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Electrons in nanostructures

Clean systems without boundaries:

‘Electrons are characterized by their momenta or quasimomenta
= electronic wave functions are plane waves

-Phvsics i ially local i (F)= r r
P gl conduerity A (1) =00 (M) E, (7)

Often interaction between electrons is (apparently) not important

In mesoscopic systems:

‘Due to the scattering of the electrons off disorder (impurities)
and/or boundaries the momentum is not a good quantum number

-Response to external i ()= J' o (7. 7\E. (¥ \d7
perturbation is usually nonlocal J“( ) “ﬂ( ’ ) ﬂ( )

-Interaction between electrons is often crucial
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Part 1 Without interactions

Random Matrices, Anderson
Localization, and Quantum Chaos




Finite size quantum physical systems

Atoms
Nuclel
Molecules

Quantum
Dots



Quantum Dot

1. Disorder (x — impurities)

2. Complex geometry

3. e-e Interactions



Quantum Dot

1. Disorder (x — impurities)

2. Complex geometry

3. e-e.l ons for a while

Realizations:

 Metallic clusters
« Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)

« Carbon nanotubes



1. Disorder (x — impurities)

2. Complex geometry

How to deal with disorder?

-Solve the Shrodinger-eqtration exactly

- Start with plane waves, introduce the
mean free path, and . . . ?
How to take quantum interference into account -




Instead of thinking in terms of plane waves

or solving exactly the Shrodinger equation
let us substitute exact one-particle

wavefunctions by eigenvectors of a random
matrix |?




RANDOM MATRIX THEORY

ensemble of Hermitian matrices
N xN with random matrix element N — 0

E - spectrum (set of eigenvalues)

— Ea> - mean level spacing



RANDOM MATRIX THEORY

ensemble of Hermitian matrices

N xN with random matrix element N — ©
E, - spectrum (set of eigenvalues)
0, = <E0[+1 — Ea> - mean level spacing
< ...... > - ensemble averaging
g = E..—E, - spacing between nearest
- 5, neighbors
P(S) - distribution function of nearest

neighbors spacing between

Spectral Rigidity ),

Level repulsion P(s<<1)ecs” p=1,2,4



Wigner-Dyson; GOE Gaussian
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Reason for P (S) — 0 when s—0:

(0 B
= iy E2_E1:\/(H22_H11)2+|H12|2

e Ha) o o

. The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be degenerate
vanishes.

. If H 12 is real (orthogonal ensemble), then for S to be small two

statistically independent variables ((Hy,- Hy;) and Hy,) should be
small and thus P(s)ocs £=1

Complex H, (unitary ensemble) =s»th Re(le) and

Im(H,) are statistically independent ~ =FPee independent
random variables should be small = P(s) oc §° p=2



RANDOM MATRICES

N x N matrices with random matrix elements. /N — o0

Dyson Ensembles

Matrix elements Ensemble S realization

real orthogonal 1  T-Invpotential

2 x2 matrices  simplectic 4 T-Inv, but with spin-
orbital coupling



Finite size quantum physical systems

Atoms
Nuclel
Molecules

Quantum
Dots



Main qgoal is to classify the eigenstates in
ATOMS Ter'msgof the quan?umynumbersg

For the nuclear excitations this program
NUCLEI does not work pres

Study spectral statistics of a
_ particular quantum system - a

given nucleus

Random Matrices Atomic Nuclel
e Ensemble e Particular quantum system
e Ensemble averaging e Spectral averaging (over Q)

Statistics of the nuclear spectra are
Nevertheless almost exactly the same as the Random

Matrix Statistics
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Particular nucleus

166 Iy

Spectra of several
nuclei combined
(after rescaling
by the mean level
spacing)



(RMT) works so well for nuclear ?

Why the random matrix theory
g spectra -

Oriainal These are systems with a large number
J of degrees of freedom, and therefore
answer.  the “complexity” is high

| ater it there exist very “simple” systems with

as many as 2 degrees of freedom
became (d=2), which demonstrate RMT - like
clear that spectral statistics



Classical ( ) Dynamical Systems with  degrees of freedom

The variables can be '
Integrable separated and the problem d mtegrals

reduces to ¢ one-dimensional of motion
problems

Systems

Examples
1. A ball inside rectangular billiard; d=2

o \Vertical motion can be o VVertical and horizontal

separated from the components of the
horizontal one momentum, are both

Integrals of motion

2. Circular billiard: d=2

» Radial motion can be « Anoular momentum

separated from the and energy are the
angular one Integrals of motion



Classical Dynamical Systems with  degrees of freedom

Integrable The variables can be separated = d one-dimensional
Systems problems = d integrals of motion
Rectangular and circular billiard, Kepler problem, . . ., 1d
Hubbard model and other exactly solvable models, . .

Chaotic The variables can not be separated = there is only one
Systems integral of motion - energy

Examples T B

Kepler problem in
magnetic field

Sinai billiard Stadium



: e Nonlinearities
Classical Chaos *Exponential dependence on

= the original conditions (Lyapunov
exponents)

*Ergodicity

Quantum description of any System
with a finite number of the degrees of
freedom is a linear problem -
Shrodinger equation

(). What does it mean Quantum Chaos 7



Bohigas — Giannoni — Schmit conjecture

2 JANUARY 1984 NumbBer 1

VoLume 52

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws

O. Bohigas, M. J. Giannoni, and C. Schmit
Division de Physique Théorigue, Institul de Physique Nucléaive, F-91406 Orsay Cedex, France

(Received 2 August 1983}
It is found that the level fluctuations of the quantum Sinai’s billiard are consistent with
the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces
the belief that level fluctuation laws are universal.

In

summary, the guestion at issue is to prove or dis-

prove the following conjecture: Spectra of time-
reversal—-invariant systems whose classical an-

Qs are sSysiems snow e same 1iu
roperties as predicted by GOE
1.0*trv1[r|_uf'1l-tl||l 1.0 \""|'-r:||--.|'..!|rrvr[....
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Chaotic classical

analog

Wigner- Dyson

spectral statistics

Il 1

NO quantum

numbers except

energy



()’ What does it mean Quantum Chaos 7

Two possible definitions

Chaotic Wigner -
classical Dyson-like
analog spectrum



Classical Quantum

f?
Integrable <= Poisson
% : .
Chaotic <—— Vigner

Dyson

0 0.5 1 1.5 2 2.5 3



Poisson to Wigner-Dyson crossover

Important example: quantum
particle subject to a random
potential - disordered conductor

¥ Scattering centers, e.g., impurities

-As well as in the case of Random
Matrices (RM) there is a luxury of
ensemble averaging.

‘The problem is much richer than RM
theory

‘There is still a lot of universality.

Anderson localization
(1958)

At strong enough disorder all eigenstates are localized in space




VoLUuME 85, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SeprrEMBER 2000

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and S. Sridhar

Department of Plivsics, Nortlhieastern University, Boston, Massachusetis 02115
(Received 28 February 2000)

f=3.04 GHz f=7.33 GHg

Anderson Insulator Anderson Metal



Anderson Transition

I<I

Insulator
All eigenstates are localized

Localization length a

The eigenstates, which are

localized at different places
will not repel each other

!/

Poisson spectral statistics

I>1
Metal

There appear states extended all
over the whole system

Any two extended eigenstates
repel each other

!/

Wigner — Dyson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

3D cube of volume 20x20x20

Energy/Spacing
O

"
O

N
e




Anderson transition in terms of

pure level statistics

P(s)

1 - - Scaling of level spacing variance

metal, W=5 =
critical, 16.5 =
insulator, 100

0.7 F Linear size of 3D cube

Wigner

P(s) Var §

Poisson
u.‘: ) i | ' |8
12 14 16 18 20
disorder W



Classical particle in a random potential | Diffusion

1 particle - random walk
Density of the particles p

Density fluctuations o (r,t) at a
given point in space r and time t.

op 2 Diffusion
o bVZp=0 Equation

D - Diffusion constant

| mean free path

D= E T mean free time

d # of dimensions



Conductivity Density of States Einstein Relation

e’r 1 2
= — V = —
T’ o, *Volume o =evD

Conductivity local o
_ } quantities J _ GE
Density of States

=GV

d—2 for a cubic sample
G :JI— of the size L



Energy scales (Thouless, 1972)

v 4 d
1. Mean level spacing 51 = 1/vx L

l 5 L IS the system size;
E—
d IS the number of
- dimensions

D IS the diffusion const

E rhas a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

=80 O ouless g =Gh/e’

conductance



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
) Insulator Metal ﬁ
Poisson spectral Wigner-Dyson  °
statistics spectral statistics

Transition at g~1.
Is it sharp?



volume=8x8x 8

—
=

Energy / Spacing
th ©

o
=

0.01 B
Conductance g

0.01 0.1 l 10 100
Conductance g



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
) Insulator Metal ﬁ
Poisson spectral Wigner-Dyson  °
statistics spectral statistics

., How the Thouless conductance g depends on f?
Q the size of the system

" What happens with g when L - infinity "



Scaling theory of Localization
(Abrahams, Anderson, Licciardello and Ramakrishnan 1979)

g=E,/5,  CUTEINS g=Ghe
L=2L=4L =8L....

without quantum corrections

E ocL? 6, L™

E. E, E E,
0, 0, O, 0

g —9 —g —9



Universal, i.e., material
independent

But
: - It depends on the global
,8_ funCtlon IS symmg‘rr'ies, e.g., ?r is
different with and without
T -invariance (in

orthogonal and unitary
ensembles)

Limits:
1) <0 d>2

g>>1 gocl®? ﬂ(g):(d—2)+0(— 7 d=2
g >0 d<2

g<<1l goce B(g)=logg <0



unstable
fixed point

Metal — insulator transition in 3D
All states are localized for d=1,2



Questions:

‘the scaling theory is correct?

Why ‘the correction of the conductance
is negative?

Quantum corrections at large Thouless

conductance - weak localization
Universal description



unstable
fixed point

I B e e 1D B

Quantum
correction

g(L)=o L2+ CogSt

const=? =+7?




WEAK LOCALIZATION

The particle
can go around
the loop in two
directions

p =[] pdF
Phase accumulated

when traveling along
the loop

P =P,

Constructive interference ——= probability to return
to the origin gets enhanced ~——=diffusion constant
gets reduced. Tendency towards localization

f - function is negative for d=2



Random walk
Density fluctuations po(r,t) at a

™. | given point in space r and time t.

Mean squared
distance from

op 2~ Diffusion
E_DV p=0 Equation

D - Diffusion constant

Probability to come back
(to the element of the

the original point volume dV centered at the

at time ¢

(r(t)")=Dt

original point)
P (r (t)=0)dv =2V

(D)

d/2



What is the Probability to come back
probability (to the element of the

"P(t) that volume dV around the
such a loop original point)
Is formed dv
withinatime p (r (t) — O) dv = =
Q: dv="? A dV =1t

t

¢ vedt’ )
i (t) -t 1I (Df[')d/2 g P(tmax)







P(t)=-2""
2

tmax L:L
D E,

v dt’

(Dt")"*

o9 _

AV

Pt )

~log—

D

Dr



P (t) _ xd—lj‘ Vth 5_g - P(tmax)

(D)9
2
5_gz KVF |OgL_: ZKVF IOQL
g D Dr D |
= 00 :—ElogL
v S /4 I
2

g=vDn B(9)=—— Universal !l
(g



Q What does it mean d=2 7

A Transverse dimension is much less than

\/ Dtmax




