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Surfaces are the cutting edge of materials
science. Molecules from the environ-
mental gas or liquid phase come in con-
tact with a material at its surface, and

chemical bonds of these approaching molecules
are cut and new bonds formed. To understand
how materials function, and how to produce and
enhance them, we must understand surfaces.

We focus here on advances in this field, specif-
ically, the development of methodologies that
combine density-functional theory with elasticity
theory, thermodynamics, or statistical mechanics.
The resulting approaches, while computationally
elaborate, let us treat thousands of atoms to follow
their wanderings and interplay over time scales
from picoseconds up to seconds. Most important,
the methods let us analyze the results and gain
much insight into how surfaces function.

The examples we discuss relate to semicon-
ductor growth and nanotechnology, but the ap-
proaches have much wider application: Re-
searchers are using analogous methods to model
the growth of thin magnetic metal films,1 catal-
ysis, and corrosion.2

Advancing materials science
Materials science seeks to design new materi-

als, improve the quality of existing materials, and
make the production process more efficient—
that is, cheaper. Current experimental methods
to develop new materials still use trial and error.
Theoretical modeling of technologically rele-
vant chemical processes still employs mostly
phenomenological methods (such as rate equa-
tions or hydrodynamic theories) together with
“effective” parameters. These parameters typi-
cally have limited physical meaning and apply
only within narrow temperature, pressure, or
material composition limits. Some researchers
refer to this as “modeling without microscopic
understanding.” Despite the term’s negative
slant, this approach has proven the most valu-
able to date. 

Clearly, however, we need improved methods,
and we posit that the next step in basic research
involves developing a theoretical approach “with
microscopic understanding.” This article de-
scribes our progress in and perception of devel-
oping such a predictive theory of materials.

Challenges
Understanding material surface properties has

become critical to improving the technology on
which our modern life is built. For example,
semiconductor production involves depositing
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thin layers of a semiconductor, insulator, or
metal, then structuring and processing these
films with various techniques. Molecular mod-
eling can advance our atomistic understanding
and hence implementation of these processes.

We stress general principles of molecular
modeling by focusing on two examples:

1.deposition of modern compound semicon-
ductors, such as GaAs and InAs, and 

2. spontaneous structure formation in these
systems, the so-called self-assembly of
nanoscale islands.

If these islands are embedded in a matrix of
semiconducting material, covering them with a
capping layer, they can be used as quantum dots.
These nanoscale structures confine charge car-
riers (electrons or holes) due to quantum-me-
chanical effects. Researchers already use them
for light-emitting diodes, lasers, and single-elec-
tron transistors, and future applications might
include quantum computing.3

Modeling thin film deposition requires de-
scribing a sample area of at least mesoscopic size,
say 1000 nm2, involving several thousands of
atoms. The time scale the simulation covers
should correspond with the actual time needed
to deposit one atomic layer; that is, seconds.

However, the atomistic processes that govern
the physics and chemistry of deposition, adsorp-
tion, and diffusion operate in the length and time
domains of 0.1 to 1 nm and femto- to picosec-
onds. To model film growth and incorporate in-
formation from the atomistic properties, there-
fore, we must cover huge length scales and time
scales: from 10–10 to 10–6 m and from 10–15 to
100 seconds. Figure 1 shows the range of scales
involved.

Smaller length scales of a few hundred atoms
typically suffice to discern, for example, the
atomic structure of a step on a surface and its
role for chemical reactions and atom diffusion.
To produce trustworthy molecular modeling,
however, we must address the gap between the
atomic and the practically relevant time scales,
and the crucial role of statistical mechanics.

Simulating crystal growth requires covering
large time scales because often rare events rule
the whole scenario. The events are rare because
some atomistic effects are thermally activated in
materials processing and occur with an exponen-
tially small probability yet might ignite impor-
tant, possibly crucial follow-up surface modifica-
tions. The rare-event problem precludes the use

of straightforward (brute force) molecular-dy-
namics (MD) techniques (both empirical and,
even more so, ab initio MD) to simulate thermally
activated processes at realistic temperatures.

Researchers have devised special MD tech-
niques to alleviate this difficulty,4 but even with
these techniques only certain problems in statis-
tical mechanics are accessible to MD simulations.
The interplay and interdependence between dif-
ferent molecular processes presents an even more
severe—and not often apparent—problem. A
process’ importance, measured as how often it oc-
curs during a given time interval, relates not just
to its intrinsic rate but also to other processes re-
quired to create, replenish, or prolong the life-
time of an important precursor configuration.

Such interdependencies might emerge only after
fairly long simulations—perhaps milliseconds (as
in the example of GaAs growth discussed later)—
and after extensive sampling of the system’s phase
space, yet they significantly affect the simulation’s
outcome. In our example of film growth, the mor-
phology of the growing film would be affected. We
will show here how combining density-functional
theory (DFT) with kinetic Monte Carlo (kMC)
simulations offers an efficient and accurate way to
access sufficiently long time scales. 

While many aspects of materials science and
molecular modeling require bridging length and
time scales, the systems we focus on here have
an important similarity that facilitates the treat-
ment and that we consequently exploit: During
adsorption, diffusion, and epitaxial growth, the
material retains its basic crystalline structure.
This lets us assign a crystal lattice to the atoms’
possible stable or metastable positions, while
(necessarily) including atomic displacements
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Figure 1. Molecular modeling on the basis of first-
principles electronic structure calculations requires
covering the length and time scales from the 
electronic to the mesoscopic or even macroscopic.
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away from the lattice sites. Such atomic dis-
placements result from strain fields or the ab-
sence of a full coordination shell of neighbors,
such as near a step edge or defect, or occur as a
(maybe local) surface reconstruction.

The simulation’s reliability and computational
cost depend on the quality level chosen to de-
scribe the elementary processes—that is, how we
treat the electrons and the atom–atom interac-
tions. Traditional approaches have been empiri-
cal—for example, bond-strength–bond-order
potentials or even simpler bonding descriptions.
When chemical bonds between atoms break or
new bonds form, however, we need a description
that accounts for the electrons’ quantum-me-
chanical nature. This applies to surfaces in gen-
eral (since bonds present in the bulk had to be
broken to create the surface), and even more so
to chemical reactions occurring on them.

Recent work shows considerable progress in
understanding surfaces and surface chemical re-
actions using ab initio methods, particularly using
DFT for total-energy calculations.5 Analogous
to the multiplicity of scales shown in Figure 1,
we propose a multistep approach: 

1.We perform DFT calculations for possibly
complex system aspects that don’t require
knowledge of the full size of the system be-
ing modeled. Examples include a particular
facet of a crystal, or a set of atomic configu-
rations that occur during growth. Usually,
before modeling can begin, we must collect
data from many such DFT calculations in a
database. 

2.Using this database, we run code that per-
forms the simulation—that is, treats the
thermodynamics or statistical mechanics. 

3. We propose a learning approach for future
work, starting with an approximate descrip-
tion of the atomic interactions by analytic po-
tentials. This will let us explore a huge num-
ber of molecular processes with modest
computational effort, perhaps by using some
special accelerated MD technique. As the
simulation proceeds, we identify the impor-
tant processes to be calculated with improved
accuracy using DFT, then use these DFT re-
sults to improve the database obtained from
the initial (semi-empirical) description.

Density-functional theory calculations
To describe bonding in a solid or at its surface,

we must calculate its electronic structure, which

implies a quantum-mechanical description of the
many-electron problem.5 In computational
terms, electronic degrees of freedom and their
associated length scale come into play, which can
make simulations costly. DFT represents an ef-
ficient approach to describe quantum effects in
the electronic structure of a polyatomic system.

This approach is exact in principle, but despite
DFT’s remarkable success in the past decade, we
must remember that in daily practice we are
working with approximate density functionals,
whose performance we must assess for each sys-
tem at hand. Once we’ve selected an appropri-
ate density functional, a DFT calculation of the
electronic structure amounts to solving separate
Schrödinger-like equations for all electrons in
the system, with an additional potential ac-
counting for the electrons’ many-particle (ex-
change and correlation) effects.

Although they substantially simplify the nu-
merical task compared to many-particle meth-
ods, DFT calculations still require much data
handling because during the calculation we must
store and access the information pertinent to the
wave functions of all electrons in the problem.
The computationally most straightforward way
of representing the (complex-valued) wave func-
tions is to store them on a grid, either in real
space or by storing their Fourier coefficients.
Many computers offer efficient fast Fourier
transform routines that permit switching be-
tween wave function representations in real
space and in reciprocal (wave-vector) space.
These algorithms form the heart of modern
electronic structure codes.

So far, we’ve discussed computer codes using
the pseudopotential–plane-wave method, which ex-
plicitly treats only the atoms’ valence shell elec-
trons. This method creates efficient codes that
permit calculations on several hundred atoms on
parallel architectures.6 Methods for solving the
full problem for all electrons numerically, such
as the linearized augmented plane-wave
(LAPW) method, are also available and have also
been ported to parallel computers,7,8 but the
higher demands they place on computer re-
sources to describe the entire electronic system
restricts them to problems involving fewer
atoms, presently up to about 100.

Figure 2 illustrates how we use DFT calcula-
tions relevant to the modeling of island nucleation
and crystal growth by molecular beam epitaxy
(MBE). We model a crystal surface by repeating
the group of atoms shown in Figure 2 periodi-
cally. Figure 2a shows a cut perpendicular to the
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surface in side view, with As atoms displayed in
blue and Ga atoms in green. The yellow/orange
contour surface indicates the valence electron
density. Closed shells of electron density surround
the As anions, while the Ga cations are depleted
of electronic charge. Upon adsorption (Figure
2b), the As2 molecule’s electron density agglom-
erates with the substrate’s electron density. We 
offer a more detailed animation of this process 
at www.fhi-berlin.mpg.de/th/publications/img/
ie-as2-alpha.gif.

Figure 2 shows an As2 molecule adsorbing on
the GaAs(001) surface where some Ga atoms
were deposited before. Surface scientists refer to
this surface as being locally in the α-reconstruc-
tion, a state characterized by bonds between two
surface Ga atoms (a feature absent in the bulk).
Adsorption of the As2 molecule breaks the
Ga–Ga bonds while As–Ga bonds form simul-
taneously between the molecule and the surface.
The DFT calculation lets us monitor this
process by inspecting the electron density at
each stage of the approaching As2 molecule. In
this way we gain insight into the nature of chem-
ical reactions occurring at the surface. This
knowledge, together with the calculated total en-
ergies, forms part of the input for using statisti-
cal mechanics to understand growth.

Modeling island nucleation
While the DFT calculations just described

consider zero temperature and pressure, model-

ing of thin film deposition must treat finite tem-
perature and pressure, and we must even go be-
yond thermodynamic equilibrium theory: A flux
of deposited atoms or molecules implies we are
dealing with an open system; we therefore need
a kinetic description of molecular processes such
as adsorption, desorption, diffusion, and even-
tually island nucleation and growth.

Our approach exploits the fact that we can
represent the atomic configurations that occur
during growth on a crystal lattice. We thus re-
place the physical (Newtonian) surface atom dy-
namics with a “discrete dynamics”: The atoms
can move from one lattice site to another or ap-
pear on and disappear from the surface (adsorp-
tion and desorption) by discrete jumps; after
each jump, the system equilibrates in the new
geometry before a transition to another state oc-
curs as a thermal fluctuation. Thus, at the tem-
peratures used for the film deposition, these
jumps constitute rare events in the sense de-
scribed earlier.

By concentrating on the jumps, we eliminate
the (mostly) superficial information about atom
dynamics between rare events—that is, the dis-
crete states’ vibrations and the associated time
scale. We don’t neglect this information but
rather describe it in terms of a probability pref-
actor, discussed later. Each discrete event enters
in the simulation with a rate we can determine
rigorously to account for the dynamics on the
eliminated time scale.

We can demonstrate this for a simple exam-

Figure 2. DFT electronic-structure calculation for the adsorption of an As2 molecule on the GaAs(001)
surface. In (a), the As 2 molecule hovers above the surface (yellow balls in the upper part of the
picture). In (b), the molecule has adsorbed onto the surface and established chemical bonds with the
surface Ga atoms. The closed yellow surfaces represent contours of constant electron density. The blue
dots represent the As nuclei; the green dots, the Ga atoms. 

(a) (b)
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ple: a single particle’s surface wanderings.9 On
the atomistic level, the particle’s motion is gov-
erned by the potential-energy surface (PES),
which is the potential energy experienced by the
diffusing adatom

, (1)

where Etot (Xad, Yad, Zad, {RI})  is the ground-state
energy of the many-electron system (also re-
ferred to as the total energy) at the atomic con-
figuration (Xad, Yad, Zad, {RI}). The PES repre-
sents the minimum total energy with respect to
the z-coordinate of the adatom Zad and all coor-
dinates of the substrate atoms {RI}. If we disre-
gard vibrational contributions to the free energy
for a moment, the minima of the potential-en-
ergy surface represent the adatom’s stable and
metastable sites.

The kinetic description of growth defines the
underlying atomistic processes, such as diffusion
or desorption, in terms of the probabilities with
which they occur. Under rather mild assump-
tions usually fulfilled for processes at a surface,
for the rate ΓJ of a molecular process J (diffu-
sion, for example), the rate law reads

, (2)

where ∆FJ is the difference in the Helmholtz
free energy between the maximum (saddle point)
and the minimum (initial geometry) of the PES
along the reaction path of the process J. T is the
temperature, kB the Boltzmann constant, and h
the Planck constant. The following equation
gives the free energy of activation ∆FJ that the
system needs to move from the initial position
to the saddle point:

. (3) 

The internal energy U in this expression con-
sists of the (static) total energy EPES and the vi-
brational energy Uvib. ∆UJ is the difference of
the system’s internal energy with the particle at
the saddle point and at the minimum belonging
to process J, and ∆Svib

J is the analogous differ-
ence in the vibrational entropy. We cast the rate
of the process J as follows:

, (4)

where 

,

represents the attempt frequency.
We obtain both basic quantities in Equation

4, Γ0
J and ∆EJ, from DFT calculations. For sin-

gle-particle diffusion, we can read ∆EJ directly
from the PES. In this case, we find that Γ0

J is of
the same order, roughly 1013 s-1, for various
processes. As a first approximation, we can thus
often avoid recalculating Γ0

J for each process, be-
cause variations in Γ0

J by a factor of 5 are typi-
cally irrelevant compared to variations of ∆EJ in
the exponent. However, when many atoms are
moving in a collective manner, the prefactor
might be significantly different. For processes
involving several particles, such as nucleation,
attachment to islands, or motion along the
atomic step that marks an island edge, we must
account for the interactions between particles.
We can also access these quantities with DFT
calculations by calculating the PES, or parts
thereof, for all microscopic situations that occur
during growth.

However, this involves performing calcula-
tions for many different atomic arrangements.
The near-sightedness of nature substantially re-
duces the workload: We can usually describe a
surface atom’s local chemical bonding by con-
sidering a local environment of its nearest and
next-nearest neighbors, provided we properly
consider the boundary conditions. This near-
sightedness reduces a simulation to a recurrence
of a possibly large but finite number of local con-
figurations.

To obtain these configurations’ binding ener-
gies and barriers, we perform DFT calculations
and collect the results. Next, a computer pro-
gram performing a kinetic Monte Carlo growth
simulation reads the barriers from a file and cal-
culates a list of rates according to Equation 4.
Each simulation step selects a particular process
randomly with a probability proportional to its
contribution to the total rate. The simulation
time advances by an increment given by the in-
verse total rate multiplied by a random number
drawn from an exponentially decaying probabil-
ity distribution.

This establishes a physically meaningful map-
ping between simulation time and physical time,
thereby exploiting the fact that the microscopic
processes eligible within an atomistic time in-
terval can be treated as independent Poissonian
processes.10 A growth simulation consists of bil-
lions of such simulation steps.
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Introducing a lattice-gas Hamiltonian11,12 lets
us conveniently represent the atomic interaction
data obtained from DFT calculations. We dis-
cuss this approach schematically for a specific
system, homoepitaxy of GaAs by MBE from
atomic Ga and molecular As2 sources on the
GaAs(001) substrate. Under usual MBE growth
conditions, the GaAs(001) surface displays a sur-
face reconstruction terminated by pairs of As
dimers, which alternate with “trenches” running
in the [

–
110] direction. These trenches stem from

a missing pair of As dimers in the surface layer
and two missing Ga atoms per unit cell in the
layer below. 

MBE experiments on GaAs(001) and DFT cal-
culations13,14 show that arsenic molecules and gal-
lium atoms interact quite differently with this sur-
face. While Ga atoms adsorb with unit sticking
probability, As2 molecules stick to the surface only
after Ga deposition. Surface diffusion distributes
the deposited Ga atoms. Growth depends on Ga
mobility because strong As2 chemisorption sites
only arise after a suitable local arrangement of Ga
adatoms. Once such a site forms, the As2 mole-
cules can adsorb without dissociation and become
part of the surface in the form of As dimers. Con-
versely, As dimers can leave the surface by ther-
mally activated desorption.

To describe As dimers’ binding energy at the
reconstructed surface and Ga adatom binding at
various sites, we propose a lattice-gas Hamil-
tonian that consists of a single-site contribution
H0 plus an interaction term: 

H = H0 + Hint . (5)

Let k be a shorthand notation for a lattice site
and nk a discrete variable that takes on the value 1
if an As dimer occupies the site or 0 if it’s empty.
Similarly, mk is an occupation variable describing
the Ga adatoms. Then H0 takes on the form 

. (6)

The reconstructed GaAs(001) surface actually
presents some complexity because of the need to
distinguish several inequivalent lattice sites due
to the reconstruction. To clarify the basic idea,
we leave these complications aside for the mo-
ment. We describe deviations of the energetics
from the single-site values due to different re-
constructions and different possible arrange-
ments of Ga adatoms in the interaction part of

the lattice-gas Hamiltonian, 

.
(7)

Here, the indices k + a and k + b denote nearest
and next-nearest neighbor sites relative to k. DFT
calculations performed for a set of atomic config-
urations determine the interaction parameters

.

Adding more interaction types further refines
the description by the lattice-gas Hamiltonian,
if required.

To set up a kMC simulation, we need the
binding energies as well as the energy barriers
to calculate the rates. These barriers show con-
siderable diversity because each specific process,
from an initial state with a given local environ-
ment through a transition state to a final state
with a different local environment, requires a
specific barrier. We must be careful not to vio-
late the principle of detailed balance. This fun-
damental principle of statistical mechanics re-
quires that the quotient of any forward and
backward process rates, obtained by interchang-
ing initial and final states, equals

, (8)

where ∆F shows how the Helmholtz free energy
differs in the initial and final state (or the Gibbs
free energy, if desorption into the gas phase is
involved).

Figure 3 shows what we can learn from kMC
simulations, specifically, a DFT+kMC simulation
of GaAs homoepitaxy on GaAs(001) at T= 700 K,
Ga flux 0.1 monolayers/s, and As2 pressure p =
0.85 × 10–5 mbar. It shows a small part of the total
simulation area, with a “trench” typical for the
GaAs surface reconstruction in the center. Ga and
As substrate atoms appear in green and dark blue,
Ga adatoms in yellow, and freshly adsorbed As
dimers in light blue. For the full movie, go to
www.fhi-berlin.mpg.de/th/publications/img/
isl-gaas-front.mpg.13

At the chosen temperature and pressure con-
ditions we observe island nucleation in the re-
constructed surface’s trenches. Island growth
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proceeds along the trench, thereby extending
into a new layer.

Unlike MBE experiments, these simulations
let us study how temperature affects the
growth morphology in a wide range and at the
atomic level. By varying the temperature used
in the simulations, we find that Ga surface dif-
fusion alone causes the island morphology for
temperatures up to about 700 K. At higher
temperatures, the adsorption of As2 molecules
at reactive surface sites becomes reversible,
and arsenic losses due to desorption become
apparent. The temperature window MBE
crystal growers frequently use permits a com-
promise between high Ga adatom mobility
and stability of As complexes that leads to low
island density.13,14

Modeling strained heterostructures
with thousands of atoms

For growing GaAs films, crystal growers use,
for example, molecular beam epitaxy to deposit
gallium (Ga) and As2. With this technique, it is
easy to grow heteroepitaxial films by switching
the Ga flux at some point to another material,
such as indium (In). The mechanical strain re-

sulting from the misfit between the substrate and
film crystal lattices is often critical to the result-
ing film morphology, and under certain condi-
tions the spontaneous formation (self-assembly)
of quantum dots, consisting of several thousand
atoms each, will occur. Here we focus on the
methodology to calculate the size and shape of
such mesoscopic structures, assuming they are
in thermodynamic equilibrium.

A simplified picture of heteroepitaxial growth
shows two limiting cases. In the first, the de-
posited material forms a smooth homogeneously
strained film; in the second, the deposited mate-
rial evolves into 3D islands. Frequently, these is-
lands are pseudomorphic with the substrate—
that is, the deposited material lattice continues
the substrate host lattice without perturbations
such as dislocations or grain boundaries being in-
troduced. As a consequence, the islands are elas-
tically strained at their base, where the deposited
material is forced to take on the substrate’s lat-
tice constant, but the strain is relaxed near the is-
land top, where the atomic layers can take on the
generic lattice constant of deposited material, as
Figure 4 shows.15 This strain relief constitutes
the thermodynamic driving force that favors the
formation of 3D islands. On the other hand, the

Figure 3. Snapshots from a
DFT+kMC simulation of GaAs
homoepitaxy. Ga and As 
substrate atoms appear in
green and dark blue, Ga
adatoms in yellow, and 
freshly adsorbed As dimers in 
light blue. (a) Ga adatoms 
preferentially wander around 
in the trenches. (b) Under the
growth conditions used here,
an As2 molecule adsorbing on 
a Ga adatom in the trench 
initiates island formation. (c)
Growth proceeds into a new
atomic layer via Ga adatoms
forming Ga dimers. (d) Eventu-
ally, a new layer of arsenic starts
to grow, and the island extends
itself towards the foreground,
while more material attaches
along the trench.

(a) (b)

(c) (d)
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tendency to minimize the surface free energy fa-
vors the formation of a smooth film.

In fact, real system behavior often lies some-
where between the two limiting cases sketched
earlier: A smooth film may form after deposition
only up to a certain thickness, and 3D island
growth takes over if more material is deposited.
This results from an energetic trade-off: while
elastic strain relief would favor formation of is-
lands rather than a smooth film, additional sur-
faces forming at these islands’ side facets cost 
energy.

In a real system, whether and how large islands
form depends on the energetic balance between
the surface contribution and an elastic contribu-
tion from both the islands’ bulk and the sub-
strate. Under such conditions, island formation
would follow what’s known as Stranski-Kras-
tanov growth mode. We’ve developed an ap-
proach to understanding this delicate balance by
combining results from the continuum elastic-
ity theory of solids with calculated surface for-
mation energies obtained from density-func-
tional theory.

To illustrate, we discuss a specific example, the
formation of small InAs islands after deposition
of an InAs film on a GaAs substrate. This com-
bination typically yields islands with a base
length between 10 and 20 nm in the experiment,
as Figure 5 shows, and such islands consist of
10,000 to 50,000 atoms each. Most atoms in
these islands have a full coordination shell of
neighbors and undergo only small relaxations
from their bulk positions. Only the surface
atoms have a substantially different atomic en-
vironment and experience larger displacements
due to the surface reconstruction.

Although the elastic relaxations release little
energy per bulk atom, bulk elastic effects can be
significant—particularly for the largest islands
because the elastic energy scales linearly with the
number of atoms in the island. Other energetic
contributions coming from surface energy
changes during island formation counteract the
elastic contribution. We compare the total en-
ergy of an InAs film (thickness Θ0; see Figure 5,
right) with the islands’ energy at a given density
and a thinner film (thickness Θ; see Figure 5,
left). Obviously, both situations must involve
equal amounts of material. 

To understand the energetics driving island
formation, we find it neither necessary nor fea-
sible to employ a full DFT description of all
atoms involved but have instead developed a hy-
brid approach. We write the key quantity, the

energy gain per unit volume (or per atom), as a
sum of three contributions,

Etot/V = Eelast/V + Esurf/V + Ew1/V, (9)

where Etot stands for the total energy gain of an
island with volume V. Eelast shows the difference
in elastic strain energy between a situation with
islands and a homogeneously strained film. We
evaluate this quantity, involving small displace-
ments, by numerically solving the elastic contin-
uum equations, using, for instance, the finite-el-
ement method. Mechanical engineers regularly
use commercially available software for a similar
task, calculating strain in structures such as

Figure 4. Strain distribution, as obtained from finite-element 
calculations15 for (a) a pyramidal and (b) a truncated InAs island 
coherently grown on a GaAs(001) substrate. The color indicates the
trace of the strain tensor on (010) cross sections through the islands.

(a)

(b)

0.1500

0.1125

0.0750

0.0375

0.0000

–0.0375

–0.0750

–0.1125

–0.1500

InAs island

Substrate

(101)

(101)
(001)

a

b

InAs Θ0 MLΘ
GaAs
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coherent islands on the substrate surface. Θ0
represents the nominal coverage (the total amount 
of deposited material) and Θ is the wetting-layer
thickness, measured in monolayers (ML).
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bridges and parts of machinery. The extrapola-
tion of this approach to nano-sized structures is
justified as long as they consist of several thou-
sands of atoms.

The Esurf and Ewl contributions come from the
extra surfaces that islands create and from ener-
getic changes due to thinning of the wetting
layer, respectively. DFT calculations, using slab
geometry to model one unit mesh of the surface
reconstruction, work well for these quantities,
which originate from surface bond breaking and
distortions. Such calculations require only mod-
est numbers of atoms and are feasible on a mod-
ern workstation.

We must, however, perform many calculations
to study various surface compositions and recon-
structions for each surface orientation. Compo-
sition variations make the surface energies, and
thus the islands’ shape, dependent on the gas-
phase environment’s temperature and pressure.
We can retain the elastic effects near the surface
that differ from bulk elasticity in Equation 9 if
we include contributions to the surface energy
linear in the strain εjk. From DFT slab calcula-
tions we obtain surface energies γ(i) of the ith facet
and the coefficient σ(i)

jk preceding the linear term,
which is unique to surface elastic properties.
Likewise, we calculate the formation energy of
the wetting layer γwl(Θ) within DFT. Thus we
designate the surface energy contribution

, (10)

where A(i) denotes the area of the island’s ith side
facet, and A0 its base area.

Equation 9 also describes the thinning of the
wetting layer, defined as

,
(11) 

where γwl(Θ) is the combined surface and interface
energy of the wetting layer, and n is the area density
of islands. DFT calculations for thin films show
that γwl(Θ) is a function of the wetting layer thick-
ness Θ. Only for films thicker than two atomic lay-
ers of In does γwl(Θ) approach a constant. This has
important consequences for the distribution of de-
posited material between islands and film.

The total-energy expression in Equation 9 lets
us quantitatively study various island properties.
Once we understand the shape-dependence of
the elastic energy and the surface energies, we

can systematically study quantum dots’ stability
as a function of their shape. To this end, we’ve
evaluated the energy gain Erelax + Esurf for a single
island, for many trial shapes. Optimizing the
shape results in an island with a flat top that dis-
plays all low-index side facets. The exact shape
depends on the island’s size; in particular, the rel-
ative importance of the island top’s horizontal
facet decreases and the island’s aspect ratio in-
creases as the islands grow bigger.14

The above treatment relied on a thermody-
namic argument, following the principle that a
given amount of material actually takes on the
shape that corresponds to its lowest possible
(free) energy. We suggest using the argument
with some care, however, as the quantity Etot/V
from Equation 9 is a monotonically decreasing
function of V. Thus, full thermodynamic equi-
librium would correspond to an unrealistic sit-
uation where all deposited material has collapsed
into a large single island. We can easily remedy
this flaw by restricting ourselves to a constrained
equilibrium, the constraint being a fixed island
density n physically determined by growth con-
ditions during early stages of deposition. Apart
from being more physical, this theory lets us ob-
tain information about not only the islands’
shape but also their optimum size, once we know
the island density and the total amount of de-
posited InAs. The optimum island size corre-
sponds to a minimum of Etot/V in Equation 9
when evaluated for fixed values of n and Θ0. 

Closely linked to this optimum island size is
the remaining thickness Θ of the wetting layer
after the islands develop fully. Only 10 to 30 per-
cent of the total deposited material assembles
into islands, depending on the nominal cover-
age Θ0 and the island density n. The results also
show that a wetting layer thicker than one
monolayer always exists even after three-dimen-
sional island formation has set in. This observa-
tion, and the calculated island sizes and aspect
ratios, correspond with recent results of scan-
ning-tunneling microscopy investigations.

Our modeling points to a possible method of at-
taining a desired island size by properly choosing
the growth conditions and nominal coverage.16,17

Nearly everything in materials sci-
ence proceeds from chemical bond
formation and dissolution. At sur-
faces, this typically involves the col-

lective behavior of many atoms, between 10 and
200, which we can effectively calculate using
DFT. DFT gives us the total energy or PES on
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which the various atoms move.
Sometimes the minima of this potential-en-

ergy surface suffice for calculations, as these
minima identify the stable and metastable
geometries—that is, the thermal-equilibrium
structures. Thermodynamic equilibrium theory
does not always apply, however, because many
systems are in a local energy minimum. Under-
standing which of the many PES local minima
determine the system’s properties requires ana-
lyzing the atomic motion along the potential en-
ergy surface. 

In other words, PES computation is not the
final step but forms the basis for description of
the atom dynamics. This, in turn, determines the
probability of molecular processes (such as
chemical reactions) occurring. For the full pic-
ture, then, in addition to the knowledge of the
PES, we need a description of atomic motion,
specifically, how atoms diffuse and what happens
when they bump into each other.

Predictive modeling requires distinguishing
between significantly more process types than
semi-empirical simulations, but we’ve shown
such studies to be feasible. For example, the
GaAs growth simulation presented here includes
more than 30 process types, each with a clear
atomistic, physical meaning. The technique
needs further refinement, and we will learn to
avoid pitfalls with each new case study. Already,
however, first-principles kMC simulations have
provided significant new insight into surface
processes and their interplay.

References
1. R. Pentcheva et al., “Initial Stages of Heteroepitaxy with Inter-

mixing: Co on Cu(001),” to be published.

2. C. Stampfl et al., “Catalysis and Corrosion: The Theoretical Sur-
face-Science Context,” to be published in Surface Science, vol.
500, 2001.

3. R. Hughes, “Quantum Computation,” Computing in Science &
Eng., vol. 3, no. 2, Mar./Apr. 2001, p. 26. 

4. M.R. Sørensen and A.F. Voter, “Temperature-Accelerated Dy-
namics for Simulation of Infrequent Events,” J. Chemical Physics,
vol. 112, no. 21, June 2000, pp. 9599–9606. 

5. K. Horn and M. Scheffler, eds., Handbook of Surface Science, Vol.
2: Electronic Structure, Elsevier, Amsterdam, 2000.

6. M. Bockstedte et al., “Density-Functional Theory Calculations for
Poly-Atomic Systems: Electronic Structure, Static and Elastic Prop-
erties and Ab Initio Molecular Dynamics,” Computer Physics
Comm., vol. 107, nos. 1–3, Dec. 1997, pp. 187–222; www.
fhi-berlin.mpg.de/th/fhimd (current 21 Sept. 2001).

7. A. Canning, W. Mannstadt, and A.J. Freeman, “Parallelization of
the FLAPW method,” Computer Physics Comm., vol. 130, no. 3,
Aug. 2000, pp. 233–243. 

8. R. Dohmen et al., “A Parallel Implementation of the FP-LAPW
Method for Distributed-Memory Machines,” Computing in Sci-
ence & Eng., vol. 3, no. 4, July/Aug. 2001, pp. 18–29.

9. C. Ratsch, P. Ruggerone, and M. Scheffler, “Density Functional
Theory of Surface Diffusion and Epitaxial Growth of Metals,” Sur-
face Diffusion: Atomistic and Collective Processes, NATO ASI Series B,
vol. 360, 1997, pp. 83–101.

10. K.A. Fichthorn and W.H. Weinberg, “Theoretical Foundations of
Dynamical Monte Carlo Simulations,” J. Chemical Physics, vol.
95, no. 2, July 1991, pp. 1090–1096.

11. K.A. Fichthorn and M. Scheffler, “Island Nucleation in Thin-Film
Epitaxy: A First-Principles Investigation,” Physical Rev. Letters, vol.
84, no. 23, June 2000, pp. 5371–5374.

12. K.A. Fichthorn, M.L. Merrick, and M. Scheffler, “A Kinetic Monte
Carlo Investigation of Island Nucleation and Growth in Thin-Film
Epitaxy in the Presence of Substrate-Mediated Interactions,” to
be published in Applied Physics A.

13. P. Kratzer and M. Scheffler, “Reaction-Limited Island Nucleation
in Molecular Beam Epitaxy of Compound Semiconductors,” to
be published.

14. P. Kratzer, E. Penev, and M. Scheffler, “First-Principles Studies of
Kinetics in Epitaxial Growth of III–V Semiconductors,” to be pub-
lished in Applied Physics A.

15. N. Moll, M. Scheffler, and E. Pehlke, “Influence of Surface Stress
on the Equilibrium Shape of Strained Quantum Dots,” Physical
Rev. B, vol. 58, no. 7, Aug. 1998, pp. 4566–4571.

16. L.G. Wang et al., “Formation and Stability of Self-Assembled Co-
herent Islands in Highly Mismatched Heteroepitaxy,” Physical
Rev. Letters, vol. 82, no. 20, May 1999, pp. 4042– 4045.

17. L.G. Wang et al., “Size, Shape, and Stability of InAs Quantum
Dots on the GaAs(001) Substrate,” Physical Rev. B, vol. 62, no.
3, July 2000, pp. 1897–1904.

For more information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

Peter Kratzer is a computational physicist at the Fritz-
Haber-Institut der Max-Planck-Gesellschaft. He re-
ceived a PhD in theoretical physics from Technical Uni-
versity Munich in 1993 with a PhD thesis about
modeling the dynamics of surface chemical reactions.
He is conducting research in semiconductor materials
and nanostructures, and his main interests concern sur-
face chemical reactions and epitaxy of compound ma-
terials. Contact him at Fritz-Haber-Institut der Max-
Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin-
Dahlem, Germany; kratzer@fhi-berlin.mpg.de; www.
fhi-berlin.mpg.de/th/th.html.

Matthias Scheffler is director of the Theory Department
of the Fritz-Haber-Institut der Max-Planck-Gesellschaft
and a professor at Technical University Berlin. His re-
search concerns condensed-matter theory, materials,
and the chemical physics of surfaces. His current inter-
ests include developing first-principles methods (using
density-functional theory) for molecular simulations that
bridge the time and length scales from those of the
atomistic processes to those that determine the prop-
erties of realistic systems. Contact him at Fritz-Haber-In-
stitut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-
14195 Berlin-Dahlem, Germany; scheffler@fhi-berlin.
mpg.de; www.fhi-berlin.mpg.de/th/th.html.




