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TRANSPORT IN MOLECULAR  
JUNCTIONS

Trieste  2004
Outline:

SOME GENERALITIES
LANDAUER AND KELDYSH PICTURES
MOLECULAR ELECTRONICS CHALLENGES

ELECTRON TRANSFER AND ELECTRON CONDUCTANCE 
CHARGE BUILDUP AT JUNCTIONS - INTERFACES
VOLTAGE ENGINEERING

MECHANISMS: INCOHERENCE
TUNNELING TIMES 
DNA AND MECHANISMS
DYNAMICS AND SWITCHING



McConnell superexchange(1961)

- bridge states contribute only electronic mixing
- electron  never localized on bridge
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Why does a molecule act as a poorer insulator than a vacuum?



strong 
coupling

weak 
coupling

• Coulomb-blockade physics

• sharp orbitals

• e-e interactions

• single-electron tunneling

• gate-effect

• molecule limits transport

• orbitals overlap/broaden

• single electron descrip.

• fractional charges

• gate-effect(?)



Fermi Golden Rule
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Rate constant
Mixing matrix element

Density of final states



Electron Transfer Reactions
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Molecular wires and Electron transfer?

Wire junction ET

electron tunneling electron tunneling
Electrode sink vibronic sink
Electrode interface Donor,acceptor,bridge
Landauer approach Marcus formula

L R D-B-A

Conductance                              Rate constant





This is very useful both for estimation
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And for mechanistic insights ( tomorrow )
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Molecular wire NEGF formula
(Datta)                    

g is conductance                                        
go is quantum of conductance  2e2/h         

G is green’s function ( propagator) 
 Γ Is electrode spectral density

L R



Simulating molecular conduction

FΣ1
Σ2

V

µ1 µ2

Inputs: Molecular Chemistry [H]
Self-consistent Potential [Uscf]
Contact geometry [Σ1,Σ2]
Scattering, Correlations [Σp]

Ghosh, Datta
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1994 version – transport calculation

Mujica, Roitberg, Kemp, MR, 1994



Main Result for SINGLE Molecular Wire

Advantages of the method Typical Spectrum
molecular levels

poles of LUMO HOMO 

Levels 
broadened 
( ∆)

gap

Identify separately contributions to 
transmission probability of molecule & 
interface

Allow identification of chemical 
modifications

Hamiltonian description is an input in 
the method; level of accuracy may 
be chosen 

injecting energy Green’s function or Γ       spectral density

molecule
left 

electrode
right 

electrode
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conductance

all levels  contribute  
at the gap

&Note that g depends dramatically
on the injecting energy

G~



Yaliraki and MR, 1998
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Molecular wire NEGF formula
(Datta)                    

g is conductance                                        
go is quantum of conductance  2e2/h         

G is green’s function ( propagator) 
 Γ Is electrode spectral density

L R
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Cluster Au4-dtb-Au4

Field= 2.4 V; Potential=<Field>-<Differential Grid>

Cluster calculation ( Basch and MR, 2004) shows effective screening at interfaces



Key to chemical reactions in transport junctions
( Ho, Sagiv, Wolkow, Seideman)



Voltage drop: The non-equilibrium charge/potential response
 Au-PDT-Au Junction  Au-BPD-Au Junction



Schottky Barriers in Single-Molecule Electronics

X Y

Z

Device Prototypes : Gold-Phenyl Dithiols (PD)-Gold

Charge Transfer/Electrostatic Potential Change 
= Molecular Junction – Bare Bimetallic Junction – Bare Molecule



Charge Transfer(/(a.u.)^2)Charge Transfer(/(a.u.)^2)

1 Ring1 Ring 3 Rings3 Rings2 Rings2 Rings
Electrostatic Potential Change (Electrostatic Potential Change (eVeV))



Drain (Gold) Source (Gold)

Planar TPD1 Molecule

Non-Planar TPD2 Molecule

X Y
Z(a)

(b)

Band 
Lineup

Similar I-V/G-V
Characteristics



Current Flows Along the Internal Structure of Molecule

Current Flow Pattern in Current Flow Pattern in PlanarPlanar TerphenylTerphenyl DithiolDithiol ((TPD1) Molecule  TPD1) Molecule  

XY Plane: 
Benzene Rings

Direction of 
Current

Current Component
Along Transport 
Direction (Y-axis)



Current Flow Pattern in Current Flow Pattern in NonNon--PlanarPlanar TerphenylTerphenyl DithiolDithiol ((TPD2) MoleculeTPD2) Molecule

XY Plane: 
Left (right) Benzene

Direction of 
Current

Current Component
Along Transport 
Direction (Y-axis)



Comparison of Local Electrostatic/Electrochemical Potential Comparison of Local Electrostatic/Electrochemical Potential 
in Nonin Non--Planar Planar TerphenylTerphenyl DithiolDithiol (TPD2)(TPD2)

Local Electrostatic PotentialLocal Electrostatic Potential

Z=0 (Angstrom)

Z=2.5(Angstrom)



Comparison of Local Electrostatic/Electrochemical Potential Comparison of Local Electrostatic/Electrochemical Potential 
in Planar in Planar TerphenylTerphenyl DithiolDithiol (TPD1)(TPD1)

Local Electrostatic PotentialLocal Electrostatic Potential



Nanotube wires: 
Green’s function-based self-consistent tight-binding modeling of 

nanowire/nanotube electronic/optoelectronic devices

Starting description H0 of the 
isolated nanostructures + Coupling to the contact

Self-consistent-Charge Correction

Applied field+
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Charge density, Potential distribution,
Current, Density of States, ...

Basic modeling methodology:



Starting Hamiltonian:  Self Consistent Extended Huckel Theory

Hamiltonian matrices:

: D i r e c t  n u m e r i c a l  i n t e g r a t i o n
1 / 2 ( )
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H
H H H S

∆

∆ = ∆ + ∆

Wolfsberg/Helmholtz approximation



Conductance is transmission
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Charge transfer and potential change in the Au-
finite SWNT-Au junction

Image effect



Conductance of finite SWNT as a function of their length



Activation Energy Plot (All T)
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McCreery et.al., 2003

Carbon electrode junctions using 
Polyphenylenes show thermal turnover



Why this behavior??

Tune in next time!!




