Theory / Transport - Part I

Boris L. ALTSHULER

N.E.C. Research Institute Inc. 08540 Princeton, NJ, USA

Introduction to theory of mesoscopic systems

Boris Altshuler
Princeton University
\& NEC Laboratories America

Electrons in nanostructures

Clean systems without boundaries:

- Electrons are characterized by their momenta or quasimomenta \Rightarrow electronic wave functions are plane waves
-Physics is essentially local
Example - conductivity

$$
j_{\alpha}(\vec{r})=\sigma_{\alpha \beta}(\vec{r}) E_{\beta}(\vec{r})
$$

- Often interaction between electrons is (apparently) not important

In mesoscopic systems:

- Due to the scattering of the electrons off disorder (impurities) and/or boundaries the momentum is not a good quantum number
- Response to external perturbation is usually nonlocal

$$
j_{\alpha}(\vec{r})=\int \sigma_{\alpha \beta}\left(\vec{r}, \vec{r}^{\prime}\right) E_{\beta}\left(\vec{r}^{\prime}\right) d \vec{r}^{\prime}
$$

-Interaction between electrons is often crucial

Introduction to theory of mesoscopic systems

Boris Altshuler
Princeton University
\& NEC Laboratories America

Part 1 Without interactions
Random Matrices, Anderson
Localization, and Quantum Chaos

Finite size quantum physical systems

Atoms
Nuclei
Molecules

\}
Quantum
Dots

Realizations:

- Metallic clusters
- Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
- Carbon nanotubes
-

How to deal with disorder?
-Solve the Shrodinger equation exactly

- Start with plane waves, introduce the mean free path, and . . .
How to take quantum interference into account

Idea:

Instead of thinking in terms of plane waves or solving exactly the Shrodinger equation let us substitute exact one-particle wavefunctions by eigenvectors of a random matrix !?

RANDOM MATRIX THEORY

$$
\begin{array}{cc}
\boldsymbol{N} \times \boldsymbol{N} & \begin{array}{c}
\text { ensemble of Hermitian matrices } \\
\text { with random matrix element }
\end{array} \quad \boldsymbol{N} \rightarrow \infty \\
\boldsymbol{E}_{\alpha} \\
\delta_{1} \equiv\left\langle\boldsymbol{E}_{\alpha+1}-\boldsymbol{E}_{\alpha}\right\rangle & \text { - spectrum (set of eigenvalues }
\end{array}
$$

RANDOM MATRIX THEORY

$$
\boldsymbol{N} \times \boldsymbol{N} \quad \begin{aligned}
& \text { ensemble of Hermitian matrices } \\
& \text { with random matrix element }
\end{aligned} \quad \boldsymbol{N} \rightarrow \infty
$$

\boldsymbol{E}_{α}

$$
\delta_{1} \equiv\left\langle\boldsymbol{E}_{\alpha+1}-\boldsymbol{E}_{\alpha}\right\rangle
$$

$$
\boldsymbol{s} \equiv \frac{\boldsymbol{E}_{\alpha+1}-\boldsymbol{E}_{\alpha}}{\delta_{1}}
$$

$$
P(s)
$$

- spectrum (set of eigenvalues)
- mean level spacing
- ensemble averaging
- spacing between nearest neighbors
- distribution function of nearest neighbors spacing between

Spectral Rigidity

$\boldsymbol{P}(\boldsymbol{s}=0)=0$
Level repulsion

$$
\boldsymbol{P}(\boldsymbol{s} \ll 1) \propto \boldsymbol{s}^{\beta} \quad \beta=1,2,4
$$

Reason for $\quad P(s) \rightarrow 0$ when $s \rightarrow 0$:
$\hat{H}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{12}^{*} & H_{22}\end{array}\right)$

1. The assumption is that the matrix elements are statistically independent. Therefore probability of two levels to be degenerate vanishes.
2. If H_{12} is real (orthogonal ensemble), then for S to be small two statistically independent variables $\left(H_{22}-H_{11}\right)$ and $\left.H_{12}\right)$ should be small and thus

$$
P(s) \propto s \quad \beta=1
$$

3. Complex H_{12} (unitary ensemble) \Rightarrow th $\operatorname{Re}\left(H_{12}\right)$ and $\operatorname{Im}\left(\mathrm{H}_{12}\right)$ are statistically independent \Rightarrow ee independent random variables should be small

$$
P(s) \propto s^{2} \quad \beta=2
$$

RANDOM MATRICES

$N \times N$ matrices with random matrix elements. $\quad N \rightarrow \infty$

Dyson Ensembles

Matrix elements
real
complex
2×2 matrices simplectic 4

Ensemble $\underline{\beta} \quad \underline{\text { realization }}$

 orthogonal 1unitary

T-inv, but with spinorbital coupling

Finite size quantum physical systems

Atoms
Nuclei
Molecules

\}
Quantum
Dots does not work

E.P. Wigner:

 Study spectral statistics of a particular quantum system - a given nucleus| Random Matrices | Atomic Nuclei |
| :--- | :---: |
| - Ensemble | - Particular quantum system |
| - Ensemble averaging | - Spectral averaging (over α) |

Nevertheless
Statistics of the nuclear spectra are almost exactly the same as the Random Matrix Statistics

Particular nucleus

${ }^{166} \mathrm{Er}$

Spectra of several nuclei combined (after rescaling by the mean level spacing)

Why the random matrix theory (RMT) works so well for nuclear spectra

Original answer:

These are systems with a large number of degrees of freedom, and therefore the "complexity" is high

Later it became clear that
there exist very "simple" systems with as many as 2 degrees of freedom ($\mathrm{d}=2$), which demonstrate RMT - like spectral statistics

Classical ($\hbar=0$) Dynamical Systems with d degrees of freedom

Integrable Systems

The variables can be separated and the problem reduces to d one-dimensional problems

Examples

1. A ball inside rectangular billiard; $d=2$

- Vertical motion can be separated from the horizontal one
- Vertical and horizontal components of the momentum, are both integrals of motion

d integrals of motion

2. Circular billiard; $d=2$

- Radial motion can be separated from the angular one
- Angular momentum and energy are the integrals of motion

Classical Dynamical Systems with \boldsymbol{d} degrees of freedom

Integrable Systems

The variables can be separated $\Rightarrow d$ one-dimensional problems $\Rightarrow d$ integrals of motion
Rectangular and circular billiard, Kepler problem, ..., 1d Hubbard model and other exactly solvable models, . .

Chaotic Systems

The variables can not be separated \Rightarrow there is only one integral of motion - energy

Examples

Sinai billiard

Kepler problem in magnetic field

Classical Chaos

$$
\hbar=0
$$

- Nonlinearities
-Exponential dependence on
the original conditions (Lyapunov
exponents)
-Ergodicity

Quantum description of any System with a finite number of the degrees of freedom is a linear problem Shrodinger equation

$\hbar \neq 0 \quad$ Bohigas - Giannoni - Schmit conjecture

Volume 52
2 JANUARY 1984
Number 1

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws

O. Bohigas, M. J. Giannoni, and C. Schmit

Division de Physique Théorique, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France (Received 2 August 1983)
It is found that the level fluctuations of the quantum Sinai's billiard are consistent with the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces the belief that level fluctuation laws are universal.

In

summary, the question at issue is to prove or disprove the following conjecture: Spectra of time-reversal-invariant systems whose classical analogs are K systems show the same fluctuation properties as predicted by GOE

Chaotic classical analog

Wigner- Dyson spectral statistics

No quantum numbers except energy

What does it mean Quantum Chaos

Two possible definitions

Chaotic
classical
analog

Wigner -
Dyson-like spectrum

Classical Quantum

Integrable $\stackrel{?}{\rightleftarrows}$ Poisson

Chaotic $\stackrel{?}{\stackrel{\text { Wigner- }}{\text { Dyson }}}$

Poisson to Wigner-Dyson crossover

Important example: quantum particle subject to a random potential - disordered conductor
察: Scattering centers, e.g., impurities
-As well as in the case of Random Matrices (RM) there is a luxury of ensemble averaging.
-The problem is much richer than RM theory
-There is still a lot of universality.

Ander

At strong enough disorder all eigenstates are localized in space

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities
Prabhakar Pradhan and S. Sridhar
Department of Physics, Northeastern University, Boston, Massachusetts 02115
(Received 28 February 2000)

Anderson Insulator
Anderson Metal

Anderson Transition

$$
I<I_{c}
$$

Insulator

All eigenstates are localized Localization length ξ

The eigenstates, which are localized at different places will not repel each other

Poisson spectral statistics
$I>I_{c}$
Metal
There appear states extended all over the whole system

Any two extended eigenstates repel each other

Wigner - Dyson spectral statistics

Zharekeschev \& Kramer.
Exact diagonalization of the Anderson model

Anderson transition in terms of pure level statistics

$P(s)$

Classical particle in a random potential

Diffusion

1 particle - random walk
Density of the particles ρ
Density fluctuations $\rho(r, t)$ at a given point in space r and time t.

$$
\frac{\partial \rho}{\partial t}-D \nabla^{2} \rho=0
$$

Diffusion
Equation

D-Diffusion constant

$$
D=\frac{l \tau}{d} \quad \begin{array}{ll}
\tau & \text { mean free path } \\
d
\end{array} \begin{aligned}
& \text { mean free time } \\
& \text { \# of dimensions }
\end{aligned}
$$

Conductivity
 Density of States
 Einstein Relation
 $$
\sigma=\frac{e^{2} \tau}{m} \rho \quad v=\frac{1}{\delta_{1} * \text { Volume }}
$$
 $$
\sigma=e^{2} v D
$$

$\left.\begin{array}{l}\text { Conductivity } \\ \text { Density of States }\end{array}\right\} \begin{aligned} & \text { local } \\ & \text { quantities }\end{aligned} \quad j=\sigma E$

Conductance $\quad I=G V$

$G=\sigma L^{d-2} \quad \begin{aligned} & \text { for a cubic sample } \\ & \text { of the size } L\end{aligned}$

Energy scales (Thouless, 1972)

1. Mean level spacing $\quad \delta_{1}=1 / v \times L^{d}$

2. Thouless energy

D is the diffusion const
\boldsymbol{E}_{T} has a meaning of the inverse diffusion time of the traveling through the system or the escape rate (for open systems)

$$
\boldsymbol{g}=\boldsymbol{E}_{T} / \delta_{1} \quad \begin{gathered}
\text { dimensionless } \\
\text { Thouless } \\
\text { conductance }
\end{gathered} \quad g=\boldsymbol{G} \boldsymbol{h} / \boldsymbol{e}^{2}
$$

Thouless Conductance and One-particle Spectral Statistics

Transition at $\boldsymbol{g \sim 1}$. Is it sharp?

Thouless Conductance and One-particle Spectral Statistics

How the Thouless conductance g depends on the size of the system

What happens with g when $L \rightarrow$ infinity

Scaling theory of Localization

(Abrahams, Anderson, Licciardello and Ramakrishnan 1979)

$$
g=\boldsymbol{E}_{T} / \delta_{1}
$$

Dimensionless Thouless conductance

$$
g=G \boldsymbol{h} / \boldsymbol{e}^{2}
$$

$$
L=2 L=4 L=8 L \ldots
$$

without quantum corrections

$$
\boldsymbol{E}_{T} \propto \boldsymbol{L}^{-2} \quad \delta_{I} \propto \boldsymbol{L}^{-d}
$$

$$
\frac{d(\log g)}{d(\log L)}=\beta(g)
$$

$\frac{d(\log g)}{d(\log L)}=\beta(g)$

β - function is

Limits:

$$
\begin{aligned}
& g \gg 1 \quad g \propto L^{d-2} \quad \beta(g)=(d-2)+O\left(\frac{1}{g}\right) \\
& g \ll 1 \quad g \propto e^{-L / \xi} \quad \beta(g) \approx \log g<0
\end{aligned}
$$

$$
\begin{array}{lc}
<0 & d>2 \\
? ? & d=2 \\
>0 & d<2
\end{array}
$$

Questions:

Why
-the scaling theory is correct?
-the correction of the conductance is negative?

Quantum corrections at large Thouless conductance - weak localization
Universal description

WEAK LOCALIZATION

$$
\varphi=\oint \oint \bar{p} d \bar{r}
$$

Phase accumulated when traveling along the loop

The particle can go around the loop in two directions

Constructive interference \longrightarrow probability to return to the origin gets enhanced \longrightarrow diffusion constant gets reduced. Tendency towards localization
β - function is negative for $\boldsymbol{d}=\mathbf{2}$

Diffusion

Random walk
Density fluctuations $\rho(r, t)$ at a given point in space r and time t.

$$
\frac{\partial \rho}{\partial t}-D \nabla^{2} \rho=0 \quad \begin{aligned}
& \text { Diffusion } \\
& \text { Equation }
\end{aligned}
$$

D-Diffusion constant

Mean squared distance from the original point at time t

$$
\left\langle r(t)^{2}\right\rangle=D t
$$

Probability to come back (to the element of the volume $d V$ centered at the original point)

$$
P(r(t)=0) d V=\frac{d V}{(D t)^{d / 2}}
$$

What is the probability $P(t)$ that such a loop is formed within a time t ?
$\mathbf{Q}: d V=? \quad \mathbf{A}: d V=\lambda^{d-1} d t$

$$
P(t)=-\lambda^{d-1} \int_{\tau}^{t} \frac{v_{F} d t^{\prime}}{\left(D t^{\prime}\right)^{d / 2}}
$$ (to the element of the volume $d V$ around the original point)

$$
P(r(t)=0) d V=\frac{d V}{(D t)^{d / 2}}
$$

$$
\frac{\delta g}{a} \approx P\left(t_{\max }\right)
$$

$$
g
$$

$$
P(t)=-\lambda^{d-1} \int_{\tau}^{t} \frac{v_{F} d t^{\prime}}{\left(D t^{\prime}\right)^{d / 2}} \quad \frac{\delta g}{g} \approx P\left(t_{\max }\right)
$$

$$
\mathrm{Q}: t_{\max }=?
$$

$$
\mathbf{A}: \quad t_{\max } \square \min \left\{\frac{L^{2}}{D}, \frac{1}{\omega}, \tau_{\varphi, \ldots}\right\}
$$

$$
\begin{aligned}
& P(t)=-\lambda^{d-1} \int_{\tau}^{t} \frac{v_{F} d t^{\prime}}{\left(D t^{\prime}\right)^{d / 2}} \frac{\delta g}{g} \approx P\left(t_{\max }\right) \\
& \left.t_{\max } \square \frac{L^{2}}{D}=\frac{h}{E_{T}}\right\} \frac{\delta g}{g} \approx-\frac{\lambda v_{F}}{D} \log \frac{L^{2}}{D \tau}
\end{aligned}
$$

$$
\begin{aligned}
& P(t)=\lambda^{d-1} \int^{t} \frac{v_{F} d t^{\prime}}{\left(D t^{\prime}\right)^{d / 2}} \quad \frac{\delta g}{g} \approx P\left(t_{\max }\right) \\
& \frac{\delta g}{g} \approx-\frac{\lambda v_{F}}{D} \log \frac{L^{2}}{D \tau}=-\frac{2 \lambda v_{F}}{D} \log \frac{L}{l} \\
& \lambda v_{F}=\frac{1}{\pi v} \\
& g=v D \hbar \\
& \delta g=-\frac{2}{\pi} \log \frac{L}{l} \\
& \beta(g)=-\frac{2}{\pi g} \\
& \text { Universal !!! }
\end{aligned}
$$

Q: What does it mean $d=2$?
A:
Transverse dimension is much less than
$\sqrt{D t_{\text {max }}}$

