SPRING COLLEGE ON SCIENCE AT THE NANOSCALE
(24 May - 11 June 2004)

BIOMOLECULES; SIMULATION

Michele PARRINELLO

 CSCS, ETH, Zürich, Switzerland
Pushing back the frontiers of computer simulations

Michele Parrinello

Department of Chemistry and Applied Biosciences ETH
USI Campus, Lugano, Switzerland

Molecular dynamics

Given a potential energy surface:

$$
U\left(R_{1}, R_{2}, \ldots, R_{N}\right)
$$

The dynamics can be determined from Newton's equation:

$$
M_{I} \ddot{\boldsymbol{R}}_{I}=-\nabla U\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}, \ldots, \boldsymbol{R}_{N}\right)
$$

Empirical potentials

- Molecular mechanics: Intramolecular forces: bond stretch, bending, torsion
- Electrostatic interactions: Partial charges, dipoles, polarization
- Van der Waals interactions: Lennard-Jones, Buckingham potential

- Embedded-atom methods: Finnis-Sinclair, Glue model, Daw-Baskes

Pros and cons

PROS- Efficient- Accurate in specific cases
CONS

- Not transferable- No chemistry

Dealing with the electrons

$$
H \psi\left(r_{1}, \ldots, r_{M} ; R_{1}, \ldots, R_{N}\right)=E \psi\left(r_{1}, \ldots, r_{M} ; R_{1}, \ldots, R_{N}\right)
$$

Hartree-Fock

$$
\left.\begin{array}{c}
\Psi\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{\sqrt{N!}} \left\lvert\, \begin{array}{ccc}
\varphi_{1}\left(x_{1}\right) & \cdots & \varphi_{1}\left(x_{N}\right) \\
\vdots & \ddots & \vdots \\
\varphi_{x}\left(x_{1}\right) & \cdots & \varphi_{s}\left(x_{N}\right)
\end{array}\right. \\
{\left[-\frac{1}{2} \nabla+V_{n}(x)+\sum_{j=1} \int \frac{1}{x-x^{\prime} \mid} \varphi_{i}\left(x^{\prime}\right)^{2} d x^{\prime}-J\right]}
\end{array}\right] \varphi_{i}(x)=\varepsilon_{i} \varphi_{i}(x) \quad .
$$

Exchange operator:

$$
J \varphi_{i}(x)=\frac{1}{2} \sum_{j} \int \varphi_{j}(x) \frac{1}{x-x^{\prime}} \varphi_{j}^{*}\left(x^{\prime}\right) \varphi_{i}\left(x^{\prime}\right) d x^{\prime}
$$

Beyond Hartree-Fock

Adding correlations

- Perturbation theory MP2, MP4, ...
$\mathrm{N}^{4}, \mathrm{~N}^{5}$
- Configuration interaction
$\exp (\mathrm{N})$
- Coupled clusters
$\mathrm{N}^{6}, \mathrm{~N}^{7}$

Small is beautiful!

Hohenberg-Kohn

The energy of the ground state of a many-body system is a unique functional of the electron density:

$$
\boldsymbol{E}=\boldsymbol{E}\left[\rho_{e}(r)\right]
$$

The functional is minimum for the ground state density:

$$
\begin{gathered}
\boldsymbol{E}=\boldsymbol{E}\left[\rho_{e}(\boldsymbol{r})\right]-\mu \boldsymbol{N} \\
\frac{\delta \boldsymbol{E}\left[\rho_{e}(\boldsymbol{r})\right]}{\delta \rho_{e}(\boldsymbol{r})}=\mu
\end{gathered}
$$

Kohn-Sham

$$
\begin{gathered}
\rho_{e}(\boldsymbol{r})=2 \sum_{n} \psi_{n}^{*}(\boldsymbol{r}) \psi_{n}(\boldsymbol{r}) \\
\boldsymbol{E}=-\frac{1}{2} \sum_{n} \int \boldsymbol{d r} \psi_{n}^{*}(\boldsymbol{r}) \nabla \psi_{n}(\boldsymbol{r})+\int d r \rho_{e}(\boldsymbol{r}) V_{e x t}(\boldsymbol{r}) \\
+\frac{1}{2} \int d r d r^{\prime} \rho_{e}(\boldsymbol{r}) \frac{1}{\left|r-\boldsymbol{r}^{\prime}\right|} \rho_{e}\left(\boldsymbol{r}^{\prime}\right)+\boldsymbol{E}_{x c}\left[\rho_{e}(\boldsymbol{r})\right] \\
\left(-\frac{1}{2} \nabla+V_{e x t}(\boldsymbol{r})+V_{H}(\boldsymbol{r})+V_{\mathrm{xc}}(\boldsymbol{r})\right) \psi_{n}(\boldsymbol{r})=\varepsilon_{n} \psi_{n}(\boldsymbol{r}) \\
V_{H}(\boldsymbol{r})=\int d \boldsymbol{r}^{\prime} \frac{1}{\left|r-\boldsymbol{r}^{\prime}\right|} \rho_{e}\left(\boldsymbol{r}^{\prime}\right) \quad V_{x c}(\boldsymbol{r})=\frac{\delta E_{x c}\left[\rho_{e}(\boldsymbol{r})\right]}{\delta \rho_{e}(\boldsymbol{r})}
\end{gathered}
$$

Born-Oppenheimer

The potential energy surface is defined by the instantaneous ground state electronic energy:

$$
\phi\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}, \ldots, \boldsymbol{R}_{N}\right)=\boldsymbol{E}_{0}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}, \ldots, \boldsymbol{R}_{N}\right)
$$

But

$$
E_{0}\left(R_{1}, R_{2}, \ldots, R_{N}\right)
$$

needs to be approximated. We shall choose a theory which has the right balance between accuracy and computational efficiency.

Ab-initio MD

$$
\begin{gathered}
L=\frac{1}{2} \mu \sum_{n} \int d r \dot{\psi}_{n}(r)^{2}+\sum_{I} \frac{1}{2} M_{I} \dot{R}_{I}^{2}-\boldsymbol{E}_{K S}\left[\psi_{n}, \boldsymbol{R}_{I}\right] \\
+\sum_{n, m} \Lambda_{n, m}\left(\left\langle\psi_{n} \mid \psi_{m}\right\rangle-\delta_{n, m}\right) \\
\omega_{e} \propto \sqrt{\frac{\boldsymbol{E}_{g}}{\mu}} \ll \omega_{I}
\end{gathered}
$$

Car-Parrinello molecular dynamics

$$
\begin{gathered}
\mu \ddot{\psi}_{i}=-\frac{\delta E^{D F T}}{\delta \psi_{i}^{*}}+\sum_{j} \Lambda_{i j} \psi_{j} \\
M_{I} \ddot{\mathbf{R}}_{I}=-\nabla_{\mathbf{R}_{I}} E^{D F T} \\
\mu_{q} \ddot{\alpha}_{q}=-\frac{\partial E^{D F T}}{\partial \alpha_{q}}
\end{gathered}
$$

Some problems

+ Size
+ Time scale
+ Accuracy
* Non Born-Oppenheimer

Going to larger systems

- New Gaussian-based code QUICKSTEP
n. Field theoretical approach
- $\mathrm{QM} / \mathrm{MM}$
n. DFT-based potentials

Plane wave basis set

Plane wave expansion: $\psi_{i}(\mathbf{x})=\Sigma_{\mathbf{G}} \mathrm{C}_{i}(\mathbf{G}) \mathrm{e}^{\mathbf{i} \mathbf{G} \mathbf{x}}$

G are the reciprocal space vectors.
The Hilbert space spanned by $\mathbf{P W s}$ is truncated to a cut-off $\mathbf{G}^{2} / 2<E^{\text {cut }}$

Which basis set?

Plane Waves

- Orthogonal
- No chemical input
- Convergence easy to check
- Simple algebra
- Memory intensive
- Linear algebra and FFT
- No basis set superposition error

Gaussians

- Non orthogonal
- Chemical input
- Convergence less easy to check
- More complex
- Reduced memory
- Quantum Chemistry know-how
- Basis set superposition error

Basis set expansion

Orbitals Φ_{i} are expanded in a set of M basis functions $\left\{\chi_{\alpha}\right\}$

$$
\Phi_{i}(r)=\sum_{i=1}^{M} c_{\alpha i} \chi \alpha(r)
$$

Basis functions

- Atomic orbital based (Gaussian, Slater, numerical)
- Plane waves
- Grid based, finite elements, wavelets

Basis set expansion

$$
\begin{array}{rlr}
S_{\alpha \beta} & =\int \chi_{\alpha}^{*}(r) \chi_{\beta}(r) d r & \text { overlap matrix } \\
H_{\alpha \beta} & =\int \chi_{\alpha}^{*}(r) \mathcal{H}(r) \chi_{\beta}(r) d r & \text { Hamiltonian matrix } \\
E_{i j} & =\delta_{i j} \epsilon_{i} & \text { Orbital energies } \\
& H C=S C E &
\end{array}
$$

Orbitals

$$
\begin{array}{rlr}
C^{\dagger} S C & =1 & \text { Orthogonality } \\
E[C] & =E\left[C^{\prime}\right] & \text { Invariant } \\
C^{\prime} & =C U & \\
U^{\dagger} U & =1 &
\end{array}
$$

Density matrix

$$
P_{\alpha \beta}=2 \sum_{i=1}^{N_{e} / 2} c_{\alpha i} c_{\beta i}^{*}
$$

Properties of the density matrix

$$
\begin{aligned}
\operatorname{Tr}(\boldsymbol{P S}) & =\sum_{\alpha \beta}^{M} P_{\alpha \beta} S_{\alpha \beta}=N_{e} & & \text { normalisation } \\
\boldsymbol{P} & =\frac{1}{2} \boldsymbol{P S} \boldsymbol{P} & & \text { idempotency }
\end{aligned}
$$

Density matrix

－Unique
－Electron density

$$
\rho(r)=\sum_{\alpha \beta} P_{\alpha \beta} \chi_{\alpha} \chi_{\beta}^{*}
$$

－Expectation values

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\operatorname{Tr}(P \mathcal{O}) \\
\sum_{i} \epsilon_{i} & =\operatorname{Tr}(P H)
\end{aligned}
$$

Gaussian basis

Basis functions

$$
\chi(r)=x^{l} y^{m} z^{n} \exp \left[-\alpha r^{2}\right]
$$

Product of basis functions

$$
\chi(r-A) \chi(r-B)=\tilde{\chi}(r-C)
$$

Localization

$$
\exp \left[-\alpha r^{2}\right] \rightarrow \text { FFT } \rightarrow \exp \left[-\frac{G^{2}}{4 \alpha}\right]
$$

DFT with gaussians

The best of both worlds

$$
\begin{array}{cc}
\text { Gaussian } & \begin{array}{c}
\text { PW } \\
\text { (real) }
\end{array} \\
\rho & \begin{array}{c}
\text { PW } \\
\text { (Reciprocal) }
\end{array} \\
\sum_{\mu v} P^{\mu v} \phi_{\mu}(\mathbf{r}) \phi_{v}(\mathbf{r}) \xrightarrow[\text { space }]{\text { real }} \rightarrow n(\mathbf{r}) \xrightarrow[\text { FFT }]{\longrightarrow} n(\mathbf{G})
\end{array}
$$

Linear scaling

Standard approach

Solve by diagonalization

$$
\begin{array}{rr}
H_{\mu \nu} C^{v i}=S_{\mu \delta} C^{\delta i} \varepsilon_{i} & i=1 \ldots N \\
\text { Construct } \mathrm{P} & \mu, v, \delta=1 \ldots M \\
P^{\mu \nu}=\sum_{i} C^{\mu i} C^{v i} &
\end{array}
$$

Orbital rotation

$$
\begin{aligned}
& C(X)=C_{0} \cos \left(\sqrt{X^{T} S X}\right)+X \frac{\sin \left(\sqrt{X^{T} S X}\right)}{\sqrt{X^{T} S X}} \\
& X^{T} S C_{0}=0 \quad C(X)^{T} S C(X)=1 \forall X
\end{aligned}
$$

Minimize the energy with respect to X

Overall cubic scaling

Accurate forces

Checking the eigenstates

DNA crystal

2388 atoms, 3960 orbitals
DZV(d,p) 22596, TZV(2d,2p) 38688
$675,1100 \mathrm{sec} /$ line search (SP4-32-1.3G)
2.5, $5 \mathrm{~h} /$ total

Not yet fully cubic (45,43,8 \% 3,2,1)
Not yet sparse

Example: DNA Crystal

2388 atoms, 3960 orbitals, 38688 BSF (TZV(2d,2p)) density matrix, overlap matrix

One order of magnitude better

Why should one combine QM and MM ?

Bio-systems are typically very large and catalyse complicated reactions

- Proteins >1000 atoms
- Solvent >10000 atoms
- The active site ~ 100 atoms

Mixed Quantum-Classical QM/MM- Car-Parrinello Simulations

, Fully Hamiltonian

- ע

Q MJPemit CPMI 3.3
(ρ '.ces (2 'boxes), plense weves,
pseudo potentisls, GGASE

ภ-1 nıodes
MNJ-PEMt GrajMOSeg j PEMJ, A MEER
1 soode

Interface Region

Quantum Region
(Car-Parrinello)

Classical Region

QM/MM- Car-Parrinello Simulations

- Development of improved QM/MM interfaces:
- pseudo potentials
for boundary atoms
- efficient treatment of long-range electrostatics
- electron spill out problem

The Bonded Part

-boundary atoms: monovalent pseudopotential

- distances - angles - torsions involving MM and QM atoms come from the force field

Mixed Quantum-Classical Simulations

- charges, located on the QM atoms, are fitted to the electrostatic fields on the MM atoms due to the electronic charge distribution

Explicit dependence of $q^{\text {ESP }}$ on the positions of all the MM and QM atoms and on the electronic density

QM/MM

$$
\begin{aligned}
& \text { Quantum mechanics } \\
& L=\frac{1}{2} \sum_{i} \mu \int d \vec{r}\left|\dot{\psi}_{i}\right|^{2}+\frac{1}{2} \sum_{I} M_{I} \dot{\vec{R}}_{I}^{2}-E_{K S}\left[\left\{\psi_{i}\right\}, R_{I}\right]+\sum_{i, j} \Lambda_{i, j}\left(\left\langle\psi_{i} \mid \psi_{j}\right\rangle-\delta_{i, j}\right) \\
& +\frac{1}{2} \sum_{\boldsymbol{I}} m \dot{\vec{R}}_{\boldsymbol{I}^{\prime}}^{2}-\sum_{I^{\prime}<J^{\prime}} V_{L L}\left(\mid \vec{R}_{I^{\prime}}-\vec{R}_{J^{\prime}}\right)-\sum_{I, I^{\prime}} V_{C L}\left(\left|\vec{R}_{I^{\prime}}-\vec{R}_{I^{\prime}}\right|\right)
\end{aligned}
$$

A. Laio, J. VandeVondele and U. Röthlisberger, Chem. Phys. 116, 6941(2002)

Capturing the complexity

DNA oxidation

The way of the future?

$\mathrm{O}(\mathrm{N})$ vs $\mathbf{O}(\mathrm{N} 3)$

Highly parallel and local new field theoretical approach

The quickstep team

J. Hutter, University of Zurich
J. VandeVondele, University of Cambridge W. I-Feng Kuo, LLNL
C. Mundy, LLNL

Fawzi Mohammed, ETH Lugano
M. Krack, ETH Lugano
G. Lippert, BASF
M. McGrath, LLNL
I. Siepman, LLNL

Why should one combine QM and MM ?

Bio-systems are typically very large and catalyse complicated reactions

- Proteins >1000 atoms
- Solvent >10000 atoms
- The active site ~ 100 atoms

Mixed Quantum-Classical QM/MM- Car-Parrinello Simulations

- Fully Hamiltonian
- HID drivera (jp Mill

QMAParts CpMID 3.3
(ρ !ocs (2 boxes), plane weves, pэeudo potentials, GGぶs:

n-J nodes
 AMEER
I suode

Interface Region

Quantum Region (Car-Parrinello)

Classical Region

QM/MM- Car-Parrinello Simulations

- pseudo potentials
for boundary atoms
- efficient treatment of long-range electrostatics
- electron spill out problem

The Bonded Part

-boundary atoms: monovalent pseudopotential

- distances - angles - torsions involving MM and QM atoms come from the force field

Mixed Quantum-Classical Simulations

$$
\rho(n r 1 i, n r 2 j, n r 3 k)
$$

$$
H_{a l}=\sum_{i \in N M} q_{i} \int d r \frac{\rho(r)}{\left|r-r_{i}\right|}
$$

3D-grid: (NR1,NR2,NR3) NR~100
MM atoms ~10000-100000

NR1*NR2*NR3*MM
DISTANCE CALCULATIONS!!!

- charges, located on the QM atoms, are fitted to the electrostatic fields on the MM atoms due to the electronic charge distribution

Explicit dependence of $q^{\text {ESP }}$ on the positions of all the MM and QM atoms and on the electronic density

QM/MM

$$
\begin{aligned}
& \text { Quantum mechanics } \\
& L=\left.\frac{1}{2} \sum_{i} \mu f d \vec{r} \psi_{i}\right|^{2}+\frac{1}{2} \sum_{I} M_{I} \dot{\vec{R}}_{I}^{2}-E_{K S}\left[\left\{\psi_{i}\right\rangle, R_{I}\right]+\sum_{i, j} \Lambda_{i, j}\left(\left\langle\psi_{i} \mid \psi_{j}\right\rangle-\delta_{i, j}\right) \\
& +\frac{1}{2} \sum_{\Gamma} m \dot{\vec{R}}_{I^{\prime}}^{2}-\sum_{I^{\prime}<J^{\prime}} V^{\prime} L L\left(\mid \vec{R}_{I^{\prime}}-\vec{R}_{J^{\prime}}\right)-\sum_{I, I^{\prime}} V_{C L}\left(\mid \vec{R}_{I^{\prime}}-\vec{R}_{I^{\prime}}\right)
\end{aligned}
$$

A. Laio, J. VandeVondele and U. Röthlisberger, Chem. Phys. 116, 6941(2002)

Capturing the complexity

DNA oxidation

The way of the future?

$\mathrm{O}(\mathrm{N})$ vs $\mathbf{O}\left(\mathbf{N}^{3}\right)$

Highly parallel and local new field theoretical approach

The time scale problem

Direct simulation allows only very short runs:
$\sim 10 \mathrm{ps}$ for ab-initio MD, $\sim 10 \mathrm{~ns}$ for classical MD
Many relevant phenomena take place on a larger time scale: chemical reactions, conformational changes, protein folding, etc.

Two-fold strategy:
a) Finding reactive paths
b) Exploring the free energy surface

Activated events

The quantum chemical approach

\times Find the saddle point on the PES
\times Use transition state theory
\times Correct for zero point motion

Many different solutions proposed

Thermodynamic integration
＂Flattening＂the surface
（hyperdynamics，puddle－skimming，umbrella sampling，etc．）
圆 Trajectory－based schemes
（reaction path sampling，Lagrangian action minimization，nudged elastic band，etc．）
圈 Finding the saddle points
（eigenvalue following，dimer method，hessian－based methods，etc．）
圈 Temperature enhanced sampling （histogram reweighting，parallel tempering，etc．）

圆 Etc．etc．

Driving the reaction

Suppose that the reaction coordinate \boldsymbol{q} is known:

$$
q\left(R_{1}, R_{2}, \ldots, R_{N}\right)=q
$$

We force the reaction by adding a constraint term to the dynamics with a Lagrange multiplier:

$$
\begin{aligned}
& \lambda\left(q\left(R_{1}, R_{2}, \ldots, R_{N}\right)-q\right) \\
& \langle\lambda\rangle \approx \frac{\partial F}{\partial q}
\end{aligned}
$$

The activation energy is:

$$
\Delta F=\int_{q_{A}}^{q^{*}} d q\langle\lambda\rangle_{q}
$$

The right reaction path?

Activated events are often intrinsically multidimensional!!!

Life is complicated

Life is complicated

The potential energy surface of a complex system is rough

(C) D. Chandler

How to explore a multidimensional free energy surface?

Need to be able to escape free energy minima

Our solution:
Non-Markovian coarse-grained dynamics
A. Laio and M. Parrinello, PNAS

Collective variables

Choose a small set of slow collective variables:

$$
{ }_{i}^{\delta_{i}\left(\vec{R}_{I}\right) \quad i=1, n}
$$

The $\mathbf{s}_{\mathbf{i}}$:

- Discriminate between reactants and products
- Include all the relevant slow modes
- The reaction coordinate is a linear combination of the $\mathbf{s}_{\mathbf{i}}$

Examples of collective variables

- Distances
- Angles: bending and torsional
- Coordination numbers: between individual atoms
- or between different species
- Local electric fields
- Number of n-fold rings
- Solvation energy
- Lattice vectors
- Energy
- Etc. etc.

Probability distribution

$$
P\left(S_{1}, S_{2} \ldots, S_{n}\right)=\frac{\int d \vec{R}_{I} \prod_{i}^{n} \delta\left(S_{i}-s_{i}\left(\vec{R}_{I}\right)\right) e^{-\beta V\left(\vec{R}_{I}\right)}}{\int d \vec{R}_{I} e^{-\beta V\left(\vec{R}_{I}\right)}}
$$

We want to study the free energy as a function of these variables:

$$
\beta F\left(S_{1}, S_{2}, \ldots, S_{n}\right)=-\ln P\left(S_{1}, S_{2}, \ldots, S_{n}\right)
$$

The algorithm:

-Wherever you go put a "small" Gaussian

- Always move in the direction of the direction that minimizes the sum of $\mathrm{V}(\mathrm{s})$ and all the Gaussians

NaCl in water

Two minima:
Contact ion pair (metastable)
Dissociated

Collective coordinates: Electric field on Na^{+}
Electric field on Cl^{-}
Distance $\mathrm{Na}^{+} \mathrm{Cl}^{-}$

Classical MD:
Amber force field

Free energy surface

Transition state

Dialanine in water

1 dialanine in 287 TIP3P water

AMBER95 force field

Collective coordinates: backbone dihedral angles Φ and Ψ

Stationary action principle

$$
\begin{gathered}
L=\frac{1}{2} \dot{q}^{2}-V(q) \\
\ddot{a} S=\ddot{a} \int_{t_{A}}^{d_{B}} L(q(t), \dot{q}(t)) d t=0 \\
q\left(t_{A}\right)=q_{A} \\
q\left(t_{B}\right)=q_{B}
\end{gathered}
$$

Can we use this principle to find the trajectories?
Saddle point!

Folding a small peptide

Motivation and aims

Oxidatitive damage to DNA is common and has fatal consequences

Guanine, having the lowest oxidation potential among the DNA bases, plays a fundamental role

Does the structure of DNA funnel the reactions towards a unique product?

A continuous metadynamics

Fictitious kinetic energy

$$
\mathcal{L}=\mathcal{L}_{C P}+\sum_{\alpha} \frac{1}{2} M_{\alpha} \dot{s}_{\alpha}^{2}-\sum_{\alpha} \frac{1}{2} k_{\alpha}\left(S_{\alpha}(\mathbf{R})-s_{\alpha}\right)^{2}-V(\mathbf{s}, t)
$$

$$
\begin{aligned}
& \text { Restrain potential } \\
& \text { If } \sqrt{ }(\mathrm{k} / \mathrm{M}) \ll \\
& \qquad \frac{\partial \mathcal{F}}{\partial s_{\alpha}} \simeq\left\langle k_{\alpha}\left(S_{\alpha}(\mathbf{R})-s_{\alpha}\right)\right\rangle
\end{aligned}
$$

History-dependent potential

From azulene to naphthalene

Science fiction?

G^{+}localization how?

Computational details

Model

G:C decamer, Z conformation
X-ray structure available
Rich in G and the smallest cell Electronic structure treated by the Kohn-Sham method

BLYP and HCTH functionals, plane waves (70Ry cutoff)

Martin-Troullier pseudopotentials
Car-Parrinello molecular dynamics, CPMD code

Computational details

The hole localizes on G^{+}and the proton moves to C

The model includes water and counter ions
1194 atoms
Full quantum: 3,960 valence electrons, 408,238 PW!

The HOMO of DNA

Fate of $\mathrm{G}^{+} \cdot$ in DNA

In duplex DNA the protonation is not clear
CH^{+}has a pKa of $4.3\left(\mathrm{G}^{+}: \mathrm{pKa} 3.9\right)$
_ Sharing of proton expected

$\mathrm{K}_{\mathrm{exp}}=2.5$ is predicted from experiments in water
Is this relevant for DNA?

Bridging length scale

Most calculations were done in the QM/MM framework.
Laio A., VandeVondele J. and Roethlisberger U., J.Chem. Phys. 116, 6941(2002)
Due to high polarity of bonds H-capping was used. Added H were decoupled to MM.

Quantum sub-systems of increasing size were used.

The biggest quantum model was the full DNA.

Protonation state of the bases: gas phase

Collective coordinate used: coordination number (C_{AB})

$$
C_{A B}=\sum_{i=1}^{N_{B}} \frac{1-\left(\frac{r_{A i}}{\boldsymbol{R}_{A B}}\right)^{n}}{1-\left(\frac{r_{A i}}{\boldsymbol{R}_{A B}}\right)^{m}}
$$

$$
\begin{aligned}
& \mathrm{n}=6, \mathrm{~m}=12 \\
& \text { of } \mathrm{N} 1, \mathrm{~N} 2 \text { and } \mathrm{N} 1, \mathrm{~N} 4 \\
& \text { with respect to } \mathrm{H}
\end{aligned}
$$

Gas Phase $\Delta \mathrm{E}$:
BLYP $1.9 \mathrm{kcal} / \mathrm{mol}$
HCTH $2.03 \mathrm{kcal} / \mathrm{mol}$
B3LYP/D95* $1.6 \mathrm{kcal} / \mathrm{mol}$
Hutter and Clark, J.Am.Chem.Soc. 118, 7574

Protonation state of the bases: DNA

Fate of $\mathrm{G}^{+} \cdot$ in DNA

In duplex DNA the oxidation product is 8 -oxo-guanine (8 oxoG)

30,0008 -oxoG in human genome!
Methods Enzymol. 186, 521 (1990)
In water a variety of products are formed

Oxidation reaction 1

Meta coordinates used:
N1 and water oxygen H-coordination number
Carbon 8 O-coordination number
Rate limited by water autoprotolysis
Catalyzed by $\mathrm{R}_{2} \mathrm{PO}_{4}^{-}$
N1 protonation state matters
$\Delta \mathrm{E}$ N1 deprotonation of 8-OH-G:
$22 \mathrm{kcal} / \mathrm{mol}$!

Oxidation reaction

