

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1564 - 37

SPRING COLLEGE ON SCIENCE AT THE NANOSCALE (24 May - 11 June 2004)

BIOMOLECULES; SIMULATION

Michele PARRINELLO

CSCS, ETH, Zürich, Switzerland

These are preliminary lecture notes, intended only for distribution to participants.

Pushing back the frontiers of computer simulations

Michele Parrinello

Department of Chemistry and Applied Biosciences ETH USI Campus, Lugano, Switzerland

Molecular dynamics

Given a potential energy surface:

$$U(R_1, R_2, \ldots, R_N)$$

The dynamics can be determined from Newton's equation:

$$\boldsymbol{M}_{I}\boldsymbol{\ddot{R}}_{I} = -\nabla \boldsymbol{U}(\boldsymbol{R}_{1},\boldsymbol{R}_{2},\ldots,\boldsymbol{R}_{N})$$

Empirical potentials

- Molecular mechanics: Intramolecular forces: bond stretch, bending, torsion
- Electrostatic interactions:
 Partial charges, dipoles, polarization
- Van der Waals interactions: Lennard-Jones, Buckingham potential
- Embedded-atom methods: Finnis-Sinclair, Glue model, Daw-Baskes

Pros and cons

PROS

- Efficient
- Accurate in specific cases

CONS

- Not transferable
- No chemistry

Dealing with the electrons

Hartree-Fock

$$\Psi(x_{1},...,x_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \varphi_{1}(x_{1}) & \cdots & \varphi_{1}(x_{N}) \\ \vdots & \ddots & \vdots \\ \varphi_{N}(x_{1}) & \cdots & \varphi_{N}(x_{N}) \end{vmatrix}$$
$$\left[-\frac{1}{2} \nabla + V_{n}(x) + \sum_{j \neq i} \int \frac{1}{|x - x'|} |\varphi_{j}(x')|^{2} dx' - J \right] \varphi_{i}(x) = \varepsilon_{i} \varphi_{i}(x)$$

Exchange operator:

$$J\varphi_i(x) = \frac{1}{2} \sum_j \int \varphi_j(x) \frac{1}{|x-x'|} \varphi_j^*(x') \varphi_i(x') dx'$$

Beyond Hartree-Fock

Adding correlations

Perturbation theory MP2, MP4, ... N⁴, N⁵
 Configuration interaction exp(N)
 Coupled clusters N⁶, N⁷

Small is beautiful!

Hohenberg-Kohn

The energy of the ground state of a many-body system is a unique functional of the electron density:

 $E = E[\rho_e(r)]$

The functional is minimum for the ground state density:

 $E = E[\rho_e(r)] - \mu N$ $\frac{\delta E[\rho_e(r)]}{\delta \rho_e(r)} = \mu$

Kohn-Sham

$$\rho_{e}(r) = 2 \sum_{n} \psi_{n}^{*}(r) \psi_{n}(r)$$

$$E = -\frac{1}{2} \sum_{n} \int dr \psi_{n}^{*}(r) \nabla \psi_{n}(r) + \int dr \rho_{e}(r) V_{ext}(r)$$

$$+ \frac{1}{2} \int dr dr '\rho_{e}(r) \frac{1}{|r-r'|} \rho_{e}(r') + E_{xc} [\rho_{e}(r)]$$

$$\left(-\frac{1}{2} \nabla + V_{ext}(r) + V_{H}(r) + V_{xc}(r)\right) \psi_{n}(r) = \varepsilon_{n} \psi_{n}(r)$$

$$V_{H}(r) = \int dr' \frac{1}{|r-r'|} \rho_{e}(r') \qquad V_{xc}(r) = \frac{\delta E_{xc} [\rho_{e}(r)]}{\delta \rho_{e}(r)}$$

Born-Oppenheimer

The potential energy surface is defined by the instantaneous ground state electronic energy:

$$\phi(R_1,R_2,\ldots,R_N) = E_0(R_1,R_2,\ldots,R_N)$$

But

$$E_0(R_1,R_2,\ldots,R_N)$$

needs to be approximated. We shall choose a theory which has the right balance between accuracy and computational efficiency.

Ab-initio MD

$$L = \frac{1}{2} \mu \sum_{n} \int dr \left| \dot{\psi}_{n}(r) \right|^{2} + \sum_{I} \frac{1}{2} M_{I} \dot{R}_{I}^{2} - E_{KS} \left[\psi_{n}, R_{I} \right]$$
$$+ \sum_{n,m} \Lambda_{n,m} \left(\left\langle \psi_{n} \left| \psi_{m} \right\rangle - \delta_{n,m} \right) \right)$$
$$\omega_{e} \propto \sqrt{\frac{E_{g}}{\mu}} \ll \omega_{I}$$

Car-Parrinello molecular dynamics

Some problems

Going to larger systems

Field theoretical approach

S QM/MM

DFT-based potentials

Plane wave basis set

Which basis set?

Plane Waves

- Orthogonal
- No chemical input
- Convergence easy to check
- Simple algebra
- Memory intensive
- Linear algebra and FFT
- No basis set superposition error

www.cpmd.org

Gaussians

- Non orthogonal
- Chemical input
- Convergence less easy to check
- More complex
- Reduced memory
- Quantum Chemistry know-how
- Basis set superposition error

cp2k.berlios.de

Basis set expansion

Orbitals Φ_i are expanded in a set of M basis functions $\{\chi_{\alpha}\}$

$$\Phi_i(r) = \sum_{i=1}^M c_{\alpha i} \, \chi_\alpha(r)$$

Basis functions

- Atomic orbital based (Gaussian, Slater, numerical)
- Plane waves
- Grid based, finite elements, wavelets

Basis set expansion

$$\begin{split} S_{\alpha\beta} &= \int \chi_{\alpha}^{*}(r) \ \chi_{\beta}(r) \ dr & \text{overlap matrix} \\ H_{\alpha\beta} &= \int \chi_{\alpha}^{*}(r) \ \mathcal{H}(r) \ \chi_{\beta}(r) \ dr & \text{Hamiltonian matrix} \\ E_{ij} &= \delta_{ij} \ \epsilon_{i} & \text{Orbital energies} \\ \end{split}$$

Orbitals

Density matrix

$$P_{\alpha\beta} = 2\sum_{i=1}^{N_e/2} c_{\alpha i} c_{\beta i}^*$$

Properties of the density matrix

$$Tr(\mathbf{PS}) = \sum_{\alpha\beta}^{M} P_{\alpha\beta} S_{\alpha\beta} = N_e$$

normalisation

$$P = \frac{1}{2}PSP$$

idempotency

Density matrix

- Unique
- Electron density

$$\rho(r) = \sum_{\alpha\beta} P_{\alpha\beta} \chi_{\alpha} \chi_{\beta}^{*}$$

• Expectation values

$$\langle \mathcal{O} \rangle = \operatorname{Tr}(P\mathcal{O})$$

 $\sum_{i} \epsilon_{i} = \operatorname{Tr}(PH)$

Gaussian basis

Basis functions

$$\chi(r) = x^l y^m z^n \exp[-\alpha r^2]$$

Product of basis functions

$$\chi(r-A) \ \chi(r-B) = \tilde{\chi}(r-C)$$

Localization

$$\exp[-\alpha r^2] \to \mathsf{FFT} \to \exp[-\frac{G^2}{4\alpha}]$$

DFT with gaussians

The best of both worlds

Linear scaling

V

Standard approach

Solve by diagonalization

$$H_{\mu\nu}C^{\nu i} = S_{\mu\delta}C^{\delta i}\mathcal{E}_{i} \qquad i = 1...N$$

Construct P
$$P^{\mu\nu} = \sum_{i}C^{\mu i}C^{\nu i}$$

Orbital rotation

$$C(X) = C_0 \cos(\sqrt{X^T S X}) + X \frac{\sin(\sqrt{X^T S X})}{\sqrt{X^T S X}}$$
$$X^T S C_0 = 0 \qquad C(X)^T S C(X) = 1 \ \forall X$$

Minimize the energy with respect to X

Overall cubic scaling

Accurate forces

Checking the eigenstates

DNA crystal

2388 atoms, 3960 orbitals DZV(d,p) 22596, TZV(2d,2p) 38688 675, 1100 sec / line search (SP4-32-1.3G) 2.5, 5 h /total Not yet fully cubic (45,43,8 % 3,2,1) Not yet sparse

One order of magnitude better

Why should one combine QM and MM?

Bio-systems are typically very large and catalyse

complicated reactions

- Proteins >1000 atoms
- Solvent >10000 atoms
- The active site ~ 100 atoms

Mixed Quantum-Classical QM/MM- Car-Parrinello Simulations

- highly parallel QM/MM Car-Parrinello hybrid code
 Fully Hamiltonian
- MD driver: CPMD

QMI-Part: CPMID 3.3 (pbcs (2 boxes), plane waves, pseudo potentials, GGAs: BP86, BLYP, PW91, PBE...) n-1 nodes

MM-Part: GROMOS96 + P3M, AMBER) 1 node

Interface Region

Quantum Region (Car-Parrinello)

Classical Region

77/

QM/MM- Car-Parrinello Simulations

- Development of improved QM/MM interfaces:
 - pseudo potentials for boundary atoms
 - efficient treatment of long-range electrostatics
 - electron spill out problem

The Bonded Part

•boundary atoms: monovalent pseudopotential

• distances - angles - torsions involving MM and QM atoms come from the force field

Mixed Quantum-Classical Simulations

Explicit dependence of q^{ESP} on the positions of all the MM and QM atoms and on the electronic density

QM/MM

A. Laio, J. VandeVondele and U. Röthlisberger, Chem. Phys. 116, 6941(2002)

Capturing the complexity

The way of the future?

The quickstep team

J. Hutter, University of Zurich J. VandeVondele, University of Cambridge W. I-Feng Kuo, LLNL C. Mundy, LLNL Fawzi Mohammed, ETH Lugano M. Krack, ETH Lugano G. Lippert, BASF M. McGrath, LLNL I. Siepman, LLNL

Why should one combine QM and MM?

Bio-systems are typically very large and catalyse complicated reactions

- Proteins >1000 atoms
- Solvent >10000 atoms
- The active site ~ 100 atoms

Mixed Quantum-Classical QM/MM- Car-Parrinello Simulations

- highly parallel QM/MM Car-Parrinello hybrid code
- Fully Hamiltonian
- MD driver: CPMD

QM-Part: CPMD 3.3 (pbcs (2 boxes), plane waves, pseudo potentials, GGAs: BP36, BLYP, PW91, PBE...) n-1 nodes

MM-Part: GROMOS95 + P3M, AMBER) 1 node **Interface Region**

Quantum Region (Car-Parrinello)

Classical Region

777

QM/MM- Car-Parrinello Simulations

- Development of improved QM/MM interfaces:
 - pseudo potentials for boundary atoms
 - efficient treatment of long-range electrostatics
 - electron spill out problem

The Bonded Part

boundary atoms: monovalent pseudopotential

• distances - angles - torsions involving MM and QM atoms come from the force field

Mixed Quantum-Classical Simulations

 $\rho(nr1i,nr2j,nr3k)$

 charges, located on the QM atoms, are fitted to the electrostatic fields on the MM atoms due to the electronic charge distribution

Explicit dependence of q^{ESP} on the positions of all the MM and QM atoms and on the electronic density

QM/MM

A. Laio, J. VandeVondele and U. Röthlisberger, Chem. Phys. 116, 6941(2002)

Capturing the complexity

The way of the future?

The time scale problem

Direct simulation allows only very short runs: ~ 10 ps for ab-initio MD, ~10 ns for classical MD

Many relevant phenomena take place on a larger time scale: chemical reactions, conformational changes, protein folding, etc.

Two-fold strategy:

a) Finding reactive pathsb) Exploring the free energy surface

Activated events

The quantum chemical approach

× Find the saddle point on the PES

X Use transition state theory

× Correct for zero point motion

77;

Many different solutions proposed

- Thermodynamic integration
- "Flattening" the surface (hyperdynamics, puddle-skimming, umbrella sampling, etc.)
- Trajectory-based schemes (reaction path sampling, Lagrangian action minimization, nudged elastic band, etc.)

Finding the saddle points (eigenvalue following, dimer method, hessian-based methods, etc.)

- Temperature enhanced sampling (histogram reweighting, parallel tempering, etc.)
- Etc. etc.

Driving the reaction

Suppose that the reaction coordinate q is known:

$$q(R_1, R_2, \ldots, R_N) = q$$

We force the reaction by adding a constraint term to the dynamics with a Lagrange multiplier:

$$\lambda (q(R_1, R_2, ..., R_N) - q)$$

$$\langle \lambda \rangle \approx \frac{\partial F}{\partial q}$$

The activation energy is:
$$\Delta F = \int_{q_A}^{q^*} dq \langle \lambda \rangle_q$$

The right reaction path?

Activated events are often intrinsically multidimensional!!!

Life is complicated

Life is complicated

How to explore a multidimensional free energy surface?

Need to be able to escape free energy minima

Our solution: Non-Markovian coarse-grained dynamics

A. Laio and M. Parrinello, PNAS

Collective variables

Choose a small set of slow collective variables:

i = 1, n

The s_i :

- Discriminate between reactants and products
- Include all the relevant slow modes
- * The reaction coordinate is a linear combination of the s_i

77/

Examples of collective variables

- Distances
- Angles: bending and torsional
- Coordination numbers: between individual atoms
- or between different species
- Local electric fields
- Number of n-fold rings
- Solvation energy
- Lattice vectors
- Energy
- Etc. etc.

Probability distribution

$$P(S_1, S_2, \dots, S_n) = \frac{\int d\vec{R}_I \prod_{i}^n \delta\left(S_i - s_i(\vec{R}_I)\right) e^{-\beta V\left(\vec{R}_I\right)}}{\int d\vec{R}_I e^{-\beta V\left(\vec{R}_I\right)}}$$

We want to study the free energy as a function of these variables:

$$\beta F(S_1, S_2, ..., S_n) = -\ln P(S_1, S_2, ..., S_n)$$

The algorithm:

Wherever you go put a "small" Gaussian
Always move in the direction of the direction that minimizes the sum of V(s) and all the Gaussians

77;

NaCl in water

Two minima:	Contact ion pair (metastable) Dissociated
Collective coordinates:	Electric field on Na ⁺ Electric field on Cl ⁻ Distance Na ⁺ Cl ⁻
Classical MD:	Amber force field

Free energy surface

Dialanine in water

1 dialanine in 287 TIP3P water

AMBER95 force field

Collective coordinates: backbone dihedral angles Φ and Ψ

Stationary action principle

$$L = \frac{1}{2}\dot{q}^2 - V(q)$$

$$\ddot{a}S = \ddot{a}\int_{t_A}^{t_B} L(q(t), \dot{q}(t)) dt = 0$$

$$q(t_A) = q_A \qquad q(t_B) = q_B$$

Can we use this principle to find the trajectories?

Saddle point!

Folding a small peptide

Motivation and aims

Oxidatitive damage to DNA is common and has fatal consequences

Guanine, having the lowest oxidation potential among the DNA bases, plays a fundamental role

Does the structure of DNA funnel the reactions towards a unique product?

A continuous metadynamics

M. Iannuzzi, M. Laio and M. Parrinello, PRL 2003

From azulene to naphthalene

Science fiction?

L.T. Scott, Acc. Chem. Res. 52, 15 (1982)

G⁺ localization how?

G^{+.} can be formed: Directly 1. Hole 2. Via hole migration Migration

Chem. Rev. 98, 1109-1151 (1998)

77/

Computational details

Model G:C decamer, Z conformation

X-ray structure available

Rich in G and the smallest cell Electronic structure treated by the Kohn-Sham method

BLYP and HCTH functionals, plane waves (70Ry cutoff)

Martin-Troullier pseudopotentials

Car-Parrinello molecular dynamics, CPMD code

777

Computational details

The hole localizes on G⁺ and the proton moves to C

The model includes water and counter ions **1194 atoms** Full quantum: 3,960 valence electrons, 408,238 PW!

The HOMO of DNA

DNA laboratory specimen The full Monty

- 1194 atoms 1980 states
- 408.238 PW 13 Gb

F. Gervasio, P. Carloni and M.P., PRL

HOMO

Fate of G^{+.} in DNA

In duplex DNA the protonation is not clear

CH⁺ has a pKa of 4.3 (G⁺: pKa 3.9)

_ Sharing of proton expected

 $K_{exp} = 2.5$ is predicted from experiments in water Is this relevant for DNA?

Bridging length scale

Most calculations were done in the QM/MM framework.

Laio A., VandeVondele J. and Roethlisberger U., J.Chem. Phys. 116, 6941(2002)

Due to high polarity of bonds H-capping was used. Added H were decoupled to MM.

Quantum sub-systems of increasing size were used.

The biggest quantum model was the full DNA.

Protonation state of the bases: gas phase

Protonation state of the bases: DNA

DNA $\Delta E(\text{kcal/mol})$:	
Gas phase: $\sim 2./3$.	(inversion)
QM/MM	-4.5
No charge	-1.2
Quantum PO ₄ ³⁻ /full	-3.7 /-3.9
Charge on PO_4^{3-} and su	ıgar –5.3
$\Delta\Delta E \sim 7-8$	

Sources

Backbone charges	~3
Error (QM/MM, exclusion)	<1
Geometry	3-4

Fate of G^{+.} in DNA

In duplex DNA the oxidation product is 8-oxo-guanine (8oxoG)

30,000 8-oxoG in human genome! *Methods Enzymol.* **186**, *521 (1990)*

In water a variety of products are formed

777

Oxidation reaction 1

Meta coordinates used: N1 and water oxygen H-coordination number Carbon 8 O-coordination number Rate limited by water autoprotolysis Catalyzed by $R_2PO_4^-$ N1 protonation state matters ΔE N1 deprotonation of 8-OH-G:

Oxidation reaction

