

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1564 - 31

SPRING COLLEGE ON SCIENCE AT THE NANOSCALE (24 May - 11 June 2004)

Surfaces

Annabella SELLONI Princeton Univ., Dept. Chemistry, Princeton, USA

These are preliminary lecture notes, intended only for distribution to participants.

Surfaces – Trieste, June 2004

- Basic concepts: surface energy, reconstruction mechanisms
- "Functional" surfaces: reaction pathways and properties

The surface energy

• When a crystal is cleaved, its internal energy is modified:

$$U(S,V,N,A) = TS - pV + \mu N + \gamma A,$$

where the surface energy γ is:

$$\gamma = [G(T,p,N) - \mu N] / A$$
 surface area
chemical potential in the bulk

• γ is related to the work W needed to separate a body in two halves:

• In practice, we compute γ from the cohesive energies:

 $\gamma = -[E^{\text{coh}}(\text{surface}) - E^{\text{coh}}(\text{bulk})] / 2A$

Equilibrium crystal shape: the Wulff construction

Draw the perpendicular plane through the tip of each radius vector in a *polar plot* of $\gamma(\mathbf{n})$.

The complex envelope of these planes describes the crystal shape in equilibrium.

Equivalently:

The distance of a surface plane from the center of mass of the crystal is proportional to the γ of this plane

Surface energy and nanoparticle shape: TiO₂, a semiconductor oxide with ionic-covalent character

Work with

M. Lazzeri A. Vittadini

Applications of TiO₂

Photoelectrochemical solar cell based on dye-sensitized nanostructured films of **TiO₂ anatase**

From M. Grätzel, EPFL, Lausanne

Anatase vs. rutile : unit cells

Formal charge: Ti⁴⁺, O²⁻

Anatase vs. rutile: crystal packing

anatase

rutile

Anatase vs Rutile

- ✓ Both semiconductors, Eg=3.0 eV (Rut.), 3.2 eV (Anat.)
- ✓ Rutile 10% denser
- ✓ Anatase more active for photocatalysis
- ✓ Anatase *unstable* wrt rutile, unless prepared as <u>nanocrystals</u>

Anatase vs. rutile : theory and expt.									
$P = 1.5 B_0 \left[(V_0/V)^{7/3} - (V_0/V)^{5/3} \times [1 - 0.75(4 - B'_0) \times (V_0/V)^{2/3} - 1] \right]$.]	
							Ecoh = - (Etot - Eatoms)		
		<i>a</i> (Å)	<i>c</i> (Å)		B (GPa)	B ' ₀		E^{coh}	
								(eV/TiO ₂)	
Anatase	Expt.	3.782	9.502		179±2	4.5±1.0			
	GGA	3.786	9.737		176	2.99		21.54	
	LDA	3.735	9.534		199	1.72		24.46	
Rutile	Expt.	4.587	2.954		2 11±10	6.5±0.7		19.9	
	GGA	4.634	2.963		204	4.62		21.44	
	LDA	4.546	2.925		249	4.98		24.44	
	_					• •			

Plane-wave, pseudopotential DFT calcs.

Why anatase nanocrystals are stable?

• Fact:

Anatase nanoparticles are stable up about 14 nm.

• Suggestion:

Anatase crystals have a lower surface energy. Therefore, the smaller the crystal, the stabler the anatase phase. [Zhang & Banfield, J. Mater. Chem. 8 (2073) 1998]

Atomic displacements (Å)							
Atom	[101]	[010]	(101)				
01	0.29	0.00	-0.02				
02	0.16	0.00	0.19				
03	0.17	0.00	0.02				
04	-0.15	0.00	0.07				
Ti 1	0.02	0.00	-0.18				
Ti2	0.17	0.00	-0.20				

Surface energy depends almost linearly on the density of under-coordinated Ti atoms

Crystal shape: theory vs. experiment

theory

natural anatase

Lazzeri, Vittadini, Selloni, PRB 63 (2001) 155409. anatase nanocrystals from: Shklover et al. J. Solid St. Chem. 132 (1997) 60

Equilibrium crystal shape : rutile

From: M.Buerger *Elementary Crystallography*, 1956

FIG. 6. The equilibrium shape of a macroscopic crystal of TiO_2 using the Wulff construction and the surface energies of Table VI.

Crystal surface energy: anatase vs. rutile

• For anatase, the most stable (101) surface constitutes the 94% of the crystal surface.

• For rutile, the most stable (110) surface constitutes only the 56% of the crystal surface (Ramamoorthy et al., PRB 49 (1994) 16721)

- We computed the total LDA crystal surface energy: Rutile = 1.09 J/m^2 (using data by Ramamoorthy et al.) Anatase = 0.90 J/m^2
- This confirms the Zhang & Banfield suggestion.

Message

Because of surface energy, nanoparticles (up to a crtain size) may prefer a crystal strucure which is *not* the most stable bulk structure $(TiO_2, ZrO_2, ...)$

The anatase/water interface

- Importance:
 - * Anatase is often grown by wet methods;
 - * The anatase/water interface is present in photoelectrocatalytic devices;

H_2O on (101): coverage < 1

- Dissociation of H_2O on the (101) surface is unfavored, in line with the stability of the surface.
- Adsorption energies are little affected by coverage.

H_2O on (001): coverage < 0.5 ML

- The surface energy of (001)-1x1 is twice that of (101).
- Adsorption is a way to lower surface energy.

- No local minimum exists for molecularly adsorbed H₂O;
- Instead, immediate dissociation occurs, leading to two Hbonded OH groups.
- The opening of two adjacent O-bridges cannot occur.

H_2O on (001): coverage = 1 ML

Molecular: $E_{ads} \sim 0.8 \text{ eV}$

Mixed: $E_{ads} \sim 1.0 \text{ eV}$

- Full coverage can be realized by molecular adsorption.
- Most favorable configuration, however, corresponds to 0.5 layers of *molecular* water on 0.5 layers of *dissociated* water.
- \Rightarrow hydroxyls are always present at any coverage on the unreconstructed (001) surface.

Water on anatase (100)

molecular adsorption, adsorption energy \sim same as for (101) surface

⇒ equilibrium shape of hydrated nanocrystals not substantially different from dry ones!

Surface reconstruction

• Atomic positions at the surface are generally different wrt a bulkterminated crystal

• In particular, the periodicity may be different: $(m \times n)$ means that the surface unit cell is m times the (1×1) cell of the bulk-terminated crystal along one direction, and n times along the other

• Most semiconductor surfaces reconstruct, the main driving force being the tendency to reduce the number of (energetically costly) surface dangling bonds: Si(100)-2 \times 1, GaAs(100)....

The 1×4 reconstruction of anatase (001)

A reconstruction without reduction of the number of surface dangling bonds!

(1x4) reconstruction of the (001) surface

• Upon heating, the (001) surface reconstructs (1x4).

- The most favorable computed model imply the formation of a polymer of TiO_2 units adsorbed on the surface, containing 4-fold Ti atoms!
- This lowers the surface energy from 0.90 to 0.51 J/m² (Lazzeri & Selloni, PRL 87 (2001) 266105)

STM images of the 1x4 reconstruction

Experimental:

We studied the various peridicities that can be obtained with the ADM model

	1×1	1×6	1×5	1×4	1×3	
γ	0.90 6.1 -1.2	0.58	0.53	0.51	0.58	
$g_{\mathbf{\hat{x}}\mathbf{\hat{x}}}$	6.1	4.1	3.1	0.9	-0.9	
$g_{\mathbf{\hat{y}}\mathbf{\hat{y}}}$	-1.2	0.3	0.9	1.1	2.4	

 $\begin{array}{ll} \gamma & \text{surface energy } (J/m^2) \\ g & \text{surface stress } (J/m^2) \\ g > 0 & \text{tensile stress} \end{array}$

The contraction/expansion of the surface bonds on the 1×1 surface is associated with a large tensile stress

There is a relation between the surface stress (g) and the structure of the various reconstructions

