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Metal – insulator transition in 3D
All states are localized for d=1,2
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   ϕ1 = ϕ2

WEAK  LOCALIZATION

Constructive interference           probability to return 
to the origin gets enhanced          diffusion constant 
gets reduced. Tendency towards localization

β - function is negative for d=2

pdrϕ = ∫
r r

�
Phase accumulated 
when traveling along 
the loop

The particle 
can go around 
the loop in two 
directions
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OO

Φ

Magnetoresistance

No magnetic field 

   ϕ1 = ϕ2

With magnetic field H
     ϕ1− ϕ2= 2∗2π Φ/Φ0

Φ = HS - Φ0 = hc/e -magnetic flux 
through the loop

flux 
quantum



Length Scales

Magnetoresistance measurements allow to study inelastic
collisions of electrons with phonons and other electrons

Magnetic length LH = (hc/eH)1/2

Dephasing length Lϕ = (D τϕ)1/2

( ) H
d

Lg H f
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δ
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Universal
functions



Negative 
Magnetoresistance 

Weak LocalizationWeak Localization

Aharonov-Bohm effect
Theory 
B.A., Aronov & Spivak (1981)

Experiment 
Sharvin & Sharvin  (1981)

Chentsov
(1949)



R.A. Webb et al 
(1984)



Mesoscopic   Fluctuations.Mesoscopic   Fluctuations.
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Properties of systems with identical set of 
macroscopic parameters but different
realizations of disorder are different!

g1 ≠ g2

Magnetoresistanceg H( )

H

g

... g >>1- ensemble  averaging

g H( )
is sample
-dependent



g1 ≠ g2

g1 − g2 ≅1 G1 −G2 ≅ e2 h

×

×
×

×
×

×

××

××

Magnetoresistance
g H( )

H

g

≈1

Statistics of random function(s) g(H) are universal !!!



Statistics of random function(s) g(H) are universal !!!

In particular,
( )2 1gδ �

( )2

2 4 2
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d d d
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g L L L
g

δ
− − −∝ → ∝ >>

Fluctuations are large and nonlocal



W1,2 = A1,2
2

W = A1 + A2
2

=W1 + W2 + 2 Re A1A2
∗( )

Waves in Random MediaWaves in Random Media
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× D

S

1
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W1, W2
probabilities

A1, A2
probability 
amplitudes

Total 
probability

2 Re A1A2
∗( )= 2 W1W 2 cos ϕ1 − ϕ 2( )

interference 
term:

1,2
1,2 1,2

iA A e ϕ=



Phases    are random

A1,2 = W1,2 exp iϕ1,2( )1.
ϕ1,22.

ϕ1 −ϕ2 >> 2π3. cos ϕ1 − ϕ 2( ) = 0

W = W1 + W 2

The interference 
term disappears 
after averaging

W = A1 + A2
2

=W1 + W2 + 2 Re A1A2
∗( )

2 Re A1A2
∗( )= 2 W1W 2 cos ϕ1 − ϕ 2( )



W = A1 + A2
2

=W1 + W2 + 2 Re A1A2
∗( )
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Classical result for average probability:

W = W1 + W2



Reason:Reason:
cos ϕ1 − ϕ 2( ) = 0

cos 2 ϕ1 − ϕ 2( ) = 1 2

Consider now square of the probability

W 2 = W1 + W 2( )2 + 2W1 W2

W 2 ≠ W
2

×
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×
××

×

×
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W 2 ≠ W
2

CONCLUSIONS:

1. There are fluctuations!

2. Effect is nonlocal.

×

×



Now let us try to 
understand the effect 
of magnetic field. 
Consider the 
correlation function 
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Now let us try to 
understand the effect 
of magnetic field. 
Consider the 
correlation function 
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Magnetoresistance
g H( )

g

≈1

H Φ

Φ0

Flux through the 
whole system



Mesoscopic fluctuations in metallic wires

A
B

R.A. Webb et al 
(1984)
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Quantum Chaos
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Marcus et al



Lateral Quantum Dots
A well-controlled box of electrons

irregular shape for 
generic behavior



g H( )
g

H,Vg, ...
1×
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Open sample

g >>1

δg ≅1

g H( )
g
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Narrow leads

g ≈1

δg ≅1
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Tunnel junctions

g <<1

δg ≅1



g H( )
g

H,Vg, ...

1
×

×
××

×

Tunnel junctions

g <<1

δg ≅1

Resonance 
tunneling

Interaction between electrons becomes crucial !
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Zero dimensional Fermi liquidZero dimensional Fermi liquid
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What does it mean - non-Fermi liquid ?

A: The difference is the same as between 
bananas and non-bananas.

Q: What is the difference between 
Fermi-liquid and non-Fermi liquid ?

What does it mean Fermi liquid ?



Fermi LiquidFermi Liquid

Fermi statistics

Low temperatures

Not too strong interactions

Translation invariance

Fermi
Liquid

What does it mean?What does it mean?



2. Substantial renormalizations. For example, in a Fermi gas

It means thatIt means that
1. Excitations are similar to the excitations in a Fermi-gas:

a) the same quantum numbers – momentum, spin ½ , charge e
b) decay rate is small as compared with the excitation energy

BgTcn µχγµ ,, =∂∂

Fermi statistics
Low temperatures
Not too strong interactions
Translation invariance

Fermi
Liquid}

are all equal to the one-particle density of states ν .
These quantities are different in a Fermi liquid



1. Resistivity is proportional to T2 :
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very low 
temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

Umklapp electron – electron scattering dominates the 
charge transport (?!) 

Signatures of the Fermi  - Liquid state  ?!

( ) ( )pi
ZpG

n
r

r

ξε
ε

−
=,

( )pn r

p
Fp

Fermi liquid = 0<Z<1 (?!)

2. Jump in the momentum distribution 
function at T=0.

2a. Pole in the one-particle Green function



Landau Fermi  - Liquid theory

( )

( ){ }

( ) ( )

( ) ( ) ( )pnpppf

pnEp

pnE
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p

′≡′

≡

rrrr

rr

r

r

r

δδξ

δδξ

,

Momentum

Momentum distribution

Total energy

Quasiparticle energy

Landau f-function

Q: ?Can Fermi – liquid survive without the momenta

Does it make sense to speak about the Fermi – liquid state in 
the presence of a quenched disorder



1. Momentum is not a good quantum number – the
momentum uncertainty is inverse proportional to the
elastic mean free path, l. The step in the momentum 
distribution function is broadened by this uncertainty

( )pn r

p
Fp

l
h~

Nevertheless even in the presence of the disorderNevertheless even in the presence of the disorder
I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

2. Neither resistivity nor its temperature dependence is determined by the umklapp 
processes and thus does not behave as T2

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a function of 

the energy, ε. The residue , Z, makes no sense.

Does it make sense to speak about the Fermi – liquid
state in the presence of a quenched disorderQ: ?



Quantum  Dot

e

×

×
×

×

1. Disorder  (×impurities)
2. Complex  geometry }

e
e

e

e

×

×
3. e-e interactions

chaotic
one-particle
motion



1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
er

gy L is the system size;

d is the number of
dimensions

L

g = ET / δ1

OneOne--particle problem (particle problem (Thouless, 1972)) Energy 
scales



Zero Dimensional Fermi LiquidZero Dimensional Fermi Liquid
Finite Thouless
System energy ET

ε << ET 0Ddef

At the same time, we want the typical energies, ε , to 
exceed the mean level spacing, δ1 :

TE<<<< εδ1
1

1

>>≡
δ

TEg



The same statistics of the 
random spectra and one-
particle wave functions 

(eigenvectors)

g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Ν  × Ν
Random Matrices

Quantum Dots with
dimensionless 
conductance g

Ν→ ∞ g→ ∞

Thouless Conductance and
One-particle Quantum Mechanics



εα -one-particle orbital energies Mαβγδ -interaction matrix elements

e

e e

e

αγ

δ β
Μ

|α,σ>TwoTwo--Body Body 
InteractionsInteractions
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′
+

′
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σσ
δγβα

σδσγσβσααβγδ
α

σασααε
,

,,,
,,,,int,,0

ˆˆ aaaaMHaaH

Set of one particle states. σ and 
α label correspondingly spin
and orbit.



|α,σ>TwoTwo--Body Body 
InteractionsInteractions

∑∑
′

′
+

′
++ ==

σσ
δγβα

σδσγσβσααβγδ
α

σασααε
,

,,,
,,,,int,,0

ˆˆ aaaaMHaaH

Set of one particle states. σ and 
α label correspondingly spin
and orbit.

αβγδ

αε

M

εα -one-particle orbital energies Mαβγδ -interaction matrix elements

Nuclear
Physics

αβγδ

αε

M
Quantum

Dots

are taken from the shell model

are assumed to be random 

RANDOM; Wigner-Dyson statistics 

? ? ? ? ? ? ? ?



Matrix ElementsMatrix Elements
∑

′

′
+

′
+=

σσ
δγβα

σδσγσβσααβγδ

,
,,,

,,,,int
ˆ aaaaMH

Matrix 
Elements αβγδM

Diagonal Diagonal - α,β,γ,δ are equal pairwise
α=γ and β=δ or α=δ and β=γ or α=β and γ=δ

Offdiagonal Offdiagonal - otherwise

It turns 
out that in 

the limit

• Diagonal matrix elements are much bigger
than the offdiagonal ones

• Diagonal matrix elements in a particular 
sample  do not fluctuate - selfaveraging

loffdiagonadiagonal MM >>

∞→g



Ψα (x) is a random 
function that 
rapidly oscillates

as long as
T-invariance 
is preserved

|ψα (x)|2           

Toy model:Toy model: Short range e-e interactions

( ) ( )rrU rr δ
ν
λ

= λ is  dimensionless coupling constant ν
is  the electron density of states

( ) ( ) ( ) ( )rrrrrdM rrrrr
δγβααβγδ ψψψψ

ν
λ

∗∗= ∫
( )rrαψ

one-particle
eigenfunctions

x

ψα

electron
wavelength

0≥

ψα (x)2           0≥



In the limit • Diagonal matrix elements are much bigger than the 
offdiagonal ones

• Diagonal matrix elements in a particular sample  do 
not fluctuate - selfaveraging

loffdiagonadiagonal MM >>∞→g

( ) ( ) 22
rrrdM rrr

βααβαβ ψψ
ν
λ

∫=

( )
volume

12 ⇒rrαψ
1λδαβαβ =M

More general:More general: finite range interaction potential  U
r 
r ( )

  
Mαβαβ =

λ
ν

ψ α
r 
r 1( )∫

2
ψ β

r 
r 2( )

2
U

r 
r 1 −

r 
r 2( )dr 

r 1d
r 
r 2

The same 
conclusion



Eα - spectrum
ψα (i) – i-th component of α-th eigenvector

( ) ( ) 1
iji j

Nα γ αγψ ψ δ δ∗ =

Random Random 
Matrices:Matrices:

( ) ( ) 2
iji j

Nα γ αγ
βψ ψ δ δ−

=

in the limit N → ∞

Components of the different eigenvectors as 
well as different components of the same 
eigenvector are not correlated 



All correlation functions are  invariant under  
arbitrary  orthogonal transformation:

( ) ( ) ( )∑∫=
ν

ν
ν
µµ ψψ 111 ,~ rrrOrdr rrrrr

( ) ( ) ( )rrrrOrrOrd ′−=′∫
rrrrrrr δδ µη

η
ν

ν
µ ,, 111

Universal (Random Matrix) limit - Random Matrix 
symmetry of the correlation functions:



There are only three operators, which are quadratic in the 
fermion operators      ,      , and invariant under RM
transformations:

a+
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221

21

1

r

a

total number of particles

total spin

????



ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

Charge conservation
(gauge invariance) -no ˆ T ˆ T + ˆ T ˆ T +or

Invariance under 
rotations in spin space

- no ˆ S 2ˆ S 

Therefore, in a very general case

Only three coupling constants describe all of the 
effects of e-e interactions

only

only



In a very general case only three coupling constants 
describe all effects of electron-electron interactions:

.ˆˆˆˆˆˆ

ˆˆ

22
int

int

TTSJnEneVH

HnH

BCSc
++++=

+= ∑
λ

ε
α

αα

I.L. Kurland, I.L.Aleiner & B.A., 2000
See also
P.W.Brouwer, Y.Oreg & B.I.Halperin, 1999
H.Baranger & L.I.Glazman, 1999
H-Y Kee, I.L.Aleiner & B.A., 1998



ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

Only one-particle part of 
the Hamiltonian,       ,
contains randomness

ˆ H 0



ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

determines the charging energy 
(Coulomb blockade)

describes the spin exchange interaction

determines effect of superconducting-like
pairing

Ec

J

λBCS



For a short range interaction with a coupling constant λ

In a very general case only three coupling constants 
describe all effects of electron-electron interactions:

Ec =
λδ1

2
J = −2λδ1 λBCS = λδ1 2 − β( )

where       is the one-particle mean level spacingδ1

.ˆˆˆˆˆˆ

ˆˆ

22
int

int

TTSJnEneVH

HnH

BCSc
++++=

+= ∑
λ

ε
α

αα



ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

Isn’t it a Fermi liquid ?

Fermi liquid behavior  follows from the fact that different 
wave functions are almost uncorrelated



CONCLUSIONS
One-particle chaos + moderate interaction of the electrons a to a 
rather simple Hamiltonian of the system, which can be called Zero-
dimensional Fermi liquid.
The main parameter that justifies this description is the Thouless 
conductance, which is supposed to be large
Excitations are characterized by their one-particle energy, charge 
and spin, but not by their momentum.
These excitations have the lifetime, which is proportional to the 
Thouless conductance, i.e., is long.
This approach allows to describe Coulomb blockade 
(renormalization of the compressibility), as well as the substantial 
renormalization of the magnetic susceptibility and effects of 
superconducting pairing  


