonzero
entry w(i) = j . and a zero row i'. If i < i' then the following hold.

1. l(ri.i'w) = l(w) + 1 + 2e + f, where e is the number of nonzero entries
ofw inside the rectangle enclosed by (i + 1, J + l) and (i' — 1,£), whereas
f is the number of zero rows of w indexed by i + 1 , . . . , i' — 1.

2. rpq(riyw) = rpq(w) unless (p,q) lies inside the rectangle enclosed by
(i,j) and (i' — 1,£), in which case rpq(Ti^iw) = rpq{w) — 1.

Proof. Essentially the same as that of Lemma 15.21, except that the zero
rows have no boxes in column £ + 1 to move back to column j . •

For kx£ partial permutations w and w', locations of nonzero entries in w
that are also locations of nonzero entries in w' are said to be shared with v.
Write w C w' if all locations of nonzero entries in w are shared with w'.

Proposition 15.23 Fix an nxn permutation v and an nxn partial per-
mutation w. If v < w. then at least one of the following must hold.

1. v < Ti}i'V < w for some transposition T^i>; or
2. v < Ti^'W < w for some transposition Ti,i>; or
3. a nonzero entry can be added to w, yielding w C w' with v <w' <w.

Proof. Suppose that v agrees with w in rows 1 , . . . , i — 1, but not in row i.
Setting j = v(i) we find, by comparing rank conditions along row i, that
either (a) row i of w has a nonzero entry in some column strictly to the
right of column j , or (b) row i of w is zero. In case (a), there is guaranteed
to be a nonzero entry of v strictly southeast of (i,j), because there must be
such an entry in column w(i). In case (b), one of two things can happen:
(b') there is some nonzero entry of v strictly southeast of (i,j); or (b/;) not.
In all cases, r̂ - (y) — rij (w) is greater than zero by construction.

Treat cases (a) and (V) together, by choosing a nonzero entry (i'.j')
in v with %' minimal. Since v is a permutation, it has nonzero entries in
rows i + 1,... ,i' — 1, and these lie west of column j by minimality of %'.
Given that v and w agree in rows 1 , . . . , i — 1, the function rpq{v) therefore
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increases at least as fast as rpq(w) does, for (p,q) in the rectangle bounded
by (i,j) and (i' — l,j' — 1). It follows that rpg(v) — rpg(w) is nonzero in this
rectangle, because Vij{v) is nonzero. Part 2 of Lemma 15.20 allows us to
conclude that v < r^v and Ti^v < w.

In case (b"), the only southeast corner oir(v) —r(w) that lies southeast
of (i,j) is (n,n), by Lemma 15.20, so r(v) — r{w) is strictly positive in the
rectangle enclosed by (i.j) and (n, n). If w has a nonzero entry in row i' of
column j , then use part 2 of Lemma 15.22. Otherwise, add a nonzero entry
to w at (i,j), which adds 1 to rpq(w) when (p,q) lies in the rectangle. •

The Bruhat order is important in combinatorics, geometry, and repre-
sentation theory. Usually, it is applied only when both partial permutations
are honest square permutations. Restricting to that case would have made
the statement and proof of Proposition 15.23 substantially simpler. How-
ever, the extra generality will come in handy in the process of calculating
the dimensions of matrix Schubert varieties, particularly in Lemma 15.29.

That being said, we shall be even more concerned with an equally im-
portant partial order that has fewer relations than Bruhat order.

Definition 15.24 Let v and w be kx£ partial permutations. The adja-
cent transposition m for i < k takes w to the result cjiW of switching
rows i and i + 1 of w. If l(v) = l(w) — 1 and either v = a^w or v differs
from w only in row k, then v is covered by w in weak order. More gen-
erally, v precedes w in weak order if v — VQ < V\ < • • • < vr-\ < vr — w
is a sequence of covers, so in particular, l(v) = l{w) — r.

The operator m should be thought of as simply the k x k permuta-
tion matrix for <7i, whose only off-diagonal unit entries are at (i,i + 1)
and (i + l,i). As such, <Ji acts on all of M^, as well as on its coordinate
ring k[x] — k[M^]. Lemmas 15.21 and 15.22 imply that l(<Jiw) must equal
either l(w) + 1 or l(w) — 1, as long as rows i and i + 1 of w are not both zero
(in which case OiW = w). When rows i and i + 1 of w are both nonzero,
the hypothesis OiW < w means that w and GiW look heuristically like

1
1 1

1 (15.1)

W

between columns w(i + 1) and w(i) in rows i and i + 1.

Remark 15.25 Weak order is usually considered only as a partial order
on honest n x n permutation matrices, where the only covers are given by
transposition of adjacent rows. Indeed, distinct permutation matrices must
differ in at least two rows.
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The other kind of cover, that of altering only row k, also has a concrete
(though longer) description, through operators with suggestive names *Wk
and ~<?k- Roughly, these move nonzero entries in row k to the left and right,
respectively, as little as possible. More precisely, they act on k x £ partial
permutations w with the convention that

• if w has zero last row, then ~o*k has no effect, while IT^ adds a nonzero
entry in the last zero column (if there is one); otherwise,

• ~&k moves the nonzero entry in row k of w to the next column (to
the right) in which w has a zero column, unless there is no such next
column, in which case "CT̂  sets the last row to zero; and

• tffc moves the nonzero entry of w in its last row to the bottom of the
previous zero column (if it has one).

When parenthesized 'if clauses are not satisfied, tr^ and ~ô  have no effect.
Note that o^ for i < k can also have no effect, if rows i and i + 1 are zero.

Example 15.26 The operators ~cFV and 1rV move the bottom x as follows:

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

If we had chosen a tall and thin ambient rectangle, then it would be possible
to have a blank last row and no blank columns (this would fail to satisfy
the first of the two parenthesized 'if clauses). To understand why these
operators must work the way they have been denned, draw the diagrams of
these partial permutations and compare the numbers of boxes in them. O

We have written v < w for covers in weak order because these are also
relations in Bruhat order; this follows from Lemmas 15.21 and 15.22 along
with an easy calculation for row k covers (by 'Wp. or l?k)-

15.4 Borel group orbits

Matrix Schubert varieties are clearly stable under separate rescaling of each
row or column. Moreover, since they only impose rank conditions on sub-
matrices that are as far north and west as possible, any operation that adds
a multiple of some row to a row below it ("sweeping downward"), or that
adds a multiple of some column to another column to its right ("sweeping
to the right") preserves every matrix Schubert variety.

In terms of group theory, let B denote the Borel group of invertible
lower triangular kxk matrices and B+ the invertible upper triangular £x£
matrices. (Borel groups appeared briefly in Chapter 2.) The previous
paragraph says exactly that matrix Schubert varieties Xw are preserved by
the action of B x B+ on M^e in which (b, b+) • Z = bZb^1. This is a left
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group action, in the sense th&t(b,b+) • ((b',b'+) • Z) equals ((b,b+)-(b', b'+))-Z
instead of ((&', b'+) • (b, b+)) • Z, even though—in fact because—the b+ acts
via its inverse on the right. We will get a lot of mileage out of the following
fact, which implies that B x B+ has finitely many orbits on Mki-

Proposition 15.27 In each orbit of B x B+ on Mj~e lies a unique partial
permutation w. and the orbit Ow through w is contained inside Xw.

Proof. Row and column operations that sweep down and to the right can
get us from an arbitrary matrix Z to a partial permutation matrix w. Such
sweeping preserves the ranks of northwest pxq submatrices. This proves
uniqueness of the partial permutation w in its orbit, and also shows that
the minors cutting out Xw vanish on Ow. •

Lemma 15.28 Set w' = Ti^w, where i < i''. If w < w', then the closure
Ow< of the orbit through w' in M^e is properly contained inside Ow. The
same proper inclusion of orbit closures holds for weak order covers w < w'.

Proof. Let t be an invertible parameter. View each of the following equa-
tions as a possible scenario occurring in the two rows i, %' and two columns
j,j' in equations b(t) • w • 6+(t)^1 = w(t), by inserting appropriate ex-
tra identity rows and columns into b(t) and b+(t)~1 while completing the
middle matrices to w.

l O t 0 _ t 0
0 0 ' 0 1 ~ 1 0

or ' -1 - ' •' 6 i ] " [ o -t-
Each equation yields a 1-parameter family of matrices in Ow = BwB+.
The limit at t = 0 is w' in both cases, as seen from the right hand sides.

For weak order covers w < w' = ~c?kw moving a nonzero entry in col-
umn j of row k to column j ' , simply "sweep w to the right" by first adding
column j to column j ' and then multiplying column j by t. Again, taking
the limit at t = 0 yields w'.

By the previous paragraphs, w' lies in Ow. Hence we get Owi C Ow

because Ow is stable under the action of B x B+ and closed inside Mki-
The containment Ow> C Ow is proper because rpg(w') < rpq(w) for some
pair (p,q), so the corresponding minor vanishes on Ow> but not on Ow. •

Lemma 15.29 Given a kx£ partial permutation w, there exists a chain
vo < vi < V2 < • • • < Vke-i < Vki of covers in the weak order, in which
l(vi) = i for all i, and v^w) = w.

Proof. It is enough to show that if 0 < l(w) then there exists a cover v < w,
and if l(w) < k£ then there exists a cover w < v. In the former case, choose
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v — Ui%u for the row index % on any box in the essential set £ss(w), using
v = *(TkW if i = k. In the latter case we have w / 0, so choose v = aiW for
the row index i on the lowest nonzero entry of w, using v = !?kW if i = k. D

Proposition 15.30 If w is a kx£ partial permutation, then the orbit clo-
sure Ow is an irreducible variety of dimension dim(0UI) — k£ — l(w).

Proof. The map B x B+ —> Ow that expresses Ow as an orbit oi B x B+

takes (b,b+) i—> fru;&+ . This map of varieties induces a homomorphism
k[Mfĉ ] - ^ k [ B x B+\ in which the target is a domain and the kernel is the
ideal of Ow. Hence the ideal of Ow is prime so Ow is irreducible.

A weak order chain as in Lemma 15.29 gives a corresponding chain of
prime ideals of orbits, properly containing one another, as in the second sen-
tence of Lemma 15.28. Since the polynomial ring k[M^] itself has dimen-
sion k£, the part of this chain of primes consisting of those containing I{OW)
must have maximal length among all chains of primes containing I(OW).
Lemma 15.29 therefore implies that Ow has Krull dimension k£ — l(w). •

Next comes the result toward which we have been building for the last
two sections. To say that w is & smooth point means that localizing at

mw = {xa/3\w(a)^/3) + {xai3-l\w(a)=l3), (15.2)

its maximal ideal, yields a regular local ring [Eis95, Section 10.3].

Theorem 15.31 Let w be a k x £ partial permutation. The matrix Schubert
variety Xw is the closure Ow of the B x B+ orbit through w E M^t, and is
irreducible of dimension k£ — l(w). The matrix w is a smooth point of Xw.

Proof. Every point on an orbit O of an algebraic group is a smooth point
of O, because O has a smooth point [Har77, Theorem 1.5.3], and the group
action is transitive on O. Hence the smoothness at w follows from the rest.

Let w be the extension of w to a permutation as in Proposition 15.8.
If the theorem holds for w, then the irreducibility and dimension count
hold for Xw by Remark 15.11. Since the orbit closure Ow is closed and
has dimension k£ — l(w) by Proposition 15.30, the containment in Proposi-
tion 15.27 implies the whole theorem for w. Hence we assume that w = w.

The irreducibility and dimension count follow from Proposition 15.30
as soon as we show that Xw = Ow. For this, Proposition 15.27 plus the
stability of Xw under B x B+ imply that Xw is the union of the orbits Ow'
through the partial permutations w' £ Xw, so we need only show that these
partial permutations all lie in Ow. Indeed, then we can conclude that Xw

is contained in Ow, and hence equal to Ow because Ow C Xw C Ow.
Since w' G Xw if and only if w < w' by Lemma 15.19, we must show

that w < w' implies w' E Ow. Proposition 15.23 says that w' is obtained
from w by sequentially applying some length-reducing transpositions and
setting entries to zero. The transpositions stay inside Ow by Lemma 15.28.
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Setting entries of partial permutation matrices to zero stays inside Ow

because Ow is stable under independent scaling of each row or column. •

Corollary 15.32 If v < w in Bruhat order then l(v) < l(w).

This section concludes with some results about boundary components
of matrix Schubert varieties Xv, meaning components of Xv \ Ov, to be
used in the proof of Proposition 15.37 (which is crucial for Theorem 15.40).
Once we see that XaiW for o~iW < w is fixed under multiplication by the
permutation matrix <Tj, the subsequent lemmas say that all of its boundary
components except Xw are fixed by a^, and that the variable £J+I.W(J+I)

maps to a generator of the maximal ideal in the local ring of aitv in XaiW.

Corollary 15.33 Let w be a kxl partial permutation and fix i < k. If
UiW < w, then <Ti(XaiU,) = XaiW.

Proof. Let's let B x B+ act on <Ji(XaiW), and take the closure. As Ui(XaiW)
is irreducible, its image under the morphism /i : B x B+ x (TiiX^w) —> Myi
is irreducible. Since B x B+ has only finitely many orbits in M^e, and the
image of ji is stable under the B x B+ action, the closure of the image of ji
is a matrix Schubert variety. By Theorem 15.31 we need only check that
its codimension is l(<Jiw), because <JiW £ <J%XaiW (apply <7j to w E XaiW).

Every partial permutation w' E XaiW other than UiW has length greater
than l{oiw). Since Ifaw') is at least l(w') — l, and Ifaaiw) = l(w) > Ifaw),
every partial permutation in UiXaiW has length at least l(o~iw). •

Remark 15.34 Corollary 15.33 is really a combinatorial statement about
weak order, as the second paragraph of its proof indicates. It is equivalent
to the statement: if w < <JiW, then w < v if and only if w < UiV.

Lemma 15.35 Let v be an n x n partial permutation and w an n x n
permutation with aiw < w and <JiW < v. If l(v) — l(w), then Xv has
codimension 1 inside XUiW, and Xv is mapped to itself by Gi unless v = w.

Proof. The codimension statement comes from Theorem 15.31. Using
Proposition 15.23, we find that v is obtained from o~iiv either by switching
a pair of rows or deleting a single nonzero entry from <iiW.

Any 1 that we delete from aiW must have no l's southeast of it, or else
the length increases by more than one. Thus the 1 in row i of o~iW cannot be
deleted, by (15.1), leaving us in the situation of Corollary 15.33 with v = w,
and completing the case where an entry of aiW has been set to zero.

Suppose now that v is obtained by switching rows p and p' of (TiW, and
assume that ai(Xv) / ~XV. Then v(i) > v(i + 1) by Corollary 15.33. At
least one of p and p' must lie in {i, i + 1} because moving neither row p nor
row p' of GiW leaves v(i) < v(i + 1). On the other hand, it is impossible for
exactly one of\p and p' to lie in {i,i + 1}; indeed, since switching rows p
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and p' increases length, either the 1 at (i, w(i + 1)) or the 1 at (i + l,w(i))
would lie in the rectangle formed by the switched l's, making l(v) too big by
Lemma 15.21. Thus {p,p'} = {i,i + l} and v = w, completing the proof. D

Lemma 15.36 Let w be an nxn permutation with OiW < w. If m = mCTiW

is the maximal ideal of <Jiiv € XaiW, then the variable x i+1.w( i+1) maps to
m \ m2 under the natural map k[x] —• (k.[x\/I(Xa-iW))m.

Proof. Let v be the permutation aiW, and consider the map B x B+ —• Mnn

sending (b, b+) i-> bvb+. The image of this map is the orbit Ov C Xv, and
the identity id := (ids,ids+) maps to v. The induced map of local rings
the other way thus takes m^ to the maximal ideal

mid := (bu - 1, bti - 1 | 1 < i < n) + (6^, b+i \ i > j)

in the local ring at the identity id E B x B+. It is enough to demonstrate
that the image of xi+1 .w(i+\) lies in ntid \ tn?d.

Direct calculation shows that Xi+i.^+i) maps to the entry

^i+l,i^>w{i+l),w{i+l) + 2^/ ^+l,P^P,w(i+l)
p£P

at (i + l,w(i + 1)) in bvb+, where P = {p < i | «;(p) < w(i + 1)} consists of
the row indices of l's in a^w northwest of (i,w(i + 1)). In particular, all of
the summands &i+i,pbpjW(i+i) lie in m?d. On the other hand, frto(i+i).«j(i+i)
is a unit in the local ring at id, so &i+i,ifrt,(i+i).io(i+i) n e s m mid \ tn?d. n

Certain functions on matrix Schubert varieties are obviously nonzero.
For instance, if v has its nonzero entries in rows i\,...,ir and columns
jii • • • ijri then the minor A of the generic matrix x using those rows and
columns is nowhere zero on Ov. Therefore the zero set of A inside Xv is a
union of its boundary components, although the multiplicities may be more
than 1. The permutation <7j acts on the coordinate ring k[x] by switching
rows i and i + 1. Therefore, if A uses row i, then cr̂ A uses row i + 1 instead.

Proposition 15.37 Assume aiw < w, set j — w(i) — l, and define A as the
minor in x using all rows and columns in which (<Jiw)iXj is nonzero. The
images of A and CT^A in k[x]/I(XaiW) have equal multiplicity along every
boundary component of XaiW other than Xw, and A has multiplicity 1
along the component Xw. In particular, <TjA is not the zero function onXw.

Proof. Lemma 15.35 says that <Tj induces an automorphism of the local
ring at the prime ideal of Xv inside X^yj, for every boundary component
Xv of XaiW other than Xw. This automorphism takes A to cr̂ A, so these
two functions have the same multiplicity along Xv. The only remaining
codimension 1 boundary component of XUiW is Xw, and we shall now verify
that A has multiplicity 1 there.
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By Theorem 15.31, the local ring of aiw in XaiW is regular. Since CTJ is
an automorphism of X(TiW (Corollary 15.33), we find that the localization
of k[x]//(XCTiW) at the maximal ideal mw (15.2) of w is also regular. In this
localization, the variables xap corresponding to the locations of nonzero
entries in WiXj are units. This implies that the coefficient of xiu,(j+1) in A
is a unit in the local ring of w G X<jiW. On the other hand, the variables in
spots where w has zeros generate mw. Therefore, all terms of A lie in the
square of mw in the localization, except for the unit times xi}W^i+^ term
produced above. Hence, to prove multiplicity one, it is enough to prove
that Xj.^(i+i) itself lies in mw \ m^ or equivalently (after applying o-j) that
xi+i.w(i+i) n e s m m<JiW \ m%w- This is Lemma 15.36. •

15.5 Schubert polynomials

Having proved that matrix Schubert varieties are reduced and irreducible,
let us begin to unravel their homo logically hidden combinatorics. Working
with multigradings here instead of the usual Z-grading means that the ho-
mological invariants we seek possess algebraic structure themselves: they
are polynomials, as opposed to the integers resulting in the Z-graded case.
The forthcoming definition will let us mine this algebraic structure to com-
pare the multidegrees of all of the different matrix Schubert varieties by
downward induction on weak order.

Definition 15.38 Let R be a commutative ring, and t = t\, £2, • • • an infi-
nite set of independent variables. The ith divided difference operator di
takes each polynomial / G R[t] to

O j { t t ) =

Letting s be another set of variables and R = Z[s], the double Schubert
polynomial for a permutation matrix w is defined recursively by

6C T i W( t-s) = di&w(t-s)

whenever GiW < u>, and the initial conditions

for all n, where wo = n • • • 321 is the long word in Sn. The (ordinary)
Schubert polynomial <5w(t) is defined by setting s = 0 everywhere. For
partial permutations w, define &w = &^ as the Schubert polynomial for
the minimal extension of if to a permutation (Proposition 15.8).
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Example 15.39 Let w be the partial permutation matrix in Example 15.2
with k < £. In this classical case, the double Schubert polynomial &w is
the Schur polynomial associated to the partition with rectangular Ferrers
shape (k — r)x(£ — r). The Jacobi-Trudi formula expresses &w(t — s) as the
determinant of a Hankel matrix of size {k — r) x {k — r). The (a, /3)-entry
in this matrix is the coefficient of qt--r+P~a

 m the generating function

This formula appears in any book on symmetric functions, e.g. [Macd95]. O

In the definition of &w(t — s), the operator di acts only on the t variables
and not on the s variables. Checking monomial by monomial verifies that
ti — ti+\ divides the numerator of di(f), so di(f) is again a polynomial,
homogeneous of degree d — 1 if / is homogeneous of degree d. Note that
only finitely many variables from t and s are ever used at once. Also,
setting all s variables to zero commutes with divided differences.

In the literature, double Schubert polynomials are usually written with
x and y instead of t and s; but we have used x throughout this book to
mean coordinates on affine space, while t has been used for multidegrees.

Every n x n permutation matrix w can be expressed as a product
w = <Tir • • • a^wo of matrices, where the n x n matrix WQ is the long word
in Sn and 1(WQ) — 1(W) = r. The condition l(wo) — l(w) = r implies by defini-
tion that r is minimal, so WWQ — crir • • • a^ is what is known as a reduced ex-
pression for the permutation matrix WWQ. The recursion for both single and
double Schubert polynomials can be summarized as <SW = dir • • • dit 6W0.
More generally, if w — UiT • • • a^v and l(w) — l(v) — r, then it holds that

&w = dir---dil&v. (15.4)

Indeed, this reduces to the case where v = wo by writing &v = djs • • • dj1wo.
It is not immediately obvious from Definition 15.38 that &w is well-

defined, because we could have used any downward chain of covers in weak
order to define &w from 6Wo. However, the well-defmedness will follow from
our main theorem in this chapter, Theorem 15.40. It is also a consequence of
the fact that divided differences satisfy the braid relations in Exercise 15.3,
which the reader is encouraged to check directly.

We are interested in a multigrading of k[x] by Zfe+^, which we take to
have basis t U s, where t = t±,..., tk and s = s i , . . . , se.

Theorem 15.40 Ifw is a k x £ partial permutation and k[x] isZk+e-graded
with deg(xij) — U — Sj, then the matrix Schubert variety Xw has multidegree

C(Xw;t,a) = 6 w ( t - s )

equal to the double Schubert polynomial for w.
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Example 15.41 The multidegree of the classical determinantal variety Xw

in Example 15.2 equals the Schur polynomial in Example 15.39. Replacing
every ti by t and every Sj by 0 yields the classical degree of that projective
variety. This substitution replaces (15.3) by 1/(1—tq)k, and the (a, /?)-entry
of the Jacobi matrix specializes to (fe+^-r+/3-<*-i^-H-/3-a_ T n e determi-
nant of this matrix (and hence the classical degree of Xw) equals the num-
ber of semistandard Young tableaux of rectangular shape (k — r) x (& — r).
This statement holds more generally for the matrix Schubert varieties as-
sociated with Grassmannians; see Exercise 16.9. O

The proof of Theorem 15.40 will compare the zero sets of two functions
on XaiW x k with equal degrees. The zeros of the first function consist of
Xw x k plus some boundary components, while the second function has
zeros (<JiXw x k) U {X^iW x {0}) plus the same boundary components.
When the (equal) multidegrees of the zero sets of our two functions are
decomposed by additivity and compared, the extra components cancel.

Proof of Theorem 15.40. As the matrix Schubert varieties for w and its
minimal completion to a permutation have equal multidegrees by Proposi-
tion 15.8, we assume that w is a permutation. The result for @wo follows
immediately from Proposition 8.49 and Example 15.3. For other permuta-
tions w we shall use downward induction on weak order.

Consider the polynomials A and CTJA from Proposition 15.37 not as
elements in k[x], but as elements in the polynomial ring k[x, y] with k£+l
variables. Setting the degree of the new variable y equal to deg(y) = ti—U+\
makes A and the product y<JiA in k[x, y] have the same degree 5 E Zh+e.
Since the affine coordinate ring k[y:]/I(XaiW) of XaiW is a domain, neither A
nor <7jA vanishes on XCTiUI, so we get two short exact sequences

0 ^ k[X,y](-5)/l(XaiW) - ^ k[^y]/l(XaiW) -^ Q(@) - 0,

in which 6 equals either A or y&iA. The quotients Q(A) and Q(yaiA)
have equal Zfc+^-graded Hilbert series, and hence equal multidegrees.

Note that k[x, y] is the coordinate ring of M^t x k. The minimal primes
of Q(A) all correspond to varieties Xv x k for boundary components Xv

of XUiW. Similarly, almost all minimal primes of Q(yo~iA) correspond by
Proposition 15.37 to varieties Xv xk. The only exceptions are XGiW x {0},
because of the factor y, and the image o~iXw x k of Xw x k under the
automorphism <7,. As a consequence of Proposition 15.37, the multiplicity
of yiiA along OiXw x k equals 1, just as A has multiplicity 1 along Xw x k.

Now break up the multidegrees of <5(A) and Q(yo~iA) into sums over
components of top dimension, by additivity in Theorem 8.53. Proposi-
tion 15.37 implies that almost all terms in the equation C(Q(A);t,s) =
C(<5(ycTjA);t,s) cancel; the only terms that remain yield the equation

C ( I ^ x l ; t , s ) = C(aiXw xk;t,s)+C(XaiW x{0}; t , s ) (15.5)
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on multidegrees. Since the equations in k[x, y] for Xw x k are the same as
those for Xw in k[x], the ̂ -polynomials of Xw and Xw x k agree. Hence
the multidegree on the left side of (15.5) equals C(Xw;t,s). For the same
reason, the first multidegree on the right side of (15.5) equals the result
aiC(Xw;t,s) of switching ti and ij+i in the multidegree of Xw.

The equations defining XaiW x {0}, on the other hand, are those denn-
ing XaiW along with the equation y — 0. The K-polynomial of XaiW x {0}
therefore equals (ti/ti+i)IC(XaiW;t,s), which is the "exponential weight"
ti/ti+i of y times the i^-polynomial of XaiW. Therefore the second multi-
degree on the right side of (15.5) equals (ti — ti+i)C(XaiW; t, s).

Substituting these multidegree calculations into (15.5), we find that

C(Xw;t,s) = aiC(Xw;t,s) + (ti-tt+1)C(XaiW;t,s)

as polynomials in t and s. Subtracting <JiC(Xw;t,s) from both sides and
dividing through by ti — ij+i yields diC(Xw;t,s) = C(X(TiW;t,s). •

Example 15.42 The first five of the six 3 x 3 matrix Schubert varieties in
Example 15.4 have Z3+3-graded multidegrees that are products of expres-
sions having the form ti — Sj by Proposition 8.49. They are, in the order
they appear in Example 15.4: 1, £i — si, (£i — si)(t± — s2), (ti — s\) (t2 — si),
and (£1 — si)(£i — S2)(i2 — s\). This last one is C(X32i;t,s), and applying
8281 to it yields the multidegree

( 2 ; t , s ) = t1+t2-81-s2

of X132, as the reader should check. O

Example 15.43 The ideal /2143 from Example 15.7 equals I(X2143), since
it has a squarefree initial ideal (a;n,^13^22^31) and is therefore a radical
ideal. The multidegree of X2143 is the double Schubert polynomial

©2i43(t-s)

= d2d1d3d2((ti - s3)(ii - s2)(ti - si)(i2 - s2)(t2 - si)(t3 - si))

= d2d1d3((t1 - s3)(ti - s2)(h - si)(t2 - ai)(t3 - si))

+ t2 - S2 - S3))

- S l - S 2 - S 3 ) .

Compare this to the multidegree of k[x4X4]/(xn, X\3x22x3\). O

Setting s = 0 in Theorem 15.40 yields the "ordinary" version.

Corollary 15.44 If w is a kx£ partial permutation and k[x] is Zfc-graded
with deg(xij) = ti, then the multidegree of the matrix Schubert variety Xw

equals the ordinary Schubert polynomial for w: C(Xw;t) = &w(t).

Remark 15.45 The K-polynomials of matrix Schubert varieties satisfy
similarly nice recursions under the so-called isobaric divided differences (or
Demazure operators) f \-^ — di(t^if); see the Notes to this chapter.
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Exercises
15.1 Prove that the unique finest multigrading on k[x] in which all Schubert
determinantal ideals Iw are homogeneous is the Zfe+(-grading here. Prove that
this multigrading is also universal for the set of classical determinantal ideals.

15.2 Express the ideal / in Exercise 8.4 as an ideal of the form I(XW). Compute
the multidegree of k[x]/7 for the Z4+4-grading deg(xij) =U — Sj, and show that
it specializes to the Z -graded multidegrees you computed in Exercise 8.4.

15.3 Verify that divided difference operators di satisfy the relations didj = djdi
for \i — j \ > 2, and the braid relations, which say that didi+idi = di+ididi+i.

15.4 Using cycle notation, let v — (n • • • 321) be the permutation cycling n,..., 1.

(a) Write down generators for the Schubert determinantal ideal Iv.

(b) Calculate that ©^(t) = t™"1. Hint: Don't use divided differences.

15.5 Let / be the ideal of maximal minors in the generic k X £ matrix, where k < I,
and let X be the zero set of / in M^i, so X consists of the singular kx£ matrices.

(a) Prove that / has the same minimal generators as Iw for the (£ + 1) X (£ + 1)
permutation w = a^ • • • 0201V, for v as in Exercise 15.4 with n = £ + 1.

(b) Deduce using Eq. (15.4) that C(X;t) = he+i-k(ti,.. .,tk) is the complete
homogeneous symmetric function of degree £ + 1 — k in k variables.

(c) Conclude that X has ordinary Z-graded degree (k_1)-

15.6 An n X n permutation w is grassmannian if it has at most one descent—
that is, if w(k) > w(k+l) for at most one value of k < n. Show that a permutation
is grassmannian with descent at k if and only if its essential set lies along row k.
Describe the Schubert determinantal ideals for grassmannian permutations.

15.7 Consider positive integers i\ < • • • < im < k and ji < • • • < j m < I, and
let x be the kx£ matrix of variables. Find a partial permutation w such that Iw

is generated by the size m + 1 minors of x along with the union over r = 1 , . . . , m
of the minors of size r in the top ir — 1 rows of x and the minors of size r in the
left j r — 1 columns of x. Compute the extension of w to a permutation in Sk+£-

15.8 Prove that the Bruhat poset is a graded poset, with rank function w \-^ l(w).

15.9 Write down explicitly the degree (5 in the proof of Theorem 15.40.

15.10 Let w be a permutation matrix. Show that 6^-1 (s—t) can be expressed as
(—l)l(w)&w((—t) — (—s)). In other words, 6 w - i ( s —t) is obtained by substituting
each variable with its negative in the argument of (—l)l^&w(t — s). Hint:
consider the rank conditions transpose to those determined by w.

15.11 Consider divided difference operators &[ that act only on s variables instead
of on t variables. Deduce from Theorem 15.40 applied to the transpose of w that
&w(t — s) can be obtained (with a global sign factor of (—l)1^) from &Wo (t — s)
by using the divided differences d't in the s variables.

15.12 As in Exercise 15.5, let X be the variety of singular kx£ matrices, where
we assume k < £. This time, though, use the multigrading of k[x] by Z£ in
which deg(xij) = Sj. Prove that C(X;s) = ef+i_fe(si,..., s^) is an elementary
symmetric function, and conclude again that X has Z-graded degree (fcl1)-
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15.13 Let / and g be polynomials in R(ti,..., tn) over a commutative ring R.

(a) Prove that if / is symmetric in U and tj+i then di(fg) = fdi(g).

(b) Deduce that / is symmetric in ti and ti+i if and only if dif = 0.

(c) Show that dif is symmetric in t» and ij+i.

(d) Conclude that df = di o di is the zero operator, so dff = 0 for all / .

15.14 For a permutation w, let m+w be the result of letting w act in the obvious
way on TO+1, m+2, m + 3 , . . . instead of 1, 2, 3 , . . . , so m+w fixes 1 , . . . , m. Show
that &m+w(t — s) is symmetric in t\,..., tm as well as (separately) in s i , . . . , sm-

Notes

The class of determinantal ideals in Definition 15.1 was identified by Fulton in
[Ful92], which is also where the essential set, Example 15.14, and the character-
ization of vexillary permutations in Example 15.17 come from. A permutation
is vexillary precisely when it is '2143-avoiding'. Treatments of various aspects of
vexillary (a.k.a. ladder determinantal) ideals include [Mul89, HT92, Ful92, Con95,
MS96, CH97, GL97, KP99, BL00, GL00, GM00], and much more can be found
by looking at the papers cited in the references to these.

Proposition 15.23, applied in the case where both v and w are permutations, is
a characterization of Bruhat order on the symmetric group. As in Remark 15.25,
our weak order on partial permutations restricts to the standard definition of
weak order on the symmetric group. For readers wishing to see the various
characterizations of Bruhat and weak order, their generalizations to other Coxeter
groups, and further areas where they arise, we suggest starting with [Hum90].

Schubert polynomials were invented by Lascoux and Schutzenberger [LS82a],
based on general notions of divided differences developed by Bernstein-Gelfand-
Gelfand [BGG73] and Demazure [Dem74]. Their purpose was to isolate represen-
tatives for the cohomology classes of Schubert varieties (Definition 15.12) that are
polynomials with desirable algebraic and combinatorial properties, some of which
we will see in Chapter 16. Our indexing of Schubert polynomials is standard, but
paradoxically, it is common practice to index Schubert varieties backwards from
Definition 15.12, replacing w with wow. For an introduction (beyond Chapter 16)
to the algebra, combinatorics, and geometry of Schubert polynomials related to
flag manifolds, we recommend [ManOl]. Other sources include [Macd91] for a
more algebraic perspective, and [FP98] for a more global geometric perspective.

The characterization of Schubert polynomials as multidegrees of determinan-
tal varieties in Theorem 15.40 is due to Knutson and Miller [KnM04b, Theo-
rem A]. The original motivation was to geometrically explain the desirable alge-
braic and combinatorial properties of Schubert polynomials. Theorem 15.40 can
be viewed as a statement in the equivariant Chow group of M^e [Tot99, EG98]. It
is essentially equivalent to the main theorem of [Ful92] expressing double Schubert
polynomials as classes of certain degeneracy loci for vector bundle morphisms.

Remark 15.45 means that the X-polynomials of matrix Schubert varieties are
the Grothendieck polynomials of Lascoux and Schutzenberger [LS82b]. The proof
of this statement in [KnM04b] does not rely on theory more general than what
appears in Chapters 15-16, although it does requires more intricate combinatorics.
Viewing the /^-polynomial statement as taking place in the equivariant /^-theory
of Mke, it is essentially equivalent to a theorem of Buch [BucO2, Theorem 2.1].
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The Z-graded result of Exercises 15.5 and 15.12, which follows from work
of Giambelli [GiaO4], is the most classical of all. The method of starting from
Exercise 15.4 and using divided differences to prove Exercise 15.5 by induction
on k demonstrates the utility of replacing the integer Z-graded degree with a
polynomial multidegree. The more finely graded statements in both of these
two exercises are special cases of Exercise 16.9 in Chapter 16. The determinantal
ideals described in Exercise 15.7 constitute the class of ideals discussed in [HT92].

We have more references and comments to make on Schubert polynomials
and determinantal ideals, but we postpone them until the Notes to Chapter 16.



Chapter 16

Antidiagonal initial ideals

Schubert polynomials have integer coefficients. This, at least, is clear from
the algebraic recursion via divided differences in Section 15.5, where we also
saw their geometric expression as multidegrees. In contrast, this chapter
explores the combinatorial properties of Schubert polynomials, particularly
why their integer coefficients are positive.

One of our main goals is to illustrate the combinatorial importance of
Grobner bases and their geometric interpretation. Suppose a polynomial is
expressed as the multidegree of some variety. Grobner degeneration of that
variety yields pieces whose multidegrees add up to the given polynomial.
This process can provide geometric explanations for positive combinatorial
formulas. The example pervading this chapter comes from Theorem 15.40:

Corollary 16.1 Schubert polynomials have nonnegative coefficients.

Proof. Write <5w(t) = C(Xw;t) as in Theorem 15.40. Choosing a term
order on k[x], Corollary 8.47 implies that &w(t) = C(k[x]/\n(l(Xw));t).
Now use Theorem 8.53 to write &w(t) as a positive sum of multidegrees
of quotients k[x]/{xj1.j1,..., %ir,jr) by monomial primes. Proposition 8.49
says that the multidegree of this quotient of k[x] is the monomial tit • • • tir. •

The existence of a Grobner basis proves the positivity in Corollary 16.1.
After choosing an especially nice term order, our efforts in this chapter will
identify the prime components of the initial ideal explicitly as combina-
torial diagrams called reduced pipe dreams. Hence adding up monomials
corresponding to reduced pipe dreams yields Schubert polynomials.

This positive formula will be our motivation for a combinatorial study
of reduced pipe dreams, in terms of reduced expressions in the permutation
group Sn. Applications include the primality of Schubert determinantal
ideals, and the fact that matrix Schubert varieties are Cohen-Macaulay.

311
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16.1 Pipe dreams

Combinatorics of Schubert polynomials—and as it will turn out in Sec-
tion 16.4, of Schubert determinantal ideals—is governed by certain "draw-
ings" of (partial) permutations. Consider a kx£ grid of squares, with the
box in row i and column j labeled (i, j), as in a k x£ matrix. If each box in
the grid is covered with a square tile containing either -|- or -^-, then the
tiled grid looks like a network of pipes. Each such tiling corresponds to a
subset of the kx£ rectangle, namely the set of its crossing tiles:

We omit the square tile boundaries in the right sides of these equations.

Definition 16.2 A kx£ pipe dream is a tiling of the kx£ rectangle by
crosses -|— and elbow joints ^ - . A pipe dream is reduced if each pair
of pipes crosses at most once. The set lZV(w) of reduced pipe dreams for
a kx£ partial permutation w consists of those pipe dreams D with l(w)
crossing tiles such that the pipe entering row i exits from column w(i).

Example 16.3 The long permutation wo = n... 321 in Sn has a unique
n x n reduced pipe dream DQ, whose -|— tiles fill the region strictly above
the main antidiagonal, in spots (i.j) with i + j < n. The right hand pipe
dream displayed before Definition 16.2 is DQ for n — 5. O

Example 16.4 The permutation w = 2143 has three reduced pipe dreams:

The permutation is written down the left edge of each pipe dream; thus
each row is labeled with the destination of its pipe. Reduced pipe dreams
for permutations are contained in Do (Exercise 16.1), so the crossing tiles
only occur strictly above the main antidiagonal. Therefore we omit the
wavy "sea" of elbow pipes below the main antidiagonal. O

If w is the minimal-length completion of a k x £ partial permutation w to
an n x n permutation, then 7ZV(w) is the set of k x£ pipe dreams to which
adding elbow tiles in the region ( n x n ) \ (kx£) yields a reduced pipe dream
for w. In other words, 1ZV{w) = 1ZV{w)kxi consists of the restrictions to
the northwest kx£ rectangle of reduced pipe dreams for w (Exercise 16.2).
Pipes can exit out of the east side of a pipe dream D G 1ZV{w), rather than
out the top; when w is zero in row i, for example, a pipe traverses row i.
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Although we always draw crossing tiles as some sort of cross (either '+ '
or ' - p , the former with square tile boundary and the latter without), we
often leave elbow tiles blank or denote them by dots, to minimize clutter.

Here is an easy criterion, to be used in Theorem 16.11, for when remov-
ing a -|- from a pipe dream D £ lZV(w) leaves a pipe dream in lZV{(Jiw).

Lemma 16.5 Suppose D 6 7ZV(w). and let j be a fixed column index with
(i + 1, j) 0 D, but (i,p) £ D for all p < j , and (i + l,p) £ D for all p < j .
Then l{uiw) < l(w), and if D' = D \ (i,j) then D' £ HV(<Jiw).

The hypotheses of the lemma say precisely that D looks like

i + 1 r
at the left end of rows i and i + 1 in D, and the -|- to be deleted sits at (i, j).

Proof. Removing (i,j) only switches the exit points of the two pipes start-
ing in rows i and i + 1. Thus the pipe starting in row p of D' exits out of
column o~iw(p) for every row index p. No pair of pipes can cross twice in D'
because there are l{aiw) = l(w) — 1 crossings. •

Definition 16.6 A chutable rectangle is a 2 x r block C of -|- and -'f
tiles such that r > 2, and the only elbows in C are its northwest, south-
west, and southeast corners. Applying a chute move to a pipe dream D is
accomplished by placing a -|- in the southwest corner of a chutable rectan-
gle C C D, and removing the -|- from the northeast corner of the same C.

Heuristically, chuting looks like:

J
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chute
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Lemma 16.7 Chuting D £lZV (w) yields another reduced pipe dream for w.

Proof. If two pipes intersect at the -|- in the northeast corner of a chutable
rectangle C, then chuting that -|- only relocates the crossing point of those
two pipes to the southwest corner of C. No other pipes are affected. •

The rest of this section is devoted to a procedure generating all reduced
pipe dreams. Given a kxl pipe dream D, row i of D is filled solidly with -|-
tiles until the first elbow tile (or until the end of the row). In what follows,
we shall need a notation for the column index of this first elbow:

start, (.D) = min ({j | (i,j) is an elbow tile in D} U {k + 1}).
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Definition 16.8 Let I? be a pipe dream, and fix a row index i. Suppose
there is a smallest column index j such that (i + 1, j) is an elbow tile, while
(i.p) is a -|- tile in D for all p < j . Construct the m t h offspring of D by

1. removing (i,j), and then
2. performing m — 1 chute moves west of start j (D) from row i to row i + l.

The i t h mitosis operator sends a pipe dream D € 1ZV(w) to the set
mitosiSi(L>) of its offspring. Write mitosiSj('P) = \JDe-p mitosiSi(-D) when-
ever V is a set of pipe dreams.

The total number of offspring is the number of 0 configurations in rows
i and i + l that are west of start, (D). This number, which is allowed to
equal zero (so D is "barren"), equals 3 in the next example.

Example 16.9 The pipe dream D at left is a reduced pipe dream for
w = 13865742. Applying mitosis3 yields the indicated set of pipe dreams:
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The three offspring on the right are listed in the order they are produced
by successive chute moves. O

Mitosis can be reversed. Equivalently: "Parentage can be determined."

Lemma 16.10 Fix a kx£ partial permutation w, and suppose i < k sat-
isfies OiW < w. Then every pipe dream D' e lZV{aiw) lies in mitosis,(.D)
for some pipe dream D G lZV(w).

Proof. In column start^+i(.D'), rows i and i + 1 in D' look like H, because
otherwise one of two illegal things must happen: the pipes passing through
the row i of column start,+i in D' intersect again at the closest H column
to the left in rows i and i + l of D'; or else the pipe entering row i + l
of D' crosses the pipe entering row i of D'. This latter occurrence is illegal
because <JiW < w, so OiW has no descent at i.

Consequently, we can perform a sequence of inverse chute moves on D',
the first one with its northeast corner at (i,starti+i(D')), and the last with
its west end immediately east of the solid 0 part of rows i and i + 1. These
chute moves preserve the property of being in TZV{<Jiw) by Lemma 16.7.
Now adding the -|- into row i of the last vacated column yields a pipe
dream D whose pipes go to the correct destinations to be in TZV(w) (see
Lemma 16.5). That D is reduced follows because it has l(w) crossing tiles.
That D' G mitosisj(Z)) is by construction. •
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Theorem 16.11 If w is a kx£ partial permutation, and i < k is a row
index that satisfies <JiW < w. then the set of reduced pipe dreams for aiW is
the disjoint union UDG'R.'P(IU)

 mitosisi(D).

Proof. Lemmas 16.5 and 16.7 imply that mitosiSi(-D) C 1ZV(fJiU)) whenever
D £ 7ZT:'(w), and Lemma 16.10 gives the reverse containment. That the
union is disjoint, i.e. that mitosisi(I?) n mitosis^!?') = 0 if D j^ D' are
reduced pipe dreams for w, is easy to deduce directly from Definition 16.8. •

Corollary 16.12 Let w be an n x n permutation. If w = a^ • • • crimwo
with m = l(wo) — l(w), then lZV(w) = mitosisim • • • mitosis^ (Do).

The previous corollary says that mitosis (irredundantly) generates all
reduced pipe dreams for honest permutations. By replacing a partial per-
mutation w with an extension w to a permutation, this implies that mitosis
generates all reduced pipe dreams for w, with no restriction on w.

16.2 A combinatorial formula

The manner in which mitosis generates reduced pipe dreams has substan-
tial algebraic structure, to be exploited in this section. In particular, we
shall prove the following positive combinatorial formula for Schubert poly-
nomials. (The corresponding formula for double Schubert polynomials will
appear in Corollary 16.30, below.) Recall that kx£ pipe dreams are iden-
tified with their sets of -|- tiles in the kx£ grid.

Theorem 16.13 &w(t) = ^ tD, where tD =
D£TZV(w)

The proof, at the end of this section, comes down to an attempt at
calculating ^ ( t ^ ) directly. Fixing the loose ends in this method requires
the involution in Proposition 16.16, below, to gather terms together in pairs.
The involution is defined by first partitioning rows i and i + 1.

Definition 16.14 Let D be a pipe dream and i a fixed row index. Order
the tiles in rows i and i + 1 of D as in the following diagram:

1 2 3 4

1
2

3
4

5
6

7
8

An intron in these two adjacent rows is a height 2 rectangle C such that

1. the first and last tiles in C (the northwest and southeast corners) are
elbow tiles; and

2. no elbow tile in C is strictly northeast or strictly southwest of another
elbow (so due north, due south, due east, or due west are all okay).
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Ignoring all 0 columns in rows i and i + 1, an intron is thus just a sequence
of 0 columns in rows i and i + 1, followed by a sequence of 0 columns,
possibly with one P column in between. (Columns 0 with two crosses can
be ignored for the purpose of the proof of the next result.)

An intron C is maximal if it satisfies the following extra condition:

3. the elbow with largest index before C (if there is one) lies in row i + 1 ,
and the elbow with smallest index after C (if there is one) lies in row i.

Lemma 16.15 Let C be an intron in a reduced pipe dream. There is a
unique intron T(C) satisfying the following two conditions.

1. The sets of 0 columns are the same in C and T(C).
2. The number Ci of -\- tiles in row i of C equals the number of -\- tiles

in row i + 1 of T(C), and the same holds with i and i + 1 switched.

The involution r, called intron mutation, can always be accomplished by
a sequence of chute moves or inverse chute moves.

Proof. First assume c, > Cj+i and work by induction on c = Q - <H+i- If
c = 0 then T(C) = C and the lemma is obvious. If c > 0 then consider
the leftmost 0 column. Moving to the left from this column there must be
a column not equal to EL since the northwest entry of C is an elbow. The
rightmost such column must be P, because its row i entry is an elbow (by
construction) and its row i + 1 entry cannot be a -|- (for then the pipes
crossing there would also cross in the 0 column). This means we can chute
the -|— in 0 into the P column, and proceed by induction.

Flip the argument 180° if Q < Q+i, so the chute move becomes an
inverse chute move. •

For example, here is an intron mutation accomplished by chuting the
crossing tiles in columns 4,6, and then 7 of row i. The zigzag shapes formed
by the dots in these introns are typical.

4 6 7

J

c
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Proposition 16.16 For each i there is an involution Ti : 1ZV(w) —> 1ZV{w)
such that rf — I, and for all D e 1ZV{w):

1. TiD agrees with D outside rows i and i + 1 .
2. starti(ri-D) = start, (Z)), andriD equals D strictly west of this column.
3. The number of -\- tiles in T^D from row i in columns > startJ(TJZ?)

equals the number of -\- tiles in D from row i + 1 in these columns.
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Proof. Let D e lZV(w). Consider the union of all columns in rows i and i+1
of D that are east of or coincide with column startj(D). Since the first and
last tiles in this region (numbered as in Definition 16.14) are elbows, this
region breaks uniquely into a disjoint union of height 2 rectangles, each of
which is either a maximal intron or completely filled with -|- tiles. Indeed,
this follows from the definition of starts and Definition 16.14. Applying
intron mutation to each maximal intron therein leaves a pipe dream that
breaks up uniquely into maximal introns and solid regions of -|- tiles in the
same way. Therefore the proposition comes down to verifying that intron
mutation preserves the property of being in 1ZV(w). This is an immediate
consequence of Lemmas 16.7 and 16.15. •

Proof of Theorem 16.13. It suffices to prove the result for honest permuta-
tions, so we use downward induction on weak order in Sn. The result for the
long permutation w — WQ holds because TZV(WQ) — {-Do} (Example 16.3).

Fix D e TZV(w), write tD = I I ( ; , J ) G D^>
 a n d l e t m = (mitosis; (L>)| be

the number of mitosis offspring of D. This number m equals the number of
-|- tiles in H configurations located west of start j (D) in rows i and i + 1 of D.
Let D' be the pipe dream (not reduced) that results after deleting these -|-
tiles from D. The monomial t ^ is then the product t^t® . Definition 16.8
immediately implies that

E d-l+E _ \ ^ fm-dfd-l +D' _ a (fm\ +D' M a -\\
t - 2_^ti S + i - t - Mk)-* • ( 1 6 . 1 )

i ( ) d = l

If TiD = D, then tD is symmetric in ti and ij+i by Proposition 16.16, so

di(tf)-tD' = di(t?-tD>) = dt(t
D)

in this case (see Exercise 15.13). On the other hand, if r,£> 7̂  D, then letting
the transposition ai act on polynomials by switching ti and ti+i, Proposi-
tion 16.16 implies that adding the sums in (16.1) for D and T{D yields

di(t?)-(tD' + *itD') = di{t™(tD> + GitD')) = di(tD + t^D).

Pairing off the elements of TZV(w) not fixed by r,, we conclude that

E **•

The left side is (3CTiW(t) by induction and the recursion for 6 m ( t ) in Defi-
nition 15.38, while the right side is ^E^izvio-w) ^E ^y Theorem 16.11. D

16.3 Antidiagonal simplicial complexes

It should come as no surprise that we wish to reduce questions about de-
terminantal ideals to computations with monomials, since this is a major
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theme in combinatorial commutative algebra. The rest of this chapter is
devoted to deriving facts about sets of minors denned by the rank condi-
tions rpg(w) = rank(u>pXq) by exploring (and exploiting) the combinatorics
of their antidiagonal terms.

As in the previous chapter, let Zpxq be the northwest px q subarray of
any rectangular array Z (such as a matrix or a pipe dream).

Definition 16.17 Let x — {xap) be the kx£ matrix of variables. An
antidiagonal of size r in k[x] is the antidiagonal term of a minor of size r,
i.e. the product of entries along the antidiagonal of an r x r submatrix of x.
For a kx£ partial permutation w, the antidiagonal ideal Jw C k[x] is
generated by all antidiagonals in xpXg of size 1 + rpq{w) for all p, q. Denote
by Cw the Stanley-Reisner simplicial complex of the antidiagonal ideal Jw.

Observe that Jw is indeed a squarefree monomial ideal. This section
is essentially a complicated verification that two Stanley-Reisner ideals
are Alexander dual. These ideals are the antidiagonal ideal Jw and the
ideal whose generators are the monomials x B for reduced pipe dreams
D £ lZV(w). Here is an equivalent, more geometric statement.

Theorem 16.18 The facets of the antidiagonal complex Cw are the com-
plements of the reduced pipe dreams for w. yielding the prime decomposition

Jw = ( I (xij | (i,j) is a crossing tile in D).

It is convenient to identify each antidiagonal a £ k[x] with the subset of
the k xi array of variables dividing a, just as we identify pipe dreams with
their sets of-|- tiles. Then Theorem 16.18 can be equivalently rephrased as
saying that a pipe dream D meets every antidiagonal in Jw, and is minimal
with this property, if and only if D lies in 7ZP(w). This is the statement
that we shall actually be thinking of in our proofs.

Example 16.19 The antidiagonal ideal J2143 for the 4 x 4 permutation
2143 equals (£ii,£i3£22£3i)- The antidiagonal complex £2143 is the union
of three coordinate subspaces £11,13, £11,22, and £11,31, with ideals

£(£11,13) = (£11,213), /(£n,22) = (211,222), and I(Ln.PA) = (xn,x31)

whose intersection yields the prime decomposition of J2143. Pictorially,
represent the subspaces £11,13, £11,22, and £11,31 by pipe dreams

-^£11,22 and £>Ln.31 =

inside the 4 x 4 grid that have - | - entries wherever the corresponding sub-
space is required to be zero. These three pipe dreams coincide with the
reduced pipe dreams in TZV(2143) from Example 16.4. O
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The next lemma is a key combinatorial observation. Its proof (in each
case, check that each rank condition is still satisfied) is omitted.

Lemma 16.20 If a and a' are antidiagonals in k[x]; with a € Jw, then a'
also lies in Jw if it is obtained from a by one of the following operations:

(W) moving west one or more of the variables in a;
(E) moving east any variable except the northeast one in a;
(N) moving north one or more of the variables in a; or
(S) moving south any variable except the southwest one in a.

For each subset L of the kx£ grid, let DL be its complement. Thus the
subspace of the kx£ matrices corresponding to L is (xij \ (i,j) G DL).

Lemma 16.21 The set of complements DL of faces L G JCW is closed under
chutes and inverse chutes.

Proof. A pipe dream D is equal to DL for some face L G Cw if and only if
D meets every antidiagonal in Jw. Suppose that C is a chutable rectangle
in DL for L G Cw. For chutes it is enough to show that the intersection
a n DL of any antidiagonal a G Jw with DL does not consist entirely of the
single -|- in the northeast corner of C, unless a also contains the southwest
corner of C. So assume that a contains the -|- in the northeast corner (p, q)
of C, but not the -|- in the southwest corner, and split into cases:

(i) a does not continue south of row p.
(ii) a continues south of row p but skips row p + 1.

(iii) a intersects row p + 1, but strictly east of the southwest corner of C.
(iv) a intersects row p + 1, but strictly west of the southwest corner of C.

Letting (p + 1, t) be the southwest corner of C, construct antidiagonals a'
that are in Jw, and hence intersect DL, by moving the -|- at (p, q) in a to:

(i) (p,t), using Lemma 16.20(W);
(ii) (p + l,q), using Lemma 16.20(S);

(iii) (p, q), so a = a' trivially; or
(iv) (p,t), using Lemma 16.20(W).

Observe that in case (iii), a already shares a box in row p-\-1 where DL has
a -|-. Each of the other antidiagonals a' intersects both a and DL in some
box that is not (p, q), since the location of a' \ a has been constructed not
to be a crossing tile in DL •

The proof for inverse chutes is just as easy, and left to the reader. •

Call a pipe dream top-justified if no -|- tile is due south of a - ^ tile, in
other words if the configuration H does not occur.

Lemma 16.22 Given a face L G Cw, there is a sequence LQ, .. • ,Lm of
faces of Cw in which Lo = L, the face Lm is top-justified, and -Le+i is
obtained from Le by either deleting a-\- tile or performing an inverse chute.
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Proof. Suppose that DL for some face L e Cw is not top-justified, and
has no inverse-chutable rectangles. Consider a configuration • in the most
eastern column containing one. To the east of this configuration, the first
2 x 1 configuration that is not EH must be EH because of the absence of
inverse-chutable rectangles. The union of the original H configuration along
with this EH configuration and all intervening EH configurations is a chutable
rectangle with an extra crossing tile in its southwest corner. Reasoning
exactly as in the proof of Lemma 16.21 shows that we may delete the
crossing tile at the northeast corner of this rectangle. •

Given a kx£ pipe dream D, denote by LD the coordinate subspace
inside the kx£ matrices whose ideal in k[x] is (xij \ (i,j) is a -|- tile in D).

Proposition 16.23 Let D and E be pipe dreams, with E obtained from D
by a chute move. Then LD is a facet of Cw if and only if LE is.

Proof. Suppose that LD is not a facet. This means that deleting from D
some -|-, let us call it S, yields a pipe dream D' whose subspace LD> is still
a face of Cw. We shall show that some -|- may be deleted from E to yield
a pipe dream whose face still lies in £w. Let C be the chutable rectangle
on which the chute move acts.

If EH lies outside of the rectangle C, then deleting it from E yields the
result E' of chuting C in D'; that LE> still lies in Cw is by Lemma 16.21.
If EH is the northeast corner of C, then deleting the southwest corner of C
from E yields again D'. Thus we may assume EH lies in C, and not at either
end. Every antidiagonal a G Jw contains a -|- in Z> in some row other than
that of EH. If EH lies in the top row of C, then this other -|- lies in E, as
well; thus deleting EH from E has the desired effect. Finally, if EH lies in the
bottom row of C, then let EH' be the crossing tile immediately due north of
it in I?. Chuting EH' and subsequently the northeast corner of C in D \ EH
yields D' \ EH', and LD'^W lies in Cw by Lemma 16.21 again.

We have shown that LD is a facet if LE is; the converse is similar. •

The previous result implies that the facets of Cw constitute the nodes
of a graph whose edges connect pairs of facets related by chute moves. The
main hurdle to jump before the proof of Theorem 16.18 is the connectedness
of this graph. By Lemma 16.22, this amounts to the uniqueness of a top-
justified facet complement for Cw, which we shall show in Proposition 16.26.
In general, top-justified pipe dreams enjoy some desirable properties.

Proposition 16.24 Every top-justified pipe dream is reduced, and 1ZV{w)
contains a unique one, called the top reduced pipe dream top(to). Every
pipe dream D £ lZV{w) can be reached by a sequence of chutes from top(tu).

Proof. Replacing w with w if necessary, it suffices to consider honest per-
mutations, as usual. Next we show that reduced pipe dreams that aren't
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top-justified always admit inverse chute moves. Consider a configuration 0
in the most eastern column containing one. To the east of this configura-
tion, the first 2 x 1 configuration that is not 0 must either be 0 or 0. The

former is impossible because the pipes passing through the -|- in 0 would
also intersect at the -|- in H. Hence the union of the original 0 along with
this 0 and all intervening 0 configurations is an inverse-chut able rectangle.

Now simply count: there are n! top pipe dreams contained in the long
permutation pipe dream Do for Sn, and we've just finished showing that
there must be at least n\ distinct top-justified reduced pipe dreams in-
side DQ. The result follows immediately. •

Let us say that a rank condition rpq < r causes an antidiagonal a of
the generic matrix x if xp X g contains a and a has size at least r + 1. For
instance, when the rank condition comes from r(w), the antidiagonals it
causes include those antidiagonals a E Jw that are contained in xp X g but
not in any smaller northwest rectangular submatrix of x.

Lemma 16.25 Antidiagonals in Jw \ JaiW are contained in ~x-ixw(i)-i and
intersect row i.

Proof. If an antidiagonal in Jw is either contained in ^-i-ixw(i) o r n ° t
contained in xiXu,(j), then some rank condition causing it is in both r(w)
and r((Tiw). Indeed, it is easy to check that the rank matrices r{aiw) and
r(w) differ only in row i between columns w(i + l) and w(i) — 1, inclusive. •

Proposition 16.26 For each partial permutation w. there is a unique facet
L E Cw whose complementary pipe dream DL is top-justified, and in fact
DL = top (it;) is the top reduced pipe dream for w.

Proof. This is clearly true for w — WQ. Assuming it for all n x n permuta-
tions of length at least I, we prove it for n x n permutations of length I — 1.

Let v E SVtXifo be a permutation. Then v has an ascent, v(i) < v{i + 1).
Choose i minimal with this property, and set j — v(i). Then let w — aiV,
so that v = GiW < w, as usual. Since i is minimal, the northwest i + 1 x j
rectangle r(oito),+iXj of the rank matrix of OiW is zero except at (i,j) and
(i + l,j), where rfaw) takes the value 1. Every variable xpq sitting on one
of these zero entries is an antidiagonal of size 1 in JGiW. Therefore every
pipe dream DL that is the complement of a facet L E C-aiW has -|- tiles in
these locations. See the figure below for a medium-sized example.
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The same statements hold with w in place of aitv, except that the only
nonzero entry of r(w)i+iXj is ri+ij(w) = 1. We shall need the consequence
Jw D J(7.w of the componentwise inequality r(w) < rfaw).

Let D be a top-justified facet complement for LGiW. These exist by
Lemma 16.22. If o is an antidiagonal in Jw^.J<jiW, then either a intersects D,
or else a contains Xij. Indeed, suppose that a misses D and that also x^
does not lie in a. Since a lies in Jw \ Jaiwi Lemma 16.25 implies that a is
caused by a row i rank condition riq(w) in some column q between w(i + l)
and w(i) — 1. This rank matrix entry is one less than the entry due south
of it by (15.1): rj+i.g(iu) = riq(w) + 1. Hence Xi+ijg is an antidiagonal
in JaiW that misses D, which is impossible. Therefore adding a -|- tile at
(i,j) to D yields a pipe dream D' whose complement is a face L e Cw.

It remains to show that L is a facet, and that D = D' \ (i,j). Indeed,
using the former we deduce that D' must be the top reduced pipe dream
for w by induction, and using the latter we conclude that D — top(oi«;) by
Lemma 16.5 and Proposition 16.24. First we show that L is a facet.

Every variable in Xj+ixj except for Xi+i.j itself is actually an antidiag-
onal in Jw, so no -|- tile in D'i+lx- can be deleted. Suppose EH is one of the
remaining -|- tiles in D'. Then ES equals the unique intersection of some
antidiagonal a £ JaiW with D. If a misses x^, then {ffl} — a D D', so EB
can't be deleted from D'.

On the other hand, suppose a contains x^. If a continues south-
west of x^, then a skips row i + l because we assumed EB does not lie
in D'i+1Xj. Hence we can replace a with (xi+ij/xij)a, which misses x^,
using Lemma 16.20(S). Finally, if a has its southwest end at (i,j), suppose
the northeast end of a lies in column q. Using (15.1) as a guide, calculate
that ri-i:q(<Tiw) = riq(aiw) — 1. Thus a/xij lies in JUiW and misses x^.

Finally, note that the arguments in the previous two paragraphs can
also be used to show that deleting (i,j) from D' yields a face complement
for Cai-w- Hence D = D' \ (i,j), as required. •

Proof of Theorem 16.18. The set 1ZV(w) of reduced pipe dreams for w is
characterized by Proposition 16.24 as the set of pipe dreams obtained from
top(u>) by applying chute moves. Lemma 16.22, Proposition 16.23 and
Proposition 16.26 imply that the set of complements DL of facets L G Cw

is characterized by the same property. •
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16.4 Minors form Grobner bases

Theorem 16.18 immediately implies some useful statements about Schubert
determinantal ideals. As we shall see, the next result will be enough to
conclude that the minors generating Schubert determinantal ideals Iw form
Grobner bases, and therefore that the ideals Iw are prime.

Corollary 16.27 The antidiagonal simplicial complex Cw is pure. In the
multigrading with deg(xij) = ti, it has multidegree C(k[x]/Jw;t) = &w{t).

Proof. Purity of Cw is immediate from Theorem 16.18 and the fact that all
reduced pipe dreams for w have the same number of -|- tiles. Using purity,
Theorem 8.53 and Proposition 8.49 together imply that C(k[x]/JU);t) is
the sum of monomials tDh for complements DL of facets L £ Cw. As
these facet complements are precisely the reduced pipe dreams for w by
Theorem 16.18, the result follows from the formula in Theorem 16.13. •

A term order on k[x] is called antidiagonal if the leading term of every
minor of x is its antidiagonal term. Thus if [ii • • • ir\ji • • • jr] is the deter-
minant of the square submatrix of the generic matrix x whose rows and
columns are indexed by i± < • • • < ir and ji < • • • < j r , respectively, then

There are numerous antidiagonal term orders (Exercise 16.10).

Theorem 16.28 The minors inside the Schubert determinantal ideal Iw

constitute a Grobner basis under any antidiagonal term order:

in(/w) = Jw.

Proof. The multidegree C(k[x]/in(/tu);t) equals the Schubert polynomial
®™(t) by Theorem 15.40 and Corollary 8.47. Since Jw is obviously con-
tained inside the initial ideal in(7w) under any antidiagonal term order,
Exercise 8.12 applies with / = in(/U)) and J = Jw, by Corollary 16.27. •

Geometrically, Theorem 16.28 exhibits a Grobner degeneration of each
matrix Schubert variety to the antidiagonal simplicial complex. This is
a certain flat family of subvarieties, parametrized by the affine line, whose
fiber at 1 is Xw and whose fiber at 0 is £w (realized as a union of coordinate
subspaces). Actually, Grobner degenerations are only defined once suitable
weight vectors are chosen; see Definition 8.25 and do Exercise 16.10.

Here is the first important consequence of the Grobner basis statement.

Corollary 16.29 Schubert determinantal ideals Iw are prime.

Proof. The zero set of Iw is the matrix Schubert variety Xw, which is
irreducible by Theorem 15.31. Hence the radical of Iw is prime. But The-
orem 16.28 says that Iw has a squarefree initial ideal, which automatically
implies that Iw is a radical ideal. •
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The primality of Schubert determinantal ideals means that Iw equals
the radical ideal I(XW) of polynomials vanishing on the matrix Schubert
variety for w. Therefore the multidegree calculation for matrix Schubert
varieties in Theorem 15.40 holds for k[x]//w. This enables us to deduce the
double version of Theorem 16.13.

Corollary 16.30 The double Schubert polynomial for w satisfies

( t - s ) D ' where (t~s)D =
D€TZV(w)

Proof. The multidegree C(k[x]/Jw; t, s) equals the double Schubert polyno-
mial by Theorem 15.40, Corollary 8.47, and Theorem 16.28, using the fact
that Iw = I(XW) (Corollary 16.29). Now apply additivity of multidegrees
on components (Theorem 8.53) and the explicit calculation of multidegrees
for coordinate subspaces (Proposition 8.49), using Theorem 16.18 to get
the sum to be over reduced pipe dreams. •

Generally speaking, the minors generating Iw fail to be Grobner bases
for other term orders, although these can still be used to get formulas for
double Schubert polynomials.

Example 16.31 Consider the Schubert determinantal ideal /2143 for the
4 x 4 permutation 2143. This ideal has the same generators as the ideal Iw

in Example 15.7, although in a bigger polynomial ring. We discussed the
antidiagonal ideal Jw = \r\(Iw) in Example 16.19. Note that the two minors
generating /2143 never form a Grobner basis for a diagonal term order,
because 211 divides the diagonal term 2113:22233 •

In the multigrading where deg(xij) = ti — Sj, the multidegree of Li1j1i2j2

equals (t^ — s ^ ) ^ — Sj2). The formula in Corollary 16.30 says that

©2i43(t-s) = (£ i -s i ) ( i i - s 3 ) + (t1-s1)(t2-s2) + ( t i - s i ) ( t 3 - s i ) ,

which agrees with the calculation of this double Schubert polynomial in
Example 15.43. On the other hand, there is a diagonal term order under
which (xn, 2132:21 £32) — (#11) 213) n (211,221)0(211, X32) is the initial ideal
of /2i43- Thus we can also calculate

using additivity and the explicit calculation for subspaces. O

The title of this section alludes to that of Section 14.3, where antidi-
agonals are initial terms of Pliicker coordinates. The differences are that
Theorem 14.11 works in a sagbi (subalgebra) context and speaks only of top-
justified minors, whereas Theorem 16.28 works in a Grobner basis (ideal)
context, and allows certain more general collections of minors.
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16.5 Subword complexes

Our goal in this section is to prove that Schubert determinantal rings
k[x]/Zm are Cohen—Macaulay. We shall in fact show that antidiagonal
complexes are Cohen—Macaulay. The argument involves some satisfying
combinatorics of reduced expressions in permutation groups.

Every n x n permutation matrix can be expressed as a product of ele-
ments in the set {a\,..., <rn_i} of simple nxn reflection matrices—that is,
permutation matrices for adjacent transpositions (see Definition 15.24 and
the paragraph after it). Simple reflections o~i are allowed to appear more
than once in such an expression.

Definition 16.32 A reduced expression for a permutation matrix w is
an expression w = Oim • • • a^ as a product of m = l(w) simple reflections.

Lemma 16.33 The minimal number of matrices required to express a per-
mutation matrix w as a product of simple reflections is l(w).

Proof. For the identity matrix this is obvious, since it has length zero.
Multiplying an arbitrary permutation matrix on the left by a simple reflec-
tion either increases length by 1 or decreases it by 1; this is a special case of
Lemma 15.21. Ascending in weak order from the identity to a permutation
matrix w therefore requires at least l(w) many simple reflections. •

It is easy to see that reduced expressions exist, or in other words that
the minimum l(w) in Lemma 16.33 is actually attained. In fact, we are
about to produce a number of reduced expressions explicitly, using pipe
dreams. For notation, let us say that a -|- tile at (p, q) in a pipe dream D
sits on the ith antidiagonal if p + q — 1 = i.

Let Q(D) be the ordered sequence of simple reflections o~i correspond-
ing to the antidiagonals on which the -|— tiles of D sit, starting from the
southwest corner of D and reading left to right in each row, snaking up to
the northeast corner. For a random example, the pipe dream

±i

yields the ordered sequence a^a^aia^a^. We should mention that compared
to conventions in the literature (see the Notes), this convention looks like
the sequence is read backward. But this is only because our permutation
matrices here have corresponding abstract permutations gotten by reading
the column indices of the nonzero entries instead of the rows. Transposing
matrices inverts the permutations and reverses the reduced expressions.
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Example 16.34 The unique pipe dream DQ for the nxn long permutation
(antidiagonal matrix) u;0 corresponds to the ordered sequence

Q(D0) = ( 7 n - l (7n-2<7n_i (72<73 • • • 0~n-

the reverse triangular reduced expression for WQ. The part of Q(Do)
arising from each row of Do has its own underbrace. When n = 4, the
above expression simplifies to QQ = 03U2v̂ oi<T2<T3. O

Example 16.35 The ordered sequence constructed from the pipe dream
whose crossing tiles entirely fill the n x n grid is the reverse square word

Q n x n — O - n ( J n + i . . . < J 2 n - 2 O ' 2 n - l •••

bottom row second row top row

This sequence necessarily involves reflections a±,..., <72n-i, which lie in S^m
even though reduced expressions for permutation matrices w € Sn never
involve reflections Ui with i > n. O

Lemma 16.36 Suppose that the pipe entering row i of an n x n pipe
dream D exits column w(i) for some n x n permutation w. Multiplying
the reflections in Q(D) yields the permutation matrix w. Thus Q(D) is a
reduced expression for w if and only if D € 1ZV(w).

Proof. Use induction on the number of crossing tiles: adding a -|- in the i t h

antidiagonal at the start of the list switches the destinations of the pipes
entering through rows i and i + 1. •

In other words, pipe dreams in the n x n grid are naturally 'subwords'
of the reverse square word, while reduced pipe dreams are naturally reduced
subwords. This explains the adjective 'reduced' for pipe dreams.

Definition 16.37 A word of size m is a sequence Q — {(Jim . . . ,0^) of
simple reflections. An ordered subsequence P of Q is a subword of Q.

1. P represents a n n x n permutation matrix w if the ordered product
of the simple reflections in P is a reduced expression for w.

2. P contains w if some subsequence of P represents w.

The subword complex A(Q, w) is the set of subwords whose complements
contain w: A(Q, w) = {Q \ P \ P contains w}.

In other words, deleting a face of A(Q, w) from Q leaves a reduced expres-
sion for w as a subword of what remains. If Q \ D is a facet of the subword
complex A(Q,w), then the reflections in D constitute a reduced expression
for w. Note that subwords of Q come with their embeddings into Q, so
two subwords P and P' involving reflections at different positions in Q are
unequal, even if the sequences of reflections in P and P' are equal.
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Usually we write Q as a string without parentheses or commas, and
abuse notation by saying that Q is a word in Sn, without explicit reference
to the set of simple reflections. Note that Q need not itself be a reduced
expression. The following lemma is immediate from the definitions and the
fact that all reduced expressions for w € Sn have the same length.

Lemma 16.38 A(Q, w) is a pure simplicial complex whose facets are the
subwords Q \ P such that P C Q represents w. •

Example 16.39 Consider the subword complex A = A (173(72 (73 <72 03,1432)
for the 4 x 4 permutation w = 1432. This permutation has two reduced
expressions, namely £730-20-3 and O-2&Z&2- Labeling the vertices of a pentagon
with the reflections in Q = 0-3(720-30-20-3 (in cyclic order), the facets of A are
the pairs of adjacent vertices. Thus A is the boundary of the pentagon. O

Proposition 16.40 Antidiagonal complexes £w are subword complexes.

Proof. When roisa permutation matrix, the fact that

Cw = A(QnXn,w)

is a subword complex for the n x n reverse square word is immediate from
Theorem 16.18 and Lemma 16.33. When w is an arbitrary kx£ partial
permutation, simply replace w by & minimal extension to a permutation w,
and replace QnXn by the word corresponding to tiles in a kx£ rectangle. •

We will show that subword complexes are Cohen—Macaulay via The-
orem 13.45 by proving that they are shellable. In fact, we shall verify a
substantially stronger, but less widely known criterion. Recall from Defini-
tion 1.38 the notion of the link of a face in a simplicial complex.

Definition 16.41 Let A be a simplicial complex and F £ A a face.

1. The deletion of F from A is delA(i?) = {G e A \ F DG = 0}.
2. The simplicial complex A is vertex-decomposable if A is pure and

either (i) A = {0}, or (ii) for some vertex v £ A, both delA('u) and
linkA^) are vertex-decomposable.

The definition of vertex-decomposability is not circular, but rather in-
ductive on the number of vertices in A. Here is a typical example of how
this inductive structure can be mined.

Proposition 16.42 Vertex-decomposable complexes are shellable.

Proof. Use induction on the number of vertices by first shelling delA(^)
and then shelling the cone from v over link A (V) to get a shelling of A. •

Theorem 16.43 Antidiagonal complexes are shellable, and hence Cohen-
Macaulay. More generally, subword complexes are vertex-decomposable.
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Proof. By Proposition 16.40 and Proposition 16.42, it is enough to prove
the second sentence. With Q = (a^m, <Jim_1,..., cr^), it suffices by induction
on the number of vertices to demonstrate that both the link and the deletion
of <Tjm from A(Q, w) are subword complexes. By definition, both consist
of subwords of Q' = (&im_1,..., a^). The link is naturally identified with
the subword complex A(Q',w). For the deletion, there are two cases. If
<Jimw is longer than w, then the deletion of Uim equals its link because no
reduced expression for w has o~im at its left end. On the other hand, when
o~imw is shorter than w, the deletion is A(Q', o~imw). •

Corollary 16.44 Schubert determinantal rings are Cohen-Macaulay.

Proof. Apply Theorems 16.43 and 8.31 to Theorem 16.28. •

Exercises

16.1 Use the length condition in Definition 16.2 to show that crossing tiles in re-
duced pipe dreams for permutations all occur strictly above the main antidiagonal.

16.2 Suppose that a kx£ partial permutation matrix w is given, and that w is a
permutation matrix extending w. Prove that the crossing tiles in every reduced
pipe dream for w all fit inside the northwest kx£ rectangle.

16.3 What permutation in S& has the most reduced pipe dreams? In S5? In Sn7

16.4 Prove directly, using the algebra of antidiagonals and without using The-
orem 16.11 or Theorem 16.18, that if L is a facet of Cw and UiW < w, then
mitosisj (DL) consists of pipe dreams DLi for facets L' of Caiw

16.5 Change each box in the diagram of w (Definition 15.13) into a —\- tile, and
then push all of these tiles due north as far as possible. Show that the resulting
top-justified pipe dream is top(iu).

16.6 Given a - | - tile in the top reduced pipe dream top(w), construct an explicit
antidiagonal in Jw whose intersection with top(w) is precisely the given —|— tile.
Hint: Consider the -y- tiles along the pipe passing vertically through the - | - tile.

16.7 Show that each partial permutation has a unique bottom reduced pipe
dream in which no -y- is due west of a —|— in the same row.

16.8 Prove that the bottom reduced pipe dream for a grassmannian permutation
(Exercise 15.6) forms the Ferrers shape (in 'French' position) of a partition. Verify
that the resulting map from the set of n X n grassmannian permutations with
descent at k to the set of partitions that fit into the k x (n — k) grid is bijective.

16.9 Each semistandard tableau T (Definition 14.12) determines a monomial t T

whose degree in U is the number of entries of T equal to i. Given a grassmannian
permutation w, let A(u>) be the partition from Exercise 16.8. Exhibit a bijection
from reduced pipe dreams for w to semistandard Young tableaux with shape A (to)
that is monomial-preserving, in the sense that tD = t T when D 1—> T. Conclude
that Schubert polynomials for grassmannian permutations are Schur polynomials.
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16.10 Find a total ordering of the variables in the kx£ array x = (xij) whose
reverse lexicographic term order is antidiagonal. Do the same for lexicographic
order. Find an explicit weight vector inducing an antidiagonal partial term order.

16.11 Let P be obtained from a pipe dream in lZV{w) by adding a single extra
—|— tile. Explain why there is at most one other —|— tile that can be deleted from P
to get a reduced pipe dream for w.

16.12 By a general theorem, shellable complexes whose ridges (codimension 1
faces) each lie in at most 2 facets is a ball or sphere [BLSWZ99, Proposition4.7.22].
Use Exercise 16.11 to deduce that antidiagonal complexes are balls or spheres.

16.13 (For those who know about Coxeter groups.) Define subword complexes for
arbitrary Coxeter groups. Show they are pure and vertex-decomposable. Prove
that if A is a subword complex for a Coxeter group, then no ridge is contained
in more than two facets. Conclude that A is homeomorphic to a ball or sphere.

16.14 What conditions on a word Q and an element w guarantee that A(Q,w)
is (i) Gorenstein or (ii) spherical?

16.15 Recall the notation from Exercise 15.14. If w is a permutation of length
l(w) — m, prove that the coefficient on titz • • • tm in the Schubert polynomial
@m+i«(t) equals the number of reduced expressions for w.

Notes

There are many important ways of extracting combinatorics from determinantal
ideals other than via pipe dreams. For example, there are vast literatures on
this topic concerned with straightening laws [DRS74, DEP82, Hib86], and the
Robinson-Schensted-Knuth correspondence [Stu90, HT92, BC01]. The former
is treated in [BV88], as well as more briefly in [BH98, Chapter 7] and [Hib92,
Part III], while the state of the art in RSK methods is explained in the excellent
expository article [BC03].

Reduced pipe dreams are special cases of the curve diagrams invented by
Fomin and Kirillov [FK96]. Our notation follows Bergeron and Billey [BB93], who
called them rc-graphs; the corresponding objects in [FK96] are rotated by 135°.
The definition of chute move comes from [BB93], as does the characterization of
reduced pipe dreams in Proposition 16.24, which is [BB93, Theorem 3.7].

The mitosis recursion in Theorem 16.11 is [KnM04b, Theorem C]. Our proof
here is approximately the one in [MilO3a], although Lemma 16.10 is new, as is
the resulting argument proving the formula in Theorem 16.13. This result was
first proved by Billey, Jockusch, and Stanley [BJS93], although independently^)
and almost simultaneously, Fomin and Stanley gave a shorter, more elegant com-
binatorial proof [FS94]. Corollary 16.30 is due to Fomin and Kirillov [FK96].

Theorem 16.18 and Theorem 16.28 together with the shellability of antidiag-
onal simplicial complexes is due to Knutson and Miller [KnM04b, Theorem B].
Our proof here is much simplified, because we avoid proving any iC-polynomial
statements along the way, focusing instead on multidegrees. Mitosis is a shadow
of the combinatorial transitions in the weak order on Sn that governs the stan-
dard monomials of Schubert determinantal ideals and antidiagonal ideals, which
are necessary for proving Hilbert series formulas as in Remark 15.45. The use
of Exercise 8.12 in Theorem 16.28 is the same as in [KnM04b], and similar to
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[MarO4]. Martin's applications are to picture spaces [MarO3], which parametrize
drawings of graphs in the projective plane, and particularly to slope varieties,
which record the edge slopes.

The appearances of antidiagonal initial terms in Theorem 14.11 and Theo-
rem 16.28 are not coincidentally similar: there is a direct geometric connection
[KoM04], in which each reduced pipe dream subspace from the Grobner degener-
ation maps to a face of the Gelfand-Tsetlin toric variety.

Primality and Cohen—Macaulayness of Schubert determinantal ideals is due
to Fulton [Ful92], who originally defined them. His elegant proof relied on related
statements for Schubert varieties in flag manifolds [Ram85] that use positive char-
acteristic methods and vanishing theorems for sheaf cohomology. These Schubert
variety statements follow from Corollary 16.29 and Corollary 16.44.

Subword complexes were introduced in [KnM04b] for the same purpose as they
appear in this chapter; their vertex-decomposability is Theorem E of that paper.
The notion of vertex-decomposability was introduced by Billera and Provan, who
proved that it implies shellability [BP79]. Further treatment of subword com-
plexes, in the generality of Exercise 16.13, can be found in [KnM04a]. Included
there are explicit characterizations of when balls and spheres occur, and Hilbert
series calculations. In addition, several down-to-earth open problems on combi-
natorics of reduced expressions in Coxeter groups appear there.

Exercise 16.3 is inspired by a computation due to Woo [Woo02]. We learned
the bijection in Exercise 16.9 from Kogan [KogOO]. The last sentence of Exer-
cise 16.9 is essentially the statement that the Schubert classes on Grassmannians
are represented by the Schur polynomials. The result of Exercise 16.9 holds more
generally for double Schubert polynomials and supersymmetric Schur polynomi-
als. Explicit weight orders as in Exercise 16.10 are crucial in some applications of
Schubert determinantal ideals and the closely related quiver ideals of Chapter 17
[KoM04, KMS04]. Exercise 16.15 leads into the theory of stable Schubert polyno-
mials, which are also known as Stanley symmetric functions. This important part
of the theory surrounding Schubert polynomials is due to Stanley [Sta84], along
with subsequent positivity results and connections to combinatorics contributed
by [LS85, EG87, LS89, Hai92, RS95], among others.



Chapter 17

Minors in matrix products

Chapters 14-16 dealt with minors inside a single matrix. In this chapter,
we consider quiver ideals, which are generated by minors in products of
matrices. The zero sets of these ideals are called quiver loci. Surprisingly, we
can reduce questions about quiver ideals and quiver loci to questions about
Schubert determinantal ideals, by using the Zelevinsky map, which embeds
a sequence of matrices as blocks in a single larger matrix. As a consequence,
we deduce that quiver ideals are prime, and that quiver loci are Cohen-
Macaulay. In addition, we get a glimpse of how the combinatorics of quivers,
pipe dreams, and Schubert polynomials are reflected in formulas for quiver
polynomials, which are the multidegrees of quiver loci.

17.1 Quiver ideals and quiver loci

The questions we asked about ideals generated by minors in a matrix of
variables—concerning primality, Cohen—Macaulayness, and explicit formu-
las for multidegrees—also make sense for ideals generated by minors in
products of two or more such matrices. Whereas the former correspond
geometrically to varieties of linear maps with specified ranks between two
fixed vector spaces, the latter correspond to varieties of sequences of linear
maps. Naturally, if we hope to get combinatorics out of this situation, then
we should first isolate the combinatorics that goes into it: what kinds of
conditions on the ranks of composite maps is it reasonable for us to request?

Example 17.1 The sequence of three matrices in Fig. 17.1 constitutes an
element in the vector space M23 x A/34 x M43 of sequences of linear maps
k2 —> k3 —> k4 —• k3 (so k r consists of row vectors for each r). Note that
these matrices—call them w\, W2, and W3—can be multiplied in the order
they are given. Since they are all partial permutations (Definition 15.1), we
can represent the sequence w = (wi,W2,ws) by the graph above it, called
its lacing diagram. When Wi has a 1 entry in row a and column /3, the

331
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100
00 1

0 10 0
1000
0000

"1 0 0"
000
0 10
0 0 0

Figure 17.1: A sequence of partial permutations and its lacing diagram

lacing diagram has a segment directly above Wi joining the dot at height a
to the dot in the next column to the right at height (3.

Let k[f] denote the coordinate ring of M23 x M34 x M43. Thus k[f] is
a polynomial ring 6 + 12 + 12 = 30 variables f = {/a/3}, arranged in three
rectangular generic matrices $1 = (fa/3), $2 — (/a/3)) and $3 = (/I/3).
We would like to think of the sequence w as lying in the zero set of an ideal
generated by minors in the products of these generic matrices $^.

What size minors should we take? The ranks of the three maps wi, 102,
and W3 are all 2, as this is the number of nonzero entries in each matrix.
Hence w lies in the zero set of the ideal generated by all 3 x 3 minors $1,
<&2) and $3. But w satisfies additional conditions: the composite maps
k2 WlW2) Jj4

 a n ( j ]t
3 W2U>3

) jj3 both have rank 1. One way to see this without
multiplying the matrices is to count the number of length 2 laces (one each)
spanning the first three or the last three columns of dots. Therefore w also
lies in the ideal generated by the 2 x 2 minors of $1^2 and $2^3- Finally,
the composite map k2 WlW2W3

; ^3 j s z e r O ) s i n c e n o laCes span all the columns,
so w lies in the zero set of the entries of the product <&i$2^3- Hence the
rank conditions that best describe w are the bounds determined by w on
the ranks of the 6 = 3+2 + 1 consecutive products of generic matrices <5j. O

Sequences of partial permutations given by lacing diagrams are in many
ways fundamental. In particular, our goal in this section is to show in
Proposition 17.9 that they are the only examples of matrix lists, up to
changes of basis. Therefore let us formalize the notion of lacing diagram.

Definition 17.2 Fix ro,. • • ,rn E N. Let w — (w\,... ,wn) be a list of
partial permutations, with Wi of size r^-i xr». The lacing diagram of w is
a graph having r, vertices in column i for i = 0 , . . . , n, and an edge from the
a t h dot in column i — 1 to the /3 th dot in column i whenever Wi(a) = (3. We
identify w with its lacing diagram and call its connected components laces.

To describe the general framework for ideals in products of matrices, fix
nonnegative integers ro , . . . ,rn. Denote by Mat = Mrori x • • • x MTn_lTn

the variety of quiver representations over the field k with dimension vector
( ro , . . . , rn). That is, Mat equals the vector space of sequences

k r i <Pn-l
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of linear transformations. By convention, set 4>Q — 0 = 4>n+i- As the above
notation suggests, we have fixed a basis for each of the vector spaces k r i ,
and we express elements of k r i as row vectors of length r,. Each map (pi in
the quiver representation <p therefore gets identified with a matrix over k
of size Ti-i x 7*j. The coordinate ring of Mat is a polynomial ring k[f]
in variables f = {/L,a} = (fafl), • • •, (fap), where the i t h index (3 and the
( i+l) s t index a run from 1 to r,. Let <£ be the generic quiver representation,
in which the entries in the matrices <£j are the variables fl

ap.

Definition 17.3 For an array r = (rij)o<i<j<n of nonnegative integers
with Ta = Ti, the quiver ideal Ir C k[f] is generated by the union over
i < j of the size 1+r^- minors in the product <&j+i • • •Qj of generic matrices:

7r = (minors of size 1 + rij in <&j+i •••<&_; for i < j).

The quiver locus £lr C Mat is the zero set of the quiver ideal Ir.

The quiver locus Or consists exactly of those <f> satisfying r^ (0) < r^
for all i < j , where rij(<f>) is the rank of the composite map k r i —> k7"3':

i • • • <£,-) for i < j . (17.1)

Example 17.4 Whenever 0 < k < £ < n, there is a quiver representation

having copies of the field k in spots between k and £, with identity maps
between them and zeros elsewhere. The array r = r(w(k,£)) in this case
has entry rij — 1 if k < i < j < £, and r^ — 0 otherwise. Quiver
representations of this form are called indecomposable. The matrices in
~w(k,£) are all l x l , filled with either 0 or 1, so ~w(k,£) is a lacing diagram
with one lace stretching from the dot in column k to the dot in column £. O

It was particularly simple to determine the array r for the lacing dia-
grams w(k,£). As it turns out, it is not much harder to do so for arbitrary
lacing diagrams. The (easy) proof of the following is left to Exercise 17.2.

Lemma 17.5 / / w 6 Mat is a lacing diagram with precisely qke laces be-
ginning in column k and ending in column £, for each k < £, then r^ (w)
equals the number of laces passing through both column i and column j :

Definition 17.6 Let q = (qij) be a lace array, filled with arbitrary non-
negative integers for 0 < i < j < n. The associated rank array is the non-
negative integer array r — (r^) for 0 < i < j < n defined by Lemma 17.5.
The rectangle array of r (or of q) is the array R = (Rij) of rectangles for
0 < i < j < n, such that R^ has height rij-i — r^ and width ri+i,j — r^.
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The point is that for a lacing diagram, we could just as well specify the
ranks r by giving the lace array q. We defined the rectangle array here be-
cause it fits naturally with r and q, but we will not use it until Lemma 17.13.

Example 17.7 The lacing diagram from Example 17.1 has rank array
r = (rij), lace array q = (qij), and rectangle array R = (Rij) as follows.

3

r =

3

2

4
2

1

3
2
1

0
2
2
1
0

i/j
0
1
2
3

3

1

2

1
1

1

0
0
1

0
0
1
1
0

i/j
0
1
2
3

3 2 1

R =
CD

B n

0

•
•

i/j
0
1
2
3

Lemma 17.5 says that each entry of r is the sum of the entries in q weakly
southeast of the corresponding location. The height of R^ is obtained by
subtracting the entry r^ from the one above it, while the width of Rij is
obtained by subtracting the entry r^ from the one to its left. The reason
for writing the arrays in this orientation will come from the Zelevinsky map;
compare q and R here to the illustration in Example 17.14, below. O

The reason why the ranks of lacing diagrams decompose as sums is be-
cause the lacing diagrams themselves decompose into sums. In general, if
(j) and ip are two quiver representations with dimension vectors (ro, • • •, rn)
and (r'o,... ,r'n), then the direct sum of <f> and ip is the quiver representation
<fi © i> = {<fii © tpi, • • •, (fin © i>n), whose ith vector space is kri © kr'i. Every
direct sum of indecomposables is represented by a sequence of partial per-
mutations, and hence is a lacing diagram; but not every lacing diagram is
equal to a such a direct sum (try the lacing diagram in Example 17.1). On
the other hand, with the right notion of isomorphism, every lacing diagram
is isomorphic to such a direct sum, after permuting the dots (basis vectors)
in each column. To make a precise statement, two quiver representations (p
and ip are called isomorphic if there are invertible Ti x ri matrices r\i for
% — 0 , . . . ,n such that far/i — rji-iipi. In other words, i] gives invertible
maps kVi —• kTi making every square in the diagram <p ^h ip commute.

Lemma 17.8 Every lacing diagram w € Mat is isomorphic to the direct
sum of the indecomposable lacing diagrams corresponding to its laces. Two
lacing diagrams are isomorphic if and only if they have the same lace array.

The (easy) proof is left to Exercise 17.2; note that the second sentence
is a consequence of the first. The lemma brings us to the main result of the
section. It is the sequences-of-maps analogue of the fact that every linear
map between two vector spaces can be written as a diagonal matrix with
only zeros and ones, after changing bases in both the source and target.

Proposition 17.9 Every quiver representation (fi € Mat is isomorphic to
a lacing diagram w, whose lace array q is independent of the choice of w.
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Proof. It suffices by Lemma 17.8 to show that <f> is isomorphic to a direct
sum of indecomposables. We may as well assume that TQ ^ 0, and let j be
the largest index for which the composite kr° —> k r i is nonzero. Choose a
linearly independent set Bo C kr° whose span maps isomorphically to the
image of kr° in k7"3 under the composite kr° —> k r i . The image B^ C kr i

of Bo under kr'° —> kr-i for i < j; is independent. Setting Bi = 0 for i > j ,
let ?/> be the induced quiver representation on (span(U0), • • •, span(Bn)).

Choose a splitting k r i = V- © span(Bj). This induces for each i < j a
splitting kr i = V[ © span(£>i), where V̂ ' is the preimage of Vj under the
composite map kr i —> kr^. Set V/ — k.n for i > j , so we get a quiver
representation <p' on V' — (VQ, . . . , V^) by restriction of <f>.

By construction, <j) = ip © <//. Since ^ is isomorphic to a direct sum of
copies of w(0, j), induction on ro + • • • + rn completes the proof. •

Definition 17.3 made no assumptions about the array r of nonnega-
tive integers, and the ranks r^ there are only upper bounds. Unless every
rank V{j equals zero, there will always be matrix lists (f> <E Or whose compos-
ite maps have strictly smaller rank than r; and if some rank r^ for i < j is
very big, then all matrix lists 0 £ f t r will have strictly smaller rank rij((f>).
The point is that only certain arrays r can actually occur as ranks of quiver
representations: nontrivial restrictions on the array r(<ft) are imposed by
Proposition 17.9. In more detail, after choosing an isomorphism <\> = w
with a lacing diagram w, inverting Lemma 17.5 yields

Qij = rij ~ ri — l,j ~ fi,j+l + fi—l,j+l

for i < j , where rij = 0 if i and j do not both lie between 0 and n. Therefore
the array r can occur as in (17.1) if and only if rn = ri for i = 0 , . . . , n, and

nj - n-xj - riJ+1 + v-j-i^+i > 0 (17.2)

for i < j , since the left hand side is simply q^. Here, finally, is the answer
to what kinds of rank conditions can we reasonably request.

Convention 17.10 Starting in Section 17.2, we consider only rank ar-
rays r that occur as in (17.1), and we call these rank arrays irreducible if
we need to emphasize this point. Thus we can interchangeably use a lace
array q or its corresponding rank array r to specify a quiver ideal or locus.

We close this section with an example to demonstrate how the irre-
ducibility of a rank array r can detect good properties of the quiver ideal Ir.

Example 17.11 (Minors of fixed size in a product of two matrices)
Consider two matrices of variables, $ i and <&2? where $i has size ro x r±
and $2 has size r\ x ri- We are interested in the ideal / generated by
all of the minors of size p + 1 in the product $i$2, so the quiver locus $7
consists of the pairs {(pi, (p2) such that (fii<p2 has rank at most p. This rank
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condition is automatically satisfied unless p < min{ro, r\, V2}, so we assume
this inequality. The question is whether I is prime. Suppose that I = Ir

for some rank array r. In order that the only equations generating / be
the minors in $i$2; there must be no rank conditions on <£>i individually,
and also none on <£>2 individually. That is, we must stipulate that roi =
min(ro,ri) and r±2 = min(ri,r2) are as large as possible. Suppose this is
the case, and consider a quiver representation 0 6 ttr.

In terms of elementary linear algebra, 0i and 02 are matrices of maximal
rank, and we want rank(0i02) < P- However, if the middle vector space in
kr° ^> k r i -̂ > kr2 is the smallest of the three, so ro > r± and r\ <r2, then
0i is surjective and 02 is injective. Hence 0102 has rank precisely n in this
case, and we require that p <r\. We conclude that r\ cannot be too small.

How large must r\ be? Answering this question from first principles is
possible, but with lacing diagrams it becomes easy. So suppose our 0 is
actually a lacing diagram w. Then w has p laces spanning all three columns
of dots because ro2 = p, so go2 = p- Next, to make w\ of maximal rank roi,
we must have roi — p laces from column 0 to column 1; that is, qoi — roi —p,
where we recall that roi = min(ro,ri). Similarly, q12 = r\2 — p. Graph-
theoretically, we must find a matching on the set of dots above height p that
saturates the two outside columns of dots, because no endpoint of the goi
laces can be shared with one of the q\2 laces. In the following diagrams,

(17.3)

(ro, r\, r2) = (4, 5, 3) and p = 2. We conclude that the array r is irreducible
if and only if r± > p-\-qoi+Qi2 = foi+ri2—p. We shall see in Theorem 17.23
that in this case D,r is an irreducible variety, and in fact I r is prime.

What happens if r is not irreducible? Take the lacing diagrams below:

d\ x\ d

Here, (ro,ri,r2) = (4,4,3) and p = 2. In contrast to (17.3), the six choices
of matchings (edges of length 1) in this case give rise to lacing diagrams
with two different rank arrays. It follows that f2r contains the quiver loci
for both, so f2r is reducible as a variety. Therefore Ir is not prime. O

17.2 Zelevinsky map

The rank conditions given by arrays in Definition 17.3 are essentially forced
upon us by naturality: they are the only rank conditions that are invariant
under arbitrary changes of basis, by Proposition 17.9. In this section we
shall see how the irreducible rank conditions in Convention 17.10 can be
transformed into the rank conditions for a Schubert determinantal ideal.
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Given a rank array r or equivalently a lace array q, we shall construct
a permutation v(r) in the symmetric group Sd, where d = VQ + • • • + rn.
In general, any matrix in the space M^ of dxd matrices comes with a
decomposition into block rows of heights ro,... ,rn (block rows listed from
top to bottom) and block columns of widths r n , . . . , ro (block columns listed
from left to right). Note that our indexing convention may be unexpected,
with the square blocks lying along the main block antidiagonal rather than
on the diagonal as usual. With these conventions, the ith block column
refers to the block column of width r^, which sits i blocks from the right.

Draw the matrix for each permutation v £ Sd by placing a symbol x
(instead of a 1) at each position (k,v(k)), and zeros elsewhere.

Proposition—Definition 17.12 Given a rank array r, there is a unique
Zelevinsky permutation v(Q,r) = v(r) in Sd, satisfying the following
conditions. Consider the block in the i t h column and j t h row.

1- Ifi^j (that is, the block sits on or below the main block antidiagonal)
then the number of x entries in that block equals qij.

2. Ifi=j + l (that is, the block sits on the main block superantidiagonal)
then the number of x entries in that block equals rjtj+\.

3- Ifi>j + 2 (that is. the block lies strictly above the main block super-
antidiagonal) then there are no x entries in that block.

4- Within every block row or block column, the x entries proceed from
northwest to southeast, that is, no x entry is northeast of another.

Proof. We need the number of x entries in any block row, as dictated
by conditions 1-3, to equal the height of that block row (and transposed
for columns), since condition 4 then stipulates uniquely how to arrange
the x entries within each block. In other words the height r,- = rjj of the j t h

block row must equal the number rj._,+i of x entries in the superantidiagonal
block in that block row, plus the sum Yli<j Qij °f the number of x entries
in the rest of the blocks in that block row (and a similar statement must
hold for block columns). These statements follow from Lemma 17.5. •

The diagram (Definition 15.13) of a Zelevinsky permutation refines the
data contained in the rectangle array R for the corresponding ranks (Def-
inition 17.6) . The next lemma is a straightforward consequence of the
definition of Zelevinsky permutation, and we leave it to Exercise 17.2.

Lemma 17.13 In each block of the diagram of a Zelevinsky permutation
v(r) that is on or below the superantidiagonal, the boxes form a rectangle
justified in the southeast corner of the block. Moreover the rectangle in the
ith block column and j t h block row is the rectangle Ri-i.j+i in the array R.

E x a m p l e 1 7 . 1 4 Let r, q, R be as in Example 17.7. The Zelevinsky per-
muta t ion for this da t a is

M _ / 1 2 3 4 5 6 7 8 9 10 11 12
V(~r) " 1 8 9 4 5 1 1 1 2 6 12 3 7 10
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* # *

* * *
* * *
* # #
X • •

• X •

. . •

. . •
• • X

* * * *
* * # #

x . . .
• X • •

. . • •

• • X •

. . . •
• • • X

X • •

• X •

. . •

• • X

X •

• X

whose permutation matrix is indicated by the x entries in the array

9
4
5
11
1
2
6
12
3
7
10

and whose diagram D(v(r)) is indicated by the set of all * and • entries. O

The locations in the diagram of v(r) strictly above the block superantidi-
agonal are drawn as * entries instead of boxes because they are contained
in the diagram of the Zelevinsky permutation v(r) for every rank array r
with fixed dimension vector (ro, . . . , r n ) . In fact the * entries form the
diagram of the Zelevinsky permutation v(Mat) corresponding to the quiver
locus that equals the entire quiver space Mat. We shall henceforth denote
this unique Zelevinsky permutation of minimal length by v* = v(Mat).

It is clear from the combinatorics of Zelevinsky permutations that we
can read off the rank array r and the lace array q from v(r). We next
demonstrate that the combinatorial encoding of r by its Zelevinsky permu-
tation reflects a simple geometric map that translates between quiver loci
and matrix Schubert varieties.

Definition 17.15 The Zelevinsky map Z : Mat takes

0
0
0 .•
in ••

1-
1

0
4>2
1

• o
0

<t>i
l

0
0
0

1
0
0
0
0

(17.4)

so Z{4>) is a block matrix of total size d x d. If k[x] denotes the coordinate
ring of Md, then denote the kernel of the induced map k[x] —» k[f] by trif.

Indexing for the dxd matrix x of variables in k[x] = k[Md] does not
arise in this section, so it will be introduced later, as necessary. The ideal nif
is generated by equations setting the appropriate variables in k[x] to 0 or 1.
To be more precise, rrif contains every x variable except

• those in superantidiagonal blocks, as they correspond to the coordi-
nates f on Mat and map isomorphically to their images in k[f]; and

• those on the diagonals of the antidiagonal blocks. For each such vari-
able x, the ideal trif contains x — 1 instead.
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The proof of Theorem 17.17 will use the following handy general lemma.

Lemma 17.16 Let F<£ be the product of two matrices with entries in a
commutative ring R. If F is square and det(F) is a unit, then for each fixed
uef f , the ideals generated by the size u minors in $ and in F<I> coincide.

Proof. The result is easy when u = 1. The case of arbitrary u reduces to the
case u = 1 by noting that the minors of size u in a matrix for a map Rk —» Re

of free modules are simply the entries in a particular choice of matrix for
the associated map /\^Rk —• /\ui?^ between n t h exterior powers. •

Here now is our comparison connecting the algebra of quiver ideals,
which are generated by minors of fixed size in products of generic matrices,
to that of Schubert determinantal ideals, which are generated by minors of
varying sizes in a single generic matrix. We remark that it does not imply
that the generators in Definition 17.3 form a Grobner basis; see the Notes.

Theorem 17.17 Let r be a rank array andv(r) its Zelevinsky permutation.
Under the map k[x] -» k[f]; the image of the Schubert determinantal ideal
Iu(r) equals the quiver ideal Ir. Equivalently, k[f]// r = k[x]/(/u(r) + rtif).

Example 17.18 For a generic 4 x 5 matrix $ i and 5 x 3 matrix $2, let /
be the ideal of 3 x 3 minors in $i$2- Thus I = Ir for the rank array r of the
lacing diagrams on the right side of (17.3). The essential set of v(r) consists
of the two boxes at (9, 8) and (4, 3), so Iv^ is generated by the 7 x 7 minors
in xgxg and the entries of X4X3 (Exercise 17.4). Using the generators of rrif
to set x variables equal to 0 or 1 yields the block 2 x 2 matrix

0 0 0
0 0 0
0 0 0
0 0 0

$ 2

$ 1

1
1

1
1

1

in the northwest 9 x 8 corner. It follows from the Binet-Cauchy formula for
the minors of <l?i$2 as sums of products of minors in $1 and in $2 that the
ideal generated by all of the 7 x 7 minors in the block matrix $ equals / .
Compare the above block matrix with the general version in (17.6). O

Proof of Theorem 17.17. By Lemma 17.13 the essential set £ss(v(r)) con-
sists of boxes (k,£) at the southeast corners of blocks. Therefore by Theo-
rem 15.15, /v(r) is generated by the minors of size 1 + rank(f (r)kxi) m 'X-kxi
for the southeast corners (k, £) of blocks on or below the superantidiagonal,
along with all variables strictly above the block superantidiagonal.

Consider a box (k, £) at the southeast corner of Bi+I.j_i, the intersection
of block column i + 1 and block row j — 1, so that

E +
3

E (17.5)
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by definition of Zelevinsky permutation. We pause to prove the following.

Lemma 17.19 The number rank(f (r)kxt) in (17-5) is Tij +X^m=i+i r m -

Proof. The coefficient on qa/3 in r̂ - + Y^m=i+i r™ is the number of elements
in {r^} U {r*j+i.j+i,..., rj-ij-i} that are weakly northwest of rap in the
rank array r (when the array r is oriented so that its southeast corner
is ron). This number equals the number of elements in { r ^ + i , . . . , rj-i.j}
that are weakly northwest of ra/g, unless rap happens to lie strictly north
and strictly west of r^, in which case we get one fewer. This one fewer is
exactly made up by the sum of entries from q in (17.5). •

Resuming the proof of Theorem 17.17, consider the minors in Iv(j) com-
ing from the northwest kx£ submatrix x^x^ for (k, t) in the southeast cor-
ner of Bi+i,j-\. Taking their images in k[f] has the effect of setting the
appropriate x variables to 0 or 1, and then changing the block superantidi-
agonal x variables into the corresponding f variables. Therefore the minors
in Iy(r) become minors of the matrix in (17.4), if each <fo is replaced by
the generic matrix <&j of f variables. In particular, using Lemma 17.19, the
equations in k[f] from x^x^ are the minors of size l + u + r^ in the generic
(u + Vi) x (u + Ti) block matrix

(17.6)

where u = X^m=i+i rm '1S ^ae s u m °f the ranks of the subantidiagonal
identity blocks. The ideal generated by these minors of size 1 + u + r^ is
preserved under multiplication of (17.6) by any determinant 1 matrix with
entries in Ik[f], by Lemma 17.16. Now multiply (17.6) on the left by

0
0
0
0

0
0
0

1

0
*t+2

1
0
0

1
0
0
0

where $i+i.m = 3>i+i • • • <&m for i + 1 < m. The result agrees with (17.6)
except in its top block row, which has left block (—l)-?'~1~*$j+i • • • <£>j and all
other blocks zero. Crossing out the top block row and the left block column
leaves a block upper-left-triangular matrix that is square of size u, so the size
1 + u + rij minors in (17.6) generate the same ideal in k[f] as the size 1 + r^
minors in <&i+i • • • <&j. This holds for all i < j , completing the proof. •
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Corollary 17.20 The Zelevinsky map takes the quiver locus flr C Mat
isomorphically to the intersection Z(Qr) = Xv^ D Z(Mat) of the matrix
Schubert variety Xv(r) with the affine space Z(Mat) inside of

17.3 Primality and Cohen—Macaulayness

Theorem 17.17 shows how to get the equations for Ir directly from those
for Iv(ry. set the appropriate x variables to 0 or 1. Its proof never needed
that Schubert determinantal ideals are prime or Cohen—Macaulay (Corollar-
ies 16.29 and 16.44). Our next goal is to put these assertions to good use, to
reach the same conclusions for quiver ideals. This involves a more detailed
study of the group theory surrounding the geometry in Corollary 17.20.

Let P be the parabolic subgroup of block lower triangular matrices
in GLd, where the diagonal blocks have sizes ro, • • • ,rn (proceeding from
left to right). The quotient P\GLd of the general linear group GLd by the
parabolic subgroup P is called a partial flag variety. By definition, the
Schubert variety Xv^ is the image of Xv^ D GLd in P\GLd- The Zelevin-
sky image Z(£lT) of the quiver locus maps isomorphically to its image inside
of Xv(ry and this image is often called the opposite Schubert cell in Xv^,
even though Z(Qr) is usually not isomorphic to an afnne space (that is, Or

is not a cell).
Note that the block structure on P is block-column reversed from the

one considered earlier in this chapter. The coordinate ring k[P] is obtained
from the polynomial ring k[p] in the variables from the block lower triangle
by inverting the determinant polynomial. In particular, the square blocks
p 0 0 , . . . , pnn in (17.7) below have inverses filled with regular functions on P.

Lemma 17.21 The multiplication map P x Mat —> P • Z(Mat) that sends
(TT, <p) to the product TrZ(<p) of matrices in Md is an isomorphism of varieties
that takes P x £lr isomorphically to P • Z(ttr) for each rank array r.

Proof. It is enough to treat the case where Qr = Mat. Denote by <£> the
generic matrix obtained from (17.4) after replacing its blocks <pi by <&i, and
let x ^ be the block matrix of coordinate variables on Xv&, at left below.

0
0
0

0
0

0
x1 2

X 2 2

.01

.11

,001

.10

X .21 X .20

X n—l,n

X " X .n.2 X .n l X nO

rnoo
-.10

20

nO

0

n l

0
0
,22

0
0
0

0
0
0

0

" 2

(17.7)

Direct calculation show that P • ZiMat) C XVt. Therefore the morphism
PxMat —> P-Z(Mat) is determined by (and is basically equivalent to—see
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Exercise 17.12) the map (17.7) of algebras k[xv>] —> k[p, f], which sends

x « + i ,_> p ^ ^ + i for i = 0 , . . . , n - 1;
xio ,_, pj0 for j = 0 , . . . , n; and (17.8)
x-72 (->• p J l + p-7 '*"1^ for 1 < i < j < n.

Observe that the inverse of x00 = p 0 0 is regular on P • Z(Mat), so we can
recover <E>i = (xoo)~1x01. Then we can recover the first column p^1 of p
by subtracting (the zeroth column of p) • <&i from (the penultimate column
of xVt). Continuing similarly, we can produce <5 and p as regular functions
on P • Z(Mai) to construct the inverse map k[P xMat] —> k[P-Z(Mat)]. •

Proposition 17.22 Multiplication by P on the left preserves the matrix
Schubert variety Xv^Yy In fact, Xv^ is the closure in Md of P • Z(£lr).

Proof. Definition 17.12.4 and Corollary 15.33 imply that the matrix Schu-
bert variety Xv^ is stable under the action of Sro x • • • x Srn, the block
diagonal permutation matrices whose blocks have sizes ro,. • •, rn acting on
the left. This finite group and the lower-triangular Borel group B together
generate P. Combining this with the stability oi Xv^ under the left action
of B in Theorem 15.31 completes the proof of the first statement.

Theorem 17.17 says that k[f]// r ^ k[x]/(/u(r) +m f ) . But Iv[r) already
contains the variables in rrif above the block antidiagonal, and only dim(P)
many generators of trif remain. Thus the codimension of Z(flr) inside Xr is
at most dim(P). But Xv^ contains P • Z(Qr) by the stability of Xv^ un-
der P, and dim(P-Z(nr)) = dim(Z(^ r)) + dim(P) by Lemma 17.21. Thus
the codimension of Z(Qr) inside Xv^ is at least dim(P). We conclude that
Z(Qr) has codimension exactly dim(P) inside Xv^, so dim(P • Z(Clr)) —
diin(Xv(r)). Since Xv^ is an irreducible variety, it follows that P • Z(Q,T)
is Zariski dense inside Xv^, proving the second statement. •

Theorem 17.23 Given an irreducible rank array v, the quiver ideal Ir

inside k[f] is prime, and the quiver locus Qr is Cohen-Macaulay.

Proof. The matrix Schubert variety Xv^ is Cohen-Macaulay by Corol-
lary 16.44, and P-Z(£}r) is a dense subvariety of Xv^ by Proposition 17.22.
Since being Cohen-Macaulay is a local property [BH98, Definition 2.1.1],
we conclude that P • Z(flr) is Cohen-Macaulay. By Lemma 17.21, the
coordinate ring k[P • Z(Q,r)], which we have just seen is Cohen—Macaulay,
is isomorphic to the localization by det(p) of the polynomial ring k[f2r][p]
over the coordinate ring of O r. This localization is Cohen-Macaulay if and
only if k[£7r][p] is; see Exercise 17.16. As the equations setting the off-
diagonal p variables to 0 and the diagonal p variables to 1 constitute a
regular sequence on k[Qr][p], we conclude by Criterion 2 of Theorem 13.37
and repeated application of Lemma 8.27 that k[f2r] is Cohen-Macaulay.

The variety 17r is irreducible by Lemma 17.21 and Proposition 17.22,
because Xv^ is, so the radical of Ir is prime; but it still remains to prove
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that Ir is itself prime. By Theorem 17.17, we need that the image of rrif
in k[x]/7v(r) is prime. As the homomorphism k[x]//,,(r) —> k[P • Z(Qr)] is
injective by Proposition 17.22, we only need the image of rrif in k[P • 2(Qr)]
to generate a prime ideal. To that end, we identify the ideal generated by
the image of trif in k[P x Or] under the isomorphism with k[P • 2(Or)] in
Lemma 17.21, given by (17.7) and (17.8). The generators of rrif set x-7* = 0
in (17.8) for i < j and xM — 1. By induction on i, the images in k[p, f] of
these equations imply the equations setting p " = 1 and p J l = 0 for i < j .
Hence pM$i_|_i = $i+i modulo rrif, so the image of rrif generates the kernel
of the homomorphism k[P x flT] —*• k[Or] coming from the inclusion Or =
id x fir -̂> P x i ] r . The result follows because k[S7r] is a domain. n

17.4 Quiver polynomials

Having exploited the algebra and geometry of matrix Schubert varieties to
deduce qualitative statements about quiver ideals and loci, we now turn to
more quantitative data, namely multidegrees and K-polynomials. For this,
we (finally) need full details on the indexing of all the variables involved.

Again setting d = rQ + • • • + rn, the coordinate ring k[f] of Mat is graded
by Zd. To describe this grading efficiently, write

Zd = Zr° © • • • © Z r", where Zri = Z • {e^,.. . ej..}.

Thus the basis of Zd splits into a sequence of n + 1 subsets e ° , . . . , en of
sizes ro, . . . ,rn. We declare the variable fap 6 k[f] to have degree

deg(/̂ ) = e^-e^ (17.9)

in "Ld for each i = 1, . . . ,n. Under this multigrading, the quiver ideal Ir

is homogeneous. Indeed, the entries in products $i+i •••<&? of consecutive
matrices are Zrf-graded (check this!), so minors in such products are, too.
When we write multidegrees and i^-polynomials for this Zd-grading, we
similarly split the list t of d variables into a sequence of n + 1 alphabets
t ° , . . . , t n of sizes ro , . . . , rn, so that the i th alphabet is t* = t\,..., t%

r..

Definition 17.24 Under the above Zd-grading on k[f], the multidegree

Qr(t-t) = c(nr;t)

of k[f]// r is the (ordinary) quiver polynomial for the rank array r.

For the moment, the argument t — t of Qr can be regarded as a for-
mal symbol, denoting that n + 1 alphabets t = t ° , . . . , t " are required as
input. Later in this section we shall define 'double quiver polynomials',
with arguments t — s indicating two sequences of alphabets as input. Then,
in Theorem 17.34, the symbol t will take on additional meaning as the
reversed sequence t n , . . . , t° of alphabets constructed from t.
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Example 17.25 The quiver ideal Ir for the rank array determined by the

lacing diagram <[*>^ is a complete intersection of codimension 2. It

is generated by the two entries in the product $i<&2̂
>3 of the generic 2 x 3 ,

3 x 3 , and 3 x 1 matrices. These two entries have degree e° —ef and e^ —ef,
so the multidegree of k[f]// r is Qr(t - t) = (t? - t\){t% - t\). O

Example 17.26 Consider a sequence of 2n vector spaces with dimensions
1, 2,3 . . . ,n—l,n,n,n—1,..., 3,2,1. For a size n + 1 permutation matrix w,
let q^ be the lace array whose entries are zero outside of the southeast nxn
corner, which is filled with Is and Os by rotating wnXn around 180°. Exer-
cise 17.14 explores the combinatorics of the arrays c\w. Quiver polynomials
for the associated rank arrays rw are called Fulton polynomials. O

The algebraic connection from quiver ideals to Schubert determinantal
ideals will allow us to compute quiver polynomials in terms of double Schu-
bert polynomials. For this, the coordinate ring k[x] = k[M^] of the dxd
matrices is multigraded by the group l?d = (Zr° © • • • © Zr™)2, which we
take to have basis {e^, e^ | i = 0 , . . . , n and a = 1 , . . . , rj}; note the dot
over the second el

a. In our context, it is most natural to index the variables

x = (x£l | i, j = 0 , . . . , n and a — 1 , . . . , r, and /? = 1, . . . , rj)

in the generic dxd matrix in a slightly unusual manner: x£g E k[x] occupies
the spot in row a and column (3 within the rectangle at the intersection of
the i block column and the j block row, where we label block columns
starting from the right. Declare the variable x£g to have degree

d e g ( ^ ) = e £ - c $ . (17.10)

To write multidegrees and if-polynomials we use two sets of n + 1 alphabets

t = t ° , . . . , t n and s = s n , . . . , s ° , (17.11)

where tj = t{,..., t{. and sj = s{,..., sj
rj. (17.12)

We rarely see the degree (17.10) directly; more often, we see the polyno-
mial tJ

a — sl
3 = C(k[x]/(x^); t, s), which we call the ordinary weight of xfy.

Ordinary weights are the building blocks for multidegrees because of The-
orem 8.44. (The analogous building block for if-polynomials, namely the
ratio tJ

a/s
l0 = /C(k[x]/(z^/g); t, s), is called the exponential weight of x£3.)

Pictorially, label the rows of the dxd grid with the t variables in the or-
der they are given, from top to bottom, and similarly label the columns
with I = s n , . . . ,s°, from left to right. The ordinary weight of the vari-
able x£% is then its row t-label minus its column s-label.

For notational clarity in examples, it is convenient to use alphabets
t° = a and t1 = b and t2 = c, and so on, rather than upper indices, where

a = a i , O 2 , a 3 , . . . a n d b = b\, &2j bs,... a n d c = ci, 02,03,...
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The quiver polynomial in Example 17.25 is (a\— di)(a2 — d\) in this notation.
For the s alphabets we use s° = a and s1 = b and s2 = c, and so on, where

a = di, 02,03,. . . and b = 61, 62 J3, and c = c i ,c 2 , c 3 , . . .

are the same as a, b, c , . . . but with dots on top. All of the notation above
should be made clearer by the following example.

Example 17.27 If ( r o , r i , r 2 ) = (2,3,1), then k[x] has variables x£p as
they appear in the matrices below (the x variables are the same in both):

J02
x1±

41
41
4\
41

-01 ,,01 _01
Xn X12 X13
_01 _01 -.01
^21 ^22 ^23x\\ x\\ x\\

x\\ xll x%
x\\ 41 41

xll x%

xll xll
xll ̂ 22
x\1 x\%
xll xl%
xll ^
xll

0.2

&l

b2

h
Cl

Cl

41
4t
x1±

41
41
41

bi

41
4\
x n

4\
4\
41

b2

41
4%
41
41
4k
41

b3

41
x°2\
X13

41
*&
41

a\
~,00
x1±

41
41
41
41
41

(22

41
™00
^22
-.10

12

41
41
4°2

The ordinary weight of each x variable equals its row label minus its column
label. For example, the variable £23 has ordinary weight t® — S3 = 02 — 63- O

The coordinate ring k[2(Mat)] — k[x]/tnf of the image of the Zelevinsky
map is not naturally multigraded by all of Z2d, but only by Z,d, with the
variable x£l

3 € k[.Z(Mat)] having ordinary weight Pa — tp. This convention
is consistent with the multigrading on k[f] in (17.9) under the isomor-
phism to k[x]/rrif induced by the Zelevinsky map. Indeed, the x variable
x%~p-%% G k[x]/trif maps to f%

ap G k[f], and their ordinary weights t^"1 — tp
agree. In what follows, we need to consider not only the Zelevinsky image
of Mat, but also the variety of all block upper-left triangular matrices.

Definition 17.28 The opposite big cell is the variety Y inside Ma ob-
tained by setting xJ* = 0 for i < j and xM = 1 for all i. Denote the remain-
ing nonconstant coordinates on Y by y = {yi% \ i > j}, so k[F] = k[y].

Using language at the end of Section 17.3, Y is the opposite cell in the
Schubert subvariety of P\GLd consisting of the whole space. Note that Y
is actually a cell—that is, isomorphic to an affine space. The Zrf-grading
of k[x] descends to the Zd-grading of k[y], which is positive (check this!).

Example 17.29 In the situation of Example 17.27, the coordinate ring
k[y] has only the variables y£% that appear in the matrices below.

yll
yll
y\l
yll
yll

l

y°A
yl\
I

2/12

yll

I

yll
yll

I

I

I

ai

a2

bi

62

63

Cl

Cl

2/11

yll
y\l
yll

•1 9

2/31

1

61

y°A
yl\

1

b2

yll
yll

1

fe3

yll
yll

1

&1 &2

1

1
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In this case, the variable y^l has ordinary weight t% — t\ — <22 — &3- O

Definition 17.30 The double quiver polynomial Qr(t — s) is the ratio

of double Schubert polynomials in the concatenations of the two sequences
of finite alphabets described in (17.11) and (17.12).

The denominator &Vt (t — s) should be regarded as a fudge factor, be-
ing simply the product of all ordinary weights (£* — s*) of variables lying
strictly above the block superantidiagonal. These variables lie in locations
corresponding to * entries in the diagram of every Zelevinsky permutation,
so &Vt obviously divides &v(r) (see Corollary 16.30).

The simple relation between double and ordinary quiver polynomials,
to be presented in Theorem 17.34, justifies the notation Qr(t — t) for the
ordinary case: quiver polynomials are the specializations of double quiver
polynomials obtained by setting s* = V for all i. For this purpose, write

t = t n , . . . , t °

to mean the reverse of the finite list t of alphabets from (17.11). That
way, setting sl = V for all i is simply setting I = t. In the case where
every block has size 1, so P = B is the Borel subgroup of lower-triangular
matrices in GL^, each alphabet in the list t consists of just one variable (as
opposed to there being only one alphabet in the list), so the reversed list t
is really just a globally reversed alphabet in that case.

Our goal is to relate double quiver polynomials to ordinary quiver poly-
nomials. At first, we work with K-polynomials, for which we need a lemma.

Proposition 17.31 Let T. be a I?d-graded free resolution of k[x]//,,(r)
over k[x]. / / my is the ideal of Y in k[x], then the complex J-. ®^[x] My] =

J-./vciyJ-. is a Xd-graded free resolution of k[J?(f2r)] over k[y].

Proof. Note that JF./myJF. is complex of Zd-graded free modules over k[y].
Indeed, coarsening the Z2d-grading on k[x] to the grading by Zrf in which
x£p has ordinary weight Pa — t\ (by setting s\ —tlg) makes the generators
of my homogeneous, because the variables set equal to 1 have degree zero.

The x variables in blocks strictly above the block superantidiagonal
already lie inside Iv(r), so I(Z{VLr)) = Iv(y^ + rrif = Iv(r) + Tny by Theo-
rem 17.17. What we would like is that the generators of my form a regular
sequence on k[x]/Jv(r), because then repeated application of Lemma 8.27
would complete the proof. What we will actually show is almost as good:
we will check that the generators of tny form a regular sequence on the local-
ization of k[x]//„(,.) at every maximal ideal p of k[x] containing /„(,.) +tny .
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This suffices because (i) the complex F./myJ7. is exact if and only if its
localization at every maximal ideal of k[y] is exact [Eis95, Lemma 2.8], and
(ii) if p does not contain Iv^ then (^.)p, and hence also (jF./myjF.)p, is a
free resolution of 0, which is split exact.

For the local regular sequence property, we use [BH98, Theorem 2.1.2]:
if N is a Cohen-Macaulay module over a local ring, and z\,..., zr is any
sequence of elements, then N/{z\,..., zr)N has dimension dim(iV)—r if and
only if zi,..., zr is a regular sequence on N. Noting that my is generated
by dim(Xv(r)) — dim(r2r) elements, we are done by Corollary 16.44. •

If k[x]//(X) is a Z2d-graded coordinate ring of a subvariety X inside
write KM (X; t, s) for its _ff-polynomial. Similarly, write Ky (Z; t) for the K-
polynomial of a Zd-graded quotient k[y]//(Z), if Z C Y. The geometry in
Corollary 17.20 has the following interpretation in terms of X-polynomials.

Corollary 17.32 KY{Z{Q,T);t) =KM(Xv{jy,t,i).

Proof. This is immediate from Proposition 17.31, by Definition 8.32. •

Lemma 17.33 The K-polynomial /CMat(^i-;t) of VLY inside Mat is

Proof. The equality H(nr;t) = /CMat(Or; t)H(Mat; t) of Hilbert series
(which are well-defined by positivity of the grading of k[f] by Zd) follows
from Theorem 8.20. For the same reason, we have

H(Mat;t) = /CY(Z(Mat);t)H(Y;t)

and also H(Qr;t) = /CY(Z(nr);t)H(Y;t).

Thus fCY(Z(Qr);t)H(Y;t) = JCMat(Qr;t)ICY(Z(Mat);t)H(Y;t). D

Theorem 17.34 The ordinary quiver polynomial Q r(t — t) is the s = t
specialization of the double quiver polynomial Qr(t — s). In other words,
the quiver polynomial Q r(t — t) for a rank array r equals the ratio

Qr(t-t) = ^ f 4f4
^(t-t)

of double Schubert polynomials in the two alphabets t and t.

Proof. After clearing denominators in Lemma 17.33, substitute using
Corollary 17.32 to get
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Figure 17.2: Zelevinsky pipe dream

Now substitute 1 — t for every occurrence of each variable t, and take lowest
degree terms to get

Qy (t — t) &Vt (t — t) = <5t,(r)(t — t ) .

The polynomial &v(t — t) is nonzero, being simply the product of the Zd-
graded ordinary weights Pa — tlp of the y variables yip with i > j . Therefore

we may divide through by ©„„ (t — t ) . •

17.5 Pipes to laces

Having a formula for quiver polynomials in terms of Schubert polynomials
produces a formula in terms of pipe dreams, given the simplicity of the
denominator polynomial &Vt. Let us begin unraveling the structure of
pipe dreams for Zelevinsky permutations with an example.

Example 17.35 A typical reduced pipe dream for the Zelevinsky permu-
tation v in Example 17.14 looks like the one in Fig. 17.2, when we leave the
*'s as they are in the diagram D(v(r)). Although each * represents a -|-
in every pipe dream for v(r), the *'s will be just as irrelevant here as they
were for the diagram of v(r). The left pipe dream in Fig. 17.2 is labeled on
the side and top with the row and column variables for ordinary weights. O

Given a set D of -|- entries in the square dxd grid, let (t — s)D be its
monomial, defined as the product over all -|- entries in D of (i_|_ — s+),
where t+ sits at the left end of the row containing -|-, and s+ sits atop the
column containing -|-.

Theorem 17.36 The double quiver polynomial for ranks r equals the sum

Qr(t-s) =
D€iZV(v(r))
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of the monomials for the complement of D(v*
for the Zelevinsky permutation v(r).

in all reduced pipe dreams

Proof. This follows from Definition 17.30 and Corollary 16.30, using the
fact that every pipe dream D E lZV(v(r)) contains the subdiagram D(v*),
and that 1ZV{v*) consists of the single pipe dream D{v*). D

Double quiver polynomials Q r(t — s) are thus sums of all monomials for
"skew reduced pipe dreams" D\D(v*) with D £ 1ZV{V{Y)). That is why we
only care about crosses in D occupying the block antidiagonal and superan-
tidiagonal. The monomial (t — s)-Dx--D(^*) for the pipe dream in Fig. 17.2 is

a - - d2)

ignoring all * entries as required. Removing the dots yields this pipe
dream's contribution to the ordinary quiver polynomial.

Recall that we started in Section 17.1 analyzing quiver representations
by decomposing them as direct sums of laces, as in Example 17.1. Although
we have by now taken a long detour, here we come back again to some
concrete combinatorics: pipe dreams for Zelevinsky permutations give rise
to lacing diagrams.

Definition 17.37 The j t h antidiagonal block is the block of size rjXrj
along the main antidiagonal in the j t h block row. Given a reduced pipe
dream D for the Zelevinsky permutation v(r), define the partial permuta-
tion Wj = Wj (D) sending k to £ if the pipe entering the kth column from the
right of the (j — l) s t antidiagonal block enters the j t h antidiagonal block in
its ^th column from the right. Set w(D) = (wi,... ,wn), so that w(D) is
the lacing diagram determined by D.

Example 17.38 The partial permutations arising from the pipe dream in
Example 17.35 come from the following partial reduced pipe dreams:

2 l

These send each number along the top either to the number along the
bottom connected to it by a pipe (if such a pipe exists), or to nowhere. It is
easy to see the pictorial lacing diagram w(Z?) from these pictures. Indeed,
removing all segments of all pipes not contributing to one of the partial
permutations leaves some pipes
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8
9
4
5
11
1
2
6
12
3
7
10

that can be interpreted directly as the desired lacing diagram

by shearing to make the rightmost dots in each row line up vertically, and
then reflecting through the diagonal line \ of slope —1. O

Proposition 17.39 Every reduced pipe dream D € TZV(v(v)) gives rise to
a lacing diagram w(D) representing a partial permutation list with ranks r.

Proof. Each x entry in the permutation matrix for v(r) corresponds to a
pipe in D entering due north of it and exiting due west of it. The permu-
tation v(r) was specifically constructed to have exactly qij entries x (for
i < j) m the intersection of the i t h block row and the j t h block column
from the right, where q is the lace array from Lemma 17.5. •

The fact that lacing diagrams popped out of pipe dreams for Zelevinsky
permutations suggests that lacing diagrams control the combinatorics of
quiver polynomials as deeply as they controlled the algebra in Section 17.1.
This turns out to be true: there is a different, more intrinsic combinatorial
formula for quiver polynomials in terms of Schubert polynomials. To state
it, define the length of a lacing diagram w = (wi,..., wn) to be the sum
Z(w) — l(w\) + • • • + l(wn) of the lengths of its constituent partial permuta-
tions. For an irreducible rank array r, we are interested in the set VF(r) of
minimal lacing diagrams for r, that is, with minimal length. For instance,
with r as in Examples 17.1, 17.7, 17.14, 17.35, and 17.38, the set W{v) is:

• • Y * •
- ./v -

Theorem 17.40 The quiver polynomial Qr(t — t) equals the sum

gr(t-t) = y @tul(t°-ti)6W2(ti-t2)---6Wn(tn-i-tn)

of products of double Schubert polynomials indexed by minimum length lac-
ing diagrams w = (w\,..., wn) with rank array r.
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This statement was discovered by Knutson, Miller, and Shimozono, who

at first proved only that the expansion on the right hand side has positive

coefficients. After publicizing their weaker statement and conjecturing the

precise statement above, independent (and quite different) proofs of the con-

jecture were given by the conjecturers [KMS04] and by Rimanyi [BFR03].

For information on the motivation, consequences, and variations that have

appeared and could in the future appear, see the Notes.

Exercises

17.1 Given the rank array r = with n = 2, compute the lace array q

2 2 0 2
and rectangle array R. Find all the minimal lacing diagrams with rank array r.

17.2 Prove Lemma 17.5, Lemma 17.8, and Lemma 17.13.

17.3 What conditions on a dimension vector (ro, ri , ri, r$) and a rank p guarantee
that the minors of size p+1 in the product $i$2cS>3 generate a prime ideal, where
$i is a generic matrix of size rt-i x n?

17.4 For the general data in Example 17.11 (and the particular case in (17.3) and
Example 17.18), show that the Zelevinsky permutation has essential set of size 2.
Use the Binet—Cauchy formula to prove Theorem 17.17 directly in this case.

17.5 Work out the lace array q, rank array r, rectangle diagram R, and Zelevin-
sky permutation v(r) for the data in Example 17.25. Check the degree calcula-
tions there. Find all six minimal lacing diagrams sharing the rank array r. Verify
the pipe dream and lacing diagram formulas in Theorems 17.36 and 17.40 for r.

17.6 Set d = ro + • • • +rn as usual, and fix an irreducible rank array r. Consider
the set Sd(r) of permutations in Sd whose permutation matrices have the same
number of nonzero entries as v(r) does in every r? x n block. Prove that v = v(r)
if and only if v £ Sd and every other permutation v' £ Sd satisfies l{v') > l(v).

17.7 Interpret (17.2) as a statement about the rectangles in the rectangle array R.

17.8 A variety of complexes is a quiver locus f2r such that for all <f> £ r2r,
4>i-\4>i = 0 for i = 2 , . . . , n. Which varieties of complexes k r° —••••—»• k r" are
irreducible as varieties? What is the multidegree of a variety of complexes?

17.9 Pick a random quiver representation <f> with dimension vector (2,3,3,1),
and compute an isomorphism <f> = w with a lacing diagram w. Could you have
predicted the lace array q and the rank array r of w? What is £ss(v(r))7

17.10 Calculate the dimension of flT in terms of the rectangle array R of r.

17.11 Suppose that r is a rank array that is not irreducible. Must it always be
the case that Qr has more than one component? Can QT be nonreduced?

17.12 Let P be the closure of P in Md. Verify that (17.7) and (17.8) correspond to
a morphism PxMat —• XVf that happens to take the subset PxMat to the subset
P-Z(Mat) C ~XV, • Use Proposition 17.22 to show that (17.7) and (17.8) define the
only algebra map kfx,,,] —>• k[p, f] inducing the morphism P xMat —> P• Z(Mat).
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17.13 Let 1 + r be obtained by adding 1 to every entry of a rank array r. Com-
pare the lace arrays of r and 1 + r. What is the difference between the Zelevinsky
permutations v(r) and v(l + r)? How about the rectangle arrays of r and 1 + r?

17.14 Let w be a permutation matrix of size n+1, and consider the rank array rw

in Example 17.26.

(a) Prove that the Zelevinsky permutation v(rw) has as many diagonal X entries
as will fit in each superantidiagonal block.

(b) Show that every rectangle in the rectangle array R has size l x l , and explain
how R can be naturally identified with the diagram D(w).

(c) If r = rw, then the ordinary quiver polynomial Qr takes In alphabets for
its argument. Suppose that the first n of these alphabets are specialized
to {ii}, {ti, £2}, • • •, {ti,..., tn}, and that the last n of these alphabets are
specialized to {s i , . . . , s n } , . . . , {si, S2}, {si}. Prove that Qr evaluates at
these alphabets to the double Schubert polynomial &w(t — s).

17.15 Give a direct proof of Lemma 17.16, without using exterior powers.

17.16 Let y be a set of variables, and fix a k-algebra R. Using any definition
of Cohen-Macaulay that suits this generality, prove that for every polynomial
/ G k[y], the ring R[y] [f~1] is Cohen-Macaulay if and if R[y] is Cohen-Macaulay.

17.17 Prove that the minimum length for a lacing diagram with rank array r is
the length l(v(r)) of its Zelevinsky permutation. Hint: Given a minimal lacing
diagram w, exhibit a reduced pipe dream D for v(r) such that w(D) — w.

17.18 Show by example that Theorem 17.40 fails for double quiver polynomials,
when all t alphabets with minus signs are replaced by corresponding s alphabets.

Notes

The use of laces to denote indecomposable quiver representations as in Defini-
tion 17.2 is due to Abeasis and Del Fra [AD80], who identified unordered sets
of laces (called strands there) as giving rank conditions. The refinement of this
notion to include the partial permutations between columns in a lacing diagram is
due to Knutson, Miller, and Shimozono [KMS04], who needed it for the statement
of Theorem 17.40. Quiver ideals, quiver loci, (indecomposable) quiver represen-
tations, and Proposition 17.9 are part of a much larger theory of representations
of finite type quivers; see below. The rectangle arrays in Definition 17.6 were
invented by Buch and Fulton [BF99].

The Zelevinsky map originated in Zelevinsky's two-page paper [Zel85], where
he proved the set-theoretic (as opposed to the scheme-theoretic) version of Corol-
lary 17.20. Zelevinsky's original big block matrix, being essentially the inverse
matrix of (17.4), visibly contained all of the consecutive products <&j+i • • • <&j
for i < j . Theorem 17.17 and the concept of Zelevinsky permutation appeared
in [KMS04], from which much of Section 17.2 has been lifted with few changes.
The primality in Theorem 17.23 is due to Lakshmibai and Magyar [LM98], as
is the Cohen-Macaulayness of quiver loci over fields of arbitrary characteristic,
although earlier, Abeasis, Del Fra, and Kraft had proved (without primality) that
the underlying reduced variety is Cohen—Macaulay in characteristic zero [ADK81].
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Quiver polynomials were defined by Buch and Fulton [BF99]. Double quiver
polynomials as ratios of Schubert polynomials, as well as the subsequent ratio
and pipe dream formulas for ordinary quiver polynomials in Theorem 17.34 and
Theorem 17.36, were discovered by Knutson, Miller, and Shimozono [KMS04].
That paper also contains the combinatorial connections between lacing diagrams
and reduced pipe dreams for Zelevinsky permutations in Proposition 17.39. At-
tributions for Theorem 17.40 appear in the text, after its statement.

In contrast to the situation for minors in Chapters 15—16, it is not known
whether there is a term order under which the generators of IT in Definition 17.3
form a Grobner basis. Although the degeneration to pipe dreams at the level
of Schubert determinantal ideals, which results in Theorem 17.36, descends to a
degeneration of the Zelevinsky image Z(flr), this degeneration fails to be Grobner.
Indeed, some of the variables are set equal to 1, so the resulting flat family of
ideals in k[x] is not obtained by scaling the variables. On the other hand, there
is still a partial Grobner degeneration [KMS04, Section 4 and Theorem 6.16]; the
components in its special fiber are indexed by lacing diagrams, so it gives rise to
the positive formula in Theorem 17.40 in the manner of Corollary 16.1.

We have drawn Exercise 17.6 from [Yon03]. Exercise 17.16 was used in the
proof of Theorem 17.23; it follows from [BH98, Theorems 2.1.3 and 2.1.9]. What
we have called Fulton polynomials in Example 17.26 and Exercise 17.14 were orig-
inally called universal Schubert polynomials by Fulton because they specialize to
quantum and double Schubert polynomials [Ful99]. Treatments of combinato-
rial aspects of Fulton polynomials and their if-theoretic analogues appear in
[BKTY04a, BKTY04b].

The topics in this chapter have historically developed in the contexts of alge-
braic geometry and representation theory. On the algebraic geometry side, the
direct motivation comes from [BF99] and its predecessors, which deal with degen-
eracy loci for vector bundle morphisms; see [FP98, ManOl] for background on the
long history of this perspective. In particular, the three formulas for Qr in this
chapter (Theorems 17.34, 17.36, and 17.40) were originally aimed at a solution
in [KMS04] of the main conjecture in [BF99], which is a positive combinatorial
formula for Qr as a sum of products of double Schur functions. Further topics in
this active area of research include new proofs of Theorem 17.40 or steps along
the way [BFR03, Yon03], relations between quiver polynomials and symmetric
functions [BucOl, BSY03], and X-theoretic versions [BucO2, BucO3, MilO3b].

The representation theory motivation comes from general quivers. The term
quiver is a synonym for directed graph. In our equioriented type A case, the
quiver is a directed path. The definition of quiver representation makes sense for
arbitrary quivers (attach a vector space to each vertex and a matrix of variables
to each directed edge), and the notion of quiver locus can be extended, as well
(to orbit closures for the general linear group that acts by changing bases); see
[ARS97] or [GR97] for background. The extent to which we understand the
multidegrees of quiver loci for orientations of Dynkin diagrams of type A, D, or E
comes from the topological perspective of Feher and Rimanyi [FR02], but as yet
there are no known analogues of the positivity in Theorem 17.40 for other types.
This open problem is only a sample of the many relations of quiver representations
with combinatorial commutative algebra. Other connections include the work of
Bobinski and Zwara on normality and rational singularities [BZ02], and Derksen
and Weyman on semi-invariants [DW00].
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