

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1564 - 35

SPRING COLLEGE ON SCIENCE AT THE NANOSCALE (24 May - 11 June 2004)

SEMICONDUCTORS; DEVICES

Cherie R. KAGAN I.B.M. Thomas J. Watson Research Centre Yorktown Heights, NY, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Making Electrical Contact to Molecules

Cherie R. Kagan

IBM T. J. Watson Research Center Yorktown Heights, NY

Carbon Nanotube Transistor

- Channel Length is 300 nm
- Oxide fabricated on top of CNT

S.J. Wind, J. Appenzeller, R. Martel, and Ph. Avouris, Appl. Phys. Lett. 80 3817 (2002).

Challenges in Fabricating Molecular Junctions Vertical Structures

Global Challenges

Metal penetration through defects in monolayers

domain boundaries voids

A. V. Walker, T. B. Tighe, O. M. Cabarcos, M. D. Reinard, B. C. Haynie, S. Uppili, N. Winograd, D. L. Allara, *J. Am. Chem. Soc.* **126**, 3954 (2004).

Challenges in Fabricating Molecular Junctions: Lateral Geometry

Limitations of e-beam Lithography

Design

As L is narrowed, W must be reduced to achieve lift-off

Product

First Examples of Transport Measurements in Molecular Junctions Kuhn – 1971 Tunneling through Fatty Acids

Scanning Tunneling Microscopy of Molecluar Assemblies

Scanning Tunneling Microscopy: Stochastic Switching in Assembled Molecules

Time interval between frames 6 min.

Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, D. W. Price Jr., A. M. Rawlett, D. L. Allara, J. M. Tour, P. S. Weiss, Science 292, 2303 (2001).

Time

G. K. Ramachandran, T. J. Hopson, A. M. Rawlett, L. A. Nagahara, A. Primak, S. M. Lindsay, Science 300, 1413 (2003).

Stochastic switching – arise from Au-S bond breaking?

4 Å

STM Measurements of Molecules on Si

- NDR when molecular levels cross Si band edge
- Shoulder whne molecular levels cross metal Fermi level

N. P. Guisinger, M. E. Greene, R. Basu, A. S. Baluch, M. C. Hersam, *Nano Lett.* **4**, 55 (2004).

Scanning Tunneling Microscopy of Atoms

Fe adatoms on Cu (111)

M.F. Crommie, C.P. Lutz, D.M. Eigler. *Science* **262**, 218-220 (1993).

Conductive Probe AFM

X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, S. M. Lindsay, *Science* **294**, 571 (2001).

Two-physical contacts allows measurements of conductance

Metal nanocrystal makes "better" contact through covalent bond to S atom on molecule and provides more reliable contact as it is not as dependent on applied force

Metal-Molecule-Metal Sandwiches/Crossbars

D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, and R. Stanley Williams, J. O. Jeppesen, K. A. Nielsen, J. Fraser Stoddart, *Nano Lett.* **4**, 133 (2004).

I-V characteristics are independent of the molecular chemistry

Metal filament formation? Known to give similar characteristics even in thin organic and oxide films for ~40 years

Cold-Gold Evaporation: Metal-Molecule-Metal Rectifying Junctions

Langmuir-Blodgett monolayer of

hexadecylquinolinium tricyanoquinodimethanide

R. M. Metzger, T. Xu, I. R. Peterson, J. Chem. Phys. B 105, 7280 (2001).

Nanopore Geometry

M. A. Reed, Yale University

Decrease probed area to small ~ 30 nm dimension to reduce the probability of defects

J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, *Science* **286**, 1550 (1999).

W. Wang, T. Lee, I. Kretzschmar, M. A. Reed, *Nano Lett.* **4**, 634 (2004).

Using Hg as an Electrode

Hg-SAM/SAM-Hg Junctions

Hg-SAM/SAM-Au or Ag Junctions

M. A. Rampi, O. J. A. Schueller, G. M. Whitesides, *App. Phys. Lett.* **72**, 7281 (1998).

R. E, Holmlin, R. Haag, M. L. Chabinyc, R. F. Ismagilov, A. E. Cohen, A. Terfort, M. A. Rampi, G. M. Whitesides, *J. Am. Chem. Soc.* **123**, 5075 (2001).

Crossed-Wire Junctions

Lorenz Force deflection

I-V characteristics

Inelastic Tunneling Spectroscopy

S. Gregory, *Phys. Rev. Lett.* **64**, 689 (1990).

J. G. Kushmerick, D. B. Holt, S. K. Pollack, M. A. Ratner, J. C. Yang, T. L. Schull, J. Naciri, M. H. Moore, R. Shashidhar, *J. Am. Chem. Soc.* **124**, 10654 (2002).

J. G. Kushmerick, J. Lazorcik, C. H. Patterson, R. Shashidhar, D. S. seferos, G. C. Bazan, Nano Lett. 4, 639 (2004).

In-wire Junctions

J. K. N. Mbindyo,T. E. Mallouk, J. B. Mattzela, I. Kratochvilova, B. Razavi, T. N. Jackson, T. S. Mayer, *J. Am. Chem. Soc.*, **124**, 4020 (2002).

L. T. Cai, H. Skulason, J. G. Kushmerick, S. K. Pollack, J. Naciri, R. Shashidhar, D. L. Allara, T. E. Mallouk, T. S. Mayer, *J. Phys.Chem. B* **108**, 2827 (2004). J. G.Kushmerick, D. L. Allara, T. E. Mallouk, T. S. Mayer, *MRS Bulletin*, June (2004).

Metal-Molecule-Semiconductor Junction

C. P. Collier, J. O. Jeppesen, Y. Luo, J. Perkins, E. W. Wong, J. R. Heath, J. F. Stoddart, *J. Am. Chem. Soc.* **123**, 12632 (2001).

Sandwich Structures on Semiconducting Surfaces

Metal-Insulator-Semiconductor Diodes

 Advantage: MIS control possible unlike metal-insulator-metal (good portion of MIM literature incorrect)

• assemble molecules of varying chain length

calculated capacitance agrees with MIS diode having organic molecules + ~10 Å SiO₂ native oxide C. R. Kagan, C. T. Black + photoresponse measurements to understand barrier heights

D. Vuillame et. al. Apl. Phys. Lett. 69, 1646 (1996).

Molecular Junctions: Rectifiers on Si

S. Lenfant, C. Krzeminski, C. Delerue, G. Allan, D. Vuillaume, *Nano Lett* **3**, 741 (2003).

Mechanically Controllable Break Junctions

J. van Ruitenbeek

before and after reconfiguration of the molecule in the junction

J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, H. v. Löhneysen, *Phys. Rev. Lett.* **88**, 176804 (2002).

Electrochemical Deposition/Re-dissolution to Form Atomic Scale Gaps

In Solution:

0.01 M potassium cyanaurate [KAu(CN)₂]

buffer $\sim pH 10$ composed of:

1 M potassium bicarbonate (KHCO3) and

0.2 M potassium hydroxide KOH

Cyanaurate accepts electron, liberating cyanide, depositing Au

Au counterelectrode

V_{app}=-0.5—0.6V on both electrodes

Monitor I with 4 mV ac bias at 1 Hz, monitor across resistor with lock-in

A. F. Morpurgo and C. M. Marcus, D. B. Robinson, *App. Phys. Lett.* **74**, 2084 (1999).

Similarly for Pt electrodes

Gaps ~1-20 nm

Self-Terminating Electrochemical Method to the Formation of Atomic-scale Gaps

Provides built-in self-termination

1/R_{ext}<G₀ , small gap with conductance determined by tunneling

 $1/R_{ext} > G_0$, conductance with multiple of G_0

R_{gap} depends on tunneling current and leakage current Leakage current depends on electrode geometry and electrolyte concentration

S. Boussaad and N. J. Tao, *App. Phys. Lett.* **80**, 2398 (2002). H.X. He, S. Boussaad, B.Q. Xu, C.Z. Li, N.J. Tao, *J. ElectroAnal. Chem.* **522**, 167 (2002)

Electromigration Junctions

J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, D. C. Ralph, *Nature* **417**, 722 (2002); W. Liang, M. P. Shores, M. Bockrath, J. R. Long, H. Park, *Nature* **417**, 725 (2002).

Bridging the Gap

Layer-by-layer Chemistry to meet the dimensions of standard lithographically defined electrodes

C. Lin, C. R. Kagan *JACS*, **125**, 336 (2003)

The Chemistry of Molecular Assembly

Cherie R. Kagan

IBM T. J. Watson Research Center Yorktown Heights, NY

Molecular Materials and Devices

Build desired functionality into single molecules

Understand the physics and design of molecules and molecular devices to control:

switching potential switching time/mechanism reversibility/stability room T operation solubility self-assembly/orientation molecule-contact resistance/coupling And the list goes on!

Physical Monolayers on a Langmuir-Blodgett Trough

Physical Assembly As in Thin Film Organic Devices

Intermolecular Charge Transport

Collective property of molecules

bate 0 -20 -40 V_{DS}

C. R. Kagan, A. G. Schrott

Low-energy electron microscope monitoring pentacene growth on Si(001) F. J. Meyer zu Heringdorf, M. C. Reuter, R. M. Tromp, *Nature* **412**, 517 (2001).

Chemical Assembly on Surfaces

Immerse substrate in solution of surface-active molecular species for seconds to hours

Closely-packed ordered SAM

tail group Interacts with adjacent or added molecules, air, electrodes

Intermolecular interactions (van der Waals, π - π , ...)

Surface-active head group providing chemisorption to the surface

Interactions:

- molecule-molecule
- molecule-substrate
- molecule-solvent

Affects: ordering, growth, wetting,

Different tail groups may interact through hydrogen bonding, dipolar interactions

Reactive tail groups for multilayer assembly

A. Ulman, Chem. Rev. 96, 1533 (1996).

Classic Example of Fatty Acids

Example: $C_nH_{2n+1}COOH$ + metal containing surface \longrightarrow

acid-base reaction between carboxylic acid and surface metal cation

Classic Example of Silanes

silane + hydroxylated surface surface ----->

Driving force: Polysiloxane connected to surface silanol or other hydroxylated surface

Note: monolayer formation is highly sensitive to surface water

Kuhn, 1971

Understanding the Fabrication and Characteristics of Molecular Devices

Metal-Insulator-Semiconductor Diodes

 Advantage: MIS control possible unlike metal-insulator-metal (good portion of MIM literature incorrect)

• assemble molecules of varying chain length

calculated capacitance agrees with MIS diode having organic molecules + ~10 Å SiO₂ native oxide C. R. Kagan, C. T. Black + photoresponse measurements to understand barrier heights

D. Vuillame et. al. Apl. Phys. Lett. 69, 1646 (1996).

Chemistry to Covalently Bind Molecules to Oxides

Example: tetrahydroxyphenylporphine

- Molecules tried :
- porphyrins
- ferrocene
- pyrene
- anthracene
- all-trans retinol

Works for alcohols, phenols,?

Kagan/Afzali
Molecular Junctions: Rectifiers on Si

S. Lenfant, C. Krzeminski, C. Delerue, G. Allan, D. Vuillaume, *Nano Lett* **3**, 741 (2003).

Other Head Group Chemistries for Self-Assembly on Oxide Surfaces

Phosphonic Acids –

H. Lee, L. J. Kepley, H. G. Hong, T. E. Mallouk, *J. Am Chem. Soc.* **110**, 618 (1988).
H. Lee, L. J. Kepley, H. G. Hong, S. Akhter, T. E. Mallouk, *J. Phys. Chem.* **92**, 2597 (1988).
T. M. Putvinski, M. L. Schilling, H. E. Katz, C. E. D. Chidsey, A. M. Musjsce, A. B. Emerson, *Langmuir* **6**, 1567 (1990)/

Patterning Organic-Inorganic Hybrid Materials

C. R. Kagan, T. L. Breen, L. L. Kosbar, App. Phys. Lett. 79, 3536 (2001).

Patterned Organic-Inorganic Hybrid Thin Film Transistors

Unpatterned

Isolate devices from each other and from back gate

Organic-Inorganic Hybrid Material (C₆H₅C₂H₄NH₃)₂Snl₄ Patterned Devices

-14 5000 Å SiO₂

F+/-40V_

-12

-10

-8

-6

-4

-2

0

0

W/L=63.3

-10

Template: Octadecylphosphonic acid μ = 0.1 cm²/V-sec I_{ON}/I_{OFF} ~ 10⁴

Template: fluorinated alkylsilane μ = 0.52 cm²/V-sec $I_{ON}/I_{OFF} \sim 10^5$

-20 -30

 $V_{DS}(V)$

-40

-50

Self-Assembly of linear acenes on gate oxides

Self-Assembly on High K-Dielectrics

Water Contact Angle: Advancing = 76° Receding = 63°

XPS

	15°	35°	70°
0	31.4	36.4	41.2
С	47.1	36.3	26.2
Al	21.4	27.2	32.5
C/Al	2.20	1.34	0.81

Ellipsometry: Measured Thickness =14.8 Å Calculated: 14 Å

Also: HfO_2 , ZrO_2 , and Y_2O_3

George Tulevski, Qian Miao, Colin Nuckolls (Columbia)

Monolayers on sapphire crystals

Columbia: George Tulevski, Qian Miao, Colin Nuckolls, **BNL:** Masafumi Fukuto, Ben Ocko, Ron Pindak, **IBM:** Cherie Kagan

The next step: tune the three interfaces

Source/Drain: Gold (adhesion layer?) Platinum Derivatized

Gate dielectric:

Aluminum oxide Hafnium oxide Zirconium oxide Crystalline

Viewing down the z-axis of Al_2O_3 and ZrO2

George Tulevski, Qian Miao, Colin Nuckolls, Cherie Kagan (IBM)

Classic Example: Organosulfur, organoselenium

Nuzzo, R.G., Allara, D. L. J. Am. Chem. Soc. 105, 4481 (1983)

Other Head Group Chemistries for Self-Assembly on Metal Surfaces: Example Isocyanides

M. A. Ansell, E. B. Cogan, C. J. Page, Langmuir 16, 1172 (2000).

Directed Assembly of Molecular Devices: Layer-by-Layer Growth of Metal-Metal Bonded Supramolecules

- Bridge channels > 3 nm
- Chemistry meet lithographic capabilities

M = V, Nb, Cr, Mo, W, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag ...

Ligands chosen to tailor:

- Electronic coupling between dimetal units
- Electrochemistry
- Solubility
- Structure

Tailoring the Metal-Metal Bonded Supramolecule

Supramolecules with a variety of crystal structures Compounds previously studied in solution or single crystal form

Metal-Metal Bonded Supramolecules

Assembling Devices:

1 Link axially, functionalize equatorial positions

2 Link equitorially, functionalize axial positions

Cotton, Lin, Murillo Chem. Commun. 2001, 11.

Layer-By-Layer Growth of Metal-Metal Bonded Compounds

Tailor head group of ligand to bind to particular substrate surface

Tailor end group to template metal-metal bonded unit

Choose M-M bond

Choose ligand to bridge M-M bonded units

N,N'-di(p-anisyl)formamidinate

C. Lin, C. R. Kagan JACS, **125**, 336 (2003)

Synthetic Steps for Layer-By-Layer Growth

Monitor Layer-By-Layer Growth by UV-vis Absorption

Monitor Layer-By-Layer Growth by UV-vis Absorption

Monitor Layer-By-Layer Growth via AFM on SiO₂

Monitor Layer-By-Layer Growth via AFM on Au

Electrochemistry of Metal-Metal Bonded Layers

• E° = 406 mV vs Ag/AgCl in 1M NaCl

AFM images showing Layer-by-Layer Growth Across nm Scale Electrodes

Axial Linker

I-V Characteristics of Rh-Rh Supramolecules Grown Layer-by-Layer Across Device Channel

- Room Temperature
- Reproducible "Negative Differential Resistance"
 - Device-to-Device on Same Chip
 - Different Chip
 - Near Perfect Yield
- Not Reversible

Spin-coating Metal-Metal Bond Complex to Form Polycrystalline Thin Film

- compound assembles to form a polycrystalline thin film
- grain structure characteristic of underlying structural motif
- I-V characteristic show similar behavior
- peak potential increases with increasing channel length

Temperature Dependent I-V Characteristics Rh-Rh Supramolecule with DipyridylEthylene Ligand

 $1.0 \\ 0.8 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.0 \\ V (V)$

200-300K

5-300K

Chemical Manipulation : Examples

Controlling Molecular Assembly through Device Geometry

The Physics of Molecular Devices

Cherie R. Kagan

IBM T. J. Watson Research Center Yorktown Heights, NY

Molecular Electronics, Memory, Sensors

Molecular Electronics, Memory, and Sensors Opportunity for Solid State Chemistry and Physics

Understand:

- Molecular design, assembly, and function
- Device Test Structures
- Use Chemistry to Build Devices

Metal-Insulator-Semiconductor Field Effect Transistor (MISFET)

Transistor Scaling (Dennard Scaling)

Its Not Only in Size, But Cost and Functionality

Si FET

Molecular Device

- Silicon and Molecular Devices are governed by electrostatics and eventually limited by tunneling
 - difficult to be much smaller than 2 3 nm

Colleagues

SAMFET:

Ali Afzali Richard Martel Lynne Gignac Paul Solomon Alex Schrott Bruce Ek

Contributions From:

ASTL, Ying Zhang, CSS (Nina Ruiz), T. Domenicucci, Chun Lin Frank Meyer zu Heringdorf, Mike Prikas, Dave Medeiros, Vincent Derycke, Harry Hovel, Paul Andry, James Vishiconti Special Thanks: Ruud Tromp, David Frank, Norton Lang, Phaedon Avouris, Philip Wong

Cartoon:

- What do the structures really look like?
- Do dithiols form ordered/oriented monolayers?
- Can Au be deposited on the trench bottom without coating the sidewalls?

Device Mysteries:

- L<<t_{dielectric layer}
 - Gate field penetrate channel?
 - Long channel behavior?
- At 0 V_G , the device is OFF ?
- Subthreshold slope better than kT/q?

Device Structures - Trenches

Cross-section:

Two approaches:

- RIE using (100) p+ Si (note difficult to RIE vertical sidewalls in n+ Si, too much lateral etching)
- Wet chemical etch into (110) n+ Si (note can't wet etch into p+ Si)

C. R. Kagan, A. Afzali, R. Martel, L. Gignac, P. Solomon, B. Ek, Nanoletters, 3, 119 (2003).

TEM Images of RIE Trench with Bottom Electrode Deposited By Collimated Source

D. B. Kao, J. P. McVittie, W. D. Nix, K. C. Saraswat. IEEE Trans. Elect. Dev. 34, 1008-1017 (1987).

EDS Data of Gold Electrode in RIE Trenches

(110) Trenches: KOH Anisotropic Etch

Alignment within +/- 0.1° necessary

- wafer flat cut accurate to +/- 0.5°
- Two stage process: alignment pattern first be etched to accurately locate {-1,1,1}

Small misalignment produces:

- Lower aspect ratio (h/L)
- Non-vertical sidewalls

Additional requirements for high aspect ratio and finish:

- High KOH concentration = 44% (isopropanol added to improve surface finish)
- Rate and finish strongly dependent on:
 - Temperature of bath
 - Agitation (avoid bubble formation at Si surface)

Alignment of mask with the {-1,1,1} plane is critical

(110) Trench After Oxidation

STM of 1,1'-biphenyl-4,4'-dithiol and hexanethiol Assembled on Flame-Annealed Au/Mica

1,1'-biphenyl-4,4'-dithiol

hexanethiol

- biphenyldithiol bound to surface, but not well-ordered
- disorder in dithiols consistent with literature
- disorder in biphenylthiols consistent with literature

Trench Structure with 1,1'-biphenyl-4,4'-dithiol

"Monolayer"

"Multilayer"

characteristics of hundreds of devices in the trench structure and thousands in the planar structure

representative of ~1% of devices solution for assembly allowed to dry on surface

Devices do not turn OFF

No observed gate effect

Key Requirements for Molecular FETs: Gate Modulation of the Conductance

In Si MOSFETs, L $\gtrsim 1.5 \ t_{dielectric}$

to attain a gate field not dominated by the drain field

as described by Poisson's equation

Scaling to Molecular Dimensions

$$t_{dielectric} \lesssim L$$

yet $t_{\mbox{\tiny dielectric}}$ cannot be leaky

even for an anisotropic molecule, the component of the drain field in the direction of the gate field may dominate

Many mechanisms for molecular switching may be envisioned but the device electrostatics must work

Organic Thin Film Transistors

Intermolecular Charge Transport

Collective property of molecules

Channel Lengths ~ µm

Organic Semiconductor Performance Trends

Where New Materials May Impact Technology

Head-mounted Display

IBM Watchpad

Palm Pilot

IBM ThinkPad

RFID Tags

Smartcards

Electronic Newspaper R. Steinbugler, IBM

Synthesis of a Pentacene precursor via Hetero Diels-Alder Reaction

mild heating

A. Afzali, C. D. Dimitrakopoulos, T. L. Breen, JACS 124, 8812 (2002).

03

S

Device Stability of Photoimageable Pentacene Precursor

N-sulfinylmethylacrylamide pentacene adduct

Photoimageable precursor

A. Afzali, C. D. Dimitrakopoulos, T. O. Graham, Adv. Mat. (in press).

Device measured and stored in ambient

Important Device Characteristics Beyond Mobility and On-Off Ratio

Cycling Devices Channel Length Dependent Stability

Cycle Devices 10001x V_G -/+ 100V @ -100 V_{DS}

> Mobility drops dramatically with decreasing channel length Mobility varies between ~0.015-0.06 cm²/V-sec in these devices

Oxide Thickness Dependence of Carrier Mobility

Fields not perfectly scaled, but lower V reduces decay in device mobility

Vacuum Evaporated Pentacene

Mobility of solution deposited films 0.015-0.06 cm²/V-sec Mobility of vacuum deposited film 0.6 cm²/V-sec Vacuum deposited film less stable – power density limitation of evaporated film or chemical stability/morphology of soluble precursor

Channel Length Dependent Current Density

At same voltages (various source-drain fields), higher current densities not maintained As number of scans increased current density drops and plateaus

Oxide Thickness Dependence of Current Density

At lower voltages, source-drain fields, device can maintain a higher current density suggests stability is limited by power density and scaling devices may be used to achieve desired current densities

Solution versus Vacuum Evaporated Pentacene Achievable Current Density

Evaporated film current density drops more dramatically, but plateaus at high level