

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1564 - 17

SPRING COLLEGE ON SCIENCE AT THE NANOSCALE (24 May - 11 June 2004)

ELECTRONIC / THERMAL TRANSPORT - Part I

Philip KIM Columbia University, Dept. of Physics, New York, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Electric and Thermal Transport in Nanoscale Materials –Part I

Philip Kim

Department of Physics Columbia University

Outline

Charge Transport and Energy Dissipation

- Mesoscopic Heat Transport Measurements
- Mesoscopic Thermoelectric Effects (Wed)
- Field Effect Transport in 2D Crystallites (Thr)

Charge, Energy and Entropy Transport

Linear Response Regime $\Delta V = R \ \Delta I - S \ \Delta T$ $\Delta I_Q = \Pi \ \Delta I - K_{th} \ \Delta T$

Onsager relation

$$\Pi = S T$$

R : electric resistance (electron)

 K_{th} : thermal conductance (electron&phonon)

S : Thermopower (electron+phonon)

 Π : Peltier Coefficient

Electric Conductance

$$G = 1/R = \sigma \pi r^2/L$$

Thermal Conductance

$$K_{th} = \kappa \, \pi \, r^2 / L$$

Conductance Quantization in Quantum Point Contact

Quantization of Thermal Properties in Mesoscopic Electron Systems

Quantum point contact

Electronic thermal conductance quantization (Molenkamp *et al.* PRL, 1991)

Quantum Thermal Conductance

 $g_0^{th} = \pi^2 k_{\rm B}^2 T/(3h)$

Wiedemann-Franz Law:

$$\frac{g_0^{th}}{g_0^{el}} = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 T$$

Thermal Conductivity Quantization in Phonon System

Quantum Transport Channel

Synthesized 1 Dimensional Nanoscale Materials

Carbon Nanotubes

Semiconductor Nanowires

Organic Nanowires

LEFERTEEXCENTER CERTEEXCENTEEXCENTE

Carbon Nanotube: Electronic Structure

Rolling up graphene along C_h imposes a Periodic boundary condition :

$$\mathbf{C}_{\mathbf{h}} \cdot \mathbf{k} = 2\pi \, \mathbf{q}$$

 π/π^* band of Graphene

set of allowed states

Metallic and Semiconducting Nanotubes

$$D = |\mathbf{C}_h|/\pi = \sqrt{3}a_{cc}(m^2 + mn + n^2)^{1/2}/\pi$$
$$\theta = \tan^{-1}\left[(\mathbf{C}_h \times \mathbf{a}_1) \cdot \widehat{\mathbf{z}}/\mathbf{C}_h \cdot \mathbf{a}_1\right] = \tan^{-1}\left[\sqrt{3}m/(m+2n)\right].$$

Electrical Transport in Carbon Nanotube

Metallic or semiconducting: depending on chirality&diameter

Exotic 1D electron system: Luttinger liquid?

Ballistic electron transport in metallic tube: even at room temperature

Artist's conception of a gated nanotube transistor logic circuit. Bachtold et al., Science 294 (2001) 1317.

Ballistic Electron Transport

Charge Transport in Nanotubes

Metallic Singlewall Nanotube :

Ballistic at low bias: (Schönenberger *et al.*, 1999, Bachtold *et al.*, 2000, Z. Yao *et al.*, 2000, Liang *et al.*, 2001)

Multiwall Nanotube :

Ballistic (S. Frank et al., 1998)

Diffusive (C. Schönenberger et al., 1999, Bachtold et al., 2000)

Ballistic Electron Transport in Carbon Nanotube

Measurement of Electrical Field Distribution

(Bachtold et al., 2000)

Multiwall Nanotube: diffusive

AC EFM : probing local electric field

$$F_{ac}(w) = (dC / dz)(V_{tip} + \phi)V_s(w)$$

Singlewall Nanotube: ballistic

Ballistic Electron Transport

Local Temperature Probe

Probing local phonon temperature

Temperature reading :

$$\Delta T_{saample} = \frac{K_{leg}}{K_{contact}} \Delta T_{tip}$$

Scanning Thermal Probe on Nanotube: Calibration

Multiwall Nanotube on 100 nm SiO/Si Substrate

Seebeck coefficient of probe : 13.5 μ V/K

Temperature Distribution of Diffusive Conductor

1d Diffusion Equation:

Dissipative Transport

Bulk Dissipation in Multiwall Nanotube

2

0

1

Distance along the tube (μm)

-1000

1000

0

Bias voltage (mV)

Single Walled Nanotube: Energy Dissipation at High Field

• Optical Phonon Emission: from ballistic to diffusive

Onset of optical phonon ~ 150 meV

Low Bias and High Bias Transport in SWNT

Low bias: ballistic

High bias: dissipative

Ballistic to Diffusive Transport

C

Measurement of Energy Flow

Thermal Conductivity

$$K_{th} = \frac{dQ}{dT}$$

Phonon Thermal Conductivity of Materials

