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Part 1 Without interactions continued

Weak Localization,
Mesoscopic Fluctuations
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Metal — insulator transition in 3D
All states are localized for d=1,2
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WEAK LOCALIZATION

L d_, > The par'ﬂcled
QY = [ﬁ par can go aroun

& e oop in two
Phase accumulated Irections
when traveling along

the loop

P = b,
Constructive interference —=probability to return

to the origin gets enhanced ~—diffusion constant
gets reduced. Tendency towards localization

B - function is negative for d=2
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Magnetoresistance

No magnetic field With magnetic field H
= — = JXk
0. =0 Q,—@=2%21 P/O,

D = HS _ magnetic flux cDo: hc/e _ flux

through the loop guantum



ength Scales

Magnetic length |_|_I — (hC/eH)1/2
Dephasing length L¢ = (D Z.(p)llz

59 (H ) = fd —HA Universal

L functions

Magnetoresistance measurements allow to study inelastic
collisions of electrons with phonons and other electrons



Weak Localization

Negative Chentsov
Magnetoresistance (1949)

Aharonov-Bohm effect

Theory

Experiment

B.A., Aronov & Spivak (1981) Sharvin & Sharvin (1981)
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FIG. 8. Longitudinal magnetoresistance AR (H) at T'=1.1 K
for a cylindrical lithium film evaporated omto a l-cm-long
quartz filament. R,,=2k{}, Rin/R,,=2.8. Solid line: aver-
aged from four experimenta 1 curves. Dashed line: calculated
for L,=2.2 um, 7,/7,=0, filament diameter d=1.31 pm,
film thickness 127 nm. Filament diameter measured with scan-
ning electron microscope vields o =1.30+0.03 um (Altshuler
et al., 1982; Sharvin, 1984},
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Mesoscopic Fluctuations.

Properties of systems with set of
macroscopic parameters but
realizations of disorder are different!

H .
g( ) Magnetoresistance

(9)

g(H)

is sample
-dependent

(-7 (g)>>1
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Magnetoresistance

aH) balo
(9)

Statistics of random function(s) g(H) are universal I



Statistics of random function(s) g(H) are universal I

In particular,
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Fluctuations are large and nonlocal

g L'® — >> L




interference .
term: 2 Re(A1A2 ): 2yW W, cos (¢, - ¢,)



2Re(AA,")=2yWW, cos(p; - 0,)

. The interference
1. A1,2 =-‘/ W1,2 eXp(I(DLZ) term disappears

after averaging
2. Phases ¢, .are random

3. ‘@1_¢2‘>> 27 (COS(%—%»:O

(W)=(Wy)+(W,)



Classical result for average probability:



Reason:

(COS (o, — 0, )) =0
(COS 2((”1 - ¢2)> =1/2




CONCLUSIONS:

1. There are fluctuations!

2. Effect 1s nonlocal.



Now let us try to
understand the effect
of magnetic field.
Consider the
correlation function



Now let us try to
understand the effect
of magnetic field.
Consider the
correlation function

e L forh =0 (@(h)0 @
<COS(5¢(H))COS(5¢(H+h))>: 2 — ( ( ) 0)
0 for®(h)0 @,

@ (h) =he(area of the loop)



Magnetoresistance

N
(9)

Flux through the
whole system




Mesoscopic fluctuations in metallic wires

Conductance (e?/h)

R.A. Webb et al
(1984)



conductance (e?4/h)
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X %

X %

Tunnel junctions
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Tunnel junctions

Resonance
tunneling

Interaction between electrons becomes crucial |



WEAK TUNNELING

g (e%/h) 0.02

|

I'>A

STRONG TUNNELING

0.0 06 g(e?/h) 1.2

I'<< A




Coulomb Blockade
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Part2  With interactions
Zero dimensional Fermi liquid




Termi liquid 2

What does it m

Q " What is the difference between ?

Fermi-liquid and non-Fermi liquid .

A m The difference is the same as between
= bananas and non-bananas.

What does it mean Fermi liquid ?



Eermir Liguic

Fermi statistics

Low temperatures

Not too strong interactions

Translation invariance

Whnat coes It mean?



Fermi statistics

Low temperatures e

Not too strong interactions
Translation invariance

1. Excitations are similar to the excitations in a Fermi-gas:
a) the same quantum numbers — momentum, spin %2 , charge €

b) decay rate is small as compared with the excitation energy
2. Substantial renormalizations. For example, in a Fermi gas

onfou, y=c/T, x/Qug

are all equal to the one-particle density of states V.
These quantities are different in a Fermi liquid



Signatures of the Fermi - Liquid state

1. Resistivity is proportional to T2
L.D. Landau & l.Ya. Pomeranchuk “To the properties of metals at very low

temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649
Umklapp electron — electron scattering dominates the
charge transport (?!)

2. Jump in the momentum distribution
function at T=0.

2a.  Pole in the one-particle Green function

. /
P

Fermi liquid = 0<Z<1 (?!)




Landau Fermi - Liquid theory

Momentum p

Momentum distribution n(p)

Total energy En(p);
Quasiparticle energy £(p) = oE/on(p)
Landau f-function f(p, p')=05E(p)/on(p)

Does it make sense to speak about the Fermi —liquid state in -~
the presence of a quenched disorder

Q : Can Fermi — liquid survive without the momenta f)



" Does it make sense to speak about the Fermi - liquid ?
= state in the presence of a guenched disorder m

1. Momentum is not a good quantum number — the
momentum uncertainty is inverse proportional to the
elastic mean free path, |. The step in the momentum
distribution function is broadened by this uncertainty

2. Neither resistivity nor its temperature dependence is determined by the umklapp
processes and thus does not behave as T2

3. Sometimes (e.qg., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a function of

the energy, £ The residue , Z, makes no sense

Nevertheless even in the presence of the disorder

Excitations are similar to the excitations in a disordered Fermi-gas.

|. Small decay rate
ll. Substantial renormalizations




Quantum Dot

one-particle
motion

1. Disorder (ximpurities) }chaotic

2. Complex geometry

3. 8-e Interactions



Energy

One-particle problem (Thouless, 1972) scales

1. Mean level spacing

L IS the system size;

d IS the number of
dimensions

D IS the diffusion const

ET has a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

==y i e g = Gh/ge’

conductance



Zerno Dimensionall FermiLiguid

Finite Thouless
| — ET

System energy

At the same time, we want the typical energies, &, to
exceed the mean level spacing, 0, :

0, << & << E;




Thouless Conductance and
One-particle Quantum Mechanics

Localized states Extended states
Insulator Metal
Poisson spectral Wigner-Dyson
statistics spectral statistics

Quantum Dots with
dimensionless

conductance

The same statistics of the
random spectra and one-
particle wave functions
(elgenvectors)



TWO-BOdy Set of one particle states. ¢ and
Interactions ()L O > o label correspondingly spin

and orbit.

&, -one-particle orbital energies aﬂy§ -Interaction matrix elements



TWO-BOdy Set of one particle states. ¢ and
lnteractions ‘()L,G> o label correspondingly spin

and orbit.

&, -one-particle orbital energies M afys -interaction matrix elements

o are taken from the shell model
Nuclear
Physics M,ss are assumed to be random
Eq RANDOM; Wigner-Dyson statisti
Quantum OM; Wigner-Dyson statistics
Dots Muys 22222222



Matrix Elements

Diagonal - ,3,7,6 are equal pairwise
Matrix a=y and =6 or a=6 and B=y or a=f and y=0

Elements — %
Offdiagonal - otherwise

» Diagonal matrix elements are much bigger
|’[ turns than the offdiagonal ones

M diagonal >> M offdiagona |

the limit

* Diagonal matrix elements in a particular
sample do not fluctuate - selfaveraging




ey model: Short range €-€ interactions

U (F)— &5(F) A is dimensionless coupling constant Vv
- " IS the electron density of states

one-particle
eigenfunctions

electron 4 is a random
. wavelength « () i
function that

Ve rapidly oscillates

7\ bl PR
N 1S long as
\/\/ \ Va 0()2 .2—.(.).\/ariance
IS preserved




.  Diagonal matrix elements are much bigger than the
LURUCRIGTIS offdiagonal ones

I\/Idiagonal >> M

* Diagonal matrix elements in a particular sample do
not fluctuate - selfaveraging

M pus = %I dF‘Wa (F)‘Z‘Wﬁ (F)‘2

offdiagona |

2 1 => | M = 40,
-
v.rf = volume
More general: finite range interaction potential U(r)

The same
conclusion




Random E - spectrum
Matrices: (i) - i-th component of a-th eigenvector

(v (Y, (1)) = 25,0,

in the limit N —> o

Components of the different eigenvectors as
well as different components of the same
eigenvector are not correlated



Universal (Random Matrix) limit - Random Matrix
symmetry of the correlation functions:

All _correlation functions are inva_riant under
arbitrary orthogonal transformation:




There are only three operators, which are quadratic in the
fermion operators , 4 ‘and invariant under RM
transformations:

total number of particles

total spin

0?0?0?0?




Charge conservation - it C
(gauge invariance) mo [ or T oty TT

N\ N\

Invariance under -no S only SZ
rotations in spin space

Therefore, in a very general case

Only three coupling constants describe all of the
effects of e-e interactions



In a very general case coupling constants
describe effects of electron-electron interactions:

H = Zgana T Hint
a

=eVA+E A"+ JS%+ A, T'T.

|.L. Kurland, I.L.Aleiner & B.A., 2000

See also

P.W.Brouwer, Y.Oreg & B.l.Halperin, 1999
H.Baranger & L.l1.Glazman, 1999

H-Y Kee, |.L.Aleiner & B.A., 1998



Only one-particle part of
the Hamiltonian, Ho
contains randomness

@ —uD



determines the charging energy
C (Coulomb blockade)

describes the spin exchange interaction

determines effect of superconducting-like
BCS  pairing




In a very general case coupling constants
describe effects of electron-electron interactions:

where 51is the one-particle mean level spacing



|, Excitations are similar to the excitations in a disordered Fermi-gas.

ll.  Small decay rate
lll. Substantial renormalizations

Isn’t it a Fermi liquid ?

ermi liquid behavior follows from the fact that differen

wave functions are almost uncorrelated




CONCLUSIONS

One-particle chaos + moderate interaction of the electrons — to a
rather simple Hamiltonian of the system, which can be called Zero-
dimensional Fermi liquid.

The main parameter that justifies this description is the Thouless
conductance, which is supposed to be large

Excitations are characterized by their one-particle energy, charge
and spin, but not by their momentum.

T
T

T

nese excitations have the lifetime, which is proportional to the
nouless conductance, I.e., Is long.

nis approach allows to describe Coulomb blockade

(renormalization of the compressibility), as well as the substantial
renormalization of the magnetic susceptibility and effects of
superconducting pairing



