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Overview

What is a kinetic model?
(look at classical and semiclassical models)

Which are the key ingredients?

Density matrices, master equations, coherence, etc.

Develop the formalism
How can we use all this?

Look in detail at an example



Transport properties from classical molecular
dynamics
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Transport properties from semi-classical models
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Equations of motion for a wavepacket

* Dynamics of the wavepackets are given by Hamilton’s
equations:
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 Introduce a distribution function f(r,k) that
gives the number of electrons at position r and
with momentum K.



The Boltzmann equation

 Requesting that the number of particles is locally
conserved, one can derive the Boltzmann equation for
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Boltzmann equation in a simple metal
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What can we do for nano-scale transport ?




Ingredients for a quantum model

Instead of wavepackets, use wavefunctions.

Instead of the distribution function f, use the density
matrix S.

Instead of the Boltzmann equation, use the Schrddinger
equation.

But how can we describe



Coupling to a heat bath, thermal equilibrium,
and all that

In the absence of external perturbations, a coupling to a heat
bath should bring the electrons towards thermal equilibrium.

Given a set of eigenstates  {¥.}1d corresponding energies
, we know {=:}t thermal equilibrium is defined as:

e = 3" (=i T) [ W) (W

This indicates that we need to use a formalism in terms of
electronic density matrices!



More on density matrices

Consider first a pure state:

Wavefunction | Density Matrix
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Can this be enough ??

Master equation:

Take a general wfc:

Then:

d
dt
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What about a time-dependent perturbation in H ??
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The system will come back to the excited state
(recurrence).

The density matrix will not remain diagonal.



Dissipative master equation approach
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S(t) = —i [H(t), S(t)] +C[S(t)]

In the following we’ll try to find an explicit form for the collision
term in the master equation.

This approach is very commonly used e.g. in guantum optics.

See for example:

« William H. Louisell, Quantum Statistical Properties of Radiation,
Wiley (1973).

e C. Cohen-Tannoudiji, J. Dupont-Roc, G. Grynberg, Atom-photon
Interactions, basic processes and applications, Wiley (1992).



Dissipative master equation approach
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Master equation for the reduced density matrix
The final equations of motion for the f,z(f) read:
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This equation ensures the following properties of the reduced density matrix:
1. the trace is invariant
2. fag is hermitian
3. diagonal elements are between 0 and 1
4. off-diagonal elements tend to zero

H. stationarv solution is given bv the Fermi-Dirac distribution



How can this approach be used ?

The quantum kinetic scheme can be used in various types of
calculations:
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* Planewave density-functional pseudopotential
calculations

o Self-consistent tight-binding calculations

o Effective-mass equations




energy [a.u.]

Application:

Tunneling double barrier

System setup:
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Trying to understand the physics of
double-barrier tunneling

1) Equilibrium, no current 2) External bias,current
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|-V characteristics of the DBRTS
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Dissipative master equation approach
d
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S(t) = —i[H(t), S(t)] +C[S(1)]

In the following we’ll try to find an explicit form for the collision
term in the master equation.

This approach is very commonly used e.g. in guantum optics.

See for example:

« William H. Louisell, Quantum Statistical Properties of Radiation,
Wiley (1973).

e C. Cohen-Tannoudiji, J. Dupont-Roc, G. Grynberg, Atom-photon
Interactions, basic processes and applications, Wiley (1992).



Dissipation: Role of the external bath

Consider the electronic system coupled to an external (phonon) bath:
Hr =H+R+V =Hy+V

(for example: R = ), hw; b} b;)
Equation of motion for the complete density operator:
dp

5% = [Hr,pl=[H+ R+ V, .

We are interested in the electronic subsystem: S(#) = Trgp(t).
Define p and S in the interaction picture:

vh

ﬂ(t} — E—ifﬁHn {t—tn]x(t}eifﬁHn{t—tn]
S(t} — E—i!ﬁH{t—tn] S(t}eifﬁﬂ{t—tn]



Perturbation theory

Two crucial approximations are made in order to obtain the final master equation
for the damped electronic subsystem.
2nd order perturbation theory in V
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Markov Approximation

The equation of motion of s(7) reads then:
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Master equation for the density matrix

After the Markov Approximation:
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Master equation for the density matrix

After the Markov Approximation:

aS 1
e ZE[H;S]—;TS,EX

(L(ap) L(Ba)S + SLiap)L(8a) — 2L(pa)S L(ap)) -

The numbers v, s are defined by
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Going to the 1-particle reduced density matrix
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Master equation for the reduced density matrix
The final equations of motion for the f,5(¢) read:
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This equation ensures the following properties of the reduced density matrix:
1. the trace is invariant
2. fag is hermitian
3. diagonal elements are between 0 and 1
4. off-diagonal elements tend to zero

h. stationarv solution is given bv the Fermi-Dirac distribution



How the time-propagation is done:
Electric field

A Potential Vg(x) = —E - x is incompatible with pbec.
Choose a particular gauge:

o

A(x.1) = —Ef E(x) = —Vs(x1) -
L

Vi(x) =10 B(x.t) = V xA(x.1)

Alx. t)

The price to pay in this description is that the Hamiltonian becomes explicitly
time-dependent:
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Gauge transformations:

It is possible to perform a gauge transformation: One can add AA to a
vector potential, if at the same time the wavetunctions are multiplied by a
planewave exp (—1AA - x).

The planewave is compatible with pbe if A A is an integer multiple of 27 /L.

The minimal time 75 to pass before a gauge transformation can be applied
to a system is therefore
27

BT TeE

This introduces a natural propagation time step 7g.

In practice, the propagator is split, and propagations for 7 of the dissipative
dvnamics and the Hamiltonian dvnamics are alternated.



drdt (the) [a.u.]

Next application example:
DFT implementation
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currents [a.u.]

DFT implementation: Currents
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DFT implementation: Present project




The dissipative current
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Another possible field of application: SCF tight
binding models

Tight binding schemes present an intermediate between full DFT
Implementations and effective-mass approaches.

A crucial ingredient is charge (potential) self-consistency in order to
correctly describe the charging at the contacts.
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- if n.n' are nearest neighbors
H,. =
0 otherwise.



The case of carbon and gold

One possible application of this tight binding scheme is the gold —
carbon nanotube — gold system.

Carbon nanotubes are relatively well described using one
p-orbital per C atom.

The on-site energy must reflect that the workfunction of gold and
the workfunction of carbon nanotubes differ by 0.8 eV.




Definition of the current in tight-binding schemes

Let us define a projection operator on site n:

}')n — Z |Qn’“;'} I::("'i]f;"“.-'| — |(‘)??:} {:"(-';J??

i~

Then we have 3, P, = 1.

If the ﬂ-‘ar(*m is in a state [12(¢)). then the occupation of site n is given by

P.(t) = (¥(t)| B, |w(t)).
The equation of motion for /°,(1) is

P.(t) = —i (1(t)| [Pn, H] |to(1))
Detfine .J,, as the rate of change of the occupation at site n.

J, = —i[P,, H] = —i Z (P,HP, — P HP,).
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Therefore., we can identify .J,,,, as an operator representing the particle cur-
rent from site n' to site n;

Jw = —i(P,HP, —P,HP,)
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Use of the SCF tight binding model
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Induced potential

Induced potential
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Conclusions

Kinetic model that can describe all quantum features of nano-scale
transport.

Interaction with an external (phonon) bath as a key ingredient.

Interplay between dissipation and external acceleration (E-field) leads
to a steady state.

Possible to study the influence of inelastic electron-phonon
scattering.

Time- or history dependent (hysteresis) effects can be described.

Applications are possible using models of various degrees of
sophistication (effective mass, tight-binding, DFT pseudopotential ...).
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