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Preface

In the course, I give a short introduction to some basic notions of singularity
theory, in particular to hypersurface singularities. Singularity theory, mainly
developed by John Milnor and Vladimir I. Arnold in the sixties and seventies,
is a wonderful example where topology and algebra had substantial impact
on each other. For example, the Milnor number, which is the number of
vanishing cycles in the nearby smooth fibre of a hypersurface singularity, can
be described algebraically as the dimension of some Artinian algebra. Indeed,
the surprising interplay between geometry on the one side and algebra on the
other side is one of the reasons why singularity has developed so rapidly and
still is a very active area of research.

In my course I follow roughly the notes, aiming at the classification of the
so-called simple or ADE singularities.

As the notes are an extract (Sections [.2.1,1.2.3 and I.2.4) of a forthcoming
book of C. Lossen, E. Shustin and myself (see the end of these notes for a
table of contents), they are naturally quite detailed and contain full proofs.
Although the proofs sometimes refer to previous chapters, I hope that they
are sufficiently self-contained, and that the notes are useful as a short tour
into some of the most basic but also most exciting pieces of singularity theory.

I should like to thank the organizers of the ”School on Commutative
Algebra and Interactions with Algebraic Geometry and Combinatorics” in
particular Guiseppe Valla and Ngo Viet Trung for creating an interesting
and stimulating school, Christoph Lossen for preparing the notes, and the
ICTP for its hospitality.

Gert-Martin Greuel



I. Singularity Theory

2 Hypersurface Singularities

This section is devoted to the study of isolated hypersurface singularities.
We introduce basic invariants like the Milnor and Tjurina number and show
that they behave semicontinuously under deformations. This will be the first
important application of the finite coherence theorem proved in Section 1.

When dealing with hypersurface singularities given by a convergent power
series f, f(0) = 0, one can either consider the (germ of the) function f or, al-
ternatively, the zero set of f, that is, the complex space germ V(f) = f=1(0)
at 0. With respect to these different points of view we have different equiva-
lence relations, different notions of deformation, etc. For example, we have two
equivalence relations for hypersurface singularities: right equivalence (refer-
ring to functions) and contact equivalence (referring to zero sets of functions).
Although we are mainly interested in contact equivalence we treat both cases
in parallel. In most cases statements about right equivalence turn out to be
a special case of statements about contact equivalence.

We prove a finite determinacy theorem for isolated hypersurface singular-
ities under right, as well as under contact, equivalence. Using finite determi-
nacy and properties of invariants we give a complete proof of the classification
of the so-called simple or ADE-singularities, which turns out to be the same
for right, as well as for contact, equivalence.

2.1 Invariants of Hypersurface Singularities

We study the Milnor and Tjurina number and its behaviour under deforma-
tions.

Definition 2.1. Let f € C{x} = C{z1,...,z,} be a convergent power se-
ries.

(1) The ideal
oy = (9F Of
i) = <8x1""’8xn>cc{m}

is called the Jacobian ideal, or the Milnor ideal of f, and



4 I. Singularity Theory

of of

(il = <f>a—$1""’%><c{a:}

is called the Tjurina ideal of f.
(2) The analytic algebras

My =Cla}/j(f),  Tp=Ca}/(F3()

are called the Milnor and Tjurina algebra of f, respectively.
(3) The numbers

,u,(f) = diHl(C Mf y T(f) = dim@ Tf
are called the Milnor and Tjurina number of f, respectively.

The Milnor and the Tjurina algebra and, in particular, their dimensions play
an important role in the study of isolated hypersurface singularities.

Let us consider some examples.
Example 2.1.1. (1) f=z1(z3+23) + 23+ ...+ 22, n > 2, is called an FEr-
singularity. Since

j(f) = <3IL’%+$§,Q}1QZ%,$3, cee a$n>

we see that 23,23 € j(f), in particular, f € j(f).
As Clz1,. .., an}/j(f) = Clz1, 22}/ (323 + 23, 2123) we can draw the
monomial diagram of j{f) in the 2-plane.

HE)

5)

3 X1

The monomials belonging to the shaded region are contained in j(f) and it
is easy to see that none of the monomials below the shaded region belongs to
§(f). The only relations between these monomials are 327 = —3 mod j(f)
and, hence, 323x2 = —23 mod j(f). It follows that 1, z1, 22, 22, 2172, 2322, 23
is a C-basis of both My and Ty and, thus, u(f) =7(f) =7.

(2) f = 25+ y>+ 2%9y? has j(f) = (haz*+ 2292, 5y*+ 22%y). We can compute
a C-basis of Ty as 1, z,... cxt zy,y, ..., y* and a C-basis of My, which has
an additional monomial y°. Hence, 10 = 7(f) < u(f) = 11.

Such computations are quite tedious by hand, but can easily be done with a
computer by using a computer algebra system which allows calculations in
local rings. Here is the SINGULAR code:
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ring r=0, (x,y),ds; // a ring with a local ordering
poly f=xb+yb+x2y2;

ideal j=jacob(f);

vdim(std(j)); // the Milnor number

// > 11

ideal fj=f,j;

vdim(std(£j)); // the Tjurina number

// => 10

kbase(std(£3));

// > _[11=y4 _[21=y3 _[3]1=y2 _[41=xy _[5l=y
// —> _[6]=x4 _[71=x3 _[8]=x2 _[9]=x _[10]=1

Moreover, if f satisfies a certain non-degeneracy (NND) property then there
is a much more handy way to compute the Milnor number. Indeed, it can be
read from the Newton diagram of f (see Proposition 2.17 below).

Critical and Singular Points. Let U C C” be an open subset, f: U — C
a holomorphic function and z € U. We set

i(f) = <§—i§—i> LOU) ¢ OU)

and define

My o= Ocne/7(f)Ocny Tr o= Ocna/{f, j([))Ocn s

to be the Milnor and Tjurina algebra of f at x. Furthermore, we introduce

pu(f,z) = dimg My, , 7(f,z) :=dimc Tt 5,

and call these numbers the Milnor and Tjurma number of f at x.

It is clear that u(f,z) # 0if and only if 5 f ( ) =0foralli,and 7(f,z) # 0
if and only if additionally f(x) = 0. Hence We see that p counts the singular
points of the function f, while 7 counts the singular points of the zero set of
f, each with multiplicity u(f, z), respectively 7(f, z). The following definition
takes care of this difference:

Definition 2.2. Let U C C™ be open, f:U — C a holomorphic function,
and X = V(f) = f71(0) the hypersurface defined by f in U. We call

o of of
Crit(f) := Sing(f) := {:I: cU 3:1:1( x)=... axn( x) = O}
the set of critical, or singular, points of f and
S of _ of
Slng(X).—{l’EU‘f() 8$1()—...—amn() O}

the set of singular points of X.
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A point x € U is called an isolated critical point of f, if there exists a
neighbourhood V' of  such that Crit(f) NV \ {z} = 0. It is called an isolated
singularity of X if x € X and Sing(X) NV \ {z} = 0. Then we say also that
the germ (X, z) C (C™ z) is an isolated hypersurface singularity.

Note that the latter definition is a special case of Definition 1.33.

Lemma 2.3. Let f: U — C be holomorphic and x € U, then the following
are equivalent.

(i) x is an isolated critical point of f,

(i) p(f,z) < oo,
(iii) x is an isolated singularity of f~1(f(x)) = V(f — f(z)),
(i) 7(f = f(x),2) < oo.

Proof. (i), respectively (iii) say that z is an isolated point of the fibre over 0
(if it is contained in the fibre) of the morphisms

of of \ . n oy, 28 OF N, nil
<ax1,...,a$n>.U—>C, (f f(m),axl,...,amn U (G

respectively. Hence, the equivalence of (i) and (ii), respectively of (iii) and
(iv), is a consequence of the Hilbert-Riickert Nullstellensatz.

Since pu(f,x) <7(f— f(z),z), the implication (ii) = (iv) is evident. Fi-
nally, (iii) = (i) follows from the following lemma, which holds also for non-
isolated singularities. O

Lemma 2.4. LetU C C" be open, f : U — C a holomorphic function, x € U
and f(x) = 0. Then there is a neighbourhood V of x in U such that

Crit(f) NV c £710).
In other words, the nearby fibres f~1(t) NV, t sufficiently small, are smooth.

Proof. Consider C' = Crit(f) with its reduced structure. As a reduced com-
plex space, the regular points of €', Reg(C'), are open and dense in C'. Since
g—gﬁ vanishes on C for i = 1,...,n, f is locally constant on the complex man-
ifold Reg(C'). A sufficiently small neighbourhood V' of z intersects only the
connected components of Reg(C') having x in its closure. If x ¢ C the result

is trivial. If z € C then f|yvneo =0, since f is continuous and f(z) =0. D

Hence, it cannot happen that the critical set of f (the dashed line) meets
f71(0) as in the following picture.
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Crit(f)

Semicontinuity of Milnor and Tjurina number. In the sequel we study
the behaviour of p and 7 under deformations. Loosely speaking, a deforma-
tion of a power series f € C{x}, usually called an unfolding, is given by a
power series F' ¢ C{x,t} such that, setting Fy(x) = F(x,t), Fy = f, while a
deformation of the hypersurface germ f~1(0) is given by any power series
F ¢ C{ax,t} satisfying F; *(0) = f~1(0). So far, unfoldings and deformations
are both given by a power series F, the difference appears later when we
consider isomorphism classes of deformations. However, for the moment we
only consider the power series F.

Definition 2.5. A power series F € C{z,t} = C{x1,...,2n,t1,... 5} is
called an unfolding of f € C{x1,...,z,} if F(x,0) = f(x). We use the nota-
tion

Fi(x) = F(e,t), tel,

for the family of power series Fy € C{x} or, after choosing a representative
F:UxT — C, for the family Fy: U — C of holomorphic functions parame-
trized by ¢t € T, where U C C" and T C C* are open neighbourhoods of 0.

Theorem 2.6 (Semicontinuity of ;4 and 7).

Let F e Cl{a,t} =C{z1,...,2n,t1,...,tk} be an unfolding of f € C{zx},
f(0) =0, and assume that 0 is an isolated critical point of f. Then there are
neighbourhoods U = U(0) C C*, V =V (0) C C, T = T(0) C C*, such that F
converges on U x T and, setting Fy: U —V, x — Fy(x) = F(x,t), the fol-
lowing holds for each t € T:

(1) 0 €U is the only critical point of f = Fy: U — V, and Fy has only iso-
lated critical points in U.
(2) For eachy cV,

p(£.00> Y p(Fe) and
x€Sing(F, "(y))

T(f,O) Z T(Ft_yvm)'
z€Sing(Fy ' (y))
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Ficure 2.1. Deformation of an isolated hypersurface singularity

(3) Furthermore,
p(£,0)= Y u(F,a).

Proof. (1) Choose U such that 0 is the only critical point of Fy and consider
the map

OF, OF,
$:UxT —>C'xT, (x,t)— (0—£(m),...,a—%i(x),t>.
Then & 1(0,0) = Crit(Fp) x {0} = (0,0) by the choice of U. Hence, by
the local finiteness theorem, & is a finite morphism if we choose U,T to
be sufficiently small. This implies that ¢ has finite fibres, in particular,
Crit(Fy) x {t} = #71(0,¢) is finite.

(2) The first inequality follows from (3). For the second consider the map

U:UXxT —VxC'xT, (xt)— (Ft(x),%(w),...,%(x),t).
1 n

Then ¥1(0,0,0) = Sing(f; 1 (0)) x {0} and, again by the local finiteness the-
orem, Sing (Ft_l(y)) x {t} =w~1(y,0,¢) is finite for U, V, T sufficiently small
and y € V, t € T. Moreover, the direct image sheaf ¥,Opxr is coherent on
V x C™x T'. The semicontinuity of fibre functions for finite maps implies that
the function
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I/(g,t) =V (W*OUXTa (y,ovt))

= Z dime Oy, (a.8) /M (y.0,6) OUx T (x.t)
(,t)e? 1 (y,0,)

is upper semicontinuous. Since

OF; OF;
Ovuxt,(@t)/M(y,0,6 OUxT,(z,t) = OU,:C/ <Ft_ Y, o t>

"0z Oz,

we have v(0,0) = 7(f,0) and v(y,t) = ZweSing(F;l(y)) 7(F¢, x), and the re-
sult follows.

(3) We consider again the morphism @ and have to show that the function
. OF, oF;
v(t) == v(@O0uxr, (0,8) = > dimg OU@/ <a—t, o —t>
X T &cn
xzeCrit(Fy)

is locally constant on 7". Thus, by Theorems 1.75 and 1.76 we have to show
that @ is flat at (0,0).

Since Opxr,(0,0) = C{@1,...,Tn,t1,..., 1} is a regular local ring, and
since the n 4 k£ component functlons gFj, . 8Ft ,t1, ..., define a 0-dimen-
sional, hence (n+ k)-codimensional germ, the “flatness follows from the fol-
lowing proposition. O

Proposition 2.7. (1) Let f = (f1,..., fx): (X,z) — (C¥0) be a holomor-
phic map germ and M a finitely generated Ox 5-module. Then M 1is
f-flat if and only if the sequence fi,..., [r is an M -regular sequence®.
In particular, f is flat if and only if f1,..., fr is a regular sequence.

(2) If (X,x) is the germ of an n-dimensional compler manifold, then

Ji- s Jr is Ox p-regular if and only if dim(f~1(0),z) =n — k.

Example 2.7.1. (1) C 0n51der the unfolding Fy(z,y) = 2% — y*(t+y) of the
cusp smgularlty f(z,y) = 2% — y*. We compute Crit(F;) = {(0,0),(0,—3¢)}
and Sing(F;1(0)) = {(0, O)} Moreover, u(f) = 7(f) = 2, while for ¢ # 0 we
have u(F, (0 0)) = 7(F, (0,0)) = 1 and p(Fy, (0, —31)) = 1.

(2) For the unfolding Fy(x,y) = °+ y°+ tz?y* we compute the critical locus
to be Crit(Fy) = V(52* + 2tay?, 5y* + 2tz?y). The only critical point of Fy is
the origin 0 = (0,0), and we have u(Fp,0) = 7(Fp,0) = 16. Using SINGULAR
we compute that, for ¢ # 0, F; has a critical point at 0 with p(F,0) = 11,
7(F¢,0) = 10, and five further critical points with g = 7 = 1 each. This shows
that p(Fo,0) = X pecrigp,) #(Fr, @) for each t as stated in Theorem 2.6.

! Recall that fi,..., fx is an M-regular sequence or M -regular if and only if f, is
a non-zerodivisor of M and f; is a non-zerodivisor of M/(fiM + ...+ fi-1 M)
fori=1,...,k.
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Vi V(Fy)

2
-2¢

Figure 2.2. Deformation of a cusp singularity

But 7(Fp,0) =16 > 15 =3 ccyio(r, T(Ft — Fu(@), ), that is, even the
“total” Tjurina number is not constant.

(3) The local, respectively total, Milnor number can be computed in SINGU-
LAR by the same formulas but with a different choice of monomial ordering:

ring r=0,(x,y),ds; // local ordering

poly f=x5+y5;

ideal i=f,jacob(f);

vdim(std(i)); // local Tjurina number (at 0)
// -> 186

ring R=0, (x,y),dp; // global ordering

poly F=xb+yb+x2y2;

ideal i=F,jacob(F);

vdim(std(i)); // total (affine) Tjurina number
// > 10

If the first inequality in Theorem 2.6 (2) happens to be an equality (for some
y = y(t), y(0) = 0) then the fibre F, () contains only one singular point:

Theorem 2.8. Let F' € Cla,t} = C{zy,..., 20, t1,..., 1} be an unfolding
of f e (x)? C C{x}. Moreover, let T CCF, UCC" and V C C be open
neighbourhoods of the origin, and let Fy: U — V, x — Fy(x) = F(x,t). If 0
is the only singularity of the special fibre Fofl(O) = fY0) and, for allt €T,

Z M(Ftaw) = /L(f,O)

xESing(F, 1(0))

then all fibres F71(0), t € T, have a unique singular point (with Milnor num-
ber u(£,0)).

This was proven independently by Lazzeri [Lazl] and Gabrielov [Gabl].

Right and Contact Equivalence. Now let us consider the behaviour of u
and 7 under coordinate transformation and multiplication with units.

Definition 2.9. Let f,g € C{x1,...,2,}.

(1) f is called right equivalent to g, f ~ g, if there exists an automorphism
¢ of C{x} such that ¢(f) =g.
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f is called contact equivalent to g, f ~ g, if there exists an automorphism
¢ of C{x} and a unit v € C{x}* such that f = u - ¢(g)

If f,g€ Ocn, then we sometimes also write (f,z)~(g,), respectively

(f.z) ~(g,z).

Remark 2.9.1. (1) Of course, f ~ ¢ implies f ~ g. The converse, however, is

(2)

not true (cf. Exercise 2.10, below).

Any ¢ € Aut C{x} determines a biholomorphic local coordinate change
b= (Dq,....P,): (C"0) — (C"0) by &; = ¢(x;), and, vice versa, any
isomorphism of germs @ determines ¢ € Aut C{x} by the same formula.
We have ¢(g) = g o @ and, hence,

frg &= f=god

for some biholomorphic map germ @: (C", 0) — (C" 0), that is, the di-
agram

(C™0) (C™0)

IR | &

S s
(C,0)

commutes. The notion of right equivalence results from the fact that,
on the level of space germs, the group of local coordinate changes acts
from the right.

Since f and ¢ generate the same ideal in C{x} if and only if there is
a unit u € C{x}* such that f =u-g we see that f~g < (f) = {¢(g))
for some ¢ € Aut C{x}. Moreover, since any isomorphism of analytic
algebras lifts to the power series ring by Lemma 1.12, we get

frg = C{x}/{f) = C{x}/{g) as analytic C-algebras.

Equivalently, f ~ g if and only if the complex space germs (f~1(0),0)
and (g~1(0),0) are isomorphic.

Hence, f ~ g if and only if f and ¢ define, up to a change of coordinates in

(cn,

0), the same map germs (C" 0) — (C,0), while f ~ g if and only if f and

g have, up to coordinate change, the same zero-fibre.

Exercise 2.10. Consider the unfolding

1 1 1
filx,y,2) = aP +y + 27 +tayz, p gyt

Show that for all t,#' # 0, fi ~ fu but fi = fu.

Lemma 2.11. Let f,g € Cl{zy,...,x,}. Then
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(i) f~g implies that M; = M, and Ty =T, as analytic algebras. In par-
ticular, p(f) = pu(g) and 7(f) = 7(g)-
(ii) f~ g implies that Ty = T, and hence T(f) = 7(g).

Proof. (1) If g =(f) = f o @, then

where D® is the Jacobian matrix of @, which is invertible in a neighbourhood

of . Tt follows that j(o(f)) = w(i(f)) and ((f),i{e(f))) = €({f,3(/))),

which proves the claim.

(ii) By the product rule we have (u- f,j(u- f)) = (f,j(f)), which together
with (i) implies Ty = T},. O

In characteristic 0 it is even true that f~ ¢ implies u(f) = u(g), but this is
more difficult (for an analytic proof showing that

p(f) = dimg Q1 /d2% 7, ifn > 2,

which holds for complete intersections, cf. [Gre|). Even more, u(f) is a topo-
logical invariant of (f=1(0),0) (cf. [Mil] in general, respectively Section 3.4
for curves).

Example 2.11.1. (1) Consider the unfolding Fy(z,y) = 2+ y*(t+y) with
Crit(F;) = {(0,0), (0, —t)}. The coordinate change ¢;: z — z, y — yE+y,
(t #0), satisfies (2% + y?) = 22+ 2 (t+y) = Fi(z,y).

Hence, (F},0)~(x?+y2,0) for t # 0. Thus, we have 7(z%+ 33,0) = 2,
but for ¢ # 0 we have 7(F},0) =1, 7(F, (0,—3t)) = 1. Hence (¥;,0) and

(Fy, (0,—2t)) are not contact equivalent to (f,0).

(2) Consider the unfolding Fy(z,y) = 2%+ y* + txy = x(x +ty) + y*. The co-
ordinate change ¢: x — & — 3ty, y— y satisfies o(F}) = 22+ y*(1 — 1t7),
which is right equivalent to x2+ 32 for ¢ # +2. In particular, (F;,0) ~(F,0)
for all sufficiently small ¢ # 0.

(3) The Milnor number is not an invariant of the contact class in positive
characteristic: f = 2P+ yPT1 has u(f) = oo, but u((1+2)f) < cc in K[z, y]]
where K is a field of characteristic p.

Quasihomogeneous singularities. The class of those isolated hypersur-
face singularities, for which the Milnor and Tjurina number coincide, at-
tains a particular importance. Of course, an isolated hypersurface singularity
(X,x) C (C"x) belongs to this class if and only if f € j(f) for any (hence,
by the chain rule, all) local equation(s) f ¢ C{x} = C{x1,...,2,}. In the
following, we give an alternative description of this class:
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Definition 2.12. f =3} _yn @ax® € Clz1...,1,] is called weighted homo-
geneous or quasthomogeneous (QH) of type (w;d) = (w1,...,wy;d) if w;,d
are positive integers satisfying

w-deg(x®) := (w,a) = wiaq + ...+ wpay, =d

for each o € N™ with aq # 0. The numbers w; are called the weights and d
the weighted degree or the w-degree of f.

Note that this property is not invariant under coordinate changes (if the w;
are not all the same then it is not even invariant under linear coordinate
changes).

In the above Example 2.1.1(1), f is QH of type (6,4,9;18), while in
Example 2.1.1 (2), f is not QH, not even after a change of coordinates.

Remark 2.12.1. A quasihomogeneous polynomial f of type (w;d) obviously
satisfies the relations?

-y of
d.fizzlwzxZa—% in Clx],

f¥r .ty =t (2, ..., 2,)  in Clx,t.

The first relation implies that f is contained in j(f), hence, u(f) = 7(f).

The second relation implies that the hypersurface V(f) C C™ is invariant
under the C*-action C*x C" — C", (A\,xz) — Aoz = (A¥zq,..., A% 2,). In
particular, the complex hypersurface V(f) C C™ is contractible.

Moreover, Sing( f) and Crit(f) are also invariant under C*st and, hence,
the union of C*-orbits. It follows that if V(f) has an isolated singularity
at 0 then 0 is the only singular point of V(f). Furthermore, & — Aox
maps V (f — t) isomorphically onto V(f — A%). Since f € j(f), Sing(f) and
Sing(V(f)) coincide in this situation.

Definition 2.13. An isolated hypersurface singularity (X, z) C (C™x), is
called quasihomogeneous (QH ) if there exists a quasihomogeneous polynomial

f € Clx] =Clzy,...,zy] such that Ox , = C{z}/(f).

Lemma 2.14. Let f ¢ Clz| be quasihomogeneous and g ¢ C{x} arbitrary.
Then f~ g if and only if f~g.

Proof. Let f be weighted homogeneous of type (w1, ..., wn;d). If f~ g then
there exists a unit v € C{x}* and an automorphism ¢ € Aut C{x} such that
u- f = ¢(g). Choose a d-th root u/¢ ¢ C{z}. The automorphism

: Cla} — Cla), z— u®/?. gy
yields w(f(a:)) = f(u“’l/dxl, . ,u“’"/dmn) =u- f(x) by Remark 2.12.1, im-
plying the result. O

% The first relation generalizes Fuler’s formula for homogeneous f € Clzo, . .., Tn]:
IEO;TJ; 4+ 0+ a:naan =deg(f)-f.
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It is clear that for QH isolated hypersurface singularities the Milnor and
Tjurina number coincide (since f € j(f)). It is a remarkable theorem
of K. Saito [Sai] that for an isolated singularity the converse does also
hold. Let (X,z) C (C™x) be an isolated hypersurface singularity and let
f e C{xy,...,xz,} be any local equation for (X, z), then

(X, z) quasihomogeneous <= pu(f) =7(f).

Since p(f) and 7(f) are computable, the latter equivalence gives an effective
characterization of isolated quasihomogeneous hypersurface singularities.

Newton Non-Degenerate and Semiquasihomogeneous Singularities.
As mentioned before, for certain classes of singularities there is a much more
handy way to compute the Milnor number. It can be read from the Newton
diagram of an appropriate defining power series:

Definition 2.15. Let f =) _cyntaz® € C{z} = C{z1,...,2,}, ao =0.
Then the convex hull of the support of f in R™,

A(f) = conv{a € N" | aq # 0},

is called the Newton polytope of f. We introduce K (f) := conv({0} U A(f)),
and denote by Ko(f) the closure of the set K(f) \ A(f). Then

I'(f,0) == Ko(f) N A(f)

is called Newton diagram of f at the origin. Moreover, we introduce for a face
o C I'(f,0) the truncation

f7 = E cax™ = g Cax®,
aco iConN”

that is, the sum of the monomials in f corresponding to the integral points
in o.

Ezample 2.15.1. Let f = x - (y®>+ x>+ 22y — 2%y + 23y — 102ty + 25).

2\ ™
A(f) Ko(/f) I'(f,0)

In particular, the Newton diagram at 0 has three one-dimensional faces, of
slopes —2,—1,—%.
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Definition 2.16. A power series f =} yn Gax® € C{z} with ag =0 is
called Newton non-degenerate (NND) at 0 (or 0 is called a Newton non-dege-
nerate (singular) point of f) if the Newton diagram I'(f,0) is bounded (that
is, meets all coordinate axes) and if, for all faces ¢ C I'(f,0), the hypersurface
{f" 0} has no singular point in the torus (C*)™.

In the above example, We have 3 truncations on one—dimensional faces o of
I(f,0), fo=9°+ 2y?, xy®+ 2%y + 23y and 23y + 25, respectively. None of
the corresponding hypersurfaces {f°=0} is singular in (C*)2, hence, f is
Newton non-degenerate (the 0-dimensional faces are monomials and define
obviously non-degenerate truncations).
On the other hand, f + z°y? is Newton degenerate, since its truncation
at the face with slope —1, zy3+ 222y + 23y = zy(x + y)?, is singular along
the line {z + y = 0}.

Proposition 2.17. Let f € C{x1,...xz,} be Newton non-degenerate. Then
the Milnor number of f satisfies

p(f) = n! Vol, (Ko(f)) + Z (n— i)l Vol—i (Ko(f) N Hay) |

where H; denotes the union of all i-dimensional coordinate planes, and where
Vol; denotes the i-dimensional Fuclidean volume.

Proof. Cf. [Kou, Thm. I(ii)|) 0

In the above Example 2.15.1, we compute

p(f)=2- 12—9—11+1—9
Note that, in general, the mixed sum of volumes on the right hand side (the
so-called Newton number of f) gives a lower bound for u(f) (cf. [Kou)).
Another important class of singularities is given by the class of semiquasi-
homogeneous singularities, which are characterized by means of the Newton
diagram, too:

Definition 2.18. A power series f € C{z1,...,z,} is called semiquasiho-
mogeneous (SQH) at 0 (or, 0 is called a semiquasihomogeneous point of f) if
there is a face o C I'(f,0) of dimension n—1 (called the main, or principal,
face) such that the truncation f? has no critical points in C™\ {0}. f7 is
called the main part, or principal part, of f.

Note that f? is a quasihomogeneous polynomial, hence, it is contained in
the ideal generated by its partials. It follows that f has no critical point in
C™ \ {0} iff the hypersurface { f=0} C C™ has an isolated singularity at 0.
In other words, due to Lemma 2.3, f is SQH iff we can write
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f=Jlot+g, unlfo) <o

with fo = f7 a quasihomogeneous polynomial of type (w;d) and all monomi-
als of g being of w-degree at least d + 1.

We should like to point out that we do not require that the Newton
diagram I'(f,0) meets all coordinate axes (as for NND singularities). For
instance, zy + y°>+ x%y? € C{x,y} is SQH with main part zy + 3> (which is
w = (2, 1)-weighted homogeneous of weighted degree 3); but it is not Newton
non-degenerate, since the Newton diagram does not meet the z-axis.

Anyhow, in some cases we want to assume that I'(f,0) meets all coordi-
nate axes. Then we speak about convenient power series. Actually, the results
of the next section show that each SQH power series is right equivalent to a
convenient one.

Note that each convenient SQH power series f € C{z,y} is NND, while
for higher dimensions this is not true. For instance f = (z + y)?+ zz + 22 is
SQH (with f = fy) and convenient, but Newton degenerate (the truncation
(z + y)? at one of the one-dimensional faces has singular points in (C*)3).

Corollary 2.19. Let f € C{x} be SQH with principal part fo. Then f has
an isolated singularity at 0 and u(f) = p(fo)-

Proof. Let fo € Clx] be quasihomogeneous of type (w;d) and write
F=fo+> fi
i>1

with f; quasihomogeneous of type (w;d + 7). Clearly, f is singular at 0 iff fj
is singular at 0. Consider for ¢t € C the unfolding

Fy(z) == fo(x) + > _t'fi(x),
i>1

which satisfies Fy = fo and F; = f1. Theorem 2.6 (1) implies that, for ¢y # 0
sufficiently small, F}, has an isolated critical point at 0. Since, for every
te C*,

1
Fzy,...,2p) = i Ft 1 xq, .ty ,

the C*-action x +— (t“1x1,...,t" 2, ) maps

Crit(F;) N {.’B Vi |z <

%}iCrit(f)ﬁ{wVi: |acz-|<g}.

Hence, we can find some ¢ > 0, independent of ¢, such that, for all |¢| <1,
Crit(F}; : B.(0) — C) = {0}. Finally, the statement follows from Theorem
2.6 (3). 0
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Again, the SQH and NND property are both not preserved under analytic
coordinate changes, for instance, 2?2 — y® € C{z,y} is SQH and NND, but
(r +y)? —y3 € C{z,y} is neither SQH nor NND. Anyhow, we can make the
following definition:

Definition 2.20. An isolated hypersurface singularity (X, z) C (C*x), is
called Newton non-degenerate (respectively semiquasihomogeneous), if there
exists a NND (respectively SQH) power series f € C{ax} = Cl{z1,...,2,}
such that Ox , = C{x}/{f).

2.3 Algebraic Group Actions

The classification with respect to right, respectively contact, equivalence may
be considered in terms of algebraic group actions.

Definition 2.21. The group R := Aut(C{x}) of automorphisms of the ana-
lytic algebra C{a} is called the right group. The contact group is the semidi-
rect product K :=C{x}*x R of R with the group of units of C{x}, where
the product in K is defined by

(W', ") (u, ) = (u'¢ (u), ')
These groups act on C{x} by

R x C{x} — C{x}, K x C{x} — C{x},
. f) — elf),  ((we)f) —u-of).

We have
frg &= feER-g, frRg <= feK y,

where R - g (respectively K - g) denotes the orbit of g under R (respectively
K), that is, the image of R x {f}, respectively K x {f}, in C{x} under the
maps defined above.

Neither R nor K are algebraic groups or Lie groups, since they are infinite
dimensional. Therefore we pass to the k-jets of these groups

R — {jet(gp, k) ‘ p € R}, K . — { (jet(u,k:),jet(cp,k)) ‘ (u, ) € IC},

where jet(p, k){(x;) = jet(p(x;), k) is the truncation of the power series of the
component functions of .

As we shall show below, R® and K®) are algebraic groups acting alge-
braically on the jet space J¥), which is a finite dimensional complex vector
space. The action is given by

Qp'f:jet((p(f>vk)a (ua(p)'f:jet(u'QD(f)ﬂk),

for ¢ € R, (u, ) € K*). Hence, we can apply the theory of algebraic
groups to the action of R and KX®*) . If k is bigger or equal to the determinacy
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of g, then g ~ f (respectively g ~ f) if and only if g € R¥ f (respectively
g € K ). Hence, the orbits of these algebraic groups are in one-to-one cor-
respondence with the equivalence classes.

Before we make use of this point of view, we recall some basic facts about
algebraic group actions. For a detailed study we refer to [Bor, Spr, Kra.

Definition 2.22. (1) An (affine) algebraic group G (over an algebraically
closed field K) is a reduced (affine) algebraic variety over K, which is
also a group such that the group operations are morphisms of varieties.
That is, there exists an element e € G (the unit element) and morphisms
of varieties over K

GxG— G, (g,h)— g-h (the multiplication),

1

G— G, gr— g ° (the inverse)

satisfying the usual group axioms.
(2) A morphism of algebraic groups is a group homomorphism, which is also
a morphism of algebraic varieties over K.

Ezxample 2.22.1. (i) GL(n, K) and SL(n, K) are affine algebraic groups.
(ii) For any field K, the additive group (K, +) and the multiplicative group
(K*,.) of K are affine algebraic groups.

(iii) The groups R¥) and K®*) are algebraic groups for any k > 1. This can
be seen as follows: an element ¢ of R%) is uniquely determined by

n k
e = p(x;) = Zay)mj + Z ag)mo‘, i=1,...,n,
7=1 || =2

such that det (ay)) + 0. Hence, R® is an open subset of a finite dimensional
K-vectorspace (with coordinates the coefficients ag-z) and a(of)). It is affine,
since it is the complement of a hypersurface.

The elements of the contact group K*) are given by pairs (u, ), p € R
w = ug + Z|koz|:1 uqx® with ug # 0, hence KK is also open in some finite
dimensional vectorspace and an affine variety.

The group operations are morphisms of affine varieties, since the compo-
nent functions are rational functions. Indeed the coefficients of ¢ -4 are poly-

nomials in the coefficients of ¢, 1, while the coefficients of ¢! are determined
()

by solving linear equations and involve det (aj ) (respectively det (agi)) and

ug) in the denominator.
Proposition 2.23. Every algebraic group G is a smooth variety.

Proof. Since G is a reduced variety, it contains smooth points by Corollary
1.85. For any ¢ € G the translation h +— hg is an automorphism of G and in
this way G acts transitively on . Hence, a smooth point can be moved to
any other point of G by some automorphism of G. O
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Definition 2.24. (1) An (algebraic) action of G on an algebraic variety X
is given by a morphism of varieties

GxX-—X, (g,x)r~g-x,

satisfying ex = = and (gh)xz = g(hz) for all g,h € G, x € X.
(2) The orbit of x € X under the action of G on X is the subset

Gr:=G z:={g-2€X|geG}CX,

that is, the image of G x {z} in X under the orbit map G x X — X.
(3) G acts transitively on X if Gx = X for some (and then for any) z € X.
(4) The stabilizer of x € X is the subgroup G,:= {g € G|gx =z} of G,
that is, the preimage of z under the induced map G x {z} — X.

In this sense R¥) and K® act on J*). Note that the somehow unexpected
multiplication on K*) as a semidirect product (and not just as direct product)
was introduced in order to guarantee (gh)x = g(hx) (check this!).

For the classification of singularities we need the following important prop-
erties of orbits.

Theorem 2.25. Let G be an affine algebraic group acting on an algebraic
variety X, and x € X an arbitrary point. Then

(1) Gz is open in its (Zariski-) closure Ga.

(2) Gz is a smooth subvariety of X.

(3) Gz \ Gz is a union of orbits of smaller dimension.

(4) Gy is a closed subvariety of G.

(5) If G is connected, then dim(Gz) = dim(G) — dim(G,,).

Proof. (1) By Theorem 2.36, below, Gz contains an open dense subset of
Gz; in particular, it contains interior points of Gz. For any g € G, ¢ - Gz is
closed and contains Gx. Hence, Gz C ¢ - Gz. Replacing ¢ with ¢g~! and then
multiplying with g we also obtain ¢ - Gz C Gz. It follows that Gx = g - G,
that is, Gz is stable under the action of G.

Now, consider the induced action of G' on Gz. Since G acts transitively
on Gz and Gz contains an interior point of its closure, every point of Gz is
an interior point of Gz, that is, Gz is open in its closure.

(2) Gz with its reduced structure contains a smooth point and, hence, it is
smooth everywhere by homogeneity (cf. the proof of Proposition 2.33).

(3) Gz \ Gz is closed, of dimension strictly smaller than dim Gz and G-
stable, hence a union of orbits.

(4) follows, since GG, is the fibre of a morphism (we consider only closed
points).

(5) Consider the map f: G x {z} — Gz induced by G x {z} — X. Then f is
dominant and G, = f~1(z). Since G is connected, G x {x} and Gz are both
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irreducible. Since for y = gz € Gz we have Gz = Gy and G, = gG,g™!, the
statement is independent of the choice of y € Gz. Hence, the result follows
from (2) of the following theorem. 0

We recall that a morphism f: X — Y of algebraic varieties is called dominant
if for any open dense set U C Y, f~1(U) is dense in X. When we study the
(non-empty) fibres f=1(y) of any morphism f: X — Y we may replace Y
by f(X), that is, we may assume that f(X) is dense in Y. If X and Y are
irreducible, then f is dominant iff f(X) =Y.

The following theorem concerning the dimension of the fibres of a mor-
phism of algebraic varieties has many applications.

Theorem 2.26. Let f: X — Y be a dominant morphism of irreducible va-
rieties, W C Y an irreducible, closed subvariety and Z an irreducible compo-
nent of f H(W). Put r =dim X — dimY'.

(1) If Z dominates W then dim Z > dim W+ r. In particular, fory € f(X),
any irreducible component of f=1(y) has dimension > r.

(2) There is an open dense subset U C'Y (depending only on f) such that
UcC f(X)anddim Z =dimW+r or Z 0 f~YU) = 0. In particular, for
y € U, any irreducible component of f~(y) has dimension equal to r.

(3) The open set U in (2) may be chosen such that f: f=1(U) — U factors

as follows

FUU) —T—> U x A"

U
with m finite and pri denoting the projection onto the first factor.

Proof. See [Muml, Chap. I, §8] and [Spr, Thm. 4.1.6]. 0

Observe that the theorem implies that for f: X — Y dominant there is an
open dense subset U of Y such that U C f(X) CY.

Recall that a morphism f: X — Y of algebraic varieties with algebraic
structure sheaves Ox and Oy is finite if there exists a covering of Y by
open, affine varieties U; such that for each i, f~1(U;) is affine and such that
Ox (f_l(Ui)) is a finitely generated Oy (U;)-module.

If f: X — Y is finite, then the following holds

(1) fis a closed map,

(2) for each y € Y the fibre f~1(y) is a finite set,

(3) for every open affine set U C Y, f~1(U) is affine and Ox (f~1(U)) is a
finitely generated Oy (U)-module.

(4) If X and Y are affine, then f is surjective if and only if the induced map
of coordinate rings Oy (Y) — Ox(X) is injective.



2 Hypersurface Singularities 21

(5) Moreover, if f: X — Y is a dominant morphism of irreducible vari-
eties and y € f(X) such that f=1(y) is a finite set, then there exists
an open, affine neighbourhood U of y in Y such that f~1(U) is affine
and f: f~YU) — U is finite.

For proofs see [Muml, Chap. I, §7], [Spr, Chap. 4.2] and [Har4, Chap. II,
Exe. 3.4-3.7].

Now, let f: X — Y be a morphism of algebraic varieties over C, and let
f27: X3 — Y3 he the induced morphism of complex spaces. It follows that
f finite implies that f2" is finite. The converse, however, is not true (cf. [Har4,
Chap. II, Exe. 3.5(c)]).

Let f: X — Y be a morphism of algebraic varieties, x € X a point and
y = f(x). Then the induced map of local rings f#: Oy, — Ox,, induces a
K-linear map myvy/m%,y — mX@/mg(’w of the cotangent spaces and, hence,
its dual is a K-linear map on the level on tangent spaces

T, T, X —T,Y

where T, X = Homg (mx . /m% ,, K) is the Zariski tangent space of X at z.

Observe that the cotangent and, hence, the tangent spaces coincide, inde-
pendently of whether we consider X as an algebraic variety or as a complex
space. Hence, if f2": X3" — Y?" ig the induced map of complex spaces, then
the induced map (f2*)#: Oyan , — Oxan , induces the same map as f# on
the cotangent spaces and, hence, on the Zariski tangent spaces.

Proposition 2.27. Let f: X — Y be a dominant morphism of irreducible
complex algebraic varieties. Then there is an open dense subset V- C X such
that for each x € V' the map T f: To X — Ty)Y is surjective.

Proof. By Theorem 2.36 there is an open dense subset U C Y such that the
restriction f: f~1(U) — U is surjective.

By deleting the (closed) set A := f(Sing(f 1 (U)) U Sing(U) C U and con-
sidering f: f (U \ A) — U\ A, we obtain a map f between complex mani-
folds. The tangent map of f is just given by the (transpose of the) Jacobian
matrix of f with respect to local analytic coordinates, which is surjective on
the complement of the vanishing locus of all maximal minors. g

Another corollary of Theorem 2.36 is the theorem of Chevalley. For this recall
that a subset Y of a topological space X is called constructible if it is a finite
union of locally closed subsets of X. We leave it as an exercise to show that a
constructible set Y contains an open dense subset of Y. Moreover, the system
of constructible subsets is closed under the Boolean operations of taking finite
unions, intersections and differences.

If X is an algebraic variety (with Zariski topology) and ¥ C X is con-
structible, then Y = J;_, L; with L; locally closed, and we can define the
dimension of Y as the maximum of dimL;, 1 =1,...,s.
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Theorem 2.28 (Chevalley). Let f: X — Y be any morphism of algebraic
varieties. Then the image of any constructible set is constructible. In partic-
ular, f(X) contains an open dense subset of f(X).

Proof. 1t is clear that the general case follows if we show that f(X) is con-
structible. Since X is a finite union of irreducible varieties, we may assume
that X is irreducible. Moreover, replacing Y by f(X) we may assume that
Y is irreducible and that f is dominant.

We prove the theorem now by induction on dimY, the case dimY =0
being trivial. Let the open set U C Y be as in Theorem 2.36, then Y \ U is
closed of strictly smaller dimension. By induction hypothesis, f(f=1(Y \ U))
is constructible in Y \ U and hence in Y. Then f(X)=UU f(f~X (Y \U))
is constructible. O

We return to the action of R% and K*) on J®) = C{xy,...,2,}/m*t1 the
affine space of k-jets. Note that R and K(®) are both connected as they are
complements of hypersurfaces in some CV.

Proposition 2.29. Let G be either R%¥), or K5, and for f € J® let Gf
be the orbit of f under the action of G on J®), We denote by T¢(Gf) the

tangent space to Gf at f. considered as a linear subspace of J*) . Then, for
k>1,

THR®F) = (m-j(f) +mF) /mAt
Tr(K®f) = (m-§(f) + (f) + mFT) /mFH1

Proof. Note that the orbit map and translation by g € G induce a commu-
tative diagram

Since the orbit map G x {f} — Gf satisfies the assumptions of Proposition
2.37, T,G — T44(Gf) and, hence, T.G — Tf(Gf) are surjective. Hence, the
tangent space to the orbit at f is the image of the tangent map at e € GG of the
map R¥ — J&) & — fod, respectively KF) — JHE) (4, &) — u- (f o D).

In the following, we treat only the contact group (the statement for the
right group follows with u = 1): consider a curve ¢ — (u,P;) € K% such
that ug = 1, &¢ = id, that is,

b(x,t) =x +e(x,t): (C"xC,(0,0)) — (C*0)
u(x,t) =14 6(x,t): (C"xC,(0,0)) — C,

TN
§(z,t) = 61(x)t + da(x) t? + ..., 6; € C{x}. The image of the tangent map
are all vectors of the form

with e(x,t) = e'(x)t + e?(w) t* 4+ ..., e' = (¢},... e} ) such that £ € m, and
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0 k
(1 0@.0) f@+s@,0)| _ modm
=~ Of 1 kot
= Gi() f(@) 1Y () hw) mod i,
j=1 """
which proves the claim. O

Of course, instead of the analytic proof using curves, we could have used
the interpretation of the Zariski tangent space T, X as morphisms 7, — X,
where T = Spec (C[e]/(<?)).

In view of Proposition 2.39 we call m - j(f), respectively m - 5(f) + (f) the
tangent space at f to the orbit of f under the right action R x C{z} — C{x},
respectively the contact action I x C{z} — C{x}.

Corollary 2.30. For f € C{x1,...,z,}, f(0) =0, the following are equiva-
lent.

(1) f has an isolated critical point.
(2) f is right finitely-determined.
(3) f is contact finitely-determined.

Proof. (1)=(2). By Corollary 2.25, f is p(f)+ 1-determined. On the other
hand, p(f) < oo due to Lemma 2.3. Since the implication (2) = (3) is trivial,
we are left with (3) = (1). Let f be contact k-determined and g € m**1. Then
fi = f +tg € K¥D §f mod mF+2 and, hence,

_on

mtﬂemdﬁﬂwﬁmwmma

by Proposition 2.39. By Nakayama's lemma m**  m - j(f) + (f), the latter
being contained in j(f) + (f). Hence, 7(f) < oo and f has an isolated critical
point by Lemma 2.3. O

Lemma 2.31. Let f ¢ m? C C{x1,...,2,} be an isolated singularity. Let k
satisfy mETL C m - j(f), respectively m*1 Cm - j(f) + (f), and call

r-codim(f) := codimension of RE) £ in JE) | respectively
c-codim(f) := codimension of IC(k)f in J)

the codimension of the orbit of f in J¥) under the action of R, respectively
K®). Then

r-codim(f) = pu(f) +n, c-codim(f) = 7(f) + n.

Proof. In view of Proposition 2.39 and the definition of p(f) and 7(f), one
has to show that

i(f)

. i)+ )
S g(f)

= dim¢ w0 =n. (2.3.1)
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Both linear spaces in question are generated by g—i,...,%, and it is
sufficient to prove that none of these derivatives belongs to the ideal

m-j(f)+ (f). Arguing to the contrary, assume, for example, that g—qu €

m-j(f)+ (f), which immediately implies

%:Zai(m)giJrﬁ(w)f, ag,...,an €m, § € Cla}.

=
The system of differential equations

dl’i
da:l

= —q;(21,...,2y), x(0)=y,€C, i=2,...,n,

has an analytic solution

mi:wi(mll?yQ,---ayn), 'L'ZQ,...,TL,

convergent in a neighbourhood of zero. The latter formulae define an isomor-
phism C{z1,®9,...,2,} = C{x1,y2,...,yn} which takes f(z1,...,2,) to

f(xlay% e 'ayn) - f($17902($1,y2,~ e 7yn)7 e '790n($17y27' . 'ayn))

such that

of (9of ~~ , . 0f _ 3 7
0x1 B (al’l —Zaz(az)am) Zi=@i (T1,Y2,-Yn) _6(37173/27""1/71) I

i=2,...,n

However, the latter relation means that fdoes not depend on x1, and hence
f, 0f/0x;, i = 1,...,n, vanish along the line (¢,0,...,0) contradicting the
assumption on the isolated singularity at the origin. O

2.4 Classification of Simple Singularities

We want to classify singularities having no “moduli” up to contact equiv-
alence. No moduli means that, in a sufficiently high jet space, there exists
a neighbourhood of f, which meets only finitely many orbits of the contact
group. A singularity having no moduli is also simply called 0-modal, while
k-modal means, loosely speaking, that any small neighbourhood of f meets
k- (and no higher) dimensional families of orbits.

The same notion makes sense for right equivalence and, indeed, they were
introduced by Arnol’d for right equivalence in a series of papers and had a
great influence on singularity theory.

Here we treat simultaneously right and contact equivalence, since it means
almost no additional work.

We recall that the space of k-jets J¥) = C{wx1,...,x,}/mF! is a finite
dimensional complex vector space with a natural topology: for a power series
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f =30 _capx? € C{x}, we identify f*) =jet(f, k) € J* with the trun-
|[v|=0
cated power series f*) = Z|ku|:0 ayx”. Then an open neighbourhood of f(*)

in J) consists of all truncated power series Z|ku|:o byx¥ such that b, is
contained in some open neighbourhood of @, in C, for all v with |v| < k.
Consider the projections

Clz} — J* | k>o0.

The preimages of open sets in J*) generate a topology on C{z}, the coarsest
topology such that all projections are continuous. Hence, a neighbourhood
of f in C{x} consists of all those g € C{x} for which the coeflicients up
to some degree k are in a neighbourhood of the coefficients of f but with
no restrictions on the coefficients of higher order terms. The neighbourhood
becomes smaller if the coefficients up to order k get closer to the coefficients
of f and if k gets bigger.

Definition 2.32. Consider the action of the right group R, respectively of
the contact group K, on C{x}. Call f € C{x} right simple, respectively con-
tact simple, if there exists a neighbourhood U of f in C{x} such that U
intersects only finitely many orbits of R, respectively of K.

This means that there exists some % and a neighbourhood Uy, of f®) in J*)
such that the set of all ¢ with ¢® € Uj, decomposes into only finitely many
right classes, respectively contact classes. It is clear that right simple implies
contact simple. However, as the classification will show, the converse is also
true.

We show now that for an isolated singularity f a sufficiently high jet is
not only sufficient for f but also for all ¢ in a neighbourhood of f.

Proposition 2.33. Let f €¢ m C C{ax} = C{a1,...,z,} have an isolated
singularity. Then there exists a neighbourhood U of f in C{x} such that each
g € U is right (u+1)-determined, respectively contact (T +1)-determined.

Proof. We consider contact equivalence, the proof for right equivalence is
analogous. Let 7 = 7(f), k = 7 + 1, and consider

k
|v|=0

Then f~ f®), and any element h = Z\k'/|=0 byax? € J¥) can be written as

k
hiz) = fP@)+ > tya” (2.4.1)

lv|=0

with t, = b, — a,. Considering ¢, , |v| < k, as variables, then (2.4.1) defines
an unfolding of f*), and the semicontinuity theorem 2.6 says that there is
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a neighbourhood Uy C J® of f() such that 7(h) < 7(f%*)) = 7(f) for each
h € m N Uyg. Hence, h is k-determined and, therefore, also every g € C{x}
with g(®) € Uy, If U € C{a} is the preimage of Uy, under C{x} - J® then
this says that every g € U Nm is contact (7 + 1)-determined. O

Remark 2.53.1. We had to use pu, respectively 7, as a bound for the deter-
minacy, since the determinacy itself is not semicontinuous. For example the
singularity Fr is 4-determined (cf. Example 2.26.1) and deforms into Ag,
which is 6-determined. This will follow from the classification in below.

Corollary 2.34. Let f € m have an isolated singularity, and suppose that
k> u(f)+1, respectively k > 7(f)+1. Then f is right simple, respectively
contact simple, if and only if there is a neighbourhood of f%* in J*) which
meets only finitely many R%) -orbits, respectively K*) -orbits.

Proof. The necessity is clear, the sufficiency is an immediate consequence of
Proposition 2.43. 0

Now let us start with the classification. The aim is to show that the right
simple as well as the contact simple singularities f € m? C C{x1,...,2,} are
exactly the so-called ADFE-singularities:

Ap: ottt Lad 422, kE>1,
Dy w(ad+av ) vad+ . a2, k>4,
Eg: af+ad+a3+.. . +a2,

Er x(zi+ad)+ a2+ +a22,

Eg: xf+a3+ai+...+a2.

As

Al A2 A3

FIGURE 2.3. Real pictures of one-dimensional Ag-singularities

Note that Ag is usually not included in the list of simple singularities, since
it is non-singular. It is however simple in the sense of Definition 2.42, since
in a neighbourhood of 4y in C{a} there are only smooth germs or units. A;-
singularities are also called (ordinary) nodes, and As-singularities (ordinary)
Cusps.

Classification of Smooth Germs.
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F1GURE 2.4. Real pictures of one-dimensional Dg-singularities

FEs Er s

F1GURE 2.5. Real pictures of one-dimensional Es-, F7-, Eg-singularities

Lemma 2.35. For f ¢ m C C{a} the following are equivalent.

(1) p(f) =0,
(2) 7(f) =0,

(3) f is non-singular,

(4) f~fW,

Proof. u(f)=0&7(f)=0& g—ai(()) # 0 for some i < f is non-singular.
The remaining equivalences follow from the implicit function theorem. 0

Classification of Non-Degenerate Singularities. Let U C C™ be open,
and let f: U — C be a holomorphic function. Then we denote by

o0 f
83318333‘

H(f) = ( )m_zlmn € Mat(z x n, K|z])

the Hessian (matriz) of f.

Definition 2.36. A critical point p of f is called a non-degenerate, or Morse
singularity if rank H(f)(p) = n. The number crk(f,p) :==n —rank H(f)(p) is
called the corank of f at p. We write crk(f) instead of crk(f,0).

The notion of non-degenerate critical points is independent of the choice of
local analytic coordinates. Namely, if ¢: (C™ p) — (C" p) is biholomorphic,
then
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o 9 0y
~ Oy (Z 8:6,, 8wj (:13))

Ox; (9:]6y
o O, of %oy,
Z &Eu(‘?mu ) 895[; (@) Ox; () + Z 0x, ((b(a:)) ' Ox;0z; (@).

(foo(x)

Since p is a critical point of f and ¢(p) = p we have 8f (¢(p)) = 0, hence

H(fod)(p)=J(@)p)" - H(f)p) J(d)(p), (2.4.2)

where J(¢) is the Jacobian matrix of ¢, which has rank n.

Similarly, we show that if p is a singular point of the hypersurface f=1(0),
that is, %( ) = f(p) =0, then rank H(f)(p) = rank H(uf)(p) for any unit
u.

Hence, crk(f,p) is an invariant of the right equivalence class of f at a
critical point and an invariant of the contact class at a singular point of
f~1(0). However, if p is non-singular, then rank H(f)(p) may depend on the
choice of coordinates.

Note that for a critical point p, rank H(f)(p) depends only on the 2-jet

of f.

Theorem 2.37 (Morse lemma). For f ¢ m? C C{zy...,1,} the follow-
ing are equivalent.

(1) ctk(f,0) = 0, that is, 0 is a non-degenerate singularity of f,
(2) 1(f) =

(3) 7(f) =1

(4) £~ f® and f@ is non-degenerate,

(5) f~a?+.. . a2,

(6) f~a?+. . +ai.

Proof. The apparently simple proof makes use of the finite determinacy the-
orem. Since f € m?, we can write

Z hi,j(m)mixj s hi,j S (C{a:},

1<i,j<n
with (h;;(0)) = 3 - H(f)(0) where H(f)(0) is the Hessian of f at 0.
(1) = (2). Since h; ;(0) = h;,;(0), we have

8 dhz -
81{,_ Jg;z J—|—Zhww]—|—2h VT =2 Zh” ) mod m?.
%]

Since H(f)(0) is invertible by assumption, we get

(o,

axl,...,aT> :<$1,...,.len> mod m2.
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Nakayama’s lemma implies j(f) = m and, hence, u(f) = 1.
(2) = (3) is obvious, since 7 < y and 7 = 0 can only happen if f € m\ m2.
(3) = (2),(4). If 7 = 1 then m = (f, j(f)) and, hence, by Nakayama’s lemma,

m = j(f), since f € m%. Then u(f) =1, and by Corollary 2.25 f is right 2-
determined, whence (4).

(4) = (5). By the theory of quadratic forms over C there is a non-singular
matrix 7" such that

T LH()(0) T = 1,

where 1,, is the n X n unit matrix. The linear coordinate change & +— T - a
provides, for f = f®,

1
Jf(-x) ::B-Tt-EH(f)(O)-T-:Bt:a:%—I—...—I—wi.
The implication (5) = (6) is trivial. Finally, (6) implies 7(f) = 1 and, hence,
(5) as shown above. The implication (5) = (1) is again obvious. O

The Morse lemma gives a complete classification of non-degenerate singu-
larities in a satisfying form: they are classified by an invariant, the Milnor,
respectively the Tjurina, number and, moreover, we have a very simple nor-
mal form.

In general, we cannot hope for such a simple answer. There might not
be a finite set of complete invariants (that is, completely determining the
singularity), and there might not be just one normal form but a whole family
of normal forms. However, as we shall see, the simple singularities have a
similar nice classification.

Splitting Lemma and Classification of Corank 1 Singularities. The
following theorem, called generalized Morse lemma or splitting lemma, allows
to reduce the classification to corank n or, equivalently, to germs in m?.

Theorem 2.38 (Splitting lemma). If f ¢ m? C C{z} = C{x1,...,2,}
has rank H(f)(0) =k, then

foai bbb gepn, . wn)
with g € m3. Moreover, g is uniquely determined up to right equivalence.

Proof. As the Hessian of f at 0 has rank k, the 2-jet of f can be transformed
into 3 + ...+ ; by a linear change of coordinates (cf. the proof of Theorem
2.47). Hence, we can assume that

k
f(:r):x%+...+a?z+f3(ark+1,...,xn)+in-gi(a}1,...,xn),
i=1
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Ay As As Ay

FIGURE 2.6. Real pictures of two-dimensional Ag-singularities

with ¢; € m?, f3 € m3. The coordinate change z; — x; — %gi fori=1,...,k,
and z; — x; for i > k, yields

k

Flm) =2+ .+ 27 + 3@ty ) + Fa@rgts ) + >3 hi(w),
i=1

with h; € m3, fy € m?. Continuing with h; instead of ¢; in the same manner,
the last sum will be of arbitrary high order, hence 0 in the limit.

In case f has an isolated singularity, the result follows from the finite
determinacy theorem 2.24. In general, we get at least a formal coordinate
change such that g(zg41,...,%,) in the theorem is a formal power series. We
omit the proof of convergence.

To prove the uniqueness of g, let @’ = (zr41,...,%,) and assume

folx)=al+...+a5 +go(x) ~af+... + 23 + g1(x) = fi(x).

Then, by Theorem 2.29, we obtain isomorphisms of C{¢}-algebras,

dgo dgo dg dgn
/ ~ ; ~
C{z'} <8wk+1 e _axn> My, = My, = C{x'} <8mk+1 g )

t acting on My, , respectively on My, , via multiplication with fo, respectively
with fi. It follows that Mg, and M, are isomorphic as C{¢}-algebras. Hence,

490 r&gl, again by Theorem 2.29. 0

We use the splitting lemma to classify the singularities of corank < 1.

Theorem 2.39. Let f € m?> C Cl{zx} and k > 1, then the following are equiv-
alent:

(a) crk(f) <1 and u(f) =k,
(b) Foah™ 4 a2+ 422, that is, f is of type Ay,
(¢) foabtt a2 4. a2,

Moreover, f is of type Ay if and only if ctk(f) =0, and f is of type Ay for
some k > 2 if and only if crk(f) = 1.
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Proof. The implications (b) = (c) = (a) are obvious. Hence, it is only left to
prove (a) = (b). By the splitting lemma, we may assume that

f=glz)+ai+.. 422 =u-2Vrad . a2

with v € C{z1} a unit and & > 1, since crk(f) < 1. The coordinate change

x) = *Nu -z, ) = x; for i > 2 transforms f into Ay. 0
Corollary 2.40. Ag-singularities are right (and, hence, contact) simple.
More precisely, there is a neighbourhood of f in m?, which meets only or-
bits of singularities of type Ay with £ < k.

Proof. Since crk(f) is semicontinuous on m?, a neighbourhood of Ay contains
only Ag-singularities. Since p(f) is semicontinuous on m?, too, we obtain

0= u(A) < p(Ar) = k. 0

On the Classification of Corank 2 Singularities. If f ¢ m? C C{z} has
corank 2 then the splitting lemma implies that f ~ g(x1,20) + 23 +... + 22
with a uniquely determined g € m>. Hence, we may assume f € C{x,y} and
f emd.

Proposition 2.41. Let f ¢ m®C C{x,y}. Then there exists a linear auto-

morphism @ € Clx,y} such that g = f©®), the 3-jet of ©(f), is of one of the
following forms

(1) zy(z +y) or, equivalently, g factors into 3 different linear factors,
(2) x%y or, equivalently, g factors into 2 different linear factors,
(3) x® or, equivalently, g has a unique linear factor (of multiplicity 3),

(4) 0.

We may draw the zero-sets:

(1) 3 different lines (2) a line and a double line (3) a triple line  (4) a plane

Proof. Let g = f® = ax®+ ba?y + cxy®+ dy®> # 0. After a linear change of
coordinates we may assume a #* 0. Dehomogenizing g by setting y = 1, we
get a univariate polynomial of degree 3, which decomposes into linear factors.
Homogenizing the factors, we see that g factorizes into 3 homogeneous factors
of degree 1, either 3 simple factors or a double factor and a simple factor or
a triple factor. This corresponds to the cases (1)—(3).
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To obtain the exact normal forms in (1) —(3) we may first assume a = 1
(replacing x by %w) Then ¢ factors as

g=(r=XAy) - (x—A2y) - (x—A3y) -

Having a triple factor would mean Ay = Az = A3, and, replacing x — A\ y by z,
we end up with the normal form (3). One double plus one simple factor can
be transformed similarly to the normal form in (2).

Three different factors can always be transformed to zy(z—Ay) with
A # 0. Replacing — Ay by y, we get azy(x + y), a # 0. Finally, replacing x
by o~ %z and y by oz_%y yields zy(x + y). O

Remark 2.41.1. If f € C{x} then we can always write

F=Y fi. fa#0,

i>d

where f; are homogeneous polynomials of degree i. The lowest non-vanishing
term fg is called the tangent cone of f, where d = ord(f) is the order of f. If
f is contact equivalent to g with u - ¢(f) = g, u € C{x}* and ¢ € Aut C{x},
then ord(f) = ord(g) = d and

u® oM (f1) = ga,

where u(©) = u(0) is the 0-jet of u and o) the 1-jet of . In particular we
have fy~ gq, and Lemma 2.14 implies fy ~ gq.

In other words, if f is contact equivalent to ¢ then the tangent cones are
right equivalent by some linear change of coordinates, that is, they are in the
same G'L(n,C)-orbit acting on m¢/md+1.

Remark 2.41.2. During the following classification we shall make several
times use of the so-called Tschirnhaus transformation: let A be a ring and

f= agr®+ ag_ 127+ . 4 ag € Alz]

a polynomial of degree d with coefficients in A. Assume that the quotient
B := ag—1/(dag) exists in A. Then, substituting = by z— (3 yields a polyno-
mial of degree d with no term of degree d—1. In other words, the isomorphism
p: Alz] — Aly], p(z) = y— 3, maps f to

e(f) = agy®+ Ba—oy® 2+ ...+ Bo € Aly]
for some 3; € A.

Let us now analyse the four cases of Proposition 2.51, starting with the cases
(1) and (2).

Theorem 2.42. Let f € m®C Cl{w,y} and k> 4. Then the following are
equivalent
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(a) f@ factors into at least two different factors and u(f) = k,

(b) f~a(y?+xh2), that is, f is of type Dy,

(¢) fra(y’+a*7?).
Moreover, f® factors into three different factors if and only if f is of type
Dy.

The proof will also show that Dy, is (k — 1)-determined.

Proof. The implications (b) = (c),(a) being trivial, and (c) = (b) being im-
plied by Lemma 2.14, we can restrict ourselves on proving (a) = (b).
Assume that f) factors into three different factors. Then, due to
Proposition 2.51 (1), f®~ g := zy(z 4+ y). But now it is easy to see that
m? C (m? - j(g), hence g is right 3-determined due to the finite determinacy

theorem. In particular, g ~ f.

If ) factors into exactly two different factors then, due to Proposi-
tion 2.51(2), we can assume f®) = 2%y, Note that f— f(3 £ 0 (otherwise
11(f) = oc). Hence, we can define m := ord(f — f©®) and consider the m-jet

of f,
S =22y + ay™ + Bey™ ' + 27 hiz,y) (24.3)

with o, 3 € C, h € m™~2, m > 4. Applying the Tschirnhaus transformations
T =T — %6 cy™=2 y =y — h(x,y) turns ™ into

f(m) (z,y) = ny + ay™. (2.4.4)

Case A. If o = 0 consider f(™*1) which has the form (2.4.3), hence can
be transformed to (2.4.4) with m replaced by m+1 and, if still a =0, we
continue. This procedure stops, since & = 0 implies that

u(f) = dime Clz, y}/(§(F) + m™ 1) = dime C{z, y} /(G(F ™) +m™ 1)
= dimg (C{:Ev y}/<$2, Ty, ym—1> —m.
Case B. If a # 0, then, replacing y by o Y/™y and z by o® ™z, we obtain
F (@, y) = 2y +y™,

which is m-determined by Theorem 2.24. In particular, f Ly(xQ—l—y
which is a D,,1-singularity. O

m—l),
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Corollary 2.43. Dy-singularities are right (and, hence, contact) simple.
More precisely, there is a neighbourhood of f in m2, which meets only or-
bits of singularities of type Ay for £ < k or Dy, for £ < k.

Proof. For any g € m? in a neighbourhood of Dy, we have either crk(g) < 1,
which implies g ~ A, and ¢ < k by Theorem 2.49, respectively the semiconti-
nuity theorem 2.6 (for the strict inequality we refer to Exercise 2.54, below),
or we have crk(g) = 2. In the latter case ¢‘® must factor into 2 or 3 different
linear forms for g close to f, since this is an open property (by continuity of
the roots of a polynomial, cf. the proof of Proposition 2.51). Hence, g~ Dy
for some ¢ < k. O

Exercise 2.44. Show that for £ > 4 there exists a neighbourhood of Dy, in
m?, which does not contain A-singularities.

Remark 2.44.1. Let f € m3C C{z,y} and g = f®. Then g factors into

e three different linear factors if and only if the ring C{z,y}/j(¢) has dimen-
sion 0,
o two different linear factors if and only if C{x,y}/j(¢) has dimension 1, and

the ring C{z, y}/<%, 88;893;’ g—Zg> has dimension 0,
e one (triple) linear factor if and only if C{x,y}/j(¢) has dimension 1, and

the ring C{x, y}/<%§—, 8%2(%, g—;§> has dimension 1.

This can be seen by considering the singular locus of g, respectively the singu-
lar locus of the singular locus, and it gives in fact an effective characterization
of the Dg-singularities by using standard bases in local rings (as implemented
in SINGULAR).

Theorem 2.45. Let f € m3C C{x,y}. Then the following are equivalent.

(a) f® has a unique linear factor (of multiplicity 3) and p(f) < 8,

(b) fO 23 and if O =23 then f ¢ (x,y?) = (23, 2%, z*,1°).

(c) f~g with g € {3+ y*, 2>+ 21, 23+ )}, i.e., f is of type Eg, E7 or
Eg.

(d) f~gwith g € {3+ y*, 23+ 293, 23+ y°}.

Moreover, u(Ey) = k for k =6,7,8.

Proof. Let’s prove the implication (b) = (c). The 4-jet f{¥ can be written as
O (@,y) =2+ ay* + Bry’+ 2* h(z,y)

with o, 8 € C, h € m?. After substituting z = z — %h, we may assume

FO (2, y) = 2+ ay*+ Bay®. (2.4.5)
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Case Eg: a #£ 0 in (2.4.5). Applying a Tschirnhaus transformation (with re-
spect to y), we obtain

f(4)(:z:,y) =2+ y4+ z2-h, hem?,

and by applying another Tschirnhaus transformation (with respect to ) we
obtain f® = 23+ ¢*, which is 4-determined due to the finite determinacy
theorem. Hence, f~ f4,

Case Ev: o =0, 8 # 0 in (2.4.5). Replacing y by 8~ 1/3y, we obtain the 4-jet
f@W =234 293, which is 4-determined by Example 2.26.1, hence f~ f(4).

Case Eg: o« =0, 3 =0 in (2.4.6). Then f =23, and we consider the 5-jet
of f.
f(5)(:1:,y) = 23+ ay®+ Bry*+ 22 h(z,y), hemd

Replacing x by = — %h(m, y) we obtain
O = 22+ ay’®+ Byt (2.4.6)
If v # 0 then, replacing y by a~/®y and renaming /3, we obtain
[, y) =2+ o+ By
pplying a T'schirnhaus transtormation (with respect to y) gives
Applyi Tschirnh f i ith i
FOzy) =2+ P+ 2% h(z,y), hem?,

and, again replacing = by x — %h yields f(®) = 234 ¢°, which is 5-determined
due to the finite determinacy theorem.
If & = 0in (2.4.6) then f©® =23 Bzy* and, hence,

fe (@ oy +mb C (2,473

This proves (c).

By Exercise 2.57 it follows that u(f) > 8 if f € (z,y?)3. Since u(Ex) = k
for k=6,7,8, we get the equivalence of (a) and (b) and the implication
(¢)=(a). Finally, since FEg, F7, Eg are quasihomogeneous, (¢) and (d) are
equivalent, by Lemma 2.14. 0O
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Corollary 2.46. Eg, By, Es are right (hence, contact) simple. More pre-
cisely, there is a neighbourhood of f in m?, which meets only orbits of singu-
larities of type Ap or Dy or Fy for k at most 8.

Proof. Let g € m? be in a (sufficiently small) neighbourhood of f. Then either
crk(g) <1, or crk(g) = 2.

If crk(g) < 1 then g~ Ay, for some k by 2.49. If crk(g) = 2 and ¢® factors
into three or two factors, then g ~ Dy, for some k by 2.52. If ¢®® ~ 23, then g is
right equivalent to Eg, F; or Fg since the condition f ¢ (z,y?)? is open. O

Exercise 2.47. Show that u(f) > 8 if f € (x,y?)3.

HINT: Choose a generic element from {x, ) and use the semicontinuity of p.

Remark 2.47.1. We have shown that the singularities of type Ay (k > 1),
Dy (k> 4), and Eg, E7, Eg are right simple (and, hence, contact simple).
Moreover, we have also shown that if f € m? C C{x1,...,2,} is not contact
equivalent to one of the ADE classes, then either

(1) erk(f) > 3, or

)
(2) crk(f)-? frg(m,x0) + 23 + ...+ 22 with
(a) g €m?, or
(b) g € (z1,23)°.

We still have to show that all singularities belonging to one of these latter
classes are, indeed, not contact simple. In particular, if f has a non-isolated
singularity, then it must belong to class (1) or (2). An alternative way to
prove that non-isolated singularities are not simple is given in the exercises
below.

Theorem 2.48. If f € m? C C{x1,...,2,} belongs to one of the classes
(1),(2) above, then f is not contact simple and hence not right simple.

Proof. (1) We may assume f € C{x1, 22,23} and f € m®\ m*. The tangent
cone f3) of f is in m3/m?*, which is a 10-dimensional vector space. If f ~ g,
then (3 and ¢ are in the same GL(3,C)-orbit. Since dim GL(3,C) = 9,
this orbit has dimension < 9 by Theorem 2.35. Since the orbits are locally
closed by 2.35, and since a finite union of at most 9-dimensional locally closed
subvarieties is a constructible set of dimension < 9, a neighbourhood of £ in
m3/m* must meet infinitely many G L(3, C)-orbits. Hence, any neighbourhood
of f in m® must meet infinitely many K-orbits, that is, f is not contact simple.

(2) We may assume f € C{z,y}. The argument for (a) is the same as in (1)
except that we consider f® in the 5-dimensional vector space m? /m® and
the action of GL(2,C), which has dimension 4.

In case (b) it is not sufficient to consider the tangent cone. Instead we
use the weighted tangent cone: first notice that an arbitrary element f can
be written as
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f(.'II, y) = Zfd(mvy)v fd(xvy) = Z ai,jxiij

d>6 2i+j=d

that is, fy is weighted homogeneous of type (2, 1;d). The weighted tangent
cone fg has the form

Jo(@,y) = ax®+ By’ + yoy*+ 610
Applying the coordinate change ¢ given by

o(x) = a1z + by + erx? + dyxy ey ...,
o(y) = asx + boy + cox® + doxy +eay® + ...,

we see that ¢(f) € (z,4%)? forces by = 0. Then the weighted order of ¢(x) is
at least 2, while the weighted order of ¢(y) is at least 1. This implies that, for
all d > 6, ¢(f4) has weighted order at least d. Therefore, only fg is mapped
to the space of weighted 6-jets of (z,y*)3. However, the weighted 6-jet of
©(fe) involves only the coefficients a1, e1 and ba of ¢ as a simple calculation
shows. Therefore, the orbit of fg under the right group intersects the space
of weighted 6-jets of {z,3?)® in a locally closed variety of dimension at most
3. Since fg is quasihomogeneous, the right orbit coincides with the contact
orbit. As the space of weighted 6-jets of {x,4?)? is 4-dimensional, generated
by 23, z2y2, zy* and 3%, it must intersect infinitely many contact orbits of
elements of (x,y?)3. Hence, f is not contact simple. O

Exercise 2.49. (1) Let f ¢ m?> C C{z} have an isolated singularity, and
let g € C{a} satisfy g ¢ m - j(f), respectively g € m- j(f) + (f).
Show that f~ f +tg, respectively f~ f +tg, for only finitely many
teC.

(2) Use this to show that if f has a non-isolated singularity, then, for
each k > 0, there is some gx € m*\ (m-j(f) + (f) + mkT1) such that
f +tgi » f for arbitrary small ¢. Hence, f is not contact simple and,
therefore, also not right simple.

We now give explicit examples of non-simple singularities belonging to the
classes (1) and (2) (a,b).

Ezample 2.49.1. (1) Consider the family of surface singularities given by
E =%z — 423 + goxz® 4 ¢32°

of corank 3. This equation E = 0 defines the cone over an elliptic curve,
defined by E = 0 in P2, in Weierstraff normal form. The J-invariant of this
equation is
3
J=—5%_
93 — 2793
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The number J varies continuously in C if the coefficients go, g3 vary, and two
isomorphic elliptic curves in Weierstrafl form have the same J-invariant (cf.
BrK, Sil]). Therefore the family £ = E(gs, g3) meets infinitely many right
(and, hence, contact) orbits.

Another normal form is the Hesse normal form of an elliptic curve,

24P+ 22+ Aayz=0.

(2) Given 4 lines in C? through 0, defined by a;x + b;y = 0, then

4

= H(aifﬁ—i- biy) € m*,

=1

defines the union of these lines. Similar to the J-invariant for elliptic curves,
there is an invariant of 4 lines (equivalently, 4 points in P'), the cross-ratio

(albg — (Igbl) . (a2b4 — (I4bg)

(a1bg — a4by) - (azbs — aghs)

A direct computation shows that r is an invariant under linear coordinate
changes. Since this is quite tideous to do by hand, we provide the SINGULAR
code for checking this.

ring R = (0,A4,B,C,D,al,a2,a3,a4,b1,b2,b3,b4),(x,y),dp;
ideal i= Ax+By, Cx+Dy; // the coordinate transformation

ideal il = subst(i,x,al,y,bl);
ideal i2 = subst(i,x,a2,y,b2);
ideal i3 = subst(i,x,a3,y,b3);
ideal i4 = subst(i,x,a4,y,bd);

poly rl = (alb3-a3bl)*(a2bd-a4b2);
poly r2 = (alb4-adbl)*(a2b3-a3b2);
// cross-ratio = ri/r2

poly s1 = (i1[1]1*i3[2]-i3[1]1*i1[2])*(i2[1]1*i4[2]-i4[1]*i2[2]);
poly s2 = (i1[11#i4[2]-i4[1]*i1[2])*(i2[1]1*i3[2]-i3[1]1*i2[2]);
// cross-ratio of transformed lines = s1/s2

// The difference of the cross-ratios:

r1/r2-s1/s82;
// =>0

(3) Counsider 3 parabolas which are tangent to each other,

fla,y) = (@—t1y?) - (@ —tay®) - (x—t3°) € (2,5°)°.

Two such polynomials for different (t1,%2,%3) are, in general, not contact
equivalent. We show this for the family
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filzoy) = a(a—y*)(z—ty?).

As in the proof of Theorem 2.58 we make a coordinate change ¢ and then
consider the weighted 6-jet of ¢(f;) — fs. The relation between ¢ and s can be
computed explicitly by eliminating the coefficients of the coordinate change,
but for this the use of a computer is necessary. Here is the SINGULAR code.

ring r = 0,(a,b,c,d,e,f,g,h,i,j,s,t,x,y),dp;
poly ft = x*(x-y2)*(x-sy2);

poly fs = xx(x-y2)*(x-ty2);

ideal i = maxideal(l);

i[13] = ax+by+cx2+dxy+ey2; // phi(x)
i[14] = fx+gy+hx2+ixy+jy2; // phi(y)

map phi = r,i;
poly dd = phi(ft)-fs;

intvec w;

wl13],wl[14]1=2,1; // weights for the variables
coef (jet(dd,3,w),xy); // weighted 3-jet (must be 0)
// => _[1,1]=y3

// -> _[2,1]=b3 // hence, we must have b=0
dd=subst(dd,b,0); // set b=0

// Now consider the weighted 6-jet:
matrix C = coef(jet(dd,6,w),xy);
ideal cc=C[2,1..ncols(C)]; // note: cc=0 iff the weighted
// 6-jets of phi(ft), fs coincide

// —> ccl[1]l=egés-e2g2s-e2g2+e3

// —> cc[2]=agds-2aeg2s-2aeg2+3ae2-t
// => cc[3]=-a2g2s-a2g2+3a2e+t+1

// => cc[4]=a3-1

// We eliminate a,e,g in cc to get the relation between t and s:
eliminate(cc,aeg);

// > _[1]=s6t4-s4t6-2s6t3-3s5t4+3s4t5+2s3t6+s6t2+6s5t3

/> -6s3t5-52t6-3s5t2-bs4t3+5s3t4+3s2t5+3s4t+5s3t2-5s2t3
/> -3st4-s4-653t+65t3+t4+253+352t-3s5t2-2t3-52+t2

// Hence, for fixed t there are at most 6 values of s such that
// ft and fs are contact equivalent

Algorithmic Classification of ADE-Singularities. The proof of the clas-
sification of the simple singularities is actually effective and provides a con-
crete algorithm for deciding if a given polynomial f € m? C Clx1,...,2,},
n > 1, is simple or not, and if it is simple to determine the type of f.

STEP 1. Compute p := p(f). If 4 = oo then f has a non-isolated singularity
and, hence, is not simple.

The Milnor number can be computed as follows: compute a standard basis
sj(f) of j(f) with respect to a local monomial ordering and let L(j(f)) be the



40 I. Singularity Theory

ideal generated by the leading monomials of the generators of sj(f). Then
p = dimg Clzq, ..., z,])/L(f), which can be determined combinatorially (cf.
‘GrP]).

STEP 2. Assume p < co. Let £ be the 2-jet of f and compute

22
8xi8mj(0))'

r := rank (

Then n—r = crk(f) and so if n—7r > 3, then f is not simple. On the other
hand if n—r <1, then fLAu_ If n—r = 2 goto Step 3.

STEP 3. Assume n—r = 2. Note that, in order to decide whether f is of type
D or E, we need only to consider the 3-jet of f(®. That is, by a linear change
of coordinates we get

n
fO =+ 2+ falwr,m) +Zl‘z’gz‘(m), frem®, g em?.
=3

The coordinate change x; — xz; — %gi, i=3,...,n transforms f® into
2 2 3 4
g(x1,22) + 25+ ...+, +h(x), gem’, hem”.

Assume g # 0. If g factors over C into two or three different factors, then
f~D,. If g has only one factor and u € {6,7,8}, then f~E,. If g=0 or
pu ¢ {6,7,8}, then f is not simple (and necessarily u > 8).

The splitting lemma uses linear algebra to adjust the 2-jet of f and then
applies Tschirnhaus transformations in order to adjust higher and higher
order terms. In order to check the number of factors of ¢ one can apply for
example the method discussed in Remark 2.54.1.

Let us treat an example with SINGULAR, using some procedures from the
library classify.1lib.

LIB "classify.lib";
ring R = 0,(x,y,z,t),ds;

poly f = x4+3x3y+3x2y2+xy3+y4+4y3t+6y2t2+4yt3+td+x3+z2+zt;
ideal j = jacob(f);

vdim(std(j)); // the Milnor number
/1l —> 6

corank(f) ; // the corank

/] => 2

poly g = morsesplit(f);

g; // the residual part
// —> x3+x4+3x3y+3x2y2+xy3+y4+16y6

poly h = jet(g,3); // the 3-jet

ideal jh = jacob(h);
nvars(R) - dim(std(jh)); // codim of Sing(h)
//=>1
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Hence, dimC{a},y}/j(g(3)) =1and f~ Eg.

SINGULAR is also able to classify many other classes of singularities. Some of
them can be identified by computing invariants without applying the split-
ting lemma. The procedure quickclass uses this method. Arnol’d’s original
method [AGV] is implemented in the procedure classify.

poly nf = quickclass(f);

// -> Singularity R-equivalent to : E[6k]=E[6]
// —> normal form : z2+t2+x3+xy3+y4

nf;

// => zZ2+t2+x3+xy3+y4
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